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N. Tartaglia: General trattato . . .
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SQUARING THE CIRCLE IN XVI–XVIII

CENTURIES

Witold Wiȩs law

Squaring the circle, traditionally called Quadratura Circuli in Latin,
was one of the most fascinating problems in the history of mathematics.
Nowadays it is formulated as the problem of constructing the side of a
square with area equal to the given circle by ruler and compass. Evi-
dently, the problem is equivalent to the rectification of the circle, i.e. to
the problem of constructing in the same way, by ruler and compass, a
segment of the length equal to the perimeter of the circle. In the first
case the problem leads to the construction of a segment of lenght

√
π,

in the second one to the construction of a segment of the length π.
I shall mention only that the first essential result in this direction

goes back to Archimedes, who found the connections between plane
and linear measures of a circle: the area of the circle equals to the area
of rectangular triangle with teh legs equal, respectively, to its radius and
the perimeter.

The history of the problem is long and I am not going to give it
here completely. I would like to present here only some examples of
the efforts in this direction from the period XVI–XVIII century. Let
us also remark that for centuries, the problem meant rather to measure
the circle than to construct its perimeter by ruler and compass. Since
from the Greek antiquity geometrical constructions by ruler and compass
were mathematical instruments, we now have a much more restricted
formulation of the problem.

Niccolo Tartaglia (1500–1557) presents in [2] the following ap-
proximate squaring the circle. He transforms a square into the circle
dividing its diagonals into ten equal parts and taking as a diameter of
the circle eight parts (see the original picture from [2]). A simple calcula-
tion shows that the construction leads to the Babylonian approximation
π = 25

8 .
Jean de Buteo (c.1492–1572) in [1] and [3] presents a construction

leading to Ptolemy’s approximation of π, namely 327
120 , i.e. to 3;8,30 in

the sexagesimal system of numeration.
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A page from the General trattato . . .
by N. Tartaglia

Another one, Ioseph Scaliger in his beautiful book [6], in which
mathematical symbols are printed in red, takes

√
10 for π in his con-

struction. Indeed, he draws diameter d = 2r in a circle, next the middle
point of its radius and constructs rectangular triangle with legs 3

2r and
1
2r. Its hypotenuse gives, in his opinion, an approximate squaring of the
circle.
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François Viète (1540–1603) is well-known as the author of literal
notations consequently used in the algebra. He used the Latin letters
A,B,C,D, . . . to denote the known quantities and letters . . . ,W,X, Y,Z
to denote indeterminates. He introduced such notation in [4]. His
achievements in geometry are less known. Viète presents some ap-
proximate constructions of squaring and rectification the circle in [5].
We show one of them. On page 26 (loc. cit.) we can find the following
exercise: quadrant circumferentiae dati circuli invenire proxime lineam
rectam aequalem, i.e. find the segment approximately equal to the quarter
of the circle. The figure below is the same as in [5].

In the figure: AB = AD = a, DF = FA, EI = BZ,
GH is orthogonal to BC, and EK is parallel to IH.
Viète claims that EK is approximately equal to the
quater of the circle BDCE. Assume that he is right,
i.e. AK = 1

2k. The similarity of the triangles AIH
and AEK implies that AL

AE = AH
AK . Since AK = AH×AE

AI = AH×a
AI ,

thus π = 2AH
AI . Now we calculate AH and AI. In △ABF we have:

BF 2 = AF 2 + AB2 = 1
4a

2 + a2 = 5
4a

2, so BF = 1
2

√
5. Since BZ =

BF − ZF = 1
2a

√
5 − 1

2a = 1
2 (
√
5 − 1)a, so AI = a − EI = a − BZ,

and AI = 1
2(3 −

√
5)a. Now we find AH. In △AGH: AH2 + GH2 =

a2. Since the triangles △BAF and △BHG are similar, hence BH
BA =

GH
FA , i.e. BH

GH = BA
FA = 2. The equality BH = a + AH implies that

2GH = BH = a + AH, thus GH = 1
2(a + AH). Substituting it in
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F. Viète: Variorum de Rebus Mathematicis . . .
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AH2 +GH2 = a2, we obtain a quadratic equation with respect to AH:
5AH2 + 2a × AH − 3a2 = 0, implying that AH = 3

5a. Consequently,
substituting for AH and AI in the above formulae, we have π = 2AH

AI ,
i.e. π = 3

5(3+
√
5) approximately. Consequently Viete’s approximation

equals π = 3.1416406 . . . . Kepler [7] used Archimedes’ result: π =
22
7 .

Sometimes the word ludolphinum is used instead of pi. This word
goes back to Ludolph van Ceulen (1540–1610). Some epitaphs were
found in 1712 in Leyden during rebilding the Church of Sanctus Petrus.
Among them there was the epitaph of Ludolph van Ceulen. We read
there:

Qui in vita sua multo labore circumferentiae circuli proxi-
mam rationem diametram invenit sequentem [which in his
life was working much under calulation of an approximate
proportion of the circle perimeter to its diameter.

In the epitaph we find an approximation of π up to 35 digits. At first,
van Ceulen found 20 digits (Van den Circkel, Delf 1596), and next
32 digits (Fvndamenta Arithmetica et Geometrica, 1615). The book De
Circvlo et adscriptis Liber (1619), published by Willebrord Snell
(Snellius) after van Ceulen’s death, presents his method in the case
of 20 digists. In 1621, W. Snell wrote Cyclometricus [10], where he
presented van Ceulen’s algorithm for finding 35 digits. In [8], Van
Ceulen proves many theorems dealing with the equivalence of polygo-
nals by finite division into smaller figures. He evolves there an arithmetic
of quadratic irrationals, i.e. he studies numbers of the form a+b

√
d with

a, b, d rational. He states that if d is fixed, then arithmetic operations
do not lead out of the set. He proves it on examples, but his arguments
are quite general. He considers also the numbers obtained from the
above ones by extracting square roots. He uses it intensively in [9]. His
method runs as follows. Ludolph van Ceulen calculates the length
of the side of the regular N -gon inscribed in the circle with radius 1,
writing the results in tables. He successively determines the side of the
regular N -gon for N = 2n, where 2 ≤ n ≤ 21, i.e. up to N = 2.097.152.
Next he makes the same for N = 3 × 2n, taking 1 ≤ n ≤ 120,i.e. until
N = 3.145.728. Finally, he puts N = 60 × 2n, with 1 ≤ n ≤ 20, i.e. up
to N = 491.520. For example, in the case considered by Archimedes
(and also by Leonhardo Pisano, al-Kaschi and others), i.e. for reg-
ular 96-gon inscribed in the circle with radius 1, the length of the side
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is equal to √√√√√
2−

√√√√
2 +

√

2 +

√
2 +

√
2 +

√
3,

which van Ceulen writes as
√
.2−

√
.2 +

√
.2 +

√
.2 +

√
.2 +

√
3.

Next, for all tabulated regular N -gons, he calculates the perimeters
and their decimal expansions, taking as the final aproximation of π the
last common value from the tables. It gives twenty digits of decimal
expansion of π.

The approximation to π by 355
113 , i.e. by the third convergent of the

expansion of π into a continued fraction, was attributed to Adrianus
Metius already at the end of the XVII century. (The first convergent of
π is the Archimedean result 22

7 , and the second one equals 333
106 ). John

Wallis attributed the result to Adrianus Metius in De Algebra Trac-
tatus (see [18, p. 49]). The truth, however, is quite different. Adrianus
Metius Alcmarianus writes in [12, p. 89]:

Confoederatarum Belgiae Provintiarum Geometra [. . . ] Si-
monis a Quercu demonstravit proportionem peripheriae ad
Suam diametrum esse minorem 3 17

120 , hoc est 377
120 , majorem

3 15
106 , hoc est 333

106 , quarum proportionum intermedia existit
3 16
113 , sive 355

113 , . . .

which means that

Geometra from confederated province of Belgium, Simonis
from Quercu, had proved, that the ratio of the perimeter to
its diameter is smaller than 3 17

120 , i.e. 377
120 , and greater than

3 15
106 , i.e. than 333

106 . The mean proportion of the fractions is
3 16
113 , that is 355

113 , [ . . . ]

The mean proportion of fractions a
b and c

d was called the fraction
a+c
c+d . The result goes back to Ptolemy. The work [12] is very interesting
for another reason. Adrianus Metius describes there an approximate
construction changing a circle into equilateral triangle. We present below
his construction with the original figure of Adrianus.

From the intersection E of two orthogonal lines we draw a circle with
radius a. Thus AE = CE = BE = EG = EF = a. Next we construct
two equilateral triangles: △CEG and △CEF . The bisetrix of the angle
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CEG determines the point H. From point C, one constructs CI = CH.
Let the lines through A and I, B and I meet the circle in points L and
Q, respectively. The intersection of the line LQ with the lines EF and
EG, defines the points M and N of the constructed equilateral triangle.
The third point can be found immediately.

Lemma. In the figure below: HC = a
√

2−
√
3. Indeed, the Co-

sine Theorem applied to CEH gives HC2 = EC2 + EH2 − 2 × EC ×
EHcosπ

6 = a2(2−
√
3).

We calculate the surface of △MNO.
Let P be the meet of the line EC with
MN . Put PI = x, LP = y. The
Lemma implies that EI = a − CI =

a−a
√
2−

√
3, where λ = 1−

√
2−

√
3.

In the rectangular triangle AEI: IA2 =
EI2 + EA2 = EI2 + a2, thus IA =
a
√
1 + λ2. Similarity of triangles △LPI

and △AEI gives LI
AI = PI

EI , x
y = EI

EA

i.e. LI = AI
EIPI =

√
1+λ2

λ x, x = λy. In
the rectangular triangle △LPE: PE2+
LP 2 = LE2, hence (x+EI)2+y2 = a2,

(x+λa)2+y2 = a2, and since x = λy, thus λ2(y+a)2+y2 = a2, implying
λ2(y+ a)2 = (a+ y)(a− y), i.e. λ2(y+ a) = (a− y), thus y = a1−λ2

1+λ2 and

x = λa1−λ2

1+λ2 .
Since E is the median of the equilateral triangle △MNO, so EP =

x + IE is half of EO, i.e. x + EI = 1
2EM , since EO = EM , i.e.

EM = 2(x+ IE) = 2aλ1−λ2

1+λ2 +2aλ = 4aλ
1+λ2 . It implies that the height h

in the △MNO equals h = 3
2EM = 6aλ

1+λ2 .

If z is a side of △MNO, then from
△OPM : h2+(z2)

2 = z2, i.e. z = 2√
3
h =

4a
√
3 λ
1+λ2 . Since, according to Adri-

anus Metius, the area of △MNO is
approximately equal to the area of the
circle with the centrum E and radius
EA = a, hence πa2 = 1

2hz = 1
2h

2√
3
h =

1√
3
36a2λ2

(1+λ)2
, i.e. π = 12

√
3 λ2

(1+λ2)2
.

It gives an approximate value for π as
3.1826734 . . . . Since π = 3.141592 . . . ,
hence the error is about 1.3%.



14 Witold Wiȩs law

Among the many authors who kept busy in the XVII century with
measuring the circle, Christian Huygens (1629–1695), one of the most
famous mathematicians of the century, has a special place. In a short
time, he learnt and extended the coordinate methods of Descartes, show-
ing its many applications in mathematics and elsewhere. His known
achievements are published in many great volumes. I describe here only
a part of his scientific activity. In Theoremata de Quadratura Hyperboles,
Ellipsis et Circuli from 1651, Huygens describes geometrical methods
for finding lenghts of their parts. In the treatise De Circuli Magnitudine
Inventa (A study of the circle magnitude) from the year 1654, he de-
scribes different geometrical methods of approximating the perimeter of
the circle. Huygens in [14] leads to absolute perfection the methods of
Archimedes of approximation of the perimeter of the circle by suitably
chosen n-gons. He proves geometrically many inequalities between the
lengths of the sides of n-gons, 2n-gons and 3n-gons inscribed and de-
scribed on a circle. In particular, he deduces from them an approximate
rectification of an arc. Already in his time, analytical arguments like
the ones presented below were known and applied.

Let AOB be a sector of a circle with radius r and angle α. Let OC
bisect the angle AOB. We put aside CD = AC on the line through
A and C. The circle with centrum A and radius AD meets the line
through A and B in G. Finally we put DE = 1

3BG. Then, as Huygens
claims, the length of the arc AB is approximately equal to the segment
AE. Indeed,

AE = AD +DE = AD +
1

3
BG = AD +

1

3
(AD −AB) =

4

3
AD − 1

3
AB.

Since AD = 2AC, by the construction, AB = 2AF = 2r sin a
2 from the

triangle △AFO and similarly, AC = 2r sin a
4 , thus

AE =
4

5
AD − 1

3
AB =

4

3
2AC − 1

3
AB =

=
8

3
2r sin

α

4
− 1

3
2r sin

α

2
=

2r

3
(8 sin

α

4
− sin

α

2
).

Since the sine function has the expansion sinx = x− 1
3!x

3 + 1
5!x

5 − · · · ,
then taking x equal 1

4α and 1
2α, we have

8 sin
α

4
− sin

α

2
== 8

(
α

4
−

(α
4

)3 1

3!
+ +

(α
4

)5 1

5!
− · · ·

)
−

−
(
α

2
−

(α
2

)3 1

3!
+

(α
2

)5 1

5!
− · · ·

)
=
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= α

(
2− 1

2

)
+ α3

(
1

6× 8
− 8

6× 43

)
+ α5

(
8

45 × 120
− 1

25 × 120

)
+

+α7

(
1

27 × 7!
− 8

47 × 7!

)
+ · · · =

=
3

2
α+

1

25 × 5!

(
1

22
− 1

)
α5+

1

27 × 7!

(
1− 1

24

)
α7+

1

29 × 9!

(
1

26
− 1

)
α9.

Consequently, ∣∣∣∣−
3

2
α+ 8 sin

α

2
− sinα2

∣∣∣∣ ≤

≤ 3

4

1

25 × 5!
α5

(
1 +

α2

22 × 6× 7
+

α4

24 × 6× 7× 8× 9

+
α6

26 × 6× 7× 8× 9× 10 × 11
+ · · ·

)
≤

≤ 3

4

1

25 × 5!
α5

(
1 +

( α

12

)2
+

( α

12

)4
+

( α

12

)6
+ · · ·

)
=

=
3

4

α5

25 × 5!

1

1−
(
α
12

)2 .

Thus AE = 2r
3

(
3
2α− 3

4
1

25·5!α
5 + · · ·

)
=

rα − r
7680α

5. Since AE = rα + rest, hence
our arguments show that

|rest| ≤ r

7680

α5

1− (α/12)2
.

It is interesting, that in Huygens’ book [14]
there is also the constant 7680. The ob-
tained result gives the possibily of rectify-
ing the circle with a given error. Indeed,
it is necessary to divide the circle into n

equal arcs and next rectify each of them. For example, if α = π
2 , then

|rest| ≤ 0.0012636, which by multiplying by 4 gives an error not greater
than 0.00506.

Another Quadratura circuli was given by Marcus Marci [16]. It
was described in [26] by Alena Šolcová.



16 Witold Wiȩs law

Madhava (Yukti-Bhasha, XIV century) found 3.14159265359 . . . for
π. It could be not surprising but he used some calculations equivalent
to the series expansion of arcus tangens:

arctan x = x− x3

3
+

x5

5
− x7

7
+ · · · ,

called now Gregory’s series (1671). In particular, Madhava used the
equality π = 4(1− 1

3+
1
5− 1

7+· · · ), proved in Europe by G. W. Leibnitz
[17].

Ancient Indian mathematicians of Madhava times knew much more
exact approximations of π. For example Karana Paddhati gives 17 digits
of π (see [25]).

Now recall an approximate rectification of the circle of Adam Ada-
mandy Kochañski (see [21]). The Jesuit Kochañski was at first pro-
fessor of mathematics in Mainz in 1659. In 1667 he was teaching at
Jesuits Collegium in Florence, in 1670 he was in Prague, then in Olo-
mouc. Since he was not content with his stay there, he decided in 1677
to ask for his transfer to another place, to Wratislavia (Wroc law), where
he observed and described a comet. Later he was a librarian of Polish
king Jan III Sobieski. He died at the end of XVII century. He entered
the history of mathematics as the author of a very simple (approximate)
rectification the circle.

We draw two orthogonals to diameter of the semi-circle ADB with
centrum S and radius AS = r. Next we put AC = 3r.

Then we take the parallel SD to AC and construct equilateral tri-
angle SDE. Let the line through S and E meet in G the line from B
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A page from Leibniz’s paper
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parallel to the base line AC. Kochañski claims that GC equals approx-
imately to semi-circle ADB. Indeed, since FC = AC−GB = 3r−r tan π

6
and tan π

6 = 1√
3
, then from there put aside CD = AC rectangle FCG

we obtain successively

GC2 = (2r)2 + (3r − r tan
π

6
) = r2

(
40

3
− 2

√
3

)
,

thus

GC = r

√
40

3
− 2

√
3,

which means that approximately

π =

√
40

3
− 2

√
3 =

1

3

√
6(20 − 3

√
3) = 3.141533 . . .

The error equals approximately 3.14159265 − 3.1415333 = 0.00005932.
The problem of squaring the circle appears in seven Euler’s papers

and in his correspondence with Christian Goldbach in years 1729–
1730.

We describe one of Euler’s approximate rectifications of the circle.
Isaac Bruckner (1686–1762) gave a not very exact rectification of

the circle. Euler proposed the following modification of Bruckner’s
construction.

Let CE be bisectrix of the right angle ACD. Let DI = AD, IG =
IE, FH = FG, and AK = EH. Assume moreover that AC = 1. Then
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IA = 2
√
2, CF = 1

2

√
2, EF = 1− 1

2

√
2, IF = 3

2

√
2. Thus IG2 = IE2 =

IF 2 + EF 2 = 6 −
√
2, implying that IG =

√
6−

√
2. Consequently,

FH = FG = IG − IF , i.e. AK = EH = EF + FH =
√

6−
√
2, and

finally IK = IA+AK = 1 +
√

6−
√
2 = 3.1414449 . . . .

Leonhard Euler improved also the above-described Huygens’s
construction, following his ideas, but obtaining for the approximate
length L(α, r) of an arc with the radius r and the angle α, the formula

L(α, r) =
r

45
(256 sin

α

4
− 40 sin

α

2
+ sinα),

much more exact than Huygens’s. Namely,

L(α, r) = αr − r

322.560
α7 + · · · ,

which is slightly better than in Huygens’ construction.
The bibliography below contains only selected papers and books con-

cerning squaring the circle. The complete bibliography is much more
extensive.
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