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KYBERNET IKA — VOLUME 6 1 ( 2 0 2 5 ) , NUMBER 2 , PAGES 2 2 1 – 2 3 7

OPTIMALITY CONDITIONS FOR AN INTERVAL-VALUED
VECTOR PROBLEM

Ashish Kumar Prasad, Julie Khatri and Izhar Ahmad

The present article considers a nonsmooth interval-valued vector optimization problem with
inequality constraints. We first figure out Fritz John and Karush–Kuhn–Tucker type necessary
optimality conditions for the interval-valued problem designed in the paper under quasidifferen-
tiable F-convexity in connection with compact convex sets. Subsequently, sufficient optimality
conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable nu-
merical example.

Keywords: interval-valued vector optimization problem, quasidifferentiable F-convexity,
LU-Pareto optimality,

Classification: 49J52, 90C26, 90C30, 90C29

1. INTRODUCTION

The problems where we simultaneously optimize two or more objective functions are
categorized as vector optimization problems. In vector optimization, the concept of
optimality has a significant impact on statistical decision theory, game theory, economics,
and all noncomparable criteria in optimal decision problems. Our intention in such
problems is to extract the best leading solutions, or, more precisely, nondominated
solutions, from the set of all feasible solutions.

There are several tools to handle uncertainty arising in mathematical programming
problems. Various approaches like stochastic processes, fuzzy numbers, etc. emerged as
mathematical devices to handle uncertainty in recent years. Uncertainty in real-world
scenarios can also be sculptured by means of interval-valued programming problems.
In linear and nonlinear interval-valued optimization problems, either at least one of
the constraints or the objective function or both the objective function and constraints
are considered interval-valued. The present paper intends to study interval-valued op-
timization programming problems assuming components incurred in objective values
vary over some fixed intervals. Several authors had put their efforts into preparing the
groundwork to develop sufficiency results along with duality criteria for interval-valued
problems. In 2007, Wu [33] succeeded in deriving the KKT optimality conditions for
the interval-valued optimization problem. Later on, Zhou and Wang [36] formulated
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sufficient optimality conditions and derived duality theorems for interval-valued prob-
lems under convexity, whereas Jayswal et al. [19] studied duality results and sufficiency
conditions for interval-valued problems under generalized convexity. Bhurjee and Panda
[4] proposed an innovative approach to determine whether or not an efficient solution to
the interval-valued optimization problem exists. Zhang [35] formulated the KKT con-
ditions of optimality in a class of nonconvex interval-valued problems. Optimality and
duality issues related to nondifferentiable interval-valued programming problems were
addressed by Sun and Wang [29]. The nonsmooth vector optimization problem having
each component locally Lipschitz produces outstanding results in optimality as discussed
in Clarke [9], Craven [11], and Luc [23].

Abdouni and Thibault [14] intensively studied Lagrange multipliers for multiobjec-
tive nonsmooth problems. Brandao et al. [6] set up conditions of optimality for nons-
mooth and nonconvex problems, whereas Coladas et al. [10] studied the same for nons-
mooth multiobjective minimization problems. The work is further extended by Minami
[26], who generalized it for nondifferentiable multiobjective problems. Jeyakumar and
Yang [20] studied a class of problems where both the objective function and constraints
are designed by taking functions that are not only convex but also locally Lipschitz
and Gâteaux differentiable. A number of authors like Kanniappan [21], Wang [31],
Bolintinéanu [5], Miettinen [25], Chinchuluun and Pardalos [8], Huang et al. [18], and
Bhatia and Jain [3] worked on nonsmooth optimization problems and derived optimality
conditions and other results.

The concept of quasidifferentiability was introduced by Demyanov and Rubinov [12]
in the 1980’s. Demyanov and Rubinov [13] worked on some approaches in order to
deal with the nonsmooth optimization problem. Optimality and duality results for
quasidifferentiable optimization problems can be found in many works (e. g., Luderer
and Rösiger [24], Eppler and Luderer [15], Gao([16, 17]), Uderzo[30], Kuntz and Scholtes
[22], Ward [32], Polyakova [27], Xia et al. [34], Shapiro [28]).

The objective of the present article is to establish optimality conditions for interval-
valued vector optimization problems under quasidifferentiability. In this article, we
introduced the Fritz John and KKT-type necessary optimality criteria for nonsmooth
multiobjective interval-valued vector optimization problems with the help of F-convexity
in connection with the compact convex set. Moreover, sufficient optimality criteria have
been derived for the designed nonsmooth multiobjective interval-valued problem assum-
ing the functions quasidifferentiable F-convex that satisfy compactness and convexity in
the required domain.

This article is shaped up as follows: Section 2 recalls notations and definitions to set
up the results derived in the continuation of the article. In Section 3, we established the
Fritz John and the KKT-type necessary optimality results under quasidifferentiability.
Finally, Section 4 deals with sufficiency optimality criteria for the (weak) LU-Pareto
solution. An appropriate example of a non-convex quasidifferentiable interval-valued
vector problem is engineered to get a better insight into the work.

2. PRELIMINARIES

In this section, we begin with the following convention for inequalities and equalities,
which is utilized in the later part of this paper. For any p = (p1, p2, . . . , pn), q =
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(q1, q2, . . . , qn) in ℜn, we have

(i) p = q ⇔ pi = qi, ∀i = 1, . . . , n;

(ii) p > q ⇔ pi > qi, ∀i = 1, . . . , n;

(iii) p ≧ q ⇔ pi ≧ qi, ∀i = 1, . . . , n;

(iv) p ≥ q ⇔ p ≧ q, p ̸= q.

In the sequel of the paper, I denotes the set of bounded and closed intervals of ℜ. For
any two intervals A1 = [aL1 , a

U
1 ], A2 = [aL2 , a

U
2 ] ∈ I, the usual operations are defined as

follows:

(i) A1 +A2 = {a1 + a2 : a1 ∈ A1 and a2 ∈ A2} = [aL1 + aL2 , a
U
1 + aU2 ],

(ii) −A1 = {−a1 : a1 ∈ A1} = [−aU1 ,−aL1 ],

(iii) A1 −A2 = {A1 + (−A2)} = [aL1 − aU2 , a
U
1 − aL2 ],

(iv) α+A1 = {α+ a1 : a1 ∈ A1} = [α+ aL1 , α+ aU1 ],

(v) αA1 = {αa1 : a1 ∈ A1} =

{
[αaL1 , αa

U
1 ], α > 0,

[αaU1 , αa
L
1 ], α ≦ 0,

where α is any real number. If we take aL1 = aU1 = a1, then the interval A1 reduces to a
real number.

Let ∅ ≠ X ⊆ ℜn, where ℜn symbolizes Euclidean space of n-dimension. If the
function ϕ is interval-valued, then it can be represented more appropriately by ϕ(π) =
[ϕL(π), ϕU (π)], where ϕL(π) : ℜn → ℜ and ϕU (π) : ℜn → ℜ have the components
satisfying conditions ϕL(π) ≦ ϕU (π), ∀ π ∈ ℜn. Shortly, in place of [ϕ(π)]L and [ϕ(π)]U

we write ϕL(π) and ϕU (π), respectively.
Symbolically, we write A1 ≦LU A2 to denote aL1 ≦ aL2 and aU1 ≦ aU2 . For notational

convenience, we use ≦LU as partial ordering defined on I. Moreover, A1 <LU A2 ⇔
A1 ≦LU A2, A1 ̸= A2.
Identically, A1 <LU A2 means

aL1 < aL2 , a
U
1 < aU2 ,

or,
aL1 ≦ aL2 , a

U
1 < aU2 ,

or,
aL1 < aL2 , a

U
1 ≦ aU2 .

Definition 2.1. (Antczak [1]) A mapping f : ℜn → ℜ is termed as directionally
differentiable at a point σ ∈ ℜn along the direction d ∈ ℜn provided the limit

f ′(σ; d) := lim
γ↓0

f(σ + γd)− f(σ)

γ
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exists and is finite.
A function F = (f1, . . . , fk) : ℜn → ℜk where each component fi, i = {1, . . . , k}, is

directionally differentiable at a point σ is called directionally differentiable at σ ∈ ℜn in
the specified direction d ∈ ℜn.

Definition 2.2. (Demyanov and Rubinov [12]) A directionally differentiable function
f : ℜn → ℜ is known as quasidifferentiable at a point σ ∈ ℜn if there exists a pair of
ordered compact convex sets Df (σ) = [∂f(σ), ∂f(σ)] corresponding to the function f
satisfying

f ′(σ; d) := max
λ∈∂f(σ)

⟨λ, d⟩+ min
ϱ∈∂f(σ)

⟨ϱ, d⟩.

Here, ∂f(σ) is subdifferential, and ∂f(σ) is superdifferential of f at a point σ. Moreover,
the pair of ordered sets Df (σ) = [∂f(σ), ∂f(σ)] is quasidifferential of f at a point σ.

Example 2.3. Let us consider a nonsmooth function f : ℜ2 → ℜ defined by f(π) =
π2
1 + |π1| + |π2|, and σ = (0, 0). Our aim is to find the quasidifferential of f at σ.

Using the definition of directional differentiable function at σ along d ∈ ℜ2, we obtain
f ′(σ; d) = |d1|+ |d2|. Hence,

f ′(σ; d) := max
λ∈conv{(1,0),(−1,0)}

⟨λ, d⟩+ min
ϱ∈conv{(0,1),(0,−1)}

⟨ϱ, d⟩.

Therefore, by Definition 2.2, f is quasidifferentiable at σ, the subdifferential being
∂f(σ)= conv{(1, 0), (−1, 0)} and superdifferential ∂f(σ) = conv{(0, 1), (0,−1)}. More-
over, Df (σ) = [conv{(1, 0), (−1, 0)}, conv{(0, 1), (0,−1)}] is a pair of quasidifferential
ordered sets of the function f at a point σ.

Note: The uniqueness of a quasidifferential function f may fail at some point σ ∈ ℜn.
Consequently, if Df (σ) = [∂f(σ), ∂f(σ)] is a quasidifferential of f at a point σ ∈ ℜn,
then the ordered sets [∂f(σ)+V, ∂f(σ)−V ] is also its quasidifferential for any compact
set V .

Definition 2.4. (Antczak [1]) A vector-valued function F = (f1, . . . , fk) : ℜn → ℜk
where each of its component fi is quasidifferentiable at a point σ having quasidifferential
Dfi(σ) = [∂fi(σ), ∂fi(σ)] is termed as quasidifferentiable at a point σ ∈ ℜn.

3. NECESSARY OPTIMALITY CONDITIONS

Let us examine the following nonsmooth interval-valued vector optimization problem:

(IVOP) minimize ℵ(π) =
(
[ℵL1 (π),ℵU1 (π)], . . . , [ℵLk (π),ℵUk (π)]

)
subject to ψj(π) ≦ 0; j ∈ J = {1, . . . ,m}; π ∈ ℜn.

where, ℵi : ℜn → I, i = {1, . . . , k} are interval-valued functions, whereas on the other
hand, ℵLi (π),ℵUi (π) and ψj(π) : ℜn → ℜ, j ∈ J = {1, . . . ,m}, are quasidifferentiable
functions on ℜn.

For convenience, we will use ℵ = (ℵ1, . . . ,ℵk) : ℜn → I, where ℵi = [ℵLi ,ℵUi ] and
ℵL,ℵU : ℜn → ℜk and ψ = (ψ1, . . . , ψm) : ℜn → ℜm. Let Ω = {π ∈ ℜn : ψj(π) ≦
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0; j ∈ J} represent the set of all feasible solutions to the problem (IVOP). Moreover,
J(π̄) := {j ∈ J : ψj(π̄) = 0} denotes the set of active constraints at a point π̄.

Note: If we confine the objective function to be vector-valued instead of interval-valued,
then the above problem reduces to the problem considered in Antczak [1].

Definition 3.1. (Antczak [2]) A feasible point π̄ ∈ Ω is known as an LU -Pareto (LU -
efficient) solution to (IVOP) if there does not exist any point π ∈ Ω satisfying

ℵi(π) ≦LU ℵi(π̄), for each i ∈ {1, . . . , k}

and
ℵi(π) <LU ℵi(π̄), for at least one i ∈ {1, . . . , k}.

Definition 3.2. (Antczak [2]) A feasible point π̄ ∈ Ω is known as a weak LU -Pareto
(weak LU -efficient) solution to (IVOP) if there does not exist any point π ∈ Ω satisfying

ℵi(π) <LU ℵi(π̄), for each i ∈ {1, . . . , k}.

Definition 3.3. (Antczak [1]) A function F : X×X×ℜn → ℜ is sublinear with respect
to the third component, if for all π, σ ∈ X ⊆ ℜn, we have

(i) F(π, σ; ρ1 + ρ2) ≦ F(π, σ; ρ1) + F(π, σ; ρ2), ∀ ρ1, ρ2 ∈ ℜn,

(ii) F(π, σ;αρ) = αF(π, σ; ρ), ∀ α ∈ ℜ+, ∀ ρ ∈ ℜn.

Taking α = 0 in (ii), we get,
F(π, σ; 0) = 0. (1)

Now, we recall the definition of F-convex function. Let σ be chosen from ℜn arbitrarily,
and Sf (σ) be a nonempty, compact, and convex subset of ℜn.

Definition 3.4. (Antczak [1]) The function f : ℜn → ℜ is known as F-convex at
a point σ on ℜn in connection with the compact convex set Sf (σ), if there exists a
sublinear function F satisfying

f(π)− f(σ) ≧ F(π, σ; ϱ̄), for all ϱ̄ ∈ Sf (σ), π ∈ ℜn. (2)

Remark 3.5. If the function f : ℜn → ℜ is locally Lipschitz at every point σ of ℜn
and Sf (σ) is the same as that of Clarke subdifferential [9] of the function f at a point
σ, then we arrive at the definition of locally Lipschitz F-convex function defined on
ℜn as reflected in [3]. If the function f is differentiable at each point σ ∈ ℜn and
Sf (σ) = {∇f(σ)}, then the Definition 3.4 reduces to the definition of differentiable
F-convex function (see [7]).

Definition 3.6. (Antczak [1]) Let F = (f1, . . . , fk) : ℜn → ℜk be a vector valued
function, and each Sfi(σ), i = 1, . . . , k be a nonempty, compact, as well as convex
subset of ℜn. The function fi is known as F-convex at a point σ of ℜn in connection
with Sfi(σ) if each component fi of F satisfies (2). Furthermore, the function F is
known as F-convex at a point σ of ℜn in connection with SF (σ) = Sf1(σ)×· · ·×Sfk(σ).
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Definition 3.7. The interval-valued function ℵ : ℜn → I is known as the F-convex
function at a point σ on ℜn in connection with the compact convex set Sℵ(σ), if all
components of ℵL = (ℵL1 , . . . ,ℵLk ) and ℵU = (ℵU1 , . . . ,ℵUk ) are F-convex at a point σ on
ℜn in connection with compact convex sets SℵL

i
(σ) and SℵU

i
(σ), respectively. That is,

ℵLi (π)− ℵLi (σ) ≧ F(π, σ; ϱ̄Li ), for all ϱ̄
L
i ∈ SℵL

i
(σ), (3)

ℵUi (π)− ℵUi (σ) ≧ F(π, σ; ϱ̄Ui ), for all ϱ̄
U
i ∈ SℵU

i
(σ), π ∈ ℜn. (4)

Note: Every convex and quasidifferentiable function is a F-convex quasidifferentiable
function in connection with the convex compact set, but the converse is not true.

Now, in order to substantiate the necessary Fritz John-type optimality results for
constructed quasidifferentiable interval-valued vector optimization problem (IVOP), we
apply the ε-constraint technique in which one of the objectives is optimized (let it be
rth component), and the remaining are shielded by setting an upper bound. Therefore,
the coupled scalar initial value problem assumes the following form:

(Pr)ε minimize ℵr(π) = [ℵLr (π),ℵUr (π)]
subject to [ℵLi (π),ℵUi (π)] ≦LU [εLi , ε

U
i ], i = {1, . . . , k}, i ̸= r,

ψj(π) ≦ 0, (j ∈ J), π ∈ ℜn.

Theorem 3.8. The feasible point π̄ ∈ Ω becomes an LU -Pareto solution to (IVOP) iff
it is a minimal solution to the ε-constraint problem (Pr)ε, where r can take any value
from 1 to k, εLi = ℵLi (π̄), and εUi = ℵUi (π̄), ∀ i = {1, . . . , k}, i ̸= r.

In the light of the above theorem, we can rewrite our problem as

(Pr(π̄)) minimize ℵr(π) = [ℵLr (π),ℵUr (π)]
subject to [ℵLi (π),ℵUi (π)] ≦LU [ℵLi (π̄),ℵUi (π̄)], i = {1, . . . , k}, i ̸= r,

ψj(π) ≦ 0, (j ∈ J), π ∈ ℜn.

Theorem 3.9. (Necessary criteria of Fritz John-type) Let the feasible point π̄ ∈ Ω
be a weak LU -Pareto solution to (IVOP). Further, assume that each ℵLi ,ℵUi , i =
{1, . . . , k}, is quasidifferentiable at a point π̄ together with the quasidifferentialDℵL

i
(π̄) =

[∂ℵLi (π̄), ∂ℵLi (π̄)] and DℵU
i
(π̄) = [∂ℵUi (π̄), ∂ℵUi (π̄)] respectively. Moreover, ψj (j ∈

J), are quasidifferentiable at a point π̄ together with the quasidifferential Dψj
(π̄) =

[∂ψj(π̄), ∂ψj(π̄)]. Then, for any sets of ϱLi ∈ ∂ℵLi (π̄), ϱUi ∈ ∂̄ℵUi (π̄) (i = {1, . . . , k}),
and ϑj ∈ ∂ψj(π̄) (j ∈ J), there exist Lagrange multipliers µ̄L(ð) ∈ ℜk, µ̄U (ð) ∈ ℜk and
δ̄(ð) ∈ ℜm so that

0 ∈
k∑
i=1

[
µ̄Li (ð)(∂ℵLi (π̄) + ϱLi ) + µ̄Ui (ð)(∂ℵUi (π̄) + ϱUi )

]
+

m∑
j=1

δ̄j(ð)(∂ψj(π̄) + ϑj), (5)
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δ̄j(ð)ψj(π̄) = 0 (j ∈ J), (6)(
µ̄L(ð), µ̄U (ð), δ̄(ð)

)
≥ 0, (7)

where as, Lagrange multipliers µ̄L(ð) =
(
µ̄L1 (ð), . . . , µ̄Lk (ð)

)
, µ̄U (ð) =

(
µ̄U1 (ð), . . . , µ̄Uk (ð)

)
and δ̄(ð) =

(
δ̄1(ð), . . . , δ̄m(ð)

)
rely on the particularly selected ð = (ϱL, ϱU , ϑ) =

(ϱL1 , . . . , ϱ
L
k , ϱ

U
1 , . . . , ϱ

U
k , ϑ1, . . . , ϑm).

P r o o f . It is given that the feasible point π̄ ∈ Ω is a weak LU -Pareto solution to
(IVOP). In view of Theorem 3.8, π̄ is a minimal solution to (Pr(π̄)), which due to Propo-
sition (2.1) (Gao [17]) guarantees the existence of µ̄Li (ð) ≧ 0, µ̄Ui (ð) ≧ 0 (i = {1, . . . , k}),
and δ̄j ≧ 0 (j ∈ J), all not being zero simultaneously for all ϱLi ∈ ∂ℵLi (π̄), ϱUi ∈ ∂ℵUi (π̄),
and ϑj ∈ ∂ψj(π̄) (j ∈ J), satisfying

0 ∈ µ̄Lr (ð)(∂ℵLr (π̄) + ϱLr ) + µ̄Ur (ð)(∂ℵUr (π̄) + ϱUr ) +

k∑
i=1,i̸=r

[
µ̄Li (ð)(∂ℵLi (π̄) + ϱLi )

+ µ̄Ui (ð)(∂ℵUi (π̄) + ϱUi )
]
+

m∑
j=1

δ̄j(ð)(∂ψj(π̄) + ϑj), (8)

δ̄j(ð)ψj(π̄) = 0, j ∈ J, (9)(
µ̄L(ϱ), µ̄U (ϱ), δ̄(ϱ)

)
≥ 0, (10)

where as, Lagrange multipliers µ̄L(ð) =
(
µ̄L1 (ð), . . . , µ̄Lk (ð)

)
, µ̄U (ð) =

(
µ̄U1 (ð), . . . , µ̄Uk (ð)

)
,

δ̄(ð) =
(
δ̄1(ð), . . . , δ̄m(ð)

)
rely on the particular choice of ð = (ϱL, ϱU , ϑ) = (ϱL1 , . . . , ϱ

L
k ,

ϱU1 , . . . , ϱ
U
k , ϑ1, . . . , ϑm). Using (5), we can easily establish (8). Moreover, equation (9)

is same as that of equation (6), whereas inequality (10) is same as that of inequality (7).
□

Now, in order to prove the KKT-type necessary optimality criteria for the formulated
interval-valued problem, we impose appropriate constraint qualifications. The constraint
qualifications are satisfied for the studied quasidifferentiable problem (IVOP) at a point
π̄, if there exists d ∈ ℜn so that

max
σj∈∂ψj(π̄)

⟨σj , d⟩+ max
ϑj∈∂ψj(π̄)

⟨ϑj , d⟩ < 0, j ∈ J(π̄). (11)

Hence, constraint qualifications are satisfied at π̄ (∀ j ∈ J(π̄)), if there exists a quasid-
ifferential Dψj

(π̄) = [∂ψj(π̄), ∂ψj(π̄)] so that

0 /∈ conv
⋃

j∈J(π̄)

(∂ψj(π̄), ∂ψj(π̄)). (12)

Theorem 3.10. (Necessary criteria of KKT-type) Let the feasible point π̄ ∈ Ω be a
weak LU -Pareto solution to the problem (IVOP). Suppose the functions ℵLi and ℵUi are
quasidifferentiable at a point π̄ having quasidifferential DℵL

i
(π̄) = [∂ℵLi (π̄), ∂ℵLi (π̄)] and

DℵU
i
(π̄) = [∂ℵUi (π̄), ∂ℵUi (π̄)] respectively. Moreover, ψj (j ∈ J) are quasidifferentiable
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at π̄, having quasidifferential Dψj (π̄) = [∂ψj(π̄), ∂ψj(π̄)] and constraint qualifications

fulfilled at a point π̄ to (IVOP). Then for the sets ϱLi ∈ ∂ℵLi (π̄), ϱUi ∈ ∂̄ℵUi (π̄), and
ϑj ∈ ∂ψj(π̄) (j ∈ J), there exist vectors µ̄L(ð), µ̄U (ð) ∈ ℜk and δ̄(ð) ∈ ℜm so that

0 ∈
k∑
i=1

[
µ̄Li (ð)(∂ℵLi (π̄) + ϱLi ) + µ̄Ui (ð)(∂ℵUi (π̄) + ϱUi )

]
+

m∑
j=1

δ̄j(ð)(∂ψj(π̄) + ϑj), (13)

δ̄j(ð)ψj(π̄) = 0, j ∈ J (14)

µ̄L(ð) ≥ 0, µ̄U (ð) ≥ 0, δ̄(ð) ≧ 0, (15)

where as, Lagrange multipliers µ̄L(ð) =
(
µ̄L1 (ð), . . . , µ̄Lk (ð)

)
, µ̄U (ð) =

(
µ̄U1 (ð), . . . , µ̄Uk (ð)

)
and δ̄(ð) =

(
δ̄1(ð), . . . , δ̄m(ð)

)
rely on the particular selection of ð = (ϱL, ϱU , ϑ) =

(ϱL1 , . . . , ϱ
L
k , ϱ

U
1 , . . . , ϱ

U
k , ϑ1, . . . , ϑm).

P r o o f . Let the feasible point π̄ ∈ Ω be a weak LU -Pareto solution to (IVOP), and the
necessary conditions (5) – (7) of optimality are satisfied at π̄. It is sufficient to show that
µ̄L(ð), µ̄U (ð) ̸= 0 for all ð. Let us assume that there exists ð∗ for which µ̄L(ð∗) = 0, and
µ̄U (ð∗) = 0. Then, it is clear from (5) that there exists ϑ∗j ∈ ∂̄ψj(π̄) (j ∈ J) such that

0 ∈
m∑
j=1

δ̄j(ð∗)(∂ψj(π̄) + ϑ∗j ). (16)

With the help of Fritz John-type necessary criteria (7), one can get δ̄(ð∗) ≥ 0, and
hence, summing up from j = {1, . . . ,m}, we get

m∑
j=1

δ̄j(ð∗) > 0. (17)

On dividing (16) by
∑m
t=1 δ̄t(ð∗), we obtain

0 ∈
m∑
j=1

δ̄j(ð∗)∑m
t=1 δ̄t(ð∗)

(∂ψj(π̄) + ϑ∗j ). (18)

Next, we define

αj(ð∗) =
δ̄j(ð∗)∑m
t=1 δ̄t(ð∗)

, j ∈ J(π̄), (19)

which reveals that 0 ≦ αj(ð∗) ≦ 1, and
∑
j∈J(π̄) αj(ð∗) = 1.

On combining (18) and (19), we get

0 ∈
m∑
j=1

αj(ð∗)(∂ψj(π̄) + ϑ∗j ). (20)
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The relation (19) together with (20) implies that

0 ∈ conv
⋃

j∈J(π̄)

(∂ψj(π̄) + ϑ∗j ). (21)

Using (12) and the fact that π̄ satisfies the constraint qualifications, it reveals that

0 /∈ conv
⋃

j∈J(π̄)

(∂ψj(π̄) + ϑj), ∀ ϑj ∈ ∂ψj(π̄), j ∈ J. (22)

In particular, ϑj = ϑ∗j ∈ ∂ψj(π̄) (j ∈ J). Therefore, using (22) it can be seen that

0 /∈ conv
⋃

j∈J(π̄)

(∂ψj(π̄) + ϑ∗j )

which contradicts (21). This means that µ̄L(ð), µ̄U (ð) ̸= 0 for all choices of ð. This
completes the proof. □

4. SUFFICIENCY RESULTS

In the present section, we formulate sufficient optimality criteria for a weak LU -Pareto
solution and a LU -Pareto solution.

Theorem 4.1. (Sufficiency optimality criteria for weak LU -Pareto solution) A feasi-
ble point π̄ becomes a weak LU -Pareto solution to (IVOP) if it satisfies the following
sufficient optimality conditions:

(i) π̄ satisfies KKT-type necessary conditions given by (13)-(15) with the quasidiffer-
entials DℵL

i
(π̄) = [∂ℵLi (π̄), ∂ℵLi (π̄)], DℵU

i
(π̄) = [∂ℵUi (π̄), ∂ℵUi (π̄)] (i = {1, . . . , k}),

and Dψj
(π̄) = [∂ψj(π̄), ∂ψj(π̄)] (j ∈ J), respectively;

(ii) functions ℵLi ,ℵUi (i = {1, . . . , k}), are F-convex quasidifferentiable at a point π̄ ∈ Ω
in connection with SℵL

i
(π̄) = ∂ℵLi (π̄) + ∂ℵLi (π̄) and SℵU

i
(π̄) = ∂ℵUi (π̄) + ∂ℵUi (π̄)

respectively;

(iii) ψj (j ∈ J(π̄)) are F-convex quasidifferentiable at any point π̄ in Ω in connection
with Sψj

(π̄) = ∂ψj(π̄) + ∂ψj(π̄).

P r o o f . Since the feasible solution π̄ ∈ Ω satisfies conditions (i) – (ii), then there exist
µ̄L(ð) ∈ ℜk, µ̄U (ð) ∈ ℜk and δ̄(ð) ∈ ℜm satisfying the conditions (13)-(15). On the
other hand, if the point π̄ is not a weak LU -Pareto solution in (IVOP), then there exist
π̃ ∈ Ω satisfying

ℵi(π̃) <LU ℵi(π̄) (i = {1, . . . , k}), (23)

that is,

ℵLi (π̃) < ℵLi (π̄) or ℵLi (π̃) ≦ ℵLi (π̄) or ℵLi (π̃) < ℵLi (π̄)
ℵUi (π̃) < ℵUi (π̄) ℵUi (π̃) < ℵLi (π̄) ℵLi (π̃) ≦ ℵLi (π̄).
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By assumption, each function ℵLi ,ℵUi (i = {1, . . . , k}) is F-convex quasidifferentiable at
a point π̄ in Ω in connection with SℵL

i
(π̄) = ∂ℵLi (π̄) + ∂ℵLi (π̄) and SℵU

i
(π̄) = ∂ℵUi (π̄) +

∂ℵUi (π̄) respectively; each ψj (j ∈ J(π̄)) is a F-convex quasidifferentiable function at a
point π̄ on Ω in connection with Sψj

(π̄) = ∂ψj(π̄)+∂ψj(π̄).With the help of F-convexity,
we can show that

ℵLi (π)− ℵLi (π̄) ≧ F(π, π̄, ϱ̄Li ), ∀ϱ̄Li ∈ SℵL
i
(π̄), i = {1, . . . , k}, (24)

ℵUi (π)− ℵUi (π̄) ≧ F(π, π̄, ϱ̄Ui ), ∀ϱ̄Ui ∈ SℵU
i
(π̄), i = {1, . . . , k}, (25)

ψj(π)− ψj(π̄) ≧ F(π, π̄; ϑ̄j), ∀ϑ̄j ∈ Sψj
(π̄), j ∈ J(π̄) (26)

are satisfied for all points π belonging to Ω and, in particular, for π = π̃. Therefore, the
inequalities (24), (25), and (26) yield

ℵLi (π̃)− ℵLi (π̄) ≧ F(π̃, π̄, ϱ̄Li ), ∀ϱ̄Li ∈ SℵL
i
(π̄), i = {1, . . . , k}, (27)

ℵUi (π̃)− ℵUi (π̄) ≧ F(π̃, π̄, ϱ̄Ui ), ∀ϱ̄Ui ∈ SℵU
i
(π̄), i = {1, . . . , k}, (28)

ψj(π̃)− ψj(π̄) ≧ F(π̃, π̄; ϑ̄j), ∀ϑ̄j ∈ Sψj
(π̄), j ∈ J(π̄). (29)

On combining (23), (27), and (28), we get

F(π̃, π̄; ϱ̄Li ) < 0, ∀ϱ̄Li ∈ SℵL
i
(π̄),

F(π̃, π̄; ϱ̄Ui ) < 0, ∀ϱ̄Ui ∈ SℵU
i
(π̄).

or
F(π̃, π̄; ϱ̄Li ) ≦ 0, ∀ϱ̄Ui ∈ SℵU

i
(π̄),

F(π̃, π̄; ϱ̄Ui ) < 0, ∀ϱ̄Ui ∈ SℵU
i
(π̄).

or
F(π̃, π̄; ϱ̄Li ) < 0, ∀ϱ̄Li ∈ SℵL

i
(π̄),

F(π̃, π̄; ϱ̄Ui ) ≦ 0, ∀ϱ̄Ui ∈ SℵU
i
(π̄).


(30)

The above inequalities with the KKT condition (15) give

k∑
i=1

[
µ̄Li (ð)F

(
π̃, π̄; ϱ̄Li

)
+µ̄Ui (ð)F

(
π̃, π̄; ϱ̄Ui

)]
< 0, (31)

for all ϱ̄Li ∈ ∂ℵLi (π̄) + ϱLi , and ϱ̄
U
i ∈ ∂ℵUi (π̄) + ϱUi .

Due to sublinearity of F, we get

F

(
π̃, π̄;

k∑
i=1

µ̄Li (ð)(ϱ̄Li )+
k∑
i=1

µ̄Ui (ð)(ϱ̄Ui )
)

< 0, (32)

for all ϱ̄Li ∈ ∂ℵLi (π̄) + ϱLi , ϱ̄Ui ∈ ∂ℵUi (π̄) + ϱUi .
Since π̃ and π̄ ∈ Ω satisfy (14) and (15), therefore, we have

δ̄j(ð)ψj(π̃) ≦ δ̄j(ð)ψj(π̄) = 0, ∀j ∈ J(π̄). (33)

Using inequality (29) and condition (15), we get

δ̄j(ð)ψj(π̃)− δ̄j(ð)ψj(π̄) ≧ δ̄j(ð)F(π̃, π̄; ϑ̄j), ∀ϑ̄j ∈ Sψj
(π̄), ∀j ∈ J(π̄). (34)
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In view of inequalities (33) and (34), we get

δ̄j(ð)F(π̃, π̄; ϑ̄j) ≦ 0, ∀ϑ̄j ∈ Sψj
(π̄), ∀j ∈ J(π̄). (35)

By definition of Sψj
(π̄), ∀j ∈ J(π̄), and (35) yield∑

j∈J(π̄)

δ̄j(ð)F
(
π̃, π̄; ϑ̄j

)
≦ 0; ∀ϑ̄j ∈ ∂ψj(π̄)+ϑj , (36)

which, due to sublinearity of F, produces

F

(
π̃, π̄;

∑
j∈J(π̄)

δ̄j(ð)ϑ̄j
)

≦ 0; ∀ϑ̄j ∈ ∂ψj(π̄)+ϑj . (37)

With the help of (32) and (37), we obtain

F

(
π̃, π̄;

k∑
i=1

µ̄Li (ð)ϱ̄Li +

k∑
i=1

µ̄Ui (ð)ϱ̄Ui +
∑
j∈J(π̄)

δ̄j(ð)ϑ̄j
)

< 0, (38)

for each ϱ̄Li ∈ ∂ℵLi (π̄) + ϱLi , ϱ̄
U
i ∈ ∂ℵUi (π̄) + ϱUi , (i = {1, . . . , k}), and ϑ̄j ∈ ∂ψj(π̄) +

ϑj , j ∈ J(π̄). Eventually, it is clear from (38) that

0 /∈
k∑
i=1

[
µ̄Li (ð)(∂ℵLi (π̄) + ϱLi ) + µ̄Ui (ð)(∂ℵUi (π̄) + ϱUi )

]
+

m∑
j∈J(π̄)

δ̄j(ð)(∂ψj(π̄) + ϑj),

which opposes the KKT condition (13). Hence, the proof is complete. □

Theorem 4.2. (Sufficiency optimality criteria for LU -Pareto solution) A feasible point
π̄ becomes an LU -Pareto solution to (IVOP) if it satisfies the following sufficiency opti-
mality conditions:

(i) π̄ satisfies the KKT-type necessary conditions of optimality given by (13)-(15) with
the quasidifferentials DℵL

i
(π̄) = [∂ℵLi (π̄), ∂ℵLi (π̄)], DℵU

i
(π̄) = [∂ℵUi (π̄), ∂ℵUi (π̄)];

i = {1, . . . , k} and Dψj
(π̄) = [∂ψj(π̄), ∂ψj(π̄)] (j ∈ J), respectively;

(ii) functions ℵLi ,ℵUi (i = {1, . . . , k}), are strictly F-convex quasidifferentiable at a
point π̄ on Ω in connection with SℵL

i
(π̄) = ∂ℵLi (π̄) + ∂ℵLi (π̄) and SℵU

i
(π̄) =

∂ℵUi (π̄) + ∂ℵUi (π̄) respectively;

(iii) ψj (j ∈ J(π̄)) are F-convex quasidifferentiable functions at a point π̄ on Ω in
connection with Sψj

(π̄) = ∂ψj(π̄) + ∂ψj(π̄).

P r o o f . The proof of the present theorem runs on the lines parallel to the proof of
Theorem 4.1. Hence, the proof is omitted. □



232 A.K. PRASAD, J. KHATRI AND I. AHMAD

Example 4.3. Consider the following nonsmooth interval-valued multiobjective pro-
gramming problem:

(IVOP1) minimize ℵ(π) =
(
[ℵL1 (π),ℵU1 (π)], [ℵL2 (π),ℵU2 (π)]

)
=

(
[π2

1 + π2
2 + |π1| − |π2|, 5π4

2 + 3π2
1 + |π2 + |π1||],

[π4
1 + |π1|+ |π2| − π1 − π2, 4π

2
1 + π2

2 + |π1|+ 2π2 + 5]
)
,

subject to ψ1(π) = π4
1 + π4

2 + |π1 + π2|+ 2π1 ≦ 0, π ∈ ℜ2.

Here, the set Ω = {π = (π1, π2) ∈ ℜ2 : π4
1 + π4

2 + |π1 + π2| + 2π1 ≦ 0} and π̄ = (0, 0)
represents the feasible solution to the interval-valued problem (IVOP1). Moreover, it
can be justified that the functions ℵL1 (π), ℵU1 (π), ℵL2 (π), ℵU2 (π) and ψ1(π) are qua-
sidifferentiable at a point π̄. By the definition of the directional derivative, we obtain
ℵL1

′
((0, 0); d) = |d1|− |d2|, ℵU1

′
((0, 0); d) = |d2+ |d1||, ℵL2

′
((0, 0); d) = |d1|+ |d2|−d1−d2

and ℵU2
′
((0, 0); d) = |d1|+ 2d2. Hence,

ℵL1
′
((0, 0); d) = max

λL
1 ∈conv{(1,0),(−1,0)}

(λL1 )
T
d+ min

ϱL1 ∈conv{(0,1),(0,−1)}
(ϱL1 )

T
d,

where,

∂ℵL1 (0, 0) = conv{(1, 0), (−1, 0)}, ∂ℵL1 (0, 0) = conv{(0, 1), (0,−1)}

and

ℵU1
′
((0, 0); d) = max

λU
1 ∈conv{(0,0),(−2,2),(2,2)}

(λU1 )
T
d+ min

ϱU1 ∈{(−1,−1),(1,−1)}
(ϱL2 )

T
d.

It is clear that ∂ℵU1 (0, 0) = conv{(0, 0), (−2, 2), (2, 2)}, ∂ℵU1 (0, 0) = {(−1,−1), (1,−1)}.
Moreover

ℵL2
′
((0, 0); d) = max

λL
2 ∈conv{(1,1),(−1,−1)}

(λL2 )
T
d+ min

ϱL2 ∈{(−1,−1)}
(ϱL2 )

T
d,

where ∂ℵL2 (0, 0) = conv{(1, 1), (−1,−1)}, ∂ℵL2 (0, 0) = {(−1,−1)}
and

ℵU2
′
((0, 0); d) = max

λU
2 ∈conv{(1,0),(−1,0)}

(λL2 )
T
d+ min

ϱU2 ∈conv{(0,2)}
(ϱU2 )

T
d,

where,
∂ℵU2 (0, 0) = conv{(1, 0), (−1, 0)}, ∂ℵU2 (0, 0) = conv{(0, 2)}.

Therefore, by Definition 2.2, we can conclude that the functions ℵL1 , ℵU1 , ℵL2 , and ℵU2 are
quasidifferentiable at a point π̄ = (0, 0). Similarly, we have ψ′

1((0, 0), d) = |d1+d2|+2d1
and hence

ψ′
1((0, 0); d) = max

ω1∈conv{(1,1),(−1,−1)}
ωT1 d+ min

ϑ1∈{(2,0)}
ϑ1
T d,

where, ∂ψ1(0, 0) = conv{(1, 1), (−1,−1)}, ∂ψ1(0, 0) = {(2, 0)}.
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Now, we will show that the necessary optimality criteria of KKT-type are satisfied
at a point π̄ in which the Lagrange multipliers are not constant. Evidently, it can be
proved that, for any sets of ϱL1 ∈ ∂ℵL1 (π̄), ϱU1 ∈ ∂ℵU1 (π̄), ϱL2 ∈ ∂ℵL2 (π̄), ϱU2 ∈ ∂ℵU2 (π̄),
and ϑ1 ∈ ∂ψ1(π̄), there exist Lagrange multipliers µ̄Li (ð) ≥ 0, µ̄Ui (ð) ≥ 0, i = {1, 2},
and δ̄1(ð) ≧ 0 satisfying the KKT-type necessary optimality criteria. Let us consider
the following example for the particular choice of ð = (ϱL1 , ϱ

U
1 , ϱ

L
2 , ϱ

U
2 , ϑ1) :

(a) if ϱL1 = (0, 1), ϱU1 = (1,−1), ϱL2 = (−1,−1), ϱU2 = (0, 2), ϑ1 = (2, 0), then we
substitute µ̄L1 = 1, µ̄U1 = 1, µ̄L2 = 1, µ̄U2 = 1, and δ̄1 = 1;

(b) if ϱL1 = (0,−1), ϱU1 = (1,−1), ϱL2 = (−1,−1), ϱU2 = (0, 2), ϑ1 = (2, 0), then we
substitute µ̄L1 = 1, µ̄U1 = 1, µ̄L2 = 1, µ̄U2 = 1, and δ̄1 = 1.

We observe that necessary KKT-type optimality criteria are satisfied for both cases (a)
and (b) for the particular selected Lagrange multipliers. Furthermore, if we consider
different Lagrange multipliers, then the KKT-type necessary conditions may or may not
be satisfied. Let the right side of the KKT-type necessary criteria of (13) be denoted
by Wð. Therefore, we have

Wð = µ̄L1 (ð)(∂ℵL1 (π̄) + ϱL1 ) + µ̄U1 (ð)(∂ℵU1 (π̄) + ϱU1 ) + µ̄L2 (ð)(∂ℵL2 (π̄) + ϱL2 )

+µ̄U2 (ð)(∂ℵU2 (π̄) + ϱU2 ) + δ̄1(ð)(∂ψ1(π̄) + ϑ1),

for the particular choice of ð = (ϱL1 , ϱ
U
1 , ϱ

L
2 , ϱ

U
2 , ϑ1) and it depends on the Lagrange

multipliers µ̄L1 , µ̄
U
1 , µ̄

L
2 , µ̄

U
2 and δ̄1.

(1) for ð′ = (ϱL1 , ϱ
U
1 , ϱ

L
2 , ϱ

U
2 , ϑ1) = ((0, 1), (1,−1), (−1,−1), (0, 2), (2, 0)) and µ̄L1 = 1,

µ̄U1 = 1, µ̄L2 = 1, µ̄U2 = 1, δ̄1 = 1
then Wð′ = conv{(−4, 1), (−2,−1), (−2, 1), (−2, 3), (0,−1), (0, 1), (0, 3), (0, 5),

(2,−1), (2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5), (6, 3), (6, 5), (8, 5)}

Wð′

x

y

Fig. 1. Here 0 ∈ Wð′ , that is, the KKT-type necessary optimality

criteria are satisfied.
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(2) for ð′′ = (ϱL1 , ϱ
U
1 , ϱ

L
2 , ϱ

U
2 , ϑ1) = ((0,−1), (1,−1), (−1,−1), (0, 2), (2, 0)) and µ̄L1 = 1,

µ̄U1 = 1, µ̄L2 = 1, µ̄U2 = 1, δ̄1 = 1
then Wð′′ = conv{(−4,−1), (−2,−3), (−2,−1), (−2, 1), (0,−3), (0,−1), (0, 1),

(0, 3), (2,−3), (2,−1), (2, 1), (2, 3), (4,−1), (4, 1), (4, 3), (6, 1), (6, 3), (8, 3)}

Wð′′

x

y

Fig. 2. Here 0 ∈ Wð′′ , that is, the KKT-type necessary optimality

criteria are satisfied.

(3) for ð′ = (ϱL1 , ϱ
U
1 , ϱ

L
2 , ϱ

U
2 , ϑ1) = ((0, 1), (1,−1), (−1,−1), (0, 2), (2, 0)) and µ̄L1 = 2,

µ̄U1 = 1, µ̄L2 = 1, µ̄U2 = 2, δ̄1 = 1
then Wð′ = conv{(−6, 4), (−4, 6), (−4, 2), (−2, 8), (−2, 4), (0, 2), (0, 6), (2, 4),

(2, 8), (4, 2), (4, 6), (6, 4), (6, 8), (8, 6), (10, 8)}

Wð′

x

y

Fig. 3. Here 0 /∈ Wð′ , that is, the KKT-type necessary optimality

criteria are not satisfied.
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Therefore, we can conclude that the Lagrange multipliers depend on the particular choice
of ð. Furthermore, in order to prove that KKT-type sufficiency criteria are applicable to
the considered interval-valued problem (IVOP1), it is sufficient to show that the functions
ℵL1 , ℵU1 , ℵL2 and ℵU2 are F-convex quasidifferentiable at a point π̄ on Ω in connection
with η as well as in connection with convex compact set SℵL

1
(π̄) = ∂ℵL1 (π̄) + ∂ℵL1 (π̄),

SℵU
1
(π̄) = ∂ℵU1 (π̄)+∂ℵU1 (π̄), SℵL

2
(π̄) = ∂ℵL2 (π̄)+∂ℵL2 (π̄) and SℵU

2
(π̄) = ∂ℵU2 (π̄)+∂ℵU2 (π̄)

respectively. Moreover, the function ψ1 is F-convex quasidifferentiable at a point π̄ on Ω
in connection with η as well as in connection with convex compact set Sψ1

(π̄) = ∂ψ1(π̄)+
∂ψ1(π̄). Let us define F as F(π, π̄; ρ) = (ρ1+ρ2)[(|π1|+|π2|)−(|π̄1|+|π̄2|)]. Then, using the
definition of F-convexity, we can conclude that the functions ℵL1 , ℵU1 , ℵL2 and ℵU2 are F-
convex quasidifferentiable at a point π̄ on Ω in connection with η as well as in connection
with convex compact set SℵL

1
(π̄) = ∂ℵL1 (π̄) + ∂ℵL1 (π̄), SℵU

1
(π̄) = ∂ℵU1 (π̄) + ∂ℵU1 (π̄),

SℵL
2
(π̄) = ∂ℵL2 (π̄) + ∂ℵL2 (π̄) and SℵU

2
(π̄) = ∂ℵU2 (π̄) + ∂ℵU2 (π̄) respectively. Furthermore,

the function ψ1 is F-convex quasidifferentiable at a point π̄ on Ω in connection with η
as well as in connection with the convex compact set Sψ1

(π̄) = ∂ψ1(π̄) + ∂ψ1(π̄).
As all the assumptions of Theorem 4.1 are satisfied at a point π̄, therefore, we can

conclude that the feasible point π̄ becomes a weak LU -Pareto solution to the problem
(IVOP1) under the quasidifferentiable F-convex functions in connection with compact
convex sets, which are equivalent to the Minkowski sum of their subdifferentials and
superdifferentials at a point π̄.

5. CONCLUSIONS

The present article envisaged the class of nonsmooth interval-valued programming prob-
lems. We have framed Fritz John and KKT-type necessary optimality criteria. Further,
sufficiency results for feasible solutions are accustomed for nonsmooth multiobjective
interval-valued programming problems, assuming functions to be F-convex quasidiffer-
entiable in connection with a suitably defined set that is compact as well as convex. Fi-
nally, an example of a nonsmooth interval-valued programming problem was constructed
consisting of F-convex quasidifferential function in connection with convex compact sets
and extracted sufficient optimality conditions.

(Received October 26, 2024)
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