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9 Relations between first phases of two differential 
equations (qX (Q) 

9.1 Introduction 

Let us consider two differential equations (q), (Q) In the intervals j = (a, b), J = 
(A, B). 

Our investigation will depend in general on the type and kind of the differential 
equations (q), (Q). In the case when these differential equations admit of left or right 
1-fundamental sequences, we shall denote them by 

(a <)a± < a2 < • • •, (b>)b-x > b^2> • • • 

and 

(A <) Ax < A2 < • • •, (B » B^x > j?_2 > • • • 

9.2 Linked phases 

Let a, A be arbitrary (first) phases of the differential equations (q), (Q) and let their 
boundary values be denoted by c, d and C, D respectively. 

We shall call the phases a, A linked if simultaneously there hold the following 
relations between them 

min (c, d) < max (C, D); min (C, D) < max (c, d). (9.1) 

We shall show that the phases a, A have common values if and only if they are linked. 
In other words the relation a(j) n A(J) ^ 0 implies and is implied by the inequalities 
(i). 
Proof (a) Let the first inequality (1) be not satisfied; then both the numbers C, d 
are greater than or equal to each of the numbers C, D. Consequently &(t) > A(T) 
for all tej, TeJ. 

(b) From (1) it follows that min (C, D) < min (c, d) < max (C, D) or min (c, d) < 
min (C, D) < max (c, d). In the first case, we have min (C, D) < a(t) < max (C, D) 
at a certain point t ej, and since in the interval / the function A takes all values 
between min (C, D) and max (C, £>), there is a T e J for which a(t) = A(T). In the 
second case, we have min (c, d) < A(T) < max (c9 d) at a point TeJ and moreover, 
as above, A(F) = a(t) for some t ej, and the proof is complete. 

In what follows we shall assume that the phases a, A are linked. Then L, given by 

L = a(j) n A(J), (9.2) 
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is an open interval. This is obviously the range of the function a in an open interval 
k (<= j) and also of A in an open interval K ( c J). That is to say, L = a(k) = A(K). 

We now wish to determine the intervals 

k = a-1(L), K=A^(L). (9.3) 

Let c, dand C, D be the normalized boundary values of the phases a, A and moreover 
let a, b and A, B be the normalized end points of the intervals j and J with respect to 
these phases (§ 7.3). Then we have 

lim a(f) = c, lim a(l) = d,\ 
t~*~a t~*~b I 

(9.4) 
lim A(F) = C, lim A(F) = D 

T~*A T~+B ) 

and moreover 

c<d, C<D. (9,5) 
The inequalities (1) can be written as follows 

c < D, C <d. (9.6) 

Now, on examining the conditions (5), (6) it is clear that the following five cases, 
and only these, can occur: 

1. C < č < D < d, hence L = = (č, D); 
2. C < č < d < D, hence L = = (č,d); 

3. č < C < D < d, hence L = = (C, D); 

4. č < C < â < D, hence L = = (C,ď); 

5. C = č < D = d, hence L = = (č, d) = (C, D) 

The intervals, k, K are consequently (taking account of (4)) determined in the indi
vidual cases as follows 

1. k = (a,a-\D)), 

K = (A-1(c), B) or = (A, B), according as C < c or C = c 

2. k = (a, b), 

K = (A-\c), k-\d)) or = (hr\c), B), according as d < D or d = D 

3. k = (u.-\C), OL-\D)) or = (OL-\C)), b), according as D < d or D = d 

K={I,B); 

4. k = (a_1(C), b) or = (a, b), according as c < C or c = C 
K = (A, k-\d)); 

5. k = {a, b), K = (A, B). 
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Combining these, we obtain the following result: 

Either: at least one of the end points of the interval k coincides with an end point ofj, 
and at the same time at least one of the end points of the interval K coincides 
with an end point of J (1; 2, d = D; 3, D = d; 4; 5) 

or the interval k coincides with j , and the end points of K lie in the interval J 
(29d<D) 

or the interval K coincides with J and the end points of k lie in the interval j 
(3, D < d). 

We see in particular that the interval k coincides with] and simultaneously the interval 
K coincides with J, if and only if c = C, d = D. In other words: the ranges of the 
phases a, A coincide, over their definition intervals j , J, if and only if C = c9 D = d 
or C = d9 D = c. 

We call the differential equations (q), (Q) of the same character if either (i) both are 
of the same finite type (m)9 m > 1, and of the same kind (therefore both general or 
special) or (ii) each is one-sided oscillatory or (iii) both are oscillatory. 

We then have (§ 7.2). 

The ranges of the phases a, A in their definition intervals j , J can coincide only when 
the differential equations (q), (Q) are of the same character. 

In §§ 9.3-9.6 we shall assume this property to hold for the differential equations 
(q), (Q); that is, (q), (Q) are of the same character. 

9 3 Associated numbers 

We call two numbers t0 e j and T0 e J directly associated with respect to the differential 
equations (q), (Q) (or, more shortly, directly associated) if they stand in the same 
relationship with respect to the numbers aV9 b^v and AV9 B^v. Here v = 0, 1, . . .; 
a0 = a9 b0 = b; A0 = A9 B0 = B. 

That is to say: 

I. In the case when the differential equations (q), (Q) are of finite type (m) m > 1: 

(a) m = 1: t0 ej arbitrary, F0 eJ arbitrary; 

(b) m > 2: 1. t0 = ar + l9 T0 = Ar + 1; 

2. t0 = 0 _ m + r + 1 , i 0 = i>_ m + r + 1 ; 

J. ar < t0 < b_m+f + 1, Ar < 10 < B„m + r + 1; 

4. D^.m + r + 1 < t0 < ar + l9 B„m + r + 1 < 10 < Ar + 1; 

(r = 0 , l , . . . , / f i - 1). 

II. In the case when the differential equations (q), (Q) are of infinite type; 

(a) Both differential equations (q)? (Q) being right oscillatory: 

1. t0 = ar + l9 i 0 = Ar + 1; 

2. ar<t0< ar + l9 Ar <T0< Ar + 1 (r = 0, 1,. . .). 
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(b) Both being left oscillatory: 

1. t0 = b_r^l5 F0 = J5„r_1; 

2. &_,_-. < l0 < b-„ _?«,_! <T0< 5_ r (r = 0, 1,. . .). 

(c) Both being oscillatory: t0 e j and T0 eJ are arbitrary. 

Further, we call two numbers t0 e j and T0 e J indirectly associated with respect to 
the differential equations (q), (Q) (more briefly, indirectly associated) if they stand in 
converse relationship with respect to the numbers aV9 b„v and AV9 i?_v. Here v = 
0, 1, . . .; a0 = a9 hQ = b: AQ = A9 BQ = B. That is to say: 

I. In the case when the differential equations (q), (Q) are of finite type (m) m > 1: 

(a) m = I: t0 e j arbitrary, T0eJ arbitrary; 

(b) m > 2: 1. t0 = ar + 1, T0 = _?_,„,; 

2. t0 = o_OT + r + 1 ; 7 0 = ^ 4 m „ r _ 1 ; 

3 . ar < t0 < £>_m + r + 1 , y l m _ r _ 1 < J 0 < I j _ r ; 

4 . £>_m + r + 1 < t0 < ar + l9 -S-r-l < T0 < Ajn^r^^ 

(r = 0, l , . . . , m - l ) . 

II. In the case when the differential equations (q), (Q) are of infinite type: 

(a) The differential equation (q) being right oscillatory and (Q) being left 
oscillatory: 

1. to = ar + l9 T0 = _?_,._-_; 

2. ar<t0<ar + l9 B,r.1<T0<B.r (r = 0, 1,...). 

(b) The differential equation (q) being left oscillatory and (Q) being right 
oscillatory: 

1. t0 = b^r^l9 T0 = Ar + 1; 

2. b„r„x < t0 < 6_r, Ar <T0< Ar + l (r = 0, 1,...). 

(c) Both differential equations (q), (Q) being oscillatory: t0 e j and F0eJ 
are arbitrary. 

If therefore the differential equations (q), (Q) are of type (1) or oscillatory, then 
every two numbers t0 e j and TQeJ are both directly and indirectly associated. But 
it is possible in other cases also to have two numbers t0 ej, F0 e / which possess this 
property. To be precise, this occurs in special differential equations (q), (Q), when m 
(> 0) is even and t0 = ahm = b^.im; T0 = Aim = B„im; it also occurs in general 
differential equations (q), (Q) if m is odd and a*(m-_) < to < &-i(ro-i)> ^i(m-i> < 
T0 < _?_i(m_D or if m (> 0) is even and b„im < t0 < aim9 B^im <T0< Aim. 

We also observe that if t0 e j is a singular number of the differential equation (q) 
(§3.10), then there is precisely one directly associated number or one indirectly 
associated number F0 e /which is a singular number of (Q). Any non-singular number 
t0 ej has always oo1 directly or indirectly associated numbers T0 e J9 the set of which 
represents an open subinterval of J. 
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9.4 Characteristic triples of two differential equations 

Let t0 ej, T0 e J be directly or indirectly associated with respect to the differential 
equations (q), (Q). Then we have the following: 

Theorem. If t0; c9 d is a characteristic triple for the differential equation (q), then 
T0; c9 d or T0; d9 c is a characteristic triple for the differential equation (Q). 

Proof Let t0; c, d be a characteristic triple for the differential equation (q). The 
numbers r0; c9 d therefore satisfy one of the relationships (Hie ) obtained in § 7.13, 
according to the type and kind of the differential equation (q). 

Let C = c9 D = d or C = d, Z) = c according as t0, T0 are directly or indirectly 
associated. 

The theorem will be proved if we can show that the values T0; AV9 B„v; C9 D; E 
( = sgn(D — C)) satisfy the appropriate conditions I-IIc of §7.13 corresponding 
to the type and kind of the differential equation (Q), (v = 0, 1,. . .). 

(a) Let the numbers t0, T0 be directly associated. Then the number T0 stands in 
the same relation to AV9 B„v as does t0 in relation to aV9 b_v. Since moreover C -= c9 

D = d; E = e, the condition which has to be satisfied by F0; AV9 B^v; C, D; E is a 
consequence of the corresponding condition satisfied by t0; aV9 b^v; c9 d; s. 

(b) Let the numbers t0, F0 be indirectly associated. Then the number T0 stands in 
the converse relationship to AV9 l „ v as does t0 in relation to aV9 b^v. Moreover we 
have C = d, D = c;E = —-e. Let us consider, for definiteness, the case 1(a), m > 2 
and 

ar < t0 < b-m + r + 1; —(r + 1)TTS § c ^ —rire; 

(m _ r _ i ^ g <: d § (m — r)7T£. (9.7) 

Since the numbers t09 T0 are indirectly associated, we have 

^ m - r - l < r 0 < . f l - r . (9.8) 

From the relations (7) it follows that 

— (r + 1)TT£ § D § —me; (m — r — 1)TTS ̂  C § (m — r)rre. 

In these formulae, for s = 1 and e = — 1 (that is, for E = — 1 and E = 1), we take 
the signs < and > respectively. 

We have therefore 

(r + 1)TTE £ D £ rrrE; - ( m - r - 1)TTE ^ C ^ -(m - r > E , 

and these formulae can be written as: 

- ( w - r)rrE $ C § - ( m - r - l>rE; nrE § D § (r + l>rE. (9.9) 

If in (8) and (9) we write r in place of m — r — 1, we then have 

J f < T0 < 5 „ m + r + 1 ; - ( r + 1>E § C £ - n r E ; 

(w - r - 1)TTE § D §(m- r)?rE. 

This is precisely the relationship (7), written with capital instead of small letters. 
The proof in other cases proceeds similarly. 
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9,5 Similar phases 

We call two phases a, A of the differential equations (q), (Q) similar if their normalized 
boundary values c, dand C, D coincide: c = C, d = A This obviously occurs if and 
only if the boundary values c, d of a and C, D of A are related by either C = C, 
D = d or C = d, D = c. 

If C = C, I) = d then to be more precise we call the phases a, A directly similar; 
in this case we have sgn a' sgn A = 1. If C = d, D = c, we call the phases a, A 
indirectly similar; in this case we have sgn a' sgn A = — 1. 

If, for instance, the differential equations (q), (Q) are oscillatory, then for all their 
phases a, A: c = C = —• oo, d=i)=oo. From this it follows that every two phases 
a, A of the differential equations (q), (Q) are similar; more precisely, they are directly 
similar if both phases increase or both decrease, and indirectly similar if one increases 
and the other decreases. 

In particular we have (§ 9,2) 

The ranges of two phases a, A of the differential equations (q), (Q) coincide in their 
intervals of definition if and only if the phases a, A are similar. 

Now let a, A be directly or indirectly similar phases. We prove the following results: 

1. The phases a, A take the same value at two directly or indirectly associated singular 
points of the differential equations (q), (Q). 

Proof, We apply the formulae (7,10) to the left or right null phases a — c, A — C or 
a — d, A — D of the differential equations (q), (Q) and obtain 

a(av) = c + £V7T, a(b„v) = d — evrr; 

A(AV) = C + Ew, A(J8_V) = D - EVTT } (9.10) 

(v = 1, 2 , . . .; e = sgn a', E = sgn A). 

(a) Let the phases a, A be directly similar: 

C = c, D = d; E = £. (9.11) 

From § 9.3 any two directly associated singular points t0, T0 of the differential 
equations (q), (Q) must be either t0 = av, T0 = Av or t0 = b^v, T0 = B^v (v = 
1,2, . . . ) . In both cases there follows from (10) and (11) the relationship a(t0) = A(F0). 

(b) Let the phases a, A be indirectly similar: 

C = d9 D = c; E = - g . (9.12) 

From § 9.3 any two indirectly associated singular points t0, T0 of the differential 
equations (q), (Q) must be either t0 = aV9 T0 = B~v or t0 = b„v and T0 = Av (v = 
1,2, . . . ) . In both cases, from (10) and (11) it follows that a(t0) = A(F0). This com
pletes the proof. 
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We now assume that a, A are similar normal phases. We denote their zeros by 
t0> IO' 

2. According as the phases a, A are directly or indirectly similar, their zeros t0, T0 are 
directly or indirectly associated. 

Proof (a) Let the phases a, A be directly similar. In this case formulae (11) hold 
and we have relationships similar to those in the theorem of § 7.13 for t0; c, d; e 
and similarly for T0; C, D; E. Consequently the numbers t0 and T0 stand in the 
same relationship with respect to the numbers aV9 b^v and Av, B^v respectively. 
(v = 0, 1,. . .)• 

(b) Let the phases a, A be indirectly similar; then formulae (12) hold and the 
reader will easily convince himself that in all possible cases, whether the differential 
equations (q), (Q) are of finite or infinite type, the numbers t0 and F0 stand respectively 
in converse relationship with respect to the numbers av,b^,v and Av,B^v(v = 0, 1,. . .). 

For instance, consider the case when the differential equations (q), (Q) are of a 
finite type (m), m > 2, and t0 = ar + 1. Then from the theorem of § 7.13, — (r + l)rre = 
c. From this, and (12), it follows that (r + 1)TTE = D and moreover (from the same 
theorem) T0 = B^r^x. 

9*6 Existence of similar phases 

We now consider the question whether the differential equations (q), (Q), of the same 
character possess similar phases and, if so, how many such there are. We shall establish 
the following theorem: 

Theorem. Let a be a normal phase of the differential equation (q) and t0 its zero. Let 
T0 be a number which is directly or indirectly associated with t0 with respect to the 
differential equations (q), (Q). Then there always exist normal phases A of the differential 
equation (Q) with the zero T0 which are directly or indirectly similar to the phase a. 
According to the type and kind of the differential equations (q), (Q) and according to 
whether the numbers t0, F0 are singular or not, there is either one normal phase A or 
there is one 1- or 2-parameter system of normal phases A. 

Proof. Let t0; c, d be the boundary characteristic of a. Then from § 9.4 T0; c, d or 
T0; d, c is a characteristic triple for the differential equation (Q). From § 7.15 there 
exist normal phases A of (Q) with the boundary characteristic T0; c, d or T0; d, c. 
According to the type and kind of the differential equation (Q) and according as the 
number T0 is singular or not, there is either one normal phase A or one 1~ or 2-
parameter system of normal phases of the differential equation (Q) with the boundary 
characteristic mentioned. Obviously, each normal phase A is directly or indirectly 
similar to the phase a and T0 is its zero. This completes the proof. 

More precisely (from § 7.15) the situation is as follows: 
There is one normal phase A if the differential equations (q), (Q) are general either 

of type (1) or of type (m), m > 2, the numbers t0, T0 not being singular. 
There are precisely oo1 normal phases A, if the differential equations (q), (Q) are 

general of type (m), m > 2, and the numbers t0, T0 are singular; also, if (q), (Q) are 
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special of type (1) or of type (m), m > 2, the numbers t09 T0 not being singular, and 
finally, if (q), (Q) are 1-sided oscillatory and the numbers t09 T0 are not singular. 

There are precisely oo2 normal phases A, if the differential equations (q), (Q) are 
special of type (m)9 m > 2, the numbers t09 T0 being singular; also if (q), (Q) are 1-
sided oscillatory and t09 T0 are singular, and finally, if (q), (Q) are oscillatory. 

In § 9.2 we saw that the ranges of two phases a, A in the definition intervalsj, J of 
the latter can only coincide when the differential equations (q), (Q) are of the same 
character. This observation, when taken together with the above result, shows that 
the differential equations (q), (Q) admit of similar phases ifand only if they are of the 
same character. 
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