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KYBERNETIKA — VOLUME 61 (2025), NUMBER 3, PAGES 429-446

LMI-BASED NONLINEAR OBSERVER DESIGN
FOR A CLASS OF NONLINEAR SYSTEMS MODELED
WITH DIFFERENTIAL ALGEBRAIC EQUATIONS

MIGUEL BERNAL, ANTONIO SALA, AND ANTONIO GONZALEZ

This work presents a novel methodology to design nonlinear observers for a class of systems
modeled as differential algebraic equations. The proposal is based on writing both the sys-
tem and the observer as nonlinear descriptor redundancy representations subject to algebraic
restrictions; then the nonlinear observation error system is written in an explicit incremental
form via suitable factorization techniques. A redundant Lyapunov function is then employed
to guarantee asymptotic stability of the estimation error; linearity of the Lyapunov function
and its time derivative with respect to the observer gains and Lyapunov function terms, allows
gridding or convex treatment of expressions via linear matrix inequalities. Physical examples
are presented to illustrate the proposal effectiveness against former methodologies.

Keywords: descriptor redundancy, differential algebraic equations, linear matrix inequal-
ity, nonlinear observer

Classification: 93B53, 93B50,93C10,93C15,93D05

1. INTRODUCTION

Differential algebraic equations (DAEs) are, broadly speaking, sets of differential and
non-differential equations that are assumed to operate simultaneously [24]. They arise in
a variety of engineering fields, e.g., network problems [25], constrained mass-point sys-
tems [23], constrained rigid-body systems [I7], singular perturbations [8], discretization
of partial differential equations modeling transport reaction systems [6], and transient
analysis [21].

In general, DAEs may have indistinguishable differential and non-differential parts
as they might be implicitly defined. However, it is understood that for a DAE to be
well-posed, it must be transformable into a set of ordinary differential equations (ODEs)
restricted to a manifold.

An effective and systematic way to perform this transformation is the Pantelides al-
gorithm [20], whose number of steps is known as differential index. Index reduction
has important numerical implications as it suggests that, ideally, a DAE can be simu-
lated as an ODE under consistent initialization by any robust algorithm preventing the
equations from drifting off the manifold, i.e., preventing them from failing to meet the
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algebraic constraints. The MATLAB DAE Toolbox, used in this work, provides routines
to implement these steps [18].

A suitable choice for writing a DAE model due to its resemblance with state-space
descriptions is that of descriptor models E(x)x = F(x) [9]. Quasi-linear DAEs are
descriptors where E(x) has constant rank (not necessarily full) [24], which means that
the states are restricted to manifolds of invariant dimension. Most DAE models in
engineering applications belong to this class, e.g., parallel robots and certain types of
electrical circuits; hence, this note focuses on this class.

Descriptor models with full-rank E (x) have been extensively studied by means of
the direct Lyapunov method [I5] and the sector nonlinearity approach [19], also called
linear-parameter-varying (LPV) embedding, quasi-LPV modeling, or convex treatment
of expressions [5]; sufficient conditions in the form of linear matrix inequalities (LMIs)
[7] have been found for stability analysis [32], controller synthesis [34] and observer
design [13]. Despite the fact that in this case E (x) can be inverted as to directly obtain
an ODE representation, it has been proved that avoiding such inversion significantly
increases the feasibility of a variety of problems. Studies of the same sort for rank-
deficient E(x), on the other hand, are scarce, as a variety of singular phenomena may
arise, e.g., inconsistency and impasse points [3]; quasi-linear DAEs considered in this
work are rank-deficient but do not exhibit these phenomena.

For observer design, a common strategy is to rewrite the nonlinear system in a convex
form, then propose an observer with the same structure, then deal with the resulting
difficulties of handling an observation error system required to fit the convex form while
splitting measurable from unmeasurable premises [I6]. A more convenient strategy was
adopted in [I] by first writing the nonlinear error model with the methodology in [22] to
factorize error signals, then performing its convex rewriting to obtain LMI conditions;
this enabled handling descriptors with constant but not full rank E(y) resulting from
modeling closed kinematic chains [2].

Contribution: Sufficient LMI conditions for nonlinear observer design of quasi-linear
DAEs are provided; in contrast with [I3], they can handle descriptors with algebraic
restrictions; in comparison to [I], they are not limited to constrained rigid-body systems.
Suitable factorization of the error signals allows taking advantage of available signals for
gain scheduling while treating the rest of components in a robust way; this is a finer-
grained description of nonlinearities than, say, assuming Lipschitz constants as in [4].

Methodology: Sufficient conditions for observer design are obtained from an explicit
factorization in differences of the form f(Z) — f(z) and the direct Lyapunov method.
LMI tests based on convex rewriting of error systems are then deduced.

Organization: Section [2]is concerned with formulating the problem statement, which
implies mathematical descriptions of the class of DAE systems under consideration and
the corresponding observer proposal. Section [3] develops the main contribution of this
paper, namely, a novel factorization technique to obtain a suitable observer DAE error
system and sufficient LMI conditions to obtain nonlinear observer gains from a gridding
approach or convex modeling of nonlinearities. Section [] applies the proposed method-
ology to examples that former methodologies are unable to tackle. Finally, Section
discusses conclusions and future work.
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2. PROBLEM STATEMENT

Consider a system of DAEs in the following descriptor form

E(Xd; xa)Xa(t) = f(Xd> Xa>w);
g(Xcthuu) =0, (1)
y(t) = h(deXaa U),

where the first equation represents the system dynamics with x4 € R™ as the vector
of differential state variables, v € R™ the input vector, and x, € R? the vector of
algebraic variables; y € RP is the output vector; f : R"X9X™ 5 R™ ¢ : R"*X9*™ 1 RI,
h:R™axm s RP and E : R™*9 s R™*" are ¢! functions of their arguments.

Assumption 1. Let @, C R™ and @, C R""? be user-defined compact regions of
interest such that u(t) € Q, and the corresponding trajectories (xa(t),xa(t)) € €y,
Vt > 0. Also, E(-) and 9g/0xq(-) are full-rank for every (xa, Xa, %) € 2y X Q.

Under the previous assumption, if an ODE representation were wished, then x, can
be solved from y, via the algebraic constraints; then, x; would be the true state in
the ODE representation, and 4" continuity guarantees existence and uniqueness of the
solutions, subject to consistent initialization [24]. The number of recursive steps needed
to explicitly formulate a DAE as an ODE is called its differential index. DAE systems
may be expressed in a form different to , with higher differential index, but index
reduction can be carried out by, say, Pantelides algorithm [20]. Thus, we will directly
work with the representation 7 which comprises a class of systems usually referred to
as quasi-linear DAFEs.

As customary in descriptor analysis, can be put in the descriptor redundancy form
[5, Section 6.2.2]; indeed, by defining z1 = x4, T2 = X4, and 23 = Xq, = = [2T 2L 2117
we can write

)

I 0 0 (tl T2
0 0 0| |&2| = |f(z1,23,u) — E(x1,x3)22 | , (2)
0 0 0| |is g(x1,3,u)

y = h(x1,z3,u).

From now on, it will be assumed that (z1, 22, z3) € 2, C R?"T9 which is derived from

, Q,, and .
Based on this form and defining &1, &2, and Z3, as vectors of the same dimension as
x1, T2, and x3, respectively, & = [27 2T 2117, § = h(d1, 22,23, u), the following DAE

observer is proposed:

I 0 0 1?'1 j:Q Ll(ilvyau)
0 0 Of |22 = |f(&1,23,u) — E(21,23)22 | + |La(Z,y,u) | (- y), (3)
0 0 0 i‘3 g(£17£27£37u> L3(i'7y=u)

where Li(Z,y,u) € R" P, Lo(&,y,u) € R"*P and L3(Z,y,u) € RI*P are nonlinear
observer gains to be designed.
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Let us define e = & — x as the observation error with e; = &; — x;, ¢ € {1,2,3}. Our
goal is to find, via sufficient LMI conditions, possibly nonlinear gains L;(-), La(+), and
L3(+), exclusively depending on measurable signals, such that lim; ,o, e = 0 for some
level set, provided z(t) and Z(¢) remain within some compact regions of interest. The
referred LMI conditions are found in the next section by means of quadratic Lyapunov
analysis and sector nonlinearity approach.

3. MAIN RESULTS

From this point on, arguments are omitted when convenient. The nonlinear observation
error system resulting from subtracting (3 to (2)) is:

I 0 0] [é e Li(:)
0 0 0| [éa| = |felzr, 23,81, 23,u) —ec(x,Z) | + | La(-)| he(z,Z,u), (4)
0 0 O é3 ge(xajjau) L3()

where differences f.(z1, x3, &1, &3, u) = f(T1, &3, u)—f (21, 23, u), ec(x, &) = E(Z1, &3)de —
E(x1,23)x2, ge(z, &,u) =g(Z,u) —g(z,u), and he(z, T, u) =h(Z,u) —h(z,u), require the
error vector e to be factorized at their right-hand side to ease Lyapunov stability analysis
for later polytopic bounds and LMIs to apply. This is done via the next result:

Lemma 3.1. Consider the vector field d():RF =R ¢ € iﬁl; there exists an explicit
mapping ¢(&,e) : R® x R® — R**¢ such that ¢(Z) — ¢(z) = ¢(&, e)e, where e = & — x.

Proof. Since ¢p(2)—o(x) = ¢(&)—d(Z—e) = ¢e(Z, €), it follows that lime_g de (&, €) =
0. Therefore, if the error vector is split as e = [e; e2]7, with e; € R and é; € R*™1,
abusing notation ¢.(Z, e) = ¢.(Z, e1,€2) we have:
¢€(i‘a 6) :¢e(§37 €1, 62) - ¢€(§:7 0, éQ) + ¢€(i‘7 0, éQ) - ¢€(i17 O)
=¢1(2, e)er + de, (2, €2),
where ¢, : R x R¥~! — R? is defined as ¢¢, (£, €2) = ¢e(,0,82) — de(£,0) = ¢ (£,0, &)
and
d)e(j;a €1, 52) - Qbe(j:, 07 62)

P1(2,€) = s e )t b (5.0.8
hmel—)o d)e(xa €1, 62)6 ¢e(xa 07 62)’ ep = 0.
1

, e #0

All limits involved above do exist because of the €' assumption. The expression
be,(2,€2) can now be treated as just done for ¢.(%,e) by splitting e = [ez €1]7, with
es € R and &3 € R°~2. If this process is recursively repeated until the last error is
processed and ¢ (, e) is thus defined, then
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Remark 3.2. The factorization of the error signal in Lemma [3.1] is not unique: there
is indeed an infinite number of choices for ¢(z,e), as any reordering or, in general, any
invertible transformation é = T'(e) would allow carrying out the exact same operations
with €. The interested reader is referred to [27, BI] for more details. Note also that
if ¢(-) fulfills a Lipschitz condition then ¢(%) — ¢(x) can be expressed as ¢(&, e)e with
(2, €)|| < L for some L > 0; which means Lipschitz bounding as in [4] is included in
our framework.

Based on the factorization above, we can find explicit expressions F (&1, &3, €1, e3,u) €
R™*(n+9) G (z,e,u) e R+ H (7,e,u) € RP*2nH9) for (@) such that fo(x1,03,41,23,u)=
F(21,%3,e1,e3,u)[el eI, ge(z,2,u) = G(2,e,u)e, and he(z,#,u) = H(%,e,u)e; simi-

larly,

E(Lﬁh L%g){f?g — E(l‘l, {L‘3).’E2

= E(Ii’l, Ifg):i’g — E(il,’i}g)iﬂg + E(i‘l,i'g)l‘g — E($1,$3)1'2

= E(,@h f?g)eg + g(i‘l, 3, 6)[6{ eg:]T,
for some & (&1, &3, e) € R™" T4, Note that some of the arguments of F(-), G(-), and H(-),
are measurable or computable (estimated states, inputs) but others are not (errors are
unknown); thus, further factorizations will be carried out later on, as a product of the
former terms, which will be referred to as “measurable” from now on, times the latter
non-available ones.

Considering partitions of adequate dimensions for matrices F(-), G(-), H(+), and £(-),

the nonlinear observation error dynamics (4]) can thus be rewritten as:

I 0 Offléx 0 1 0 Lqi(+) €1
0 0 Of{éa|=[|A() —E() As()|+ [La()|[Hi(-) Ha(-) Hz(-)]]|e2|,
0 0 O ég Gl() GQ() Gg() Lg() €3

e 430) 4501 = 1) = £0, 1610) Gat) G0} = G0, and ) Hi) Hif )

Remark 3.3. The right-hand side of the above expression can be viewed as a quasi-
LPV model which has matrices multiplying the error e that depend on estimated state
Z, error e and input u; we will study it in some modeling regions 2; and €2, to obtain
polytopic bounds to prove robust stability w.r.t. unmeasurable signals such as e and
gain-scheduled stability w.r.t. measurable ones such as z, y, and wu.

Consider the Lyapunov function candidate V(e;) = e Pye;, which can be rewritten

. V(e) = e"ETP(,y,u)e, (6)

where E = block-diag(1,, 0,,0,),
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with P; € Rnxn’ P = PlT > 0, le(i,y,u) S Rnxn7 ng(j?,y,u) S Rnxn’ ng(i,y,u) €
R"¥4, P31 (2,y,u) € RIX" P3o(2,y,u) € R" and Ps3(2,y,u) € RI*4. Clearly, £ =
ET ETP()=PT()E>0.

Taking the time derivative of @ and substituting , yields:

V(i e,u) =eTETP()é 4 eTETP()e = T PT(VEe + ¢TETP(-)e
T

a1" TP BEG) PROT ([0 T 0
= |es 0 Ph(:) PhH(:) Ai() —E() 45()
es 0 Pi() Pi() Gi() Ga() Gs()
Lyi(v) el
+ | La() | [Hi() Ha2(-) Hs(-)] | |e2| + (¥) (7)
Ls(-) €3

Consider observer gains L;(Z,y,u), i € {1,2,3}, to be defined mimicking [13], i.e

Li(") Py 0 0 17" [Mi(#,y,u)
Ly(-)| = | Poa(r) Paa(v) Pas(:) No(Z,y,u) | , (8)
Ls(+) Psi(-) Ps2() Psa() N3(#,y,u)

with Ni(-) € R"*P, Na(-) € R"*P, and N3(-) € R?*P, to be determined later.
This choice makes V (%, e) in negative if

Fi() (%) (*)
Por(-) Ta2(r) (%) | <0, 9)
Fa1(-) Ia2(-) Tss(:)

where the expressions that follow can be obtained substituting the observer gains in
and performing operations:

T () =PL()AL) + PL()GL() + Ni(VHi () + (%),

Ta1(-) =P3o) A1) + P30 G10) + No) Hi() + P — ET() Praf) + G350 Pai0) + Hy O N7 0),
Tos(-) = = Pi(-) E(-) + Piy()Ga(-) + Na(-) Ha(:) + (%),

T31(-) =Pys) A1) + P33 G10) + Naf) Hi() + A5 Pra) + G50 Par() + H3 ON{ (),
Ts5(-) = — Poyl) EO) + P33() Gof) + Naf) Hof) + A5 () Paof) + G5 () Psol) + Hy (O N5 (),
T33(-) =Py () A3() + Pi5(-)Gs () + Na() Hz(-) + ().

Theorem 3.4. Let €2, be a compact region of interest for the error signal e such that
0 € Q.. The origin of the nonlinear error system resulting from the implementation
of observer on system is asymptotically stable if there exists matrices P, €
R " P, = Pl > 0, P?(2,y,u) € R™" P?2(%,y,u) € R™" P?(%,y,u) € R*¥9,
P3(&,y,u) € R P32(3,y,u) € R*" P3(¢,y,u) € RI*Y NY(&,y,u) € RVP,
N2(%,y,u) € R™P and N3(&,y,u) € RI*P  such that @ holds V& € Qz, e € Q.,
u € ,,, where modeling regions {2, and €2; are chosen such that Q, + Q. C Q. In that
case, the observer gains are calculated as in .
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Proof. The algebraic manipulations prior to the theorem statement allow us to deduce
that LMI P, = Pl > 0 guarantees (@ is a Lyapunov function candidate for the nonlinear
DAE error system . In addition, since @D holds in a vicinity of e = 0, it means V<0
therein. Therefore, V' is a Lyapunov function establishing asymptotic stability of e; = 0.

O

Remark 3.5. Asymptotic stability of e; = 0 guarantees the existence of a small enough
Lyapunov level set & = {e € Q. : el Pie; < ¢}, ¢ > 0, such that e(0) € & =
limy_yo0 €1(t) = 0.

Remark 3.6. Note that @ is an LMI in decision variables Pi, P;;(-), ¢ € {2,3}, j €
{1,2,3}, Ni(-), k € {1,2,3}, for fixed matrices A1(-), As(-), E(-), Gx(-), Hx(:), k €
{1,2,3}. However, it cannot be posed as a finite set of LMIs unless a gridding approach
Vi € Qz, e € Q., and u € Q,, is adopted (which of course may lead to wrong results if
the grid is not dense enough [28]) or some polytopic bounds can be crafted, which will
be discussed next.

In order to find a finite set of LMIs guaranteeing @[), define Q = {(&,e,u) € Qs x Qe X
Qyu: Qp+Qe C Q). Then, if A1(4), As(-), E(+), G (), Hi(+), k € {1,2, 3}, are expressed
as multilinear polynomial functions of measurable signals z;(Z,y), i € {1,2,...,7}, and
possibly non-measurable terms ¢;(-), j € {1,2,..., p} (which may depend on any signal
in @), we can define the following set of functions that are positive and add up to one
in Q:

. 1 .. ) )
wj()= 22 i) =1 )i e 2,
) T_ (- ) )
A= L8 =1, e (1,200,
J-3

where the bounds

2zt = sup z(+), 20 = inf (), i€{1,2,...,7},

?

(&,e,u)eQ (Z,e,u)€Q
b= sup ¢(), = inf G(), je{l.2....,p0}
/ (it,e,u)EQj( ) J (i,e,u)eﬂj( ) { }

are guaranteed to exist due to Assumption Hence, it is clear that each z;(-) and ¢;(+)
can be written as a convex sum of its minima and maxima within 2, i.e.

zi() = wh(-)z) +wil)zl, G =g O¢ +wl ()¢
Straightforward generalizations to fully (not necessarily multilinear) polynomial expres-
sions of z;(-) and (;(-) can be made based on repeated interpolating functions [S]H

Let B = {0,1}. Since A;(:), As(+), E(-), Gk(-), Hi(-), k € {1,2,3}, are multilinear
polynomial functions of z;(-) and (;(-), we can write

Ai()=) 1 Y wil)wi () Ay, B(#)=) wi()E;,

icBr jeBr ieBr

LFor instance, if z(-) = Z}:o w;(1)2" for 2(+) € [29, 2] with wo(-) + w1 (-) = 1, w;(-) > O therein,
then 22(-) = Z%:o E;:o w; (Hw; () 2827
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Z ZWI (4)_] HIJ’ Gk Z Zwl wJ 1_]7

icBrjcBr icBjcBr

for i € {1,3}, & € {1,2,3}, where functions w;() and w;j() are defined as w;() =

w}l ()“%22 0 ---wi () and w;j() = wjl-l (~)o.)]142 (- -wfp (), and matrices Agj, i €{1,3}, Ej, ij,

and HE, k € {1,2,3},i € B, j € B, are (abusing notation)
Agj:Ai(Zilv-u Zy" 17 . ,C 7, EiZE(zil,...,sz)
GE=GrGlh 2 o C0), H=Hy Gzl G0

Now that the known expressions on the left-hand side of @ have been split into
measurable and unmeasurable signals, we can use the former to propose specific convex
structures for P;;(-), ¢ € {2,3}, j € {1,2,3}, Ni(-), k € {1,2,3}, 1. e

Pij(&,y,u)=> wWil)PY, Ni(@,y,u)=) wid)Ng, (10)
keB" keB"

where matrices Plij, N{f, k € B", will be found via LMIs to satisfy (9)); once found, the
observer gains L (-), k € {1, 2,3}, in (3]) will be found by means of (§].

Convex rewriting of Ai(-), As(-), E(-), Gi(-), Hi(:), Py;(-), Ni(), i € {2,3}, j €
{1,2,3}, k € {1,2,3}, allows writing (9) as

Tine () (%)

DYDY wil)w(Owi() [T The (1) | <0, (11)
icB jeBr 1ich i rh

where

Ti=(B2) A+ (BT G+ NicHi+ 69,

T =(P2) A+ (PP G+ N H+ P — B B2 +(G)" B2 +(H) ™ (V)7
T = — (B3 B+ (P G+ NEHG+ (),

T =(P2) T A+ (PP G+ N H+(A%) " P2 +(GF) " P (H“) (Ny
Tf’sz—(P2 )T Ei+(PE) T G+ N HE+ (A" B2 +(G) " BE + (H)(
T =(P2) T Af+(PE) G+ N H + ).

)7
NI

A variety of LMI conditions are available in the literature to guarantee 7 see
[29) 130], which in turn guarantees V < 0, thus establishing the validity of V'(e) in (©)
as a Lyapunov function for the nonlinear observer error system , i.e., establishing
asymptotic stability of e = 0 in , which means observation takes place. One of the
possible choices for sufficient LMI conditions guaranteeing is

Tie (9 (%)

TH Y2 (%) | <0, (12)
. e s L T3J1 T§2 T33
(i.j,k)eP(’.j" k) ijk ijk ijk
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foralli’ € B", k' € B", j € B?, with P(i,j’,k’) being the set of indices (i, j, k) whose as-
sociated products wi(z)w;(z, u)wi(x) are algebraically identical to wy (@)wj (z,u) Wi ().
Details on multiple-sum relaxation are omitted for brevity, see the above-cited works for
details on less conservative (assymptotically exact) versions of involving additional
LMIs and decision variables.

Theorem 3.7. The origin of the nonlinear error system resulting from the imple-
mentation of observer on system is asymptotically stable if there exists matrices
Pl c Rnxn7 Pl — PlT > 0, Pﬁl c Rnxn7 PEZ c Rnxn’ Pﬁfﬂ c Rnxq) P]i(‘)l c }qun7
P32 e R¥*n P23 € R1¥9, Nl € R"™P, N2 € R" P, and N € R™? k € BP, such
that LMIs hold for Tﬁk, i,j € {1,2,3}, i > j, as defined above. In that case, the
observer gains are calculated as in and there exists a small enough Lyapunov level
set & ={e € Qe : elTPlel < ¢}, ¢ > 0, which is a subset of the domain of attraction of
the origin.

Proof. It follows the same lines as proof of Theorem since LMIs guarantee
(11)) which is equivalent to @D for (&,e,u) € Q. O

Remark 3.8. Numerical complexity of LMI conditions can be estimated as log, (njn),
where ng4 is the number of decision variables and n; is the number of LMI rows [10];
therefore, numerical complexity of Theorem can be calculated from the fact that
there are ng = n(n + 1)/2 + 2"(2n? + 3nq + ¢> + 2np + gp) decision variables and
n = n+ 2277 (2n + ¢) LMI rows.

Remark 3.9. The choice of the modeling region in which the domain of attraction will
be included may not be an easy task as, on the one hand, a large modeling region opens
up the sector-nonlinearity bounds thus hindering the ability to find a feasible solution
[33]; on the other hand, a small modeling region will approach the linearized model,
easing LMI feasibility, but, in such a case, initial error conditions in which observer
convergence can be proved might be difficult to be verified in practice [I2]. This is an
issue common to all sector-nonlinearity LPV observation and control which is, actually,
dependent on the application, so we did not delve further into it. Other sources of
conservatism are the non-uniqueness of decoupling (5)) [26] and the choice of Lyapunov
function (6) [L1], among others.

4. EXAMPLES

Two examples are presented: the first one is a nonlinear RLC circuit from literature; the
second one is a 2-bar kinematic chain. Simulations were carried out using routines of the
Symbolic Math Toolbox of MATLAB 2024b for solving DAESs; these routines guarantee
consistent initialization and avoidance of drifting of variables off the manifold induced
by algebraic restrictions [14].

Example 4.1. Consider the task of observing the states of the following DAE model
of a nonlinear RLC circuit, taken from [35]:

q=(1/L)o,
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¢ =—(R/L)p — ve +u,
0 =v, — q — 0.5sin(q?),

Y =,

where ¢ denotes the capacitor charge, ¢ is the flux through the inductor, v, is the
capacitor voltage, u is the voltage input, and y denotes the output. This system can be
put in the descriptor redundancy form (2)) by defining the differential state as z1 = [q ¢]7,
the redundant state as xo = [¢ zj)]T7 and the non-differential state as x3 = v.; I, e,
i € {1,2,3} can be right away defined. This means that

m0=[g hf] as0= | | e =0 =0 Hal) =1, B = 2

in the error system (), whereas G1(-), G2(-), and Gs(-) should be obtained via Lemma
in such a way that the following holds with e, = ¢ — ¢ and e,, = 0. — v,:

[G1() G2(-) G3()]le] €5 e3]” = —eq — 0.5(sin(¢*) — sin(q?)) + e,

where the latter arises from the subtraction of the algebraic restrictions in the observer
and system.

Clearly, G2(+) = 01x2 and G3(-) = 1; last, G1(-) = [-1—0.5g(d, eq) 0], where g(g, eq)
results from the explicit factorization detailed below:

w0
=
=
[S)
N~—
|
w0
=
=
—~
>
S
|
[\
(=}
Q)
<
_l’_
D
N—

sin(§%) —sin(¢?) = sin(§*) —sin((G—e,)?) = si
= sin(¢?) —sin(g?) cos(e 2 2
= (21(9)¢1(4; eq) — 22(4)C2(4; €4) ) g

where 21(g) = sin(¢?), z2(4) = cos(¢?), and

— 2_94
41(q,eq):{ (1~ cos(e] 2qeq))/68: Zzig

. B sin(ei—Z(jeq)/eq, eq # 0,
CQ(qaeq) - { 1, eq — 07

thus allowing to define §(g, eq) = #1(§)¢1(4, eq) — 22(4)C2(d, e4). Values at e, = 0 have
been defined by suitable limits.

The factorization above consists in two measurable terms z1(§) and 22(§), depending
on the available state estimate ¢, and two unmeasurable terms (1(4, ¢;) and (2(4, e,),
further depending on the estimation error e,. In order to employ Theorem @ matrices
GllJ, i € B2, j € B?, should be found according to some bounds (matrices A = A (),
E; = I, HllJ = Hi("), G?j = Ga("), Gf’j = G3(-), being constant). Suppose that we
are interested in considering u(t) = 0.5 + 2sin(3t) — 2 cos(7¢); this means that the state
belongs to Q, = {z : 0.3 < ¢ < 0.5}; if error bounds Q. = {e: —04 < ¢, < 0.4} are
considered, this yields ; = {# : —0.1 < ¢ < 0.9} in order for condition 2, + Q. C Q3
to hold. Within these regions we have that z; € [2),2}], ¢; € (& ,C ], 4,4 € {1,2},
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where (29 = 0, z{ = 0.7243), (2§ = 0.6895, 23 = 1), (¢¥ = —0.9071, ¢} = 0.3819(,
(¢ = —1.9611, (3 = 0.5943). Therefore, Gilj are given by

G = [-1-052¢] —22¢0 0]

Theorem [3.7]is now invoked with two modifications: the simplicity of the model makes
unnecessary to include the redundancy part associated with x4, and an exponential decay
rate bound of o = 0.3 has been added. A feasible solution has been found with 4 vertex
matrices for P(&,y,u) in @ and 4 vertex matrices for each N;(&,y,u), ¢ € {1,2,3}, in
(8). For illustration purposes, Py, i, i € B2, are shown below; the remaining decision
variables are omitted for brevity:

1.1869 0.4101} Noo = [-0.2032 0.1353 0],
0.4101 19000 " Np; =[-0.2009 0.1440 0],

Nip=[-0.2975 0.1271 0]} Ny, =[-0.3204 0.0701 0]

|

Recall that the final nonlinear observer gains L;(Z,y,u), i € {1,2,3}, are calculated
with once nonlinear expressions for P(Z,y,u) and N;(Z,y,u), ¢ € {1,2,3}, are ob-
tained via . Therefore, in this case, the final expression of the observer gains will be
a nonlinear expression of measurable factors z1(¢) = sin(¢?) and 22(4) = cos(4?).

Figure (1| shows signals ¢(t), ¢(t), and v.(t) (bold lines) along with their estimates
(dashed lines) for ¢ € [0,10], from initial conditions ¢(0) = 0.3, ¢(0) = 0, v.(0) = 0.3449,
4(0) = 0.1832, ¢(0) = 5, and ©,(0) = 0.2.

_08F  # =1 3
S o06f I - i

=
=oap! B
<

=

02!
Time(s)

Fig. 1. Time evolution of the states and their estimates in
Example 1]
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Comparisons: The approach in [I3] seems to be applicable to this example because it
is aimed to descriptor models with invertible F(z), something achievable by substituting
Ve in (;.5; however, the system is required to be written in a convex form with measurable
premises, which is hindered by the presence of unmeasurable ¢ in the model. On the
other hand, [4] requires using global Lipschitz constants and solving BMIs, which is out
of the scope of numerically efficient convex optimization techniques in this work.

Example 4.2. Let us consider the 2-bar mechanism shown in Figure[2l The bar labeled
I has an actuated rotational joint at coordinates (0, 0); it is linked by another rotational
joint with the bar labelled I3, which in turn is constrained at its right end by the vertical
coordinate y, = 0.5, being able to slide horizontally. The system is subject to torque
7 = ON-m on the left and linear force v = 1.5N on the right; it is therefore a 1-degree-of-
freedom system whose differential states, according to , may be chosen, for instance,
X1 = [01 w1]T, where 6; denotes the angular position of the first bar and w; its angular
velocity. If these states and input u = [r v]? are known at any time, the rest of the
system variables is completely determined, namely, o = [f2 w2 a3 as AT, where 6;
are angular positions, w; are angular velocities, «; are angular accelerations, and A is a
Lagrange multiplier (constraint force).
The position, velocity, and acceleration restrictions are given, respectively, by

0=1[ysinfy + losinby — vy,
0 = lyw; cos By + lowsy cos By, and

0= —I;sin lef — Iy sin ngg + Iy cos 01 + Loy cos 0.

051

Fig. 2. Two-bar mechanism in Example
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The Euler-Lagrange dynamics equations are
0 :10(clm1 +llm2) COSel +O.4w1 +02l1mgsin(017 92)&)3 + (mlc% +m2l% +J1)Oél
+colimaocos(01—02) s — 1 cosO A\ +1—1 sin 61 v,
0=10camq cosfa —calyms sin(61— 92)0.)% +0.4ws — 5 cosh

+62117TL2 COS(Gl —92)a1+(m263+(]2)0t2 —ZQ sin 921/.

For simulation purposes, the parameters given in Table [1| will be considered.

Parameter Symbol  Value
Left-bar length Il 1m
Right-bar length lo 2.3 m
Left-bar mass my 1 kg
Right-bar mass mo 2.5 kg
Left-bar moment of inertia J1 1 kg-m?
Right-bar moment of inertia Ja 3 kg-m?
Left-bar center of gravity (from the left) c1 0.5 m
Right-bar center of gravity (from the left) Cco 1m
Gravity g 10 ms™2

Tab. 1. Parameters of the 2-bar mechanism.

In order to write the model as , the dynamical part will consist simply in 0, = wy
and wy; = ay. Therefore, n = 2 and ¢ = 5 in . Based on v = 1.5 and 7 = 0, and
the initial conditions desired for simulation, the region of interest €1, is defined with
01 € [-1.75,—1.45], w; € [—0.3,0.3]. Also, error bounds are set to ey, € [—0.1,0.1],
and ey, € [—0.3,0.3], and by means of the algebraic constraints, error bounds for all
variables yield suitable regions €. and 2.

Let y = 61 be the only measurable signal. Positions 6;, velocities w;, accelerations «;,
1 € {1,2}, and the Lagrange multiplier A, are the signals to be estimated by the proposed
observer ([3)), which is to be designed by means of Theorem To this end, the error
dynamics must be found by subtracting the system equations to the observer ones.
Observer states are 0;, &;, &;, i € {1,2}, and X, from which the error signals eg, = 0, —0;,
€w; = Wi — Wi, €q; = &; —ay, 1 € {1,2}, and ey = A — ) can be defined. Tt is clear that

T B A R
Hi()=[1 0], Hy(:)=[0 0], H3()=[0 0 0 0 0].

On the other hand, due to the complexity of the algebraic restrictions above, entries
of G1(-) € R>*2, Gy(-) € R%*2, and G3(-) € R*5 in (), can only be found by the
repeated application of Lemma [3.1] The resulting expressions are too long to fit in this
note, but consider, for illustration purposes, entry (1,1) of G1(), which is sin él(l —
coseg, ) /e, + cos Oy sineg, /eq,, where eg, = 6 — 6;.
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Convex modeling of G1(-), G2(+), and Gs(-), require picking measurable signals for
scheduling and leaving the rest for robust treatment; again, for illustrations purposes,
consider entry (1,1) of G(-), which can be written as z(61)¢1(eq,) + 22(61)C2(eq, ),
with 21(f1) = sinf; and 25(6;) = cosf; being measurable signals, and (1(eg,) = (1 —
cosep, )/eq, and (2(ep,) = siney, /ep, being unmeasurable terms. The total number of
measurable/unmeasurable expressions for this example is 3 and 8, respectively.

Theorem can now be invoked. In this case, Na(:) and N3(-) have been chosen as
zero matrices of adequate size, making the corresponding Lo(-) and L3(-) observer gains
zero too, which is equivalent to say that the observer itself behaves as a 2-bar mechanism
along the observation process without breaking the algebraic constraints.

Since there are 3 measurable expressions, a total of 23 = 8 different matrices Plf”'7
Péij7 i,j € {1,2}, and Nf, k € {1,2,3}, are obtained; their corresponding nonlinear
expressions are obtained as in . Matrix P, in P(&,y,u) along with some parts of
the resulting N;}, obtained by LMlIs in Theorem are shown below for illustration
purposes:

p _ [00688 —0.0222] 1 _ [-0.5051
L7 1-0.0222  0.0151 |7 77000 =~ 1 _0.0005/|’

. [-04936] .,  [-04977] ., _ [—0.5009
Nool—[—o.oom » Moo= | _g.0003|" V101 = | _0.0004]

Recall that the actual nonlinear observer gain L;(%,y,u) is obtained as in (8), where
P(2,y,u) and N1(%,y, u) result from the convex sums in (10)). Also, Lo(-) and Ls(-) are
zero matrices of adequate size as a consequence of Na(-) and N3(-) being zero.

1.4 T T T T T
=
<
- 1.6 v
& 4
<
1.8 L L L L L
0 0.5 1 1.5 2 25 3
0.5 T T T T T

w1 (t), (AA)‘] (t)
Y
:
I

05 L L L L L
0 0.5 1 1.5 2 2.5 3
10 T T T T T
= =X
= ’
~ 95 b
=
/(
9 L L L L L
0 0.5 1 1.5 2 25 3
Time(s)

Fig. 3. Time evolution of 01, w1 and A and their estimates in

Example
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Figure (3| shows the dynamic states in yi(t) = [01(t) wi(t)]T and Lagrange multiplier
A(t) (bold lines) along with their estimates 61 (t), @1 (t), and A(¢) (dashed lines) for
t € [0,3]. The plant initial conditions are 61(0) = —1.5708, w1 (0) = 0, #2(0) = 0.7104,
w2(0) =0, a1(0) = —0.4, a2(0) = 0, A(0) = 9.9532, and the observer initial conditions
are 0;(0) = —1.6708, &1 (0) = —0.3, 6(0) = 0.7076, &2(0) = —0.0188, & (0) = 0.1485,
G2(0) = —0.08454, A(0) = 9.2704. Figure 4| shows the time evolution of the observation
errors ey, = 0; — 0i, €, = Wi —wj, €q; = & —ay, 1 € {1,2}, and ey = A — A, under the
same conditions: expectedly, all these signals go asymptotically to 0.

Comparisons: In this case, both approaches in [I3] and [4] are inapplicable: the first
one because the system has a non-invertible E(x) on the left-hand side; the second one
because the restriction is not in the form 0 = Cxy + Dxs + fa(u,y), with C' and D
constant matrices.

0.8 T T T T T
em(t)
ew1 (t) 7
eoz(t)
ew2(t) -
ea1 (t)
e, ]
e,
02+ i
-0.4 A
_0-6 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
Time (s)

Fig. 4. Time evolution of the observation errors in Example

5. CONCLUSIONS

A novel methodology for designing nonlinear observers for a class of DAE nonlinear
systems has been presented. Stability analysis of the resulting observation error sys-
tem, expressed via exact factorization of the error vector, has been conducted using
a redundant Lyapunov function, allowing design conditions to be formulated as LMIs.
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Computable factors depending on estimated states and measurements have been explic-
itly extracted and gain-scheduled, while robustness to unmeasurable process variables
has been ensured by isolating non-computable factors. Polytopic bounds have been im-
posed to enable a quasi-LPV framework. The advantages of the proposed approach over
existing methods have been demonstrated through examples; sources of conservativeness
have also been discussed. Future work will focus on extending observer structures, en-
suring well-posedness in user-defined regions, and addressing computational challenges
related to convex modeling of nonlinearities.
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