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KYBERNET IKA — VOLUME 6 1 ( 2 0 2 5 ) , NUMBER 5 , PAGES 6 8 8 – 7 1 1

OPTIMALITY CONDITIONS FOR INTERVAL-VALUED
VECTOR EQUILIBRIUM PROBLEMS

Ashish Kumar Prasad, Julie Khatri and Izhar Ahmad

In the article, one formulates Fritz John type and Karush–Kuhn–Tucker type necessary con-
ditions for an interval-valued vector equilibrium problem having a locally LU-efficient solution,
where convexificators demonstrate the solutions that are regular. Sufficient conditions for a
locally weak LU-efficient solution have been entrenched by imposing appropriate assumptions
along with generalized convexity. Some applications are presented for a constrained interval-
valued vector variational inequality and a constrained interval-valued vector optimization prob-
lem.

Keywords: interval-valued vector equilibrium problem, locally LU-efficient solution, opti-
mality, convexificators

Classification: 49J52, 91B50, 90C46

1. INTRODUCTION

The vector problems provide an outstanding base to deal with the problems that include
several conflicting objectives. However, decision-makers find it imperative to identify al-
ternative solutions according to multiple criteria and their significance level. Mathemat-
ical programming problems may contain uncertainty, which is reflected when coefficients
are allowed to vary in closed intervals. Interval-valued optimization problems provide a
way to overcome the difficulties in the solution procedure, and there is no need to ignore
or gloss over the fact.

Wu [22] formulated Karush–Kuhn–Tucker type optimality conditions for a Wolfe
type nonlinear problem, assuming the functions involved in the objective function and
constraints are differentiable, and derived duality theorems in weak as well as strong
sense. Bhurjee and Panda ([1, 2]) addressed the interrelation between multiobjective
interval fractional formulations containing parameters running over some intervals and
general optimization problems having fixed real parameters and portrayed the sufficiency
criteria along with duality theorems. Jayswal et al. [10] proposed sufficient optimality
conditions for functions satisfying generalized invexity, and the same is used to derive
weak, strong, and strict duality theorems for Mond–Weir and Wolfe-type dual problems.
Ioffe [9] demonstrated a new method to relate problems with and without constraints
using the reduction theorem.

DOI: 10.14736/kyb-2025-5-0688

http://doi.org/10.14736/kyb-2025-5-0688


Optimality conditions for interval-valued vector equilibrium problems 689

Differentiation of convex functions can be seen as equivalent to the linearization
of a function. The perception of subgradients and subdifferentials made it possible
to approximate nonsmooth convex functions. The notion of convexificators has been
shown to be effective in determining the optimality conditions and duality results in
nonsmooth optimization problems. Demyanov [4] was the first who coined the term
“convex compact convexificator”. The closed nonconvex convexificators for elaborated
real-valued continuous functions as well as the approximated Jacobian of continuous
vector-valued functions were proposed by Jeyakumar and Luc ([12, 13]). A convexificator
is a generalization of certain well-known subdifferential concepts, like the subdifferential
of Clarke [3], Mordukhovich and Shao [19], Luu [14], etc. Several researchers have devised
optimality conditions for efficiency under convexificators. Recently, Luu ([15, 16]) had
introduced Lagrange multipliers rules for efficiency via convexificators. Jayswal et al.
[11] set up the sufficiency criteria along with duality results for Mond Weir and Wolfe
type duals introduced by Jeyakumar and Luc [12].

In the past few years, the vector equilibrium problems gained a lot of attention.
These contain problems like vector variational inequality, vector optimization problems,
and other specific cases. Optimality criteria for vector inequality and vector equilib-
rium problems have been formulated by many researchers, like Gong ([6, 7, 8]), Luu and
Hang ([17, 18]), etc. Giannessi et al. [5] established the methodology of vector prob-
lems along with the scheme to handle variational inequalities. Morgan and Romaniello
[20] proposed Karush–Kuhn–Tucker type conditions for weak vector generalized quasi-
variational inequalities by using the scalarization method. Ward and Lee [21] presented
the equivalence relations between vector optimization problems and vector variational
inequalities.

This article portrays how to implement Fritz John type and Karush–Kuhn–Tucker
type conditions to find the locally LU-efficient solution of interval-valued mathematical
programming problems using convexificators, which are regular in terms of Ioffe [9]. The
article proposes sufficient conditions under appropriate assumptions. Section 2 recalls
some basic terminologies and definitions. Section 3 deals with Fritz John necessary
conditions for a locally LU-efficient solution of the considered problem, whereas Section
4 constructs Karush–Kuhn–Tucker type conditions for a locally LU-efficient solution with
the help of Mangasarian–Fromovitz constraint qualification and stronger Mangasarian–
Fromovitz constraint qualification investigated by Luu [14]. Under suitable assumptions
on generalized convexity, sufficiency optimality theorems for a locally weak LU-efficient
solution have been derived in Section 5, followed by some applications of constrained
interval-valued problems in Section 6.

2. PRELIMINARIES

This section begins with the following convention for inequalities and equalities, which
are utilized in the later part of the paper. For any u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn)
in Rn, where Rn symbolizes n-dimensional Euclidean space, we have

(i) u = v ⇔ ui = vi, ∀i = 1, . . . , n;

(ii) u > v ⇔ ui > vi, ∀i = 1, . . . , n;
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(iii) u ≧ v ⇔ ui ≧ vi, ∀i = 1, . . . , n;

(iv) u ≥ v ⇔ u ≧ v, u ̸= v.

Let X∗ denotes the topological dual space of a real Banach space X. The set of all closed
and bounded intervals in R is denoted by I. For any Θ1 = [αL, αU ] and Θ2 = [βL, βU ]
in I, we define

(i) Θ1 +Θ2 = [αL + βL, αU + βU ],

(ii) −Θ1 = [−αU ,−αL],

(iii) Θ1 −Θ2 = {Θ1 + (−Θ2)} = [αL − βU , αU − βL],

(iv) m+Θ1 = {m+ α : α ∈ Θ1} = [m+ αL,m+ αU ], where m is any real number,

(v) mΘ1 =

{
[mαL,mαU ], m ≥ 0,

[mαU ,mαL], m < 0,
where m is any real number.

If we take αL = αU = α, then the interval Θ1 reduces to a real number. A function F̂
with domain X and range I is known as an interval-valued function. For any member
y in X, we define F̂ (y) = [FL(y), FU (y)], where FL(y) and FU (y) are functions defined
on X satisfying FL(y) ≦ FU (y). We use the following notation in the rest of the paper:
[F (y)]L = FL(y) and [F (y)]U = FU (y).

We define the interval symbols as per the following scheme:

Θ1 ≦LU Θ2 provided αL ≦ βL and αU ≦ βU ,

Θ1 <LU Θ2 signify Θ1 ≦LU Θ2, Θ1 ̸= Θ2.

Equivalently, Θ1 <LU Θ2 if any one of the following three conditions are satisfied:

αL < βL, αU < βU ;
αL ≦ βL, αU < βU ;
αL < βL, αU ≦ βU .

Consider the following constrained interval-valued mathematical programming problem:

(IP) minimize ϕ(y) = [ϕL(y), ϕU (y)]

subject to y ∈ M1 := {y ∈ C : gi(y) ≦ 0 for i in In and h(y) = 0},

where,

(i) the function ϕ : X → I is defined so that ϕ(y) becomes a bounded and closed
interval in R given by ϕ(y) = [ϕL(y), ϕU (y)].

(ii) C ⊆ X is any closed subset.

(iii) g is a mapping from X to Rn and h a mapping from X to Rl, where gi (i ∈ In :=
{1, . . . , n}) and hj (j ∈ Ll := {1, . . . , l}) are functions from X to R ∪ {−∞,+∞}.
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Definition 2.1. (Ioffe [9]) A point ȳ is said to be a regular point for h corresponding
to C if for all y ∈ C ∩ B(ȳ; δ), there exist η > 0 and δ > 0 satisfying

dQ(y) ≦ η∥h(y)− h(ȳ)∥,

where Q := {y ∈ C : h(y) = h(ȳ)}, dQ(y) being the distance from y to Q, B(ȳ; δ) is an
open ball with radius δ and center ȳ.

Let us now devise necessary optimality conditions for the considered problem, which
is based on the reduction theorem due to Ioffe [9].

Proposition 2.2. Let ȳ be a regular point for h corresponding to C. Moreover, suppose
ϕL, ϕU , h1, . . . , hl are locally Lipschitz at ȳ and let the mapping ϕ̃ : X → R2 be defined
by ϕ̃ = (ϕL, ϕU ). Corresponding to the (isolated) local solution ȳ to the problem (IP),
there exists r > 0 for which the function

Mr
1(y) := max{ϕ̃(y)− ϕ̃(ȳ), max

i∈In(ȳ)
gi(y)} + r(∥h(y))∥+ dC(y)),

where In(ȳ) is the set of all indices i of In for which gi(ȳ) = 0, attains a local minimum
at ȳ.

Conversely, if Mr
1(y) attains a strict local minimum at a point ȳ for suitable values

of r, then ȳ also becomes an isolated local solution to the problem (IP).

Now, we recall the notion of a convexificator introduced by Jeyakumar and Luc [12].

Definition 2.3. A function f : X → R̄ (R̄ := R∪{−∞,+∞}) has lower and upper Dini
directional derivatives at a point ȳ ∈ X along the direction ϑ ∈ X provided the limit
given by

f−(ȳ;ϑ) = lim
t↓0

inf
f(ȳ + tϑ)− f(ȳ)

t
,

f+(ȳ;ϑ) = lim
t↓0

sup
f(ȳ + tϑ)− f(ȳ)

t
,

exists. Moreover, if f+(ȳ;ϑ) = f−(ȳ;ϑ), then f ′(ȳ;ϑ) is symbolized as their common
value, which is known as the Dini derivative of f at ȳ along the specified direction ϑ.

A function f is known as Dini differentiable at a point ȳ if and only if its Dini
derivatives at point ȳ exist along all directions.

Definition 2.4. An extended real function f : X → R̄ (R̄ := R ∪ {−∞,+∞}) has an
upper convexificator ∂∗f(ȳ) at ȳ provided ∂∗f(ȳ) is weakly∗ closed subset of X∗ and
f−(ȳ;ϑ) ≦ supξ∈∂∗f(ȳ)⟨ξ, ϑ⟩, ∀ ϑ ∈ X.

In the same way, an extended real function f : X → R̄ (R̄ := R ∪ {−∞,+∞}) has
a lower convexificator ∂∗f(ȳ) at ȳ provided ∂∗f(ȳ) is weakly∗ closed subset of X∗ and
f+(ȳ;ϑ) ≧ infξ∈∂∗f(ȳ)⟨ξ, ϑ⟩, ∀ ϑ ∈ X.

A weakly∗ closed subset of X∗ is called the convexificator of f and denoted by ∂f(ȳ),
whenever ∂f(ȳ) = ∂∗f(ȳ) = ∂∗f(ȳ).
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Definition 2.5. An extended real function f : X → R̄ (R̄ := R ∪ {−∞,+∞}) has an
upper semi-regular convexificator ∂∗f(ȳ) at ȳ provides ∂∗f(ȳ) is weakly∗ closed subset
and f+(ȳ;ϑ) ≦ supξ∈∂∗f(ȳ)⟨ξ, ϑ⟩, ∀ ϑ ∈ X.

In the same way, an extended real function f : X → R̄ (R̄ := R ∪ {−∞,+∞}) has a
lower semi-regular convexificator ∂∗f(ȳ) at ȳ provides ∂∗f(ȳ) is weakly∗ closed subset
and f−(ȳ;ϑ) ≧ infξ∈∂∗f(ȳ)⟨ξ, ϑ⟩, ∀ ϑ ∈ X.

Moreover, an extended real function f has an upper regular convexificator ∂∗f(ȳ) at
ȳ provides ∂∗f(ȳ) is weakly∗ closed subset and f+(ȳ;ϑ) = supξ∈∂∗f(ȳ)⟨ξ, ϑ⟩, ∀ ϑ ∈ X.

In the same way, an extended real function f has a lower regular convexificator ∂∗f(ȳ)
at ȳ provides ∂∗f(ȳ) is weakly

∗ closed subset and f−(ȳ;ϑ) = infξ∈∂∗f(ȳ)⟨ξ, ϑ⟩, ∀ ϑ ∈ X.

Proposition 2.6. [12] Let us assume that the functions ϕL, ϕU : X → R attain upper
convexificators ∂∗ϕL(ȳ) and ∂∗ϕU (ȳ) at point ȳ ∈ X, respectively. If ϕL and ϕU attain
their minimum value at a point ȳ, then

0 ∈ cl

(
conv ∂∗ϕL(ȳ) + conv ∂∗ϕU (ȳ)

)
, (1)

where cl denotes the weak∗ closure and conv denotes the convex hull.

Example 2.7. Let ϕ : X → I be an interval-valued function such that ϕ = [ϕL, ϕU ],
where the functions ϕL, ϕU : X → R are defined as

ϕL(y) =

{
2y2 + 3, y ≧ 0

5y + 3, y < 0

ϕU (y) =

{
6y3 + 9y + 5, y ≧ 0

4y2 + 7y + 5, y < 0

A simple calculation will give

ϕL+
(0; v) = ϕL−

(0; v) =

{
0, v ≧ 0

5v, v < 0

ϕU+
(0; v) = ϕU−

(0; v) =

{
9v, v ≧ 0

7v, v < 0

The sets {0,5} and {9,7} are upper semi-regular convexificators of ϕL and ϕU , respec-
tively, at ȳ = 0.

Definition 2.8. (Clarke [3]) The Clarke directional derivative of f : X → R at point ȳ
along the direction ϑ is defined by

f◦(ȳ;ϑ) := lim
y→ȳ

sup
t↓0

f(y + tϑ)− f(y)

t
.

The Clarke subdifferential of f at ȳ can be expressed mathematically as

∂f◦(ȳ) :=

{
ξ ∈ X∗ : ⟨ξ, ϑ⟩ ≦ f◦(ȳ;ϑ), ∀ ϑ ∈ X

}
.
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Remark 2.9. If f is a strictly differentiable function, then the Clarke subdifferential of
f becomes the strict derivative. If f is locally Lipschitz, then the Clarke subdifferential
transforms to the convexificator of f at point ȳ. A locally Lipschitz function f is said to
be regular at point ȳ, if there exist f ′(ȳ;ϑ) for each ϑ ∈ X having a value the same as
that of f◦(ȳ;ϑ). For a function f of this type, Clarke subdifferential ∂f◦(ȳ) is an upper
regular convexificator, and the convexificator mapping ∂f is locally bounded at a point
ȳ. Furthermore, if dim X < ∞, then the mapping ∂f becomes upper semicontinuous at
a point ȳ.
For a set C, the Clarke tangent cone TC(ȳ) at ȳ ∈ C can be defined by

TC(ȳ) :=
{
ϑ ∈ X : ∀ yn ∈ C, yn → ȳ, ∀ tn ↓ 0, ∃ ϑn → ϑ

with yn + tnϑn ∈ C, ∀ n
}
,

whereas for a set C, the Clarke normal cone NC(ȳ) at ȳ can be defined by

NC(ȳ) :=
{
ξ ∈ X∗ : ⟨ξ, ϑ⟩ ≦ 0, ∀ ϑ ∈ TC(ȳ)

}
.

Now, we construct the interval-valued vector equilibrium problem (IEP), the interval-
valued vector variational inequality (IVI), and the interval-valued vector optimization
problem (IOP). The interval-valued vector equilibrium problem (IEP) is an important
topic in nonlinear analysis. It is a generalized form of the scalar interval-valued problem
(IP) and provides a unified mathematical framework that includes the (IVI) and (IOP)
as special cases.

The interval-valued vector equilibrium problem (IEP):
Let M ⊂ X be a nonempty subset, and Φk be a function from X × X → I, Φk =
[ΦL

k ,Φ
U
k ] being an interval-valued function ∀ k ∈ Jm := {1, . . . ,m}. Let the mapping

ΦL
k ,Φ

U
k : X × X → R. In short, we write ΦL = (ΦL

1 , . . . ,Φ
L
m) and ΦU = (ΦU

1 , . . . ,Φ
U
m).

Suppose P ⊆ Rm is a closed, pointed, and convex cone. Let us take the interval-valued
vector equilibrium problem (IEP): find ȳ ∈ M satisfying

ΦL(ȳ, z), ΦU (ȳ, z) /∈ −P \ {0}, ∀ z ∈ M. (2)

A solution ȳ of interval-valued equilibrium problem (IEP) is called a locally LU-efficient
if and only if there exists δ > 0 which satisfies the condition (2) for every z ∈ M ∩ B(ȳ; δ).
If intP ̸= ∅, a point ȳ of interval-valued equilibrium problem (IEP) is called a locally
weak LU-efficient iff there exists δ > 0 so that for all z ∈ M ∩ B(ȳ; δ), we have

ΦL(ȳ, z), ΦU (ȳ, z) /∈ −intP.

Now, let us denote Φȳ(z) := Φ(ȳ, z), Φk,ȳ(z) := Φk(ȳ, z), ∀ k ∈ Jm := {1, . . . ,m} and
suppose Φȳ(ȳ) = 0. If P = Rm

+ , a solution ȳ ∈ M of the interval-valued vector equilibrium
problem (IEP) is said to be a locally LU-efficient (locally weak LU-efficient) solution iff
∃ δ > 0 so that there does not exist any z ∈ M ∩ B(ȳ; δ) which satisfies

Φk,ȳ(z) ≦LU 0, ∀ k ∈ Jm,

Φs,ȳ(z) <LU 0 for at least one index s ∈ Jm,(
Φk,ȳ(z) <LU 0 ∀ k ∈ Jm

)
.
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The interval-valued vector variational inequality (IVI):
Let T : X → I be an interval-valued function, where T = [TL,TU ]. Let Ll(X;Rm)
denotes the space of all the continuous linear mappings from X → Rm and TL, TU : X →
Ll(X;Rm) be any function. Consider the interval-valued vector variational inequality
(IVI), which is the particular case of the interval-valued vector equilibrium problem
(IEP):

(IVI) Find y ∈ M so that TL(y)(z − y), TU (y)(z − y) /∈ −P \ {0}, ∀ z ∈ M. (3)

A solution ȳ of an interval-valued vector variational inequality (IVI) is called locally
LU-efficient if and only if there exists δ > 0 which satisfies the condition (3) for each
z ∈ M ∩ B(ȳ; δ). If intP ̸= ∅, then a solution ȳ of the interval-valued vector variational
inequality (IVI) is said to be locally weak LU-efficient iff there exists δ > 0 so that

TL(ȳ)(z − ȳ), TU (ȳ)(z − ȳ) /∈ −intP, ∀ z ∈ M ∩ B(ȳ; δ).

Example 2.10. (Interval Cournot–Nash Duopoly as an IVI) Consider a market
with two firms choosing production levels y = (y1, y2) ∈ R2. The inverse demand
function is given by

p(Q) = a− bQ, Q = y1 + y2,

where the demand parameters are uncertain within intervals

a ∈ [aL, aU ], b ∈ [bL, bU ],

with 0 < aL ≤ aU , 0 < bL ≤ bU . Each firm i faces linear production cost

Ci(yi) = ciyi, ci ∈ [cLi , c
U
i ], i = 1, 2.

The feasible set is given by

M = { y ∈ R2 : 0 ≤ yi ≤ ȳi, i = 1, 2 },

which is nonempty, closed, and convex. Let P = R2
+ be the ordering cone.

For interval operator with fixed parameters, the standard Cournot mapping is

F̂i(y) = ci − a+ b (2yi + yj), i ̸= j, i, j ∈ {1, 2}.

That is,

FL
i (y) = cLi − aU + bL(2yi + yj), FU

i (y) = cUi − aL + bU (2yi + yj).

We define the interval operator by T(y) = [TL(y),TU (y)], with linear forms

TL(y)(v) = ⟨FL(y), v⟩, TU (y)(v) = ⟨FU (y), v⟩, v ∈ R2.

The problem involving interval variational inequality can be stated as follows:
Find ȳ ∈ M such that for all z ∈ M ,

TL(ȳ)(z − ȳ), TU (ȳ)(z − ȳ) /∈ −P \ {0}.
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Equivalently, there is no z ∈ M with

T(ȳ)(z − ȳ) ≤LU 0.

This example demonstrates how an interval variational inequality problem can be used
to formulate the Cournot–Nash duopoly with interval-valued parameters.

Note: In case P = Rm
+ the definition of locally LU-efficient solution (locally weak LU-

efficient solution if P = Rm
++) is of the form: There is no any z ∈ M ∩ B(ȳ; δ) such

that
Tk(ȳ)(z − ȳ) ≦LU 0, ∀ k ∈ Jm,

Ts(ȳ)(z − ȳ) <LU 0 for at least one index s ∈ Jm,(
Tk(ȳ)(z − ȳ) <LU 0 ∀ k ∈ Jm

)
,

where Tk(ȳ) = [TL
k (ȳ),TU

k (ȳ)], TL
k (ȳ),TU

k (ȳ) : X → R k ∈ Jm, Rm
++ = intRm

+ .

The interval-valued vector optimization problem (IOP):
The problem (IEP) transforms to the interval-valued vector optimization problem (IOP),
if we define ΦL(y, z) = ϕL(z)− ϕL(y) and ΦU (y, z) = ϕU (z)− ϕU (y) (y, z ∈ M), then

min{[ϕL(y), ϕU (y)] : y ∈ M}.

We call ȳ to be a locally LU-efficient solution for P = Rm
+ (a locally weak LU-efficient

solution for P = Rm
++) if ∄ y ∈ M ∩ B(ȳ; δ) satisfying

ϕk(y) ≦LU ϕk(ȳ), ∀ k ∈ Jm,

ϕs(y) <LU ϕs(ȳ) for at least one s ∈ Jm,(
ϕk(y) <LU ϕk(ȳ) ∀ k ∈ Jm

)
.

Next, we consider the problem (IEP) together with the feasible solution set M = M1,
which we denote as the constrained interval-valued vector equilibrium problem (CIEP).
Likewise, adding the feasible set M = M1 to the problems (IVI) and (IOP), we obtain
the constrained interval-valued vector variational inequality (CIVI) and the constrained
interval-valued vector optimization problem (CIOP), respectively, which will be studied
in the following sections.

3. FRITZ JOHN TYPE NECESSARY CONDITIONS

In this section, we derive the necessary optimality conditions for (CIEP). To obtain
the necessary conditions for a locally LU-efficient solution at the point ȳ of (CIEP), we
introduce the following assumptions.

Assumption 3.1.

(i) For s ∈ Jm, the functions ΦL
s,ȳ(.),Φ

U
s,ȳ(.), and h1, . . . , hl are locally Lipschitz at a

point ȳ. Moreover, ΦL
k,ȳ(.),Φ

U
k,ȳ(.) (s ̸= k ∈ Jm), gi, i ∈ In(ȳ) are continuous, and

C is convex.



696 A.K. PRASAD, J. KHATRI AND I. AHMAD

(ii) ΦL
k,ȳ(.), ΦU

k,ȳ(.) and gi admit an upper convexificator ∂∗ΦL
k,ȳ(ȳ), ∂

∗ΦU
k,ȳ(ȳ) (s ̸=

k ∈ Jm) and ∂∗gi(ȳ), i in In(ȳ) at a point ȳ.

(iii) The functions |hj |, j ∈ Ll are regular at a point ȳ in the sense of Clarke [3].

Theorem 3.2. Let ȳ be a locally LU-efficient solution to (CIEP) and regular point
corresponding to C satisfying the conditions ΦL

ȳ (ȳ) = 0 and ΦU
ȳ (ȳ) = 0. Further, if it

satisfies the conditions specified in Assumption 3.1, then there exist ᾱL
k , ᾱU

k ≧ 0 (for
all k in Jm), β̄i ≧ 0 (for all i in In(ȳ)), τ̄j ≧ 0 (for all j in Ll),

∑
j∈Ll

τ̄j = 1, r̄ > 0

satisfying
∑

k∈Jm

(
ᾱL
k + ᾱU

k

)
+
∑

i∈In(ȳ)
β̄i = 1 along with

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄

(∑
j∈Ll

τ̄j conv ∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)

)}
, (4)

where ∂◦dC(ȳ) is the subdifferential of dC(y) at ȳ as defined by Clarke [3].

P r o o f . Since ȳ is locally LU-efficient solution to (CIEP), and ΦL
ȳ (ȳ) = 0 and ΦU

ȳ (ȳ) =
0, the solution ȳ is also locally LU-efficient to the interval-valued vector optimization
problem (MP):

minimize [ΦL
ȳ (y),Φ

U
ȳ (y)]

subject to y ∈ M1 := {y ∈ C : gi(y) ≦ 0, for i in In, h(y) = 0}.

So, the solution ȳ is locally LU-efficient for the following vector programming problem:

min

{
ΦL

s,ȳ(y),Φ
U
s,ȳ(y) : Φ

L
k,ȳ(y) ≦ 0,ΦU

k,ȳ(y) ≦ 0, s ̸= k ∈ Jm,

gi(y) ≦ 0, i ∈ In, h(y) = 0, y ∈ C
}
.

Using Proposition 2.2, we get r̄ > 0 where ȳ is a local minimum of Mr̄(y) over X :

Mr̄(y) := max

{
ΦL

s,ȳ(y),Φ
U
s,ȳ(y), max

s̸=k∈Jm

ΦL
k,ȳ(y), max

s ̸=k∈Jm

ΦU
k,ȳ(y),

max
i∈In(ȳ)

gi(y)

}
+ r̄

(
∥h(y))∥+ dC(y)

)
, (5)

where norm can be defined by ∥h(y))∥ = max1≦j≦l|hj(y)|. Therefore, using Proposition

2.6, ∂∗Mr(ȳ) can be taken as the upper convexificator of Mr at a point ȳ, and hence

0 ∈ cl conv ∂∗Mr̄(ȳ). (6)

Since dC(y) is a Lipschitz function on X, therefore we can take the Clarke subdifferential
∂◦dC(ȳ) as a convexificator for dC(y) at a point ȳ. Let the function maxi∈In(ȳ) gi(y),
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maxs̸=k∈Jm ΦL
k,ȳ(y) and maxs̸=k∈Jm ΦU

k,ȳ(y) admit an upper convexificator at a point ȳ
given by ⋃

i∈In(ȳ)

∂∗gi(ȳ) ,
⋃

s ̸=k∈Jm

∂∗ΦL
k,ȳ(ȳ) and

⋃
s̸=k∈Jm

∂∗ΦU
k,ȳ(ȳ),

respectively. Therefore, the function

max

{
ΦL

s,ȳ(y),Φ
U
s,ȳ(y), max

s ̸=k∈Jm

ΦL
k,ȳ(y), max

s̸=k∈Jm

ΦU
k,ȳ(y), max

i∈In(ȳ)
gi(y)

}
,

has an upper convexificator at a point ȳ specified as⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ)

)
.

Since |hj |, ∀ j ∈ Ll are regular at a point ȳ, so max1≦j≦l|hj(y)| is also regular at ȳ.

Therefore, ∥ h(y)∥ has a regular upper convexificator at a point ȳ given by
⋃

j∈Ll
∂∗(|hj(ȳ)|).

By Rule (4.2) given by Jeyakumar and Luc [12], the function defined by

max

{
ΦL

s,ȳ(y),Φ
U
s,ȳ(y), max

s ̸=k∈Jm

ΦL
k,ȳ(y), max

s̸=k∈Jm

ΦU
k,ȳ(y), max

i∈In(ȳ)
gi(y)

}
+ r̄∥ h(y)∥,

has an upper convexificator at a point ȳ given by⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ) + r̄
⋃
j∈Ll

∂∗(|hj(ȳ)|)
)
.

The convexity of C implies the convexity of dC(y) which in turn is regular, and the
Clarke subdifferential ∂◦dC(ȳ) is the upper regular convexificator of dC(y) at ȳ. It has to
be noted that the set ∂◦dC(ȳ) is convex and weakly∗ compact. Again using Rule (4.2),
given Jeyakumar and Luc [12], the function Mr̄(y) is an upper convexificator at a point
ȳ as

⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ) + r̄

( ⋃
j∈Ll

∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)

))
.

Therefore, from (6) we conclude that

0 ∈ cl conv

{ ⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ)

+r̄
( ⋃
j∈Ll

∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)
))}

= cl

{
conv

( ⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ)

))
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+r̄

(
conv

( ⋃
j∈Ll

∂∗(|hj(ȳ)|)
)
+ ∂◦dC(ȳ)

)}
.

This guarantees the existence of ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm), β̄i ≧ 0 (for all i
in In(ȳ)), τ̄j ≧ 0 (for all j in Ll) with

∑
j∈Ll

τ̄j = 1, so that
∑

k∈Jm
(ᾱL

k + ᾱU
k ) +∑

i∈In(ȳ)
β̄i = 1, along with

0 ∈ cl

{( ∑
k∈Jm

(
ᾱL
k conv∂

∗ΦL
k,ȳ(ȳ) + ᾱU

k conv∂
∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄iconv∂
∗gi(ȳ)

)

+r̄

(∑
j∈Ll

τ̄jconv∂
∗(|hj(ȳ)|) + ∂◦dC(ȳ)

)}
.

The proof is complete. □

Proposition 3.3. (Luu [14]) For all j ∈ Ll, suppose hj are endowed with a convexifi-
cator ∂∗hj(y) at a point y around ȳ and the Lipschitz functions hj satisfy Assumption
3.1 and ∂∗hj is upper semicontinuous at a point ȳ. Then, ∂∗hj(ȳ) ∪ (−∂∗hj(ȳ)) is the
convexificator of |hj | at a point ȳ, and

cl conv ∂∗(|hj(ȳ)|) ⊆ cl conv
(
∂∗hj(ȳ) ∪ (−∂∗hj(ȳ))

)
. (7)

Remark 3.4. The sets ∂∗hj(ȳ)∪ (−∂∗hj(ȳ)) and cl conv
(
∂∗hj(ȳ)∪ (−∂∗hj(ȳ))

)
may

not be upper regular convexificators of |hj | at a point ȳ, and

cl conv ∂∗(|hj(ȳ)|) ⫋ cl conv
(
∂∗hj(ȳ) ∪ (−∂∗hj(ȳ))

)
.

Example 3.5. Let the function h : R → R be defined by

h(y) =

{
−(y + 1)3, y ≧ 0

−(y − 1)4, y < 0

Then,

|h(y)| =

{
(y + 1)3, y ≧ 0

(y − 1)4, y < 0

It can be seen that the Lipschitz function |h| is regular in terms of Clarke at ȳ =
0. Furthermore, ∂h(0) = [−3, 4], ∂(|h(0)|) = [−4, 3] and ∂h(0) ∪ (−∂h(0)) = [−4, 4].
Therefore, the set [−4, 3] is an upper regular convexificator of the function |h| at the
point ȳ = 0 and ∂(|h(0)|) ⫋ ∂h(0) ∪ ∂|h(0)|.

If the convexificator maps ∂∗hj (j ∈ Ll) ae upper semicontinuous at a point ȳ, then we
get the following Fritz John type necessary conditions of a locally LU-efficient solution
at point ȳ of (CIEP).
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Theorem 3.6. Suppose the solution ȳ is locally LU-efficient to (CIEP) and ȳ is a regular
point corresponding to C with ΦL

ȳ (ȳ) = 0 and ΦU
ȳ (ȳ) = 0, and it satisfies the Assumption

3.1. Additionally, assume that hj (for each j in Ll) admits a convexificator ∂∗hj(y) at
a point y near ȳ and the convexificator map ∂∗hj is upper semicontinuous at a point ȳ.
Then, there exist ᾱL

k , ᾱU
k ≧ 0 (for all k in Jm), β̄i ≧ 0 (for all i in In(ȳ)), ρj ∈ R (for

all j in Ll) satisfying
∑

k∈Jm

(
ᾱL
k + ᾱU

k

)
+
∑

i∈In(ȳ)
β̄i = 1 along with

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (8)

P r o o f . In the light of the assumptions of Theorem 3.2, there exist ᾱL
k , ᾱ

U
k ≧ 0, for all k

in Jm, β̄i ≧ 0 for all i in In(ȳ), τ̄j ≧ 0 for all j in Ll,
∑

j∈Ll
τ̄j = 1, r̄ > 0 satisfies∑

k∈Jm
(ᾱL

k + ᾱU
k ) +

∑
i∈In(ȳ)

β̄i = 1, along with

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄

(∑
j∈Ll

τ̄j conv ∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)

)}
. (9)

Since all the hypotheses of Proposition 3.3 are satisfied, therefore inclusion (9) together
with (7) gives

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄

(∑
j∈Ll

τ̄j cl conv ∂∗hj(ȳ) ∪ (−∂∗hj(ȳ)) + ∂◦dC(ȳ)

)}
. (10)

Using the condition clA+ clB ⊆ cl(A+B), we obtain

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄ cl

(∑
j∈Ll

τ̄j conv ∂∗hj(ȳ) ∪ (−∂∗hj(ȳ)) + ∂◦dC(ȳ)

)}

⊆ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄

(∑
j∈Ll

τ̄j conv ∂∗hj(ȳ) ∪ (−∂∗hj(ȳ)) + ∂◦dC(ȳ)

)}
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which shows that p̄j ≧ 0 and q̄j ≧ 0 exist with the condition p̄j + q̄j = 1 for all j in Ll

such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄

(∑
j∈Ll

τ̄j(p̄j − q̄j) conv ∂∗hj(ȳ) + ∂◦dC(ȳ)

)}
.

Putting ρ̄j = r̄τ̄j(p̄j − q̄j), where ρj ∈ R and using inclusion r̄ ∂◦dC(ȳ) ⊆ NC(ȳ), we get

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
.

This completes the proof. □

4. KARUSH–KUHN–TUCKER TYPE NECESSARY CONDITIONS

To derive the Karush–Kuhn–Tucker type necessary conditions under locally LU-efficient
solutions for problem (CIEP), we use the following Mangasarian–Fromovitz constraint
qualification (MFCQ), as stated in Luu [14]: There exists ω0 ∈ TC(ȳ) and numbers
ai > 0 (i ∈ In(ȳ)) so that

(i) ⟨ζi, ω0⟩ ≦ −ai (∀ ζi ∈ ∂∗gi(ȳ), ∀i ∈ In(ȳ);

(ii) ⟨µj , ω0⟩ = 0 (∀ µj ∈ ∂∗hj(ȳ), ∀j ∈ Ll).

Theorem 4.1. Suppose ȳ is a locally LU-efficient solution to (CIEP) and the Mangasarian–
Fromovitz constraint qualification (MFCQ) hold. Under the presumption of Theorem
3.6, there exist ᾱL

k , ᾱU
k ≧ 0 (for all k in Jm, not all zero simultaneously), β̄i ≧ 0 (for

each i in In(ȳ)), ρ̄j ∈ R (for all j in Ll) in such a way

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (11)

P r o o f . Since the hypotheses of Theorem 3.6 are satisfied, we claim that there exist
ᾱL
k , ᾱ

U
k ≧ 0 (for all k in Jm), β̄i ≧ 0 (for all i in In(ȳ)), ρ̄j ∈ R (for all j in Ll) satisfying∑

k∈Jm
(ᾱL

k + ᾱU
k ) +

∑
i∈In(ȳ)

β̄i = 1, along with

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)
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+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
.

If ᾱL
k = 0, ᾱU

k = 0 (for all k in Jm), then
∑

i∈In(ȳ)
β̄i = 1. Consequently, there exist

ζ
(ν)
i ∈ conv ∂∗gi(ȳ) (for all i ∈ In(y)), µ

(ν)
j ∈ conv ∂∗hj(ȳ) (for all j ∈ Ll) and ξ(ν) ∈

NC(ȳ) such that

0 = lim
ν→∞

[ ∑
i∈In(ȳ)

β̄iζ
(ν)
i +

∑
j∈Jm

ρ̄jµ
(ν)
j + ξ(ν)

]
. (12)

which imply that

0 = lim
ν→∞

[ ∑
i∈In(ȳ)

β̄i⟨ζ(ν)i , ω0⟩+
∑
j∈Jm

ρ̄j⟨µ(ν)
j , ω0⟩+ ⟨ξ(ν), ω0⟩

]
. (13)

Also, since
∑

i∈In(ȳ)
β̄i = 1, using (MFCQ), we get

lim
ν→∞

[ ∑
i∈In(ȳ)

β̄i⟨ζ(ν)i , ω0⟩+
∑
j∈Jm

ρ̄j⟨µ(ν)
j , ω0⟩+ ⟨ξ(ν), ω0⟩

]

≦ lim
ν→∞

[ ∑
i∈In(ȳ)

β̄i⟨ζ(ν)i , ω0⟩+
∑
j∈Jm

ρ̄j⟨µ(ν)
j , ω0⟩

]
≦ −

∑
i∈In(ȳ)

β̄iai < 0.

Hence, it contradicts equation (13). □

To determine the nonzero components of the Lagrange multipliers relative to the ob-
jective function, we use the following stronger Mangasarian–Fromovitz–type constraint
qualification (SMFCQ), as stated in Luu [14]: There exist s ∈ Jm, ω0 ∈ TC(ȳ) and
numbers ai > 0 (i ∈ In(ȳ)), bk > 0 (s ̸= k ∈ Jm) satisfying the following assumptions

(i) ⟨ζi, ω0⟩ ≦ −ai (∀ ζi ∈ ∂∗gi(ȳ), ∀i ∈ In(ȳ)); ⟨κL
k , ω0⟩ ≦ −bLk (∀ κL

k ∈ ∂∗ΦL
k,ȳ(ȳ));

⟨κU
k , ω0⟩ ≦ −bUk (∀ κU

k ∈ ∂∗ΦU
k,ȳ(ȳ), ∀s ̸= k ∈ Jm);

(ii) ⟨µj , ω0⟩ = 0 (for all µj ∈ ∂∗hj(ȳ)), where j runs over Ll.

Remark 4.2.

(a) (SMFCQ) =⇒ (MFCQ).

(b) If (SMFCQ) holds for an element s ∈ Jm, then ᾱL
s , ᾱU

s > 0 and ᾱL
k , ᾱU

k ≧
0 (for k ̸= s in Jm), β̄i ≧ 0 (for all i in In(ȳ)), ρ̄j ∈ R (for all j in Ll) with

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ)+ ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
.
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Theorem 4.3. Let ȳ be a locally LU-efficient solution to (CIEP). Suppose all the as-
sumptions of Theorem 3.6 and the constraint qualification (SMFCQ) hold. Then, there
exist ᾱL

s , ᾱU
s > 0 (for s in Jm), ᾱL

k , ᾱU
k ≧ 0 (for all s ̸= k in Jm), β̄i ≧ 0 (for all i in

In(ȳ)), ρ̄j ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (14)

P r o o f . In view of Remark 4.2, we see that for all s in Jm, there exist α
(s)L
s , α

(s)U
s >

0, α
(s)L
k , α

(s)U
k ≧ 0 (for all s ̸= k ∈ Jm), β

(s)
i ≧ 0 (for all i in In(ȳ)), ρ

(s)
j ∈ R (for all j

in Ll) satisfying

0 ∈ cl

{ ∑
k∈Jm

(
α
(s)L
k conv ∂∗ΦL

k,ȳ(ȳ) + α
(s)U
k conv ∂∗ΦU

k,ȳ(ȳ)
)

+
∑

i∈In(ȳ)

β
(s)
i conv ∂∗gi(ȳ) +

∑
j∈Ll

ρ
(s)
j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (15)

Using the condition clA + clB ⊆ cl(A + B) and putting s = 1 to m in (15) and finally
summing all equations, we get

0 ∈
∑
s∈Jm

cl

{ ∑
k∈Jm

(
α
(s)L
k conv ∂∗ΦL

k,ȳ(ȳ) + α
(s)U
k conv ∂∗ΦU

k,ȳ(ȳ)
)

+
∑

i∈In(ȳ)

β
(s)
i conv ∂∗gi(ȳ) +

∑
j∈Ll

ρ
(s)
j conv ∂∗hj(ȳ) + NC(ȳ)

}
,

⊆ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)

+
∑

i∈In(ȳ)

β̄i conv ∂∗gi(ȳ) +
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
,

where, ᾱL
k = α

(s)L
s +

∑
k ̸=s∈Jm

α
(s)L
k > 0, ᾱU

k = α
(s)U
s +

∑
k ̸=s∈Jm

α
(s)U
k > 0 (for all k in

Jm), β̄i =
∑

s∈Jm
β
(s)
i ≧ 0 (for all i in In(ȳ)), ρ̄j =

∑
s∈Jm

ρj
(s) ∈ R (for all j in Ll). □

Corollary 4.4. Suppose that X is finite-dimensional. Let ȳ be a locally LU-efficient
solution to (CIEP). Assume that ȳ is a regular point for h corresponding to C and the
constraint qualification (MFCQ) hold along with Assumption 3.1. Then, there exist
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ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm, at least one is nonzero), β̄i ≧ 0 (for all i in In(ȳ)), ρ̄j ∈ R
(for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j ∂◦hj(ȳ) + NC(ȳ)

}
,

where ∂◦hj(ȳ) is Clarke subdifferential of hj at ȳ.

5. SUFFICIENCY FOR WEAK LU-EFFICIENT SOLUTIONS

Definition 5.1. (Luu [14]) A function ϕ defined on X having an upper convexificator
∂∗ϕ(ȳ) is known as asymptotic pseudoconvex at a point ȳ regarding C if and only if for
some y∗ν ∈ conv ∂∗ϕ(ȳ), the following condition is satisfied:

lim
ν→∞

⟨y∗ν , y − ȳ⟩ ≧ 0 =⇒ ϕ(y) ≧ ϕ(ȳ), ∀ y ∈ C.

Definition 5.2. (Luu [14]) A function ϕ defined on X having an upper convexificator
∂∗ϕ(ȳ) is known as asymptotic quasiconvex at a point ȳ regarding C if and only if for
some y∗ν ∈ conv ∂∗ϕ(ȳ), the following condition is satisfied:

ϕ(y) ≦ ϕ(ȳ) =⇒ lim
ν→∞

⟨y∗ν , y − ȳ⟩ ≦ 0, ∀ y ∈ C.

A function ϕ is known as asymptotic quasiconcave at a point ȳ regarding to C if and
only if −ϕ is asymptotic quasiconvex at a point ȳ regarding to C.

Definition 5.3. (Luu [14]) An asymptotic quasilinear function ϕ at a point ȳ relative
to C is characterized by the fact that it is both asymptotic quasiconcave and asymptotic
quasiconvex at a point ȳ regarding C.

Theorem 5.4. A solution ȳ ∈ M1 is weak LU-efficient to the problem (CIEP), if it
satisfies Assumption 3.1 for which ΦL

ȳ (ȳ) = 0 and ΦU
ȳ (ȳ) = 0. Furthermore, let us

assume that there exist ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧ 0
(for all i in In(ȳ)), τ̄j ≧ 0 (for all j in Ll),

∑
j∈Ll

τ̄j = 1, such as Mr̄(y), is asymptotic
pseudoconvex at a point ȳ regarding to M1 for r̄ > 0 and

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+r̄

(∑
j∈Ll

τ̄j conv ∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)

)}
. (16)
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P r o o f . As we have ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧
0 (for all i in In(ȳ)), satisfying

∑
k∈Jm

(ᾱL
k + ᾱU

k ) +
∑

i∈In(ȳ)
β̄i = 1. Therefore, using

(16), we get

0 ∈ cl

{
conv

( ⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ)
))

+r̄

(
conv

( ⋃
j∈Ll

∂∗(|hj(ȳ)|)
)
+ ∂◦dC(ȳ)

)}

= cl conv

{ ⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ)

+r̄
( ⋃

j∈Ll

∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)
))}

.

Due to the fact that C and dC are convex, and the function dC is regular at a point ȳ, the
Clarke subdiffferential ∂◦dC(ȳ) can be taken as the upper regular convexificator of dC at
a point ȳ. Therefore, the set of upper convexificators of Mr̄ at a point ȳ is specified by

⋃
k∈Jm

(
∂∗ΦL

k,ȳ(ȳ) ∪ ∂∗ΦU
k,ȳ(ȳ)

)⋃ ( ⋃
i∈In(ȳ)

∂∗gi(ȳ) + r̄

( ⋃
j∈Ll

∂∗(|hj(ȳ)|) + ∂◦dC(ȳ)

))
.

Consequently, one can have
0 ∈ cl conv∂∗Mr̄(ȳ),

and, hence, one can get a sequence {y∗n} ⊆ conv∂∗Mr̄(ȳ) so that

lim
ν→∞

y∗ν = 0.

Therefore, we can conclude that

lim
ν→∞

⟨y∗ν , y − ȳ⟩ = 0, ∀y ∈ C. (17)

Since Mr̄ is asymptotic pseudoconvex at a point ȳ, (17) yield

Mr̄(y) ≧ Mr̄(ȳ); ∀ x ∈ M.

Using Proposition 2.2, we can conclude that solution ȳ becomes a weak minimum of the
vector optimization problem (MP). Also, ΦL

ȳ (ȳ) = 0 and ΦU
ȳ (ȳ) = 0, therefore, we can

conclude that solution ȳ is weak LU-efficient to the problem (CIEP). □

Theorem 5.5. If the solution ȳ ∈ M1 is weak LU-efficient to the problem (CIEP), it
holds the conditions

(i) ΦL
ȳ (ȳ) = 0, ΦU

ȳ (ȳ) = 0,
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(ii) there exist ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧ 0 (for
all i in In(ȳ)), ρ̄j ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ) + ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)

+
∑

i∈In(ȳ)

β̄i conv ∂∗gi(ȳ) +
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
, (18)

(iii) ∂∗ΦL
k,ȳ(ȳ) and ∂∗ΦU

k,ȳ(ȳ) (k ∈ Jm) are upper regular at ȳ for at most one of the

upper convexificators, the function ᾱLΦL
ȳ (.) :=

∑
k∈Jm

ᾱL
kΦ

L
k,ȳ(.) and ᾱUΦU

ȳ (.) :=∑
k∈Jm

ᾱU
k Φ

U
k,ȳ(.) are asymptotic pseudoconvex at point ȳ regarding M1, gi are

asymptotic quasiconvex at point ȳ regarding M1 (for all i in In(ȳ)), hj are asymp-
totic quasilinear at point ȳ regarding M1 (for all j in Ll), C is convex.

P r o o f . From condition (18), we may conclude that κ(ν)L
k ∈ conv ∂∗ΦL

k,ȳ(ȳ), κ
(ν)U
k ∈

conv ∂∗ΦU
k,ȳ(ȳ), ζ

(ν)
i ∈ conv ∂∗gi(ȳ), µ

(ν)
j ∈ conv ∂∗hj(ȳ), ξ

(ν) ∈ NC(ȳ) such that

0 = lim
ν→∞

[ ∑
k∈Jm

(
ᾱL
kκ

(ν)L
k + ᾱU

k κ
(ν)U
k

)
+

∑
i∈In(ȳ)

β̄iζ
(ν)
i +

∑
j∈Ll

ρ̄jµ
(ν)
j + ξ(ν)

]
,

which implies that

lim
ν→∞

[ ∑
k∈Jm

(
ᾱL
k ⟨κ

(ν)L
k , y − ȳ⟩+ ᾱU

k ⟨κ
(ν)U
k , y − ȳ⟩

)
+

∑
i∈In(ȳ)

β̄i⟨ζ(ν)i , y − ȳ⟩

+
∑
j∈Ll

ρ̄j⟨µ(ν)
j , y − ȳ⟩+ ⟨ξ(ν), y − ȳ⟩

]
= 0, ∀y ∈ M1. (19)

For all y ∈ M1, we get gi(y) ≦ 0 = gi(ȳ), ∀ i ∈ In(ȳ). Therefore, asymptotic quasicon-
vexity of gi at point ȳ, gives

lim
ν→∞

⟨ζ(ν)i , y − ȳ⟩ ≦ 0, ∀y ∈ M1. (20)

Also, we have hj(y) = 0 = hj(ȳ) (∀y ∈ M1), so using asymptotic quasilinearity, we
obtain

lim
ν→∞

⟨µ(ν)
j , y − ȳ⟩ = 0; ∀y ∈ M1. (21)

Due to the convexity of C, y − ȳ ∈ TC(ȳ) ∀ y ∈ C, we have

lim
ν→∞

⟨ξ(ν), y − ȳ⟩ ≦ 0; ∀y ∈ M1. (22)

Summing up equations (19) – (22), we have

lim
ν→∞

〈 ∑
k∈Jm

ᾱL
kκ

(ν)L
k , y − ȳ +

∑
k∈Jm

ᾱU
k κ

(ν)U
k , y − ȳ

〉
≧ 0.
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As ∂∗ΦL
k,ȳ(ȳ) and ∂∗ΦU

k,ȳ(ȳ) (k ∈ Jm) are upper regular at point ȳ for at most one of the

upper convexificators; therefore, the function
∑

k∈Jm
ᾱL
kΦ

L
k,ȳ(.) and

∑
k∈Jm

ᾱU
k Φ

U
k,ȳ(.)

has an upper convexificator
∑

k∈Jm
ᾱL
k ∂

∗ΦL
k,ȳ(ȳ) and

∑
k∈Jm

ᾱU
k ∂

∗ΦU
k,ȳ(ȳ) respectively

at a point ȳ, using asymptotic pseudoconvexity of ᾱLΦL
ȳ (.) and ᾱUΦU

ȳ (.) ∀y ∈ M1, we
obtain

ᾱLΦL
ȳ (y) ≧ ᾱLΦL

ȳ (ȳ) = 0,

ᾱUΦU
ȳ (y) ≧ ᾱUΦU

ȳ (ȳ) = 0.

Therefore, ȳ is the minima of the functions ᾱLΦL
ȳ (.) and ᾱUΦU

ȳ (.) over M1. Hence, the
solution ȳ is weak LU-efficient to the problem (CIEP). □

Theorem 5.6. A point ȳ ∈ M1 is a weak LU-efficient solution to (CIEP) provided it
fulfills the following criteria:

(i) ΦL
ȳ (ȳ) = 0, ΦU

ȳ (ȳ) = 0,

(ii) there exist ᾱL
s , ᾱU

s > 0, ᾱL
k , ᾱU

k ≧ 0 (for all s ̸= k in Jm), β̄i ≧ 0 (for all i in
In(ȳ)), ρ̄j ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ΦL

k,ȳ(ȳ)+ ᾱU
k conv ∂∗ΦU

k,ȳ(ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
.

(iii) The functions ΦL
s,ȳ(.) and ΦU

s,ȳ(.) are asymptotic pseudoconvex at point ȳ regard-

ing M1, Φ
L
k,ȳ(.), ΦU

k,ȳ(.) and gi are asymptotic quasiconvex at point ȳ regarding
M1 (∀ k ∈ Jm, k ̸= s,∀ i ∈ In(ȳ)), hj are asymptotic quasilinear at point ȳ
regarding M1 (∀ j ∈ Ll), C is convex.

6. APPLICATIONS

In this section, we formulate optimality conditions of constrained interval-valued vec-
tor variational inequality (CIVI) and constrained interval-valued vector optimization
problem (CIOP).

We state the following assumptions, which are used to formulate the optimality con-
ditions for locally LU-efficient solutions at the point ȳ of problem (CIVI).

Assumption 6.1.

(i) The functions h1, . . . , hl are locally Lipschitz at the point ȳ. Moreover, hj (j varies
over Ll) have convexificators defined by ∂∗hj(y) at a point y near ȳ, the convexi-
ficator map ∂∗hj is upper semicontinuous at a point ȳ, gi (i varies over In(ȳ)) are
continuous functions, and C is convex.

(ii) ∂∗gi(ȳ) represent an upper regular convexificator of gi at a point ȳ.

(iii) The functions |hj |, j in Ll are regular at the point ȳ in the sense of Clarke [3].



Optimality conditions for interval-valued vector equilibrium problems 707

Fritz John type necessary conditions for (CIVI) can be stated as follows.

Theorem 6.2. Let the solution ȳ be a locally LU-efficient to the problem (CIVI). Sup-
pose that ȳ is regular point for h, corresponding to C, and satisfies Assumption 6.1.
Then there exist ᾱL

k , ᾱU
k ≧ 0 (for all k in Jm), β̄i ≧ 0 (for all i in In(ȳ)), ρ̄j ∈ R (for all

j in Ll) satisfying
∑

k∈Jm

(
ᾱL
k + ᾱU

k

)
+
∑

i∈In(ȳ)
β̄i = 1, and

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
kTL

k (ȳ) + ᾱU
k TL

k (ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (23)

P r o o f . Since TL(ȳ)(.) and TU (ȳ)(.) are continuous linear mappings, strictly differen-
tiable, and locally Lipschitz. Therefore, {TL

k (ȳ)} and {TU
k (ȳ)} are upper convexificators

of TL(ȳ)(.) and TU (ȳ)(.) (∀ k ∈ Jm), respectively. Putting ΦL(y, z) = TL(y)(z − y)
and ΦU (y, z) = TU (y)(z − y), we get ΦL

ȳ (ȳ) = 0 and ΦU
ȳ (ȳ) = 0. Since all the hy-

potheses of Theorem 3.6 are fulfilled (since Assumption 6.1 is satisfied), then there exist
ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm), β̄i ≧ 0 (for all i in In(ȳ)), and ρ̄j ∈ R (for all j in Ll) so
that inclusion (23) holds and

∑
k∈Jm

(
ᾱL
k + ᾱU

k

)
+
∑

i∈In(ȳ)
β̄i = 1. □

Now, we state Karush–Kuhn–Tucker type necessary conditions for locally LU-efficient
solutions to (CIVI).

Theorem 6.3. Let the solution ȳ be locally LU-efficient to (CIVI). Suppose that the
constraint qualification (MFCQ) and the assumptions of Theorem 6.2 hold. Then there
exist ᾱL

k , ᾱU
k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧ 0 (for all i in

In(ȳ)), ρj ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
kTL

k (ȳ) + ᾱU
k TU

k (ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (24)

P r o o f . Since hypotheses that were used to prove Theorem 4.1 are satisfied, therefore
using Theorem 4.1 and Theorem 6.2, we get the Karush–Kuhn–Tucker type necessary
condition (24) for the problem (CIVI). □

Followed by Theorem 5.5, we obtain the following sufficient optimality condition for
weak LU-efficient solution to (CIVI).

Theorem 6.4. The solution ȳ ∈ M1 becomes weak LU-efficient to the problem (CIVI)
provided
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(i) there exist ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧ 0 (for
all i in In(ȳ)), ρ̄j ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
kTL

k (ȳ) + ᾱU
k TU

k (ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
,

(ii) gi are asymptotic quasiconvex at point ȳ corresponding to M1 for all i in In(ȳ),
hj are asymptotic quasilinear at point ȳ corresponding to M1 for all j in Ll, and
C is convex.

P r o o f . Since TL(ȳ)(.) and TU (ȳ)(.) are continuous linear mappings, strictly dif-
ferentiable, and locally Lipschitz. Therefore, {TL

k (ȳ)} and {TU
k (ȳ)} are upper con-

vexificators of TL(ȳ)(.) and TU (ȳ)(.) (for all k in Jm), respectively. ᾱLTL(ȳ)(.) :=∑
k∈Jm

ᾱL
kTL

k (ȳ)(.) and ᾱUTU (ȳ)(.) :=
∑

k∈Jm
ᾱU
k TU

k (ȳ)(.) are asymptotic pseudocon-
vex functions at point ȳ corresponding to M1. Thus, all the assumptions of Theorem
5.5 are satisfied. Hence, applying Theorem 5.5 to problem (CIVI), we get the result. □

To derive the optimality conditions for a locally LU-efficient solution at ȳ to the
problem (CIOP), we discuss the following assumptions.

Assumption 6.5.

(i) For s ∈ Jm, the functions ϕL
s , ϕU

s and h1, . . . , hl are locally Lipschitz at a point
ȳ. Moreover, hj (for all j in Ll) have convexificators ∂∗hj(y) at a point y near ȳ,
the convexificator map ∂∗hj is upper semicontinuous at a point ȳ. The functions
ϕL
k , ϕU

k (s ̸= k ∈ Jm), gi (for every i in In(ȳ)) are continuous, and C is taken as
convex.

(ii) ∂∗ϕL
k (ȳ), ∂∗ϕU

k (ȳ) (s ̸= k ∈ Jm), ∂∗gi(ȳ) (for all i in In(ȳ)) are upper regular
convexificators of ϕL

k , ϕU
k and gi at a point ȳ, respectively.

(iii) The functions |ΦL
j | and |ΦU

j | for all j in Ll are regular at the point ȳ in the sense
of Clarke [3].

Fritz John type necessary conditions to the problem (CIOP) can be stated as follows:

Theorem 6.6. Let the solution ȳ be a locally LU-efficient to (CIOP) and ȳ be a regular
point for h, corresponding to C. Moreover, if Assumption 6.5 are satisfied, then there
exist ᾱL

k , ᾱU
k ≧ 0 (for all k in Jm), β̄i ≧ 0 (for all i in In(ȳ)), ρ̄j ∈ R (for all j in Ll)

satisfying
∑

k∈Jm

(
ᾱL
k + ᾱU

k

)
+
∑

i∈In(ȳ)
β̄i = 1, and

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ϕL

k (ȳ) + ᾱU
k conv ∂∗ϕU

k (ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
.
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P r o o f . Observe that under Assumption 6.5, all the hypotheses of Theorem 3.6 hold to
the poblem (CIOP) with ΦL(y, z) = ϕL(z)−ϕL(y) and ΦU (y, z) = ϕU (z)−ϕU (y) (y, z ∈
M).ΦL(y, z) = ϕL(z)−ϕL(y) and ΦU (y, z) = ϕU (z)−ϕU (y) (y, z ∈ M). Thus, applying
Theorem 3.6 to (CIOP), we get the result. □

Next is the Karush–Kuhn–Tucker type necessary conditions of (CIOP).

Theorem 6.7. Let the solution ȳ be a locally LU-efficient to (CIOP). Suppose that
the constraint qualification (MFCQ) and the assumptions of Theorem 6.6 hold. Then
there exist ᾱL

k , ᾱU
k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧ 0 (for all i in

In(ȳ)), ρ̄j ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ϕL

k (ȳ) + ᾱU
k conv ∂∗ϕU

k (ȳ)

)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
. (25)

P r o o f . Since the hypotheses that were used to prove Theorem 4.1 are satisfied, there-
fore, using Theorem 6.2 and Theorem 4.1, we get the desired result. □

Theorem 6.8. The solution ȳ ∈ M1 becomes weak LU-efficient to the problem (CIOP)
provided

(i) there exist ᾱL
k , ᾱU

k ≧ 0 (for all k in Jm, at least one being nonzero), β̄i ≧ 0 (for
all i in In(ȳ)), ρ̄j ∈ R (for all j in Ll) such that

0 ∈ cl

{ ∑
k∈Jm

(
ᾱL
k conv ∂∗ϕL

k (ȳ) + ᾱU
k conv ∂∗ϕU

k (ȳ)
)
+

∑
i∈In(ȳ)

β̄i conv ∂∗gi(ȳ)

+
∑
j∈Ll

ρ̄j conv ∂∗hj(ȳ) + NC(ȳ)

}
,

(ii) ∂∗ϕL
k (ȳ) and ∂∗ϕU

k (ȳ) (k ∈ Jm) are upper regular at point ȳ for at most one
of the upper convexificators, the function ᾱLϕL :=

∑
k∈Jm

ᾱL
kϕ

L
k and ᾱUϕU :=∑

k∈Jm
ᾱU
k ϕ

U
k are asymptotic pseudoconvex at point ȳ regardingM1, gi are asymp-

totic quasiconvex at point ȳ regarding M1 (for all i in In(ȳ)), hj are asymptotic
quasilinear at point ȳ regarding M1 (for all j in Ll), and C is convex.

P r o o f . Using Theorem 5.5 and the result ΦL(y, z) = ϕL(z) − ϕL(y), ΦU (y, z) =
ϕU (z)− ϕU (y) (y, z ∈ M), we can obtain the result. □
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7. CONCLUSIONS

In this article, we have derived Fritz John type necessary conditions with convexificators
for the interval-valued programming problem (CIEP), where solutions are considered
regular in the sense of Ioffe [9]. The necessary Karush–Kuhn–Tucke–type conditions for
locally LU-efficient solutions of the (CIEP) are discussed by applying the Mangasarian–
Fromovitz–type constraint qualification (MFCQ). The stronger Mangasarian–Fromovitz–
type constraint qualification (SMFCQ) is required to identify the component of the
Lagrange multipliers contributed by the objective function. Under appropriate assump-
tions, combined with generalized convexity, we have established sufficiency criteria for
equilibrium problems. Furthermore, we have presented optimality conditions for locally
LU-efficient solutions of the interval-valued variational inequality problem (CIVI) and
the interval-valued optimization problem (CIOP) under well-suited assumptions.

(Received January 3, 2025)
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