Mathematics throughout the ages

Witold Wię̧ław

Squaring the circle in XVI - XVIII centuries

In: Eduard Fuchs (editor): Mathematics throughout the ages. Contributions from the summer school and seminars on the history of mathematics and from the 10th and 11th Novembertagung on the history and philosophy of mathematics, Holbaek, Denmark, October 28-31, 1999, and Brno, the Czech Republic, November 2-5, 2000. (English). Praha: Prometheus, 2001. pp. 6-20.

Persistent URL: http://dml.cz/dmlcz/401234

Terms of use:

(C) Jednota českých matematiků a fyziků

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

LA $S E C O N D A P A R T E$

DEL GENERAL TRATTATO Dl NVMERI, ET MISVREDI NICOLOTARTAGLIA,

NELLAKVALEJNVNRICJLIBRISJNOTIFICALA BIV dLEfVATA, gt SPECVIATIVA PARTE BPLIA PKATICA -
 delic progrelfioni, radici, proforcioni,
ty juancia irrationati.

In Tinegia per Cmito Troianode $i N$ ano. $M \quad D L V I$.
N. Tartaglia: General trattato ...

SQUARING THE CIRCLE IN XVI-XVIII CENTURIES

Witold Wig̣SŁaw

Squaring the circle, traditionally called Quadratura Circuli in Latin, was one of the most fascinating problems in the history of mathematics. Nowadays it is formulated as the problem of constructing the side of a square with area equal to the given circle by ruler and compass. Evidently, the problem is equivalent to the rectification of the circle, i.e. to the problem of constructing in the same way, by ruler and compass, a segment of the length equal to the perimeter of the circle. In the first case the problem leads to the construction of a segment of lenght $\sqrt{\pi}$, in the second one to the construction of a segment of the length π.

I shall mention only that the first essential result in this direction goes back to Archimedes, who found the connections between plane and linear measures of a circle: the area of the circle equals to the area of rectangular triangle with teh legs equal, respectively, to its radius and the perimeter.

The history of the problem is long and I am not going to give it here completely. I would like to present here only some examples of the efforts in this direction from the period XVI-XVIII century. Let us also remark that for centuries, the problem meant rather to measure the circle than to construct its perimeter by ruler and compass. Since from the Greek antiquity geometrical constructions by ruler and compass were mathematical instruments, we now have a much more restricted formulation of the problem.

Niccolo Tartaglia (1500-1557) presents in [2] the following approximate squaring the circle. He transforms a square into the circle dividing its diagonals into ten equal parts and taking as a diameter of the circle eight parts (see the original picture from [2]). A simple calculation shows that the construction leads to the Babylonian approximation $\pi=\frac{25}{8}$.

Jean de Buteo (c.1492-1572) in [1] and [3] presents a construction leading to Ptolemy's approximation of π, namely $\frac{327}{120}$, i.e. to $3 ; 8,30$ in the sexagesimal system of numeration.

A page from the General trattato ...
by N. Tartaglia

Another one, Ioseph Scaliger in his beautiful book [6], in which mathematical symbols are printed in red, takes $\sqrt{10}$ for π in his construction. Indeed, he draws diameter $d=2 r$ in a circle, next the middle point of its radius and constructs rectangular triangle with legs $\frac{3}{2} r$ and $\frac{1}{2} r$. Its hypotenuse gives, in his opinion, an approximate squaring of the circle.

PROPOSITIO IIII. Problem.

Dato circulo rectam æqualem emus perimetro inuenire.

Circuli dali $A B C D$ perimetro fit inuenienda rectal aqualis. Accommodetur ai BD latus triangobli i Sopleuri idem circuslo infribendi. Per XII tertü decimi, rectal H C rit quarto pars Diametric AC. Ex recti HD abscindatur recti HE equals ip HC . Connectatur recto E A. Quid igitur longtudor rect A H ex conftructione eft triply longitudinis $\mathrm{H} C$, id eft H E: quadratum A H crit nonuplum quadratic H E. \&
 propterea quadratum recto A E eric decuplum quadratic H E , vel H C , per XLVII primi. Sod н C eft quartaparslongitudinis diametri. Ergo quadratum recto AE est decuplum quadrati H C. Et quid peripheria ad fum quadrantem baber eam ratiomem, quai diametrus ad H C : rectal igitur AE crit quarto pars peripheries. (t)c.

François Viète (1540-1603) is well-known as the author of literal notations consequently used in the algebra. He used the Latin letters A, B, C, D, \ldots to denote the known quantities and letters \ldots, W, X, Y, Z to denote indeterminates. He introduced such notation in [4]. His achievements in geometry are less known. Viète presents some approximate constructions of squaring and rectification the circle in [5]. We show one of them. On page 26 (bloc. cit.) we can find the following exercise: quadrant circumferentiae dati circuli invenire proxime linear rectum aequalem, i.e. find the segment approximately equal to the quarter of the circle. The figure below is the same as in [5].

In the figure: $A B=A D=a, D F=F A, E I=B Z$, $G H$ is orthogonal to $B C$, and $E K$ is parallel to $I H$. Viète claims that $E K$ is approximately equal to the quater of the circle $B D C E$. Assume that he is right, i.e. $A K=\frac{1}{2} k$. The similarity of the triangles $A I H$ and $A E K$ implies that $\frac{A L}{A E}=\frac{A H}{A K}$. Since $A K=\frac{A H \times A E}{A I}=\frac{A H \times a}{A I}$, thus $\pi=2 \frac{A H}{A I}$. Now we calculate $A H$ and $A I$. In $\triangle A B F$ we have: $B F^{2}=A F^{2}+A B^{2}=\frac{1}{4} a^{2}+a^{2}=\frac{5}{4} a^{2}$, so $B F=\frac{1}{2} \sqrt{5}$. Since $B Z=$ $B F-Z F=\frac{1}{2} a \sqrt{5}-\frac{1}{2} a=\frac{1}{2}(\sqrt{5}-1) a$, so $A I=a-E I=a-B Z$, and $A I=\frac{1}{2}(3-\sqrt{5}) a$. Now we find $A H$. In $\triangle A G H: A H^{2}+G H^{2}=$ a^{2}. Since the triangles $\triangle B A F$ and $\triangle B H G$ are similar, hence $\frac{B H}{B A}=$ $\frac{G H}{F A}$, i.e. $\frac{B H}{G H}=\frac{B A}{F A}=2$. The equality $B H=a+A H$ implies that $2 G H=B H=a+A H$, thus $G H=\frac{1}{2}(a+A H)$. Substituting it in

Francisci Viete

VARIORVM DE REBVS MATHEMATICIS
 RESPONSORVM, LIbER VIII.

Cuius pracipua capita funt,
De duplicatione Cubi, eq 2 uadratione Circuli.
Que claudit

TVRONIS,
Apud Iamettivm Mettayer, Typographum Regium.

$$
76 \times 508
$$

F. Viète: Variorum de Rebus Mathematicis ...
$A H^{2}+G H^{2}=a^{2}$, we obtain a quadratic equation with respect to $A H$: $5 A H^{2}+2 a \times A H-3 a^{2}=0$, implying that $A H=\frac{3}{5} a$. Consequently, substituting for $A H$ and $A I$ in the above formulae, we have $\pi=2 \frac{A H}{A I}$, i.e. $\pi=\frac{3}{5}(3+\sqrt{5})$ approximately. Consequently Viete's approximation equals $\pi=3.1416406 \ldots$. Kepler [7] used Archimedes' result: $\pi=$ $\frac{22}{7}$.

Sometimes the word ludolphinum is used instead of pi. This word goes back to Ludolph van Ceulen (1540-1610). Some epitaphs were found in 1712 in Leyden during rebilding the Church of Sanctus Petrus. Among them there was the epitaph of Ludolph van Ceulen. We read there:

Qui in vita sua multo labore circumferentiae circuli proximam rationem diametram invenit sequentem [which in his life was working much under calulation of an approximate proportion of the circle perimeter to its diameter.
In the epitaph we find an approximation of π up to 35 digits. At first, van Ceulen found 20 digits (Van den Circkel, Delf 1596), and next 32 digits (Fvndamenta Arithmetica et Geometrica, 1615). The book De Circvlo et adscriptis Liber (1619), published by Willebrord Snell (Snellius) after van Ceulen's death, presents his method in the case of 20 digists. In 1621, W. Snell wrote Cyclometricus [10], where he presented van Ceulen's algorithm for finding 35 digits. In [8], Van Ceulen proves many theorems dealing with the equivalence of polygonals by finite division into smaller figures. He evolves there an arithmetic of quadratic irrationals, i.e. he studies numbers of the form $a+b \sqrt{d}$ with a, b, d rational. He states that if d is fixed, then arithmetic operations do not lead out of the set. He proves it on examples, but his arguments are quite general. He considers also the numbers obtained from the above ones by extracting square roots. He uses it intensively in [9]. His method runs as follows. Ludolph van Ceulen calculates the length of the side of the regular N-gon inscribed in the circle with radius 1 , writing the results in tables. He successively determines the side of the regular N-gon for $N=2^{n}$, where $2 \leq n \leq 21$, i.e. up to $N=2.097 .152$. Next he makes the same for $N=3 \times 2^{n}$, taking $1 \leq n \leq 120$,i.e. until $N=3.145 .728$. Finally, he puts $N=60 \times 2^{n}$, with $1 \leq n \leq 20$, i.e. up to $N=491.520$. For example, in the case considered by Archimedes (and also by Leonhardo Pisano, al-Kaschi and others), i.e. for regular 96 -gon inscribed in the circle with radius 1 , the length of the side
is equal to

$$
\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}}
$$

which van Ceulen writes as

$$
\sqrt{.2}-\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{.2}+\sqrt{3}
$$

Next, for all tabulated regular N-gons, he calculates the perimeters and their decimal expansions, taking as the final aproximation of π the last common value from the tables. It gives twenty digits of decimal expansion of π.

The approximation to π by $\frac{355}{113}$, i.e. by the third convergent of the expansion of π into a continued fraction, was attributed to Adrianus Metius already at the end of the XVII century. (The first convergent of π is the Archimedean result $\frac{22}{7}$, and the second one equals $\frac{333}{106}$). John Wallis attributed the result to Adrianus Metius in De Algebra Tractatus (see [18, p. 49]). The truth, however, is quite different. Adrianus Metius Alcmarianus writes in [12, p. 89]:

Confoederatarum Belgiae Provintiarum Geometra [...] Simonis a Quercu demonstravit proportionem peripheriae ad Suam diametrum esse minorem $3 \frac{17}{120}$, hoc est $\frac{377}{120}$, majorem $3 \frac{15}{106}$, hoc est $\frac{333}{106}$, quarum proportionum intermedia existit $3 \frac{16}{113}$, sive $\frac{355}{113}, \ldots$
which means that
Geometra from confederated province of Belgium, Simonis from Quercu, had proved, that the ratio of the perimeter to its diameter is smaller than $3 \frac{17}{120}$, i.e. $\frac{377}{120}$, and greater than $3 \frac{15}{106}$, i.e. than $\frac{333}{106}$. The mean proportion of the fractions is $3 \frac{16}{113}$, that is $\frac{355}{113},[\ldots]$

The mean proportion of fractions $\frac{a}{b}$ and $\frac{c}{d}$ was called the fraction $\frac{a+c}{c+d}$. The result goes back to Ptolemy. The work [12] is very interesting for another reason. Adrianus Metius describes there an approximate construction changing a circle into equilateral triangle. We present below his construction with the original figure of Adrianus.

From the intersection E of two orthogonal lines we draw a circle with radius a. Thus $A E=C E=B E=E G=E F=a$. Next we construct two equilateral triangles: $\triangle C E G$ and $\triangle C E F$. The bisetrix of the angle
$C E G$ determines the point H. From point C, one constructs $C I=C H$. Let the lines through A and I, B and I meet the circle in points L and Q, respectively. The intersection of the line $L Q$ with the lines $E F$ and $E G$, defines the points M and N of the constructed equilateral triangle. The third point can be found immediately.

Lemma. In the figure below: $H C=a \sqrt{2-\sqrt{3}}$. Indeed, the Cosine Theorem applied to $C E H$ gives $H C^{2}=E C^{2}+E H^{2}-2 \times E C \times$ $E H \cos \frac{\pi}{6}=a^{2}(2-\sqrt{3})$.

We calculate the surface of $\triangle M N O$. Let P be the meet of the line $E C$ with $M N$. Put $P I=x, L P=y$. The Lemma implies that $E I=a-C I=$ $a-a \sqrt{2-\sqrt{3}}$, where $\lambda=1-\sqrt{2-\sqrt{3}}$.
In the rectangular triangle $A E I: I A^{2}=$ $E I^{2}+E A^{2}=E I^{2}+a^{2}$, thus $I A=$ $a \sqrt{1+\lambda^{2}}$. Similarity of triangles $\triangle L P I$ and $\triangle A E I$ gives $\frac{L I}{A I}=\frac{P I}{E I}, \frac{x}{y}=\frac{E I}{E A}$ i.e. $L I=\frac{A I}{E I} P I=\frac{\sqrt{1+\lambda^{2}}}{\lambda} x, x=\lambda y$. In the rectangular triangle $\triangle L P E: P E^{2}+$ $L P^{2}=L E^{2}$, hence $(x+E I)^{2}+y^{2}=a^{2}$, $(x+\lambda a)^{2}+y^{2}=a^{2}$, and since $x=\lambda y$, thus $\lambda^{2}(y+a)^{2}+y^{2}=a^{2}$, implying $\lambda^{2}(y+a)^{2}=(a+y)(a-y)$, i.e. $\lambda^{2}(y+a)=(a-y)$, thus $y=a \frac{1-\lambda^{2}}{1+\lambda^{2}}$ and $x=\lambda a \frac{1-\lambda^{2}}{1+\lambda^{2}}$.

Since E is the median of the equilateral triangle $\triangle M N O$, so $E P=$ $x+I E$ is half of $E O$, i.e. $x+E I=\frac{1}{2} E M$, since $E O=E M$, i.e. $E M=2(x+I E)=2 a \lambda \frac{1-\lambda^{2}}{1+\lambda^{2}}+2 a \lambda=\frac{4 a \lambda}{1+\lambda^{2}}$. It implies that the height h in the $\triangle M N O$ equals $h=\frac{3}{2} E M=\frac{6 a \lambda}{1+\lambda^{2}}$.

If z is a side of $\triangle M N O$, then from $\triangle O P M: h^{2}+\left(\frac{z}{2}\right)^{2}=z^{2}$, i.e. $z=\frac{2}{\sqrt{3}} h=$ $4 a \sqrt{3} \frac{\lambda}{1+\lambda^{2}}$. Since, according to ADRIanus Metius, the area of $\triangle M N O$ is approximately equal to the area of the circle with the centrum E and radius $E A=a$, hence $\pi a^{2}=\frac{1}{2} h z=\frac{1}{2} h \frac{2}{\sqrt{3}} h=$ $\frac{1}{\sqrt{3}} \frac{36 a^{2} \lambda^{2}}{(1+\lambda)^{2}}$, i.e. $\pi=12 \sqrt{3} \frac{\lambda^{2}}{\left(1+\lambda^{2}\right)^{2}}$.
It gives an approximate value for π as 3.1826734... Since $\pi=3.141592 \ldots$, hence the error is about 1.3%.

Among the many authors who kept busy in the XVII century with measuring the circle, Christian Huygens (1629-1695), one of the most famous mathematicians of the century, has a special place. In a short time, he learnt and extended the coordinate methods of Descartes, showing its many applications in mathematics and elsewhere. His known achievements are published in many great volumes. I describe here only a part of his scientific activity. In Theoremata de Quadratura Hyperboles, Ellipsis et Circuli from 1651, Huygens describes geometrical methods for finding lenghts of their parts. In the treatise De Circuli Magnitudine Inventa (A study of the circle magnitude) from the year 1654, he describes different geometrical methods of approximating the perimeter of the circle. Huygens in [14] leads to absolute perfection the methods of Archimedes of approximation of the perimeter of the circle by suitably chosen n-gons. He proves geometrically many inequalities between the lengths of the sides of n-gons, $2 n$-gons and $3 n$-gons inscribed and described on a circle. In particular, he deduces from them an approximate rectification of an arc. Already in his time, analytical arguments like the ones presented below were known and applied.

Let $A O B$ be a sector of a circle with radius r and angle α. Let $O C$ bisect the angle $A O B$. We put aside $C D=A C$ on the line through A and C. The circle with centrum A and radius $A D$ meets the line through A and B in G. Finally we put $D E=\frac{1}{3} B G$. Then, as Huygens claims, the length of the arc $A B$ is approximately equal to the segment $A E$. Indeed,

$$
A E=A D+D E=A D+\frac{1}{3} B G=A D+\frac{1}{3}(A D-A B)=\frac{4}{3} A D-\frac{1}{3} A B .
$$

Since $A D=2 A C$, by the construction, $A B=2 A F=2 r \sin \frac{a}{2}$ from the triangle $\triangle A F O$ and similarly, $A C=2 r \sin \frac{a}{4}$, thus

$$
\begin{gathered}
A E=\frac{4}{5} A D-\frac{1}{3} A B=\frac{4}{3} 2 A C-\frac{1}{3} A B= \\
=\frac{8}{3} 2 r \sin \frac{\alpha}{4}-\frac{1}{3} 2 r \sin \frac{\alpha}{2}=\frac{2 r}{3}\left(8 \sin \frac{\alpha}{4}-\sin \frac{\alpha}{2}\right) .
\end{gathered}
$$

Since the sine function has the expansion $\sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots$, then taking x equal $\frac{1}{4} \alpha$ and $\frac{1}{2} \alpha$, we have

$$
\begin{gathered}
8 \sin \frac{\alpha}{4}-\sin \frac{\alpha}{2}==8\left(\frac{\alpha}{4}-\left(\frac{\alpha}{4}\right)^{3} \frac{1}{3!}++\left(\frac{\alpha}{4}\right)^{5} \frac{1}{5!}-\cdots\right)- \\
-\left(\frac{\alpha}{2}-\left(\frac{\alpha}{2}\right)^{3} \frac{1}{3!}+\left(\frac{\alpha}{2}\right)^{5} \frac{1}{5!}-\cdots\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\alpha\left(2-\frac{1}{2}\right)+\alpha^{3}\left(\frac{1}{6 \times 8}-\frac{8}{6 \times 4^{3}}\right)+\alpha^{5}\left(\frac{8}{4^{5} \times 120}-\frac{1}{2^{5} \times 120}\right)+ \\
+\alpha^{7}\left(\frac{1}{2^{7} \times 7!}-\frac{8}{4^{7} \times 7!}\right)+\cdots= \\
=\frac{3}{2} \alpha+\frac{1}{2^{5} \times 5!}\left(\frac{1}{2^{2}}-1\right) \alpha^{5}+\frac{1}{2^{7} \times 7!}\left(1-\frac{1}{2^{4}}\right) \alpha^{7}+\frac{1}{2^{9} \times 9!}\left(\frac{1}{2^{6}}-1\right) \alpha^{9} .
\end{gathered}
$$

Consequently,

$$
\begin{gathered}
\left|-\frac{3}{2} \alpha+8 \sin \frac{\alpha}{2}-\sin \alpha 2\right| \leq \\
\leq \frac{3}{4} \frac{1}{2^{5} \times 5!} \alpha^{5}\left(1+\frac{\alpha^{2}}{2^{2} \times 6 \times 7}+\frac{\alpha^{4}}{2^{4} \times 6 \times 7 \times 8 \times 9}\right. \\
\left.+\frac{\alpha^{6}}{2^{6} \times 6 \times 7 \times 8 \times 9 \times 10 \times 11}+\cdots\right) \leq \\
\leq \frac{3}{4} \frac{1}{2^{5} \times 5!} \alpha^{5}\left(1+\left(\frac{\alpha}{12}\right)^{2}+\left(\frac{\alpha}{12}\right)^{4}+\left(\frac{\alpha}{12}\right)^{6}+\cdots\right)= \\
=\frac{3}{4} \frac{\alpha^{5}}{2^{5} \times 5!} \frac{1}{1-\left(\frac{\alpha}{12}\right)^{2}}
\end{gathered}
$$

Thus $A E=\frac{2 r}{3}\left(\frac{3}{2} \alpha-\frac{3}{4} \frac{1}{2^{5} \cdot 5!} \alpha^{5}+\cdots\right)=$ $r \alpha-\frac{r}{7680} \alpha^{5}$. Since $A E=r \alpha+$ rest, hence our arguments show that

$$
\mid \text { rest } \left\lvert\, \leq \frac{r}{7680} \frac{\alpha^{5}}{1-(\alpha / 12)^{2}} .\right.
$$

It is interesting, that in Huygens' book [14] there is also the constant 7680. The obtained result gives the possibily of rectifying the circle with a given error. Indeed, it is necessary to divide the circle into n equal arcs and next rectify each of them. For example, if $\alpha=\frac{\pi}{2}$, then \mid rest $\mid \leq 0.0012636$, which by multiplying by 4 gives an error not greater than 0.00506 .

Another Quadratura circuli was given by Marcus Marci [16]. It was described in [26] by Alena Šolcová.

Madhava (Yukti-Bhasha, XIV century) found 3.14159265359 . . . for π. It could be not surprising but he used some calculations equivalent to the series expansion of arcus tangens:

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

called now Gregory's series (1671). In particular, Madhava used the equality $\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right)$, proved in Europe by G. W. Leibnitz [17].

Ancient Indian mathematicians of Madhava times knew much more exact approximations of π. For example Karana Paddhati gives 17 digits of π (see [25]).

Now recall an approximate rectification of the circle of ADAm AdAmandy Kochañski (see [21]). The Jesuit Kochañski was at first professor of mathematics in Mainz in 1659. In 1667 he was teaching at Jesuits Collegium in Florence, in 1670 he was in Prague, then in Olomouc. Since he was not content with his stay there, he decided in 1677 to ask for his transfer to another place, to Wratislavia (Wrocław), where he observed and described a comet. Later he was a librarian of Polish king Jan III Sobieski. He died at the end of XVII century. He entered the history of mathematics as the author of a very simple (approximate) rectification the circle.

We draw two orthogonals to diameter of the semi-circle $A D B$ with centrum S and radius $A S=r$. Next we put $A C=3 r$.

Then we take the parallel $S D$ to $A C$ and construct equilateral triangle $S D E$. Let the line through S and E meet in G the line from B

A page from Leibniz's paper
parallel to the base line $A C$. Kochañski claims that $G C$ equals approximately to semi-circle $A D B$. Indeed, since $F C=A C-G B=3 r-r \tan \frac{\pi}{6}$ and $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$, then from there put aside $C D=A C$ rectangle $F C G$ we obtain successively

$$
G C^{2}=(2 r)^{2}+\left(3 r-r \tan \frac{\pi}{6}\right)=r^{2}\left(\frac{40}{3}-2 \sqrt{3}\right),
$$

thus

$$
G C=r \sqrt{\frac{40}{3}-2 \sqrt{3}},
$$

which means that approximately

$$
\pi=\sqrt{\frac{40}{3}-2 \sqrt{3}}=\frac{1}{3} \sqrt{6(20-3 \sqrt{3})}=3.141533 \ldots
$$

The error equals approximately $3.14159265-3.1415333=0.00005932$.
The problem of squaring the circle appears in seven EULER's papers and in his correspondence with Christian Goldbach in years 17291730.

We describe one of EULER's approximate rectifications of the circle.
ISAAC BRUCKNER (1686-1762) gave a not very exact rectification of the circle. Euler proposed the following modification of BRUCKNER's construction.

Let $C E$ be bisectrix of the right angle $A C D$. Let $D I=A D, I G=$ $I E, F H=F G$, and $A K=E H$. Assume moreover that $A C=1$. Then
$I A=2 \sqrt{2}, C F=\frac{1}{2} \sqrt{2}, E F=1-\frac{1}{2} \sqrt{2}, I F=\frac{3}{2} \sqrt{2}$. Thus $I G^{2}=I E^{2}=$ $I F^{2}+E F^{2}=6-\sqrt{2}$, implying that $I G=\sqrt{6-\sqrt{2}}$. Consequently, $F H=F G=I G-I F$, i.e. $A K=E H=E F+F H=\sqrt{6-\sqrt{2}}$, and finally $I K=I A+A K=1+\sqrt{6-\sqrt{2}}=3.1414449 \ldots$.

Leonhard Euler improved also the above-described Huygens's construction, following his ideas, but obtaining for the approximate length $L(\alpha, r)$ of an arc with the radius r and the angle α, the formula

$$
L(\alpha, r)=\frac{r}{45}\left(256 \sin \frac{\alpha}{4}-40 \sin \frac{\alpha}{2}+\sin \alpha\right),
$$

much more exact than Huygens's. Namely,

$$
L(\alpha, r)=\alpha r-\frac{r}{322.560} \alpha^{7}+\cdots,
$$

which is slightly better than in Huygens' construction.
The bibliography below contains only selected papers and books concerning squaring the circle. The complete bibliography is much more extensive.

References

[1] I. O. Bvteonis, Delphinatici Opera geometrica [...] Confutation quadraturae circuli ab Oronto Finaeo Factae, 1554.
[2] N. Tartaglia, General trattato di nvmeri, et misvre [...], 1556.
[3] Jean de Boteon, Joannis Buteonis De quadratura circuli [...], Lyon 1559.
[4] Francisci Vietae In Artem Analyticem Isagoge, 1591.
[5] F.Vieta, Variorum de Rebus Mathematicis Responsorum, Liber VIII (1593).
[6] Iosephi Scaligeri [...] Appendix ad cyclometrica sva: In qua asseritur Quadratio circuli [...] Demonstrationbvs cyclometricis. Lvgdvni Batavorvm, 1594.
[7] Ioanno Keplero, Nova Stereometria Doliorum Viniarorvm [...], 1615.
[8] Ludolph a Cevlen, Fundamenta arithmetica et geometria, 1615.
[9] Lvdolphi a Cevlen, De Circulo \& Adscriptis Liber, 1619.
[10] Villebrordi Snelli R.F. Cyclometricvs, 1621.
[11] Adriano Metio Alcmariani, Praxis Nova Geometrica per Vsvm Circini et Regulae Proportionalis, 1623.
[12] Adriani Metii Alcmariani Arithmeticae Libri dvo: Geometriae Lib.VI. 1626.
[13] P. Gregorii a Vincentio, Opvs geometricvm quadratvrae circuli et sectionvm coni, 1647.
[14] Christian Huygens, De Circuli Magnitudine Inventa, 1654.
[15] Gregorius a S.Vincentio, Examen Circuli quadraturae [...], 1654.
[16] Ioanne Marco Marci, Labyrintvs in quovia ad circuli quadratur pluribus modis exhibetur, Pragae 1654.
[17] G. W. Leibnitz, De vera proportione circuli ad quadratum circumscriptum in Numeris rationalibus, Acta Eruditorum MDCLXXXII, p. 40-46.
[18] J. Wallis, De Angulo Contactus et Semicirculi Tractatus Anno 1656 Editus: ejsuque DEFENSIO, Edita Anno 1685.
[19] J. Wallis, De algebra tractstus; Historicus \& Practicus. Anno 1685 Anglice editus. [...] OXONIAE MDCXCIII. [p. 49 - Adrian of Metz]
[20] D. Cluver, Quadratura circuli infinis modis demonstrata, Acta Eruditorum MDCLXXXVI, p. 369-371.
[21] A. A. Kochanski, Observationes cyclometriace ad facilitandam Praxim accomodata, Acta Eruditorum MDC LXXXV, pp. 394-398.
[22] R. Baudemont, Sincerum examen quadraturae circuli, 1712.
[23] Problemata Mathematica Quadraturam circuli [...] Per MATHESEOPHILUM, 1733.
[24] Leonhardi Euleri Opera Omnia, Sub Auspiciis Societatis Scientiarum Naturalium Helveticae, Leipzig und Berlin, Druck und Verlag von B. G. Teubner, 1911.
[25] T. S. Bhanu Murthy, A modern introduction to Ancient Indian Mathematics, Wiley Eastern Limited, New Delhi 1992.
[26] Jan Marek Marci, Život, dílo, doba, Lanškroun 1995.
[27] Witold Wiẹsław, Matematyka i jej historia, Wydawnictwo NOWIK, Opole 1997.

Witold Wiȩstaw
Instytut Matematyczny
Uniwersytetu Wroctawskiego
plac Grunwaldzki 2/4
50-384 Wroctaw
Poland
e-mail: wieslaw@math.uni.wroc.pl

