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13 Properties of central dispersions 

In this section we shall investigate some elementary properties of central dispersions, 
particularly their behaviour, their continuity and other properties associated with the 
existence of derivatives of central dispersions. 

13.1 Monotonicity and continuity 

1. The range of each central dispersion of any kind is the interval j . 

For, if A is a central dispersion of any kind and t e j an arbitrary number, then the 
function A takes the value t at the point A*"1^). 

2. Every central dispersion of any kind is an increasing function. 

Proof As every central dispersion of any kind can be constructed by composition of 
the fundamental dispersion and its inverse (§ 12.4) it is sufficient to show the truth 
of this statement for the fundamental dispersion. Let, therefore, d be a fundamental 
dispersion of arbitrary kind. In this paragraph we shall denote the fundamental dis
persions briefly by <f>9 yt9 %9 co. 

Let t < x be an arbitrary number in the interval j . We have to show that d(t) < 
d(x). From (12.1) we have t < d(t)9 x < 8(x). If d(t) < x9 then we already have 
d(t) < 6(x). It will therefore be sufficient to show that the inequality t < x < d(t) 
implies the inequality d(t) < 8(x). This we achieve by showing, on the basis of the 
ordering theorems, the impossibility of the inequality t < x < d(x) < d(t). The 
equality relation d(t) = d(x) is obviously impossible, because the inverse function 
(5™1 exists. 

We therefore assume that t < x < 6(x) < d(t)9 and consider the four kinds of 
dispersion separately. 

(a) 8 = <j>. From the definition of the function <f>9 the numbers t9 S(t) and x, 6(x) 
are respectively neighbouring zeros of integrals w, v of the differential equation (q). 
Obviously these integrals u9 v9 are independent. From the first ordering theorem 
(§ 2.3) precisely one zero of the integral v lies between t and d(t)9 which is obviously 
inconsistent with the above inequalities. 

(b) 8 = tp. The proof proceeds on the same lines as (a), using the second ordering 
theorem. 

(c) 8 = %. From the definition of the function %9 the numbers t9 d(t) are two neigh
bouring zeros of an Integral v of the differential equation (q) and its derivative v'. 
The function v' is consequently non-zero between t and 8(t). Similarly, x9 8(x) are 
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two neighbouring zeros of an integral u of the differentia! equation (q) and its deriva
tive uf. Obviously the integrals u, v are independent. From the fourth ordering theorem 
the function v' has a zero between t and <5(x), and so (by the above inequalities) a zero 
between t and d(t), which yields a contradiction. 

(d) d = co. The proof is similar to that of case (c), using the third ordering theorem, 
and the proof is complete. 

3. Every central dispersion of arbitrary kind is everywhere continuous. 

This is an immediate consequence of the above theorems 1 and 2. 

13.2 The functional equation of the central dispersions 

In this paragraph we denote by </>, rp, x> co an arbitrary central dispersion of the first, 
second, third and fourth kinds respectively. Let u9 v be arbitrary independent integrals 
of the differential equation (q). 

From the theorem in § 3.12 we conclude that: In the interval] there hold the following 
identical relationships 

u(tW(t)l - uWfMt) = (0 
uf(t)vf[f(t)] - uf[W(t)]vf(t) = 0 

u(t)v'[x(t)} - uf[%(t)]v(t) = 0, ( ( 1 3 J ) 

uf(t)v[cjo(t)] — u[co(t)]vf(t) = 0. 

These relationships are called the functional equations of the central dispersions. 
We see that the ratios u/v9 u

fjv' of the integrals u, v and their derivatives uf, v' are 
invariant in the interval j with respect to composition of central dispersions, in the 
sense of the following formulae: 

u{t) = um)} u\t) = u'[V(t)] \ 
vit) vM)Í v'(t) V[W(t))\ 

"(0 = u'[X(t)] u'(t) = u[co(t)] I 

vit) v'[Xit)] v'it) vMt)]J 

133 Derivatives of central dispersions 

Again let <j>, %p9 %9 co denote arbitrary central dispersions of the first, second, third 
and fourth kinds. 

We now prove the following theorem: 

(1) All central dispersions of any kind have at each point t ej continuous (first) 
derivatives. These can be represented in terms of arbitrary independent integrals 
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Uj v of the differential equation (q) and their derivatives u\ v' by the following 
formulae: 

ф'(t) = -

'(t) -= -

xV) = -

w'(t) = -q(t) . 

u'(t)v[ф(t)]-u[ф(t)]v'(t). 

u(t)v'[ф(t)]-u'[ф(t)]v(t) 

q(t) _ U(t)v'[ (t)]-U'[ (t)]v(t). 

q[Чit)]' u'(t) v[y>(t)] - u[f(ť)] v'(t) 

1 u'(t)v'Ыt)]-u'Ыt)]v'(t). 
qЫO]' u(t)v[x(t)] -u[x(t)]v(t) ' 

u(t) v[(o(t)] — u[(û(t)] v(t) 

u'(t) v'[w(t)] - u'[w{tӯï7(J) 

(13.3) 

Proof We shall confine ourselves to the case of the central dispersion <f>. Let w, v be 
two linearly independent integrals of the differential equation (q). We consider the 
basis function 

F(t, x) = u(t)v(x) — u(x)v(t). 

(see §2.6; Q = q). 
Let t0 = j be arbitrary and x0 = <j)(t0) the corresponding value of (f>. Then we have 

F(t0yx0) = 0. (§3.12). From §2.6 there is precisely one continuous function x(t) 
defined in a neighbourhood / (<= j) of l0, which takes the value x0 at the point t0 and 
satisfies the equation F[t, x(t)] = 0 in the interval /. This function x possesses, in the 
interval /, the continuous derivative 

x'(t) = -
u'(t) v[x(t)] - u[x(t)] v'(t) 

u(t) v'[x(t)] — u'[x(t)] v(t) 
(13.4) 

But the function $ is defined and continuous in the interval j , and consequently 
also in the interval /, and satisfies the above equation F[t, <f>(t)] = 0 in /; consequently 
x(t) = <j)(t) for t e i. The existence of <f>f(t0) follows, and hence, taking account of (4), 
the first formula (3). 

2. The derivatives of central dispersions may he represented as follows in terms of an 
integral u of the differential equation (q) and its derivative u':— 

ФV) = 

v'(0 = 

u2Џ(t)] 
u\t) 

u'2(t) 

u'2[ф(t)] 

' q(t) Í U'2[f(t)] 

qЫt)] u'2(t) 

q(t) u2(t) 

ф(t)] u2[ (t)] 

for u(t) ф 0, 

for u(t) = 0; 

for u'(t) Ф 0, 

for u'(t) = 0; 

(13.5) 

(13.6) 
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i w2h(t)] 
qЫO] u\t) 

1 u2(t) 
X'(t)={ , . ,_. ч (13.7) 

qix(t)] u2lx(t)] 

u*[w(t)] 
•q(t) 

-q(t) 

u'\t) 

и'2[co(D] 

for w(0 # o, 

for н(0 = 0; 

for и'(0 Ф o, 

for и'(0 = o. 

Proof We shall restrict ourselves to the proof of (5); essentially it is obtained by a 
transformation of the first formula (3). 

In the case u{t) =£ 0 we multiply the numerator and denominator of the first formula 
of (3) by u{t) and in the numerator make use of the relationship u{t)v[<f){t)] = 
w[<r>(0M0; then we proceed analogously in the denominator, multiplying by u[</>(t)] 
and making use of the same relationship. After division by the Wronskian w{t) = 
H # ( 0 ] of u, v we obtain the first formula (5). 

In the case u{t) = 0we have u'{t) u'[<f>{t)] -7-= 0. We multiply, as above, the numer
ator and denominator by u'(t), then by u'[<f>{t)] and so obtain the second formula (5). 

3. The derivatives of the central dispersions can be represented as follows by means 
of the first or second amplitudes r, s of an arbitrary basis (u, v) of the differential equation 
( q ) : -

Ht)-iw v0)=m\'~š«r\ 
v Y A 1 *2h(t)] Y„ (i, r2l>(0] i 

(13.9) 

Proof We give the proof of the first formula as an example. 
Let {u, v) be a basis of the differential equation (q) and r, s the corresponding first 

and second amplitudes. Let t ej be arbitrary. At least one of the two numbers u{t), 
v{t) is non-zero; let us assume, for definiteness, that it is u{t). Considering the function 
A = vju we have (from (2)) X{t) = A[</>(*>)], and consequently 

A'(t\ = U2[m] = l + X%t) r 2 { m ] = r 2 m ) ] 
f{) u\t) l+P[<Kt)V r\t) r%t) ' 

which is the first formula of (9). 

13.4 Higher derivatives 

We see from the above results that 

If the carrier q of the differential equation (q) is continuous in the interval], all central 
dispersions of the first kind have continuous derivatives of the third order in that interval 
and all other central dispersions have continuous derivatives of the first order. 
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More precisely we have 

If the carrier q of the differential equation (q) belongs to the class Ck (fc = 0, 1, . . .) 
then all central dispersions of the first kind e Ck + 3 and all other central dispersions 

13.5 The connection between central dispersions and the transformation problem 

The formulae (5)-(8) have an important bearing on the transformation problem (§ 11). 
Let <f)v, ipV9 %P9 (Op (v = 0, ± 1 , . . .; p = ± 1 , . . .) be arbitrary central dispersions 

of the first, second, third and fourth kinds, and let u be an arbitrary integral of (q). 
Then the above formulae (5)-(8) hold for these central dispersions. 

Now, on taking account of the ordering theorems, (§ 2.3), these formulae give the 
following relationships for all t ej: 

m^^y=u[Ut)l (13.10) 
vf v(0 

u'(t) (-1)' WЫt)] 

V-q(t) Vyф) V-q[fv(t)] 
(13.11) 

U(t) = ̂ Ł^MåŁ„ (Ш2) 

V%(,(t) V-q[Xp(t)] 

м ' ( 0 - - ä = г . ф , ( / ) ] . (13.13) V-q(t) Va,;(7j 

By formula (10), therefore, the ordered pair [(—l)vlV<[>v(t)9 <M0] represents a 
transformation (§ 11.2) of the differential equation (q) into itself in which every 
integral u of (q) is transformed into itself. 

Similarly the formulae (11)—(13) show that if we assume that the function q ( < 0) e 
C2 then the differential equation (q) admits of the associated differential equation 
(qi). We know (§ 1.9) that the function ux(t) = w'(0/V(-"q(0) represents an integral 
of the differential equation (qx), namely the integral associated with u. 

The ordered pair [(—• l)7vVv(0> Wv(t)] obviously represents a transformation of 
the associated differential equation (qx) into itself, in which every integral ux of (qx) 
is transformed into itself. 

The ordered pair [(—\)0JV%p(t), %p(t)] represents a transformation of (qi) into 
(q). In this transformation every integral ux of the differential equation (qx) is trans
formed into the associated integral u of (q). 

The ordered pair [(— \)pJV^'P(t), <op(t)] represents a transformation of (q) into 
(qi). In this transformation every integral u of the differential equation (q) is trans
formed into the associated integral ux of (q±), 

To sum up; the central dispersions of oscillatory differential equations (q) are particu
lar solutions of the Kummer transformation problem for the differential equation (q) 
and its associated differential equation (qx). 
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13.6 Relations between derivatives of the central dispersions and the values of the 
carrier q 

1. L e t n o w <j>9 xp3 x* co be the fundamental dispersions of the first, second, third and 
fourth kinds. We have the following result: 

Theorem. The first derivatives of the fundamental dispersions at every point t ej may 
be expressed as ratios of appropriate values taken by the carrier q, as follows 

9 q(t3)
 V K ) qW)]q(t2) 

qh(t)] q(t2) 

in which tx, t2, t3, f4 denote appropriate numbers ordered as follows 

t<h< %(t) <t3< <f>(t); t <t2< o>(t) < f4 < y>(t). 

Proof. For every integral u of the differential equation (q) and arbitrary numbers t, 
x ej we have obviously the formula 

u'2(x) - u'2(t) = Гq(a)[u2(a)]' da, (13.14) 

which provides the basis for our proof. 
(a) Let u be any integral of the differential equation (q), which vanishes at the 

point t, so that u(t) = u'[x(t)] = 0. In formula (14) we set x = x(f)> s ° obtaining 

Ĵ  q(a)[u2(a)]' 

г 

-«'-(/) = q(a)[u2(a)]' da. 

Now, in the interval (t, %(t)) the function uu' and consequently also the function (u2)' 
is positive. By the mean value theorem we have 

M\(a)-[u\a)]'da = q(t1)u2[X(t)], 
n 

where t < t± < x(t)- The last two formulae give 

-u'2(t) = a^MxWL 

and consequently, using (7), 

™-m\ (,<"<m-
(b) Now let u be any integral of the differential equation (q), whose derivative u' 

vanishes at the point t: u'(t) = u[co(t)] = 0. 
In formula (14) we set x = co(t) giving 

Лю(í) 

u'2[co(t)] r- q(a)[u2(a)]' da. 
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In the interval (f, m(t)) the function uu\ and consequently also (u2)' is negative. 
By the mean value theorem we have 

í 0)(t) 

q(a)[u2(a)]' da = -q(t2)u\t), 

in which t <t2< m(t). So 
u'2[a>(t)] = -q(t2)u\t), 

from which, using (8) we obtain 

«>'(0 = S ~ (t<t2< «,(!))• 
q(t2) 

(c) From the identical relationship 

# 0 = <4x(t)] 

we obtain, on applying the above results, 

f (!) = co'[x(t)]xV) = 4M.J&Lsa«!>l ?K) mnxo q{h) q[x{t)] q(ta) 

in which %(t) < t3 < <f>(t). Consequently we have 

f (0 = 77^ (%(t) < !3 < <K0)-
q(h) 

(d) Similarly, we obtain from the identity 

V>(t) = x K ! ) ] 

the formula 

V'(0 = TT\ * Tlk MO < '* < V<0). q(t2) q[y>(t)] 

2. The above formulae apply, as we have said, to the fundamental dispersions of 
appropriate kinds. More generally, for n = 1, 2 , . . . we have the following relations. 

J.u,\ ?('-) ^(!s) q(tin-a) 
?n(t) — 

Xn(0 

¥n(t) 

<(t) = 

q(ta) q(ti)'"q(tin-iY 

= ^ 1 ) J < ! 5 ) q(tin-l) q(tin-3). 

~ q(h) ' q(t7) ' ' ' q(tin-5) ' q[Xn(t)] 

<^_i(0 < !4«-3 < XÁO < tu-1 < <f>u(t)l f* = l,2,...,n. 

= ^W > ?(A) q(tjn-i) q(tin) . 

q(h) q(t6)"' q(tin-2) ? W t ) ] ' 

q(t) q(ti) q(tin-i). 
q(t2) q(tQ) q(tén-2) 

Vß-iO) < Һџ-2 < ^д(t) < t4tf < Wß(t)l fi-=l,29...,n. 



Ф'-n(0 -

Ï-Át) = 
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q(t_1) q(t_5) q(t-(in-a)). 

q(t-ù q(t-i)'" q(t-m - i)) ' 

q(t-i) q(t-n) 9(?-<4n-7>) q(t-an-3)). 

q(t^3) a(t_7) _/(t_(4n_5)) q[%^n(t)] 

ф^џ(t) < t-(4n-l) < £ - д ( 0 < t-(4д-3) < ^-д + i ( 0 ; /* = 1,2,. . ., П. 

q(t) q(t-4) ?(t-(4n-4)) ?(t-4n) . 
Y>'-»(0 = 

шLn(t) = 

a(t_2) a(t_6) 9(t_(4я-2)) qЪP-n(t)] 

q(t) a(t_4) q(t-(4n-4)). 

a(t_2) a(t_6) ^(t_ ( 4 n_2)) 

V-M(0 < t-.n < o>_M(t) < t_(4M-2) < y>-u + i(t); ft = 1,2,..., «. 

These formulae for </>n, %'n9 ip'n9 co'n are easily proved by induction, using the relations 
(12.7) and the above formulae for <f>'9 %'9 ip'9 co'. 

Moreover, from the relations </></>_x(t) = t, ipip^x(t) = t, and the formulae for 
<f>\ ip' there follow the further relations 

9- i (0 = ~7r~\> 1P-1(0 = - 7 7 — • — — — > (13J5) 
# - 3 ) ?(t-2) ?_V-i(0] 

in which ^ . . ( t ) < t„3 < ^ ( t ) < t„x < t; y - i ( 0 < ' -* < *>-i(0 < '-2 < t. 
The formulae for $Ln, #Ln, ^Ln, o>Ln are easily proved by induction, making use of 
the relations (12.7), (13.15), and the formulae for %'9 co'. 

13.7 Relations between central dispersions and phases 

Let a, /? be respectively a first and second phase of the basis (u9 v) of the differential 
equation (q). We assume, for definiteness, that these phases are adjacent in the mixed 
phase system of the basis (u9 v) (§ 5.14); that is to say, one of the relations 0 < j8 — a 
<TT, — 7r</3 — a < 0 i s satisfied in the interval j . By virtue of our assumption 
that q < 0 we have sgn a = sgn ft' ( = e). In what follows <f>9 ip9 %9 co denote funda
mental dispersions of the four kinds. 

Let x e j be an arbitrary number. 
First we consider an integral y of the differential equation (q), which vanishes at 

the point x. From (5.27) we have 

y(t) = k • r(t) • sin [a(í) - <x(x)], J 

/ ( / ) = ±k • 8(t) • sin [0(0 

where naturally k (-^ 0) is an appropriate constant. 
For simplicity, let us set A(t) = a(t) — a(x). Obviously, we have A(x) = 0. In 

the interval j the function A tends monotonically to +00 or —00 according as e = 1 
or s = —-1. Consequently, there is a number x1 (> x)9 for which the function A 
takes the value err. From (16), however, x± is the first zero of the integral y to the right 
of x; we have therefore xt = <f>(x) and moreover 

auf>(x) = a(x) + E77. (13.17) 
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Now we consider the function B(t) = /?(/) — a(x). This function also tends mono-
tonically in the interval/ to +00 or —00, according as e = 1 or e = — 1. Conse
quently there is a number x3 ( > x), for which the function B takes the value |(e + 1)TT 
or \(E — 1)TT9 according as 0 < fi(x) — a(x) < TT or —TT < (}(x) — a(x) < 0. From 
(16), however, x3 is the first zero of the function y' to the right of x. We have therefore 
x3 = %(x) and moreover 

Px(x) = a(x) + - (a: + 1)TT if 0 < 0(x) - a(x) < TT; 

(13.18) 

Px(x) = «(x) + z (fi - l> i f - ^ < ft*) - a W < °-

In the second place we consider an integral y of the differential equation (q) whose 
derivative yf vanishes at the point x. From (5.27) we have 

y(t) = k • r(t) • sin [a(t) — j3(x)], 

/ ( 0 = ± ^ - s ( 0 - s i n [ ^ ( 0 - i 8 ( x ) ] . 

By an analogous method to that used above, we deduce from formula (17) the 
relationship 

Pv(x) = P(x) + en, (13.19) 

and then 

occo(x) = /?(x) + - (s — 1)77 i f 0 < /5(x) — a(x) < TT, 

J } (13.20) 
occo(x) = (J(x) + - (s + 1)TT if —TT < /?(x) — a(x) < 0. 

The formulae (17), (18), (19), (20) are known as the Abel functional equations for 
the fundamental dispersions. 

If one combines these relations with the relations (12.8), one obtains the general 
Abel functional equations for the central dispersions, or more briefly the Abel functional 
equations 

a(f)v(x) = a(x) + £V7T, 

/%(x) = fi(x) + EV1T. 

Further, in the case 0 < /3(x) — a(x) < TT, we have 

ctcou(x) = y?(x) + - ((2/J, — sgn ^)e — Yyrr 

(13.21) 

(13.22) 
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and, in the case — w < ß(x) — a(x) < 0, 

ßxÂx) = Ф) + j ((2/г "" s S n Џ)є "- ' ^ 

ocшд(x) = j8(л:) + - ((2/г - sgn fi)є + 1)77, 

( x є j ; £ = sgna' = sgnjS'; v = 0, ± 1 , ± 2 , . . . ; /І = ± 1 , ± 2 , . . .).y 

(13.23) 

13.8 Representation of central dispersions and their derivatives by means of phases 

The Abel functional equations for the central dispersions obviously give a representa
tion, in the interval j , of the central dispersions in terms of the phases a, /?. 

The representation of the central dispersions of the first and second kinds is obtained 
from the formulae (21), and is 

HO = a-^ocCO + VTT • sgn a'], y>v(t) = p^Wif) + vir • sgn [f] 

(v = 0 , ± l , ± 2 , . . . ) . (13.24) 

A similar representation is obviously possible for the central dispersions of the 
third and fourth kinds, %^ w^ (ji = ± 1 , ± 2 , . . .), and this is obtained by application 
of the formulae (22) and (23); an explicit statement of the corresponding formulae is, 
however, not needed here. These representations have, as immediate consequences, the 
properties 1-3 of central dispersions given in § 13.1 as well as the continuous differen
tiability of all central dispersions. For, every first or second phase takes all real values, 
is continuously increasing or decreasing, and belongs to the class C3 or C±. 

By differentiation of the Abel functional equations we obtain the following repre
sentations, in the interval j , of the derivatives of central dispersions 

Ф'X0 = 

x',V) = 

«'(0 
«Ш0ľ 

<x'(0 
PixAt)]' 

0 = 0, ±1, ±2, 

yф) = 

4(0 = 

• •; (i = 

ß'(t) 
ß'Ы*)І 

ßV) 
«.'[шн(t)] 

± 1 , ± 2 , . . . ) . 

(13.25) 

13,9 Structure of the Abel functional equations 

Every Abel functional equation for the central dispersions obviously has the form 

y(X) = y(t); (13.26) 

in which each of the symbols y, y represents a first or second phase of the arbitrary 
basis (u9 v) of the differential equation (q) and X is a central dispersion. 
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If, conversely, we choose a first or second phase y of the basis (u, v) and allow y to 
run through all the phases of the first or second phase system of the basis (w, v) then 
the function 

X(t) = y^[y(t)] (13.27) 

runs through all central dispersions of a particular kind K ( = 1, 2, 3, 4). If y is a first 
(second) phase and y runs through the first or second phase system, then X runs 
through the central dispersions of the first or fourth (third or second) kinds. 

13.10 Representation of the central dispersions by normalized polar functions 

For simplicity, we shall restrict ourselves to the representation of the fundamental 
dispersions, which we again here denote by <j>, ip, %, to. The extension to central dis
persions with arbitrary index presents no difficulty. 

1 Representation of the fundamental dispersions <f>, o> by l-normalized polar functions 

Let h(a) be a 1-normalized polar function of the differential equation (q), and a(l), 
P(t) the corresponding phases. We have therefore /? = a + h(a) at every point t ej. 
Because of the oscillatory character of the differential equation (q) the definition 
interval of h coincides with the interval (—oo, oo) and, by (6.30), we have in this 
interval 

1. / r e d ; 

2. nn < h < (n + \)TT (n integral) 

3. h>> - 1 . 

We now choose a number t0 ej and set a0 = a(t0), a' = a'(^o)- Then (6.28) shows 
that at two homologous points a(t) = a and a^(a) = t ej we have the formula 

/ = t o + — (exp 2 cot h(p) dp\ da. (13.28) 
a 0 Joeo \ Ju0 I 

We apply this formula at the point cf>(t) and make use of the Abel functional equation 
a[<f)(t)] = a(t) + ETT (s = sgn a'). Then, for two homologous numbers t, a, we have 

J t*a + £7r / /V \ 

<f>(t) = t0 + — exp 2 cot h(p) dp da, (13.29) 
a0 Ja0 \ Ja0 / 

which can obviously be written 

^(t) = / + _ (exp 2 cot h(P) dp) da. (13.30) 
a Q J a \ Ja0 ] 

From this we have, by differentiation 

(*at, + Ew 

<f>Xt) = exp 2 cot h(p) dp, (13.31) 
Ja 
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and further 

4>"(t) I fa \ 
~~ = 2a0[cot h(oL + en) - cot h(a)] exp i - 2 cot h(p) dpi (13.32) 

Similarly, formula (28) gives, for two homologous numbers t, a 

j /•« +/i(a)-riTr- £(l-e)7r / /*<r \ 

eo(r) = t + — exp 2 cot h(/>) dp da. (13.33) 
a0 Ja \ Ja0 / 

2 Representation of the fundamental dispersions ip, % by 2-normalized polar functions 

Now let •—k(/S) be a 2-normalized polar function of the differential equation (q), 
and a(l), |S(f) the corresponding phases; we have therefore a = /i + k(fi) at every 
point t ej. Because of the oscillatory character of the differential equation (q) the 
interval of definition of —k coincides with the interval (— oo, oo) and we have in this 
interval (from (6.37)) 

L - J f c e d ; 

2. mr < —-k < (n + \)TT (n integral); 

3. -k x < 1. 

We choose an arbitrary number t0 ej and put /?0 = ft(t0)9 a0 = af(t0). Then (by 
(6.35)) at any two homologous points /?(f) = ft and fi"1^) -= t ej we have 

.*-=ť o + -r i [1 + k\a)] -exp ( - 2 I [1 + !<Xp)] cot k(p) dP) do. (13.34) 
ao^^o \ ho I 

We apply this formula at the point y)(t) and make use of the Abel functional equation 
fihp(t)] = P(t) + STT (e = sgn a' = sgn /?') and so obtain, for any two homologous 
points t, j8 

W(t) = r0 + 4 | * [1 + k\a)] exp ( - 2 f [1 + k\P)] cot k(D) dp) da. 
&0 *^Q \ J/3o / 

(13.35) 

This may obviously also be written 

W(0 = t + \)B7T[l+ k\a)] exp (-2 \ [1 + kX/>)] cot k(P) dp) da, 
a0 J0 \ JB0 J 

(13.36) 

and there follows, by differentiation, the result 
1 + kHB + en) / C0 + S7r \ 

v W « _ ^ l - ^ ^ [l+kHp)]cotk(p)dPj. (13.37) 
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Similarly, formula (34) gives, for any two homologous numbers t, /?, the following 
formula 

%(t) = 
1 r d + k(B) + nir + i(l + e)TT / f°* \ 

t + - \ [1 + k\a)] exp - 2 [1 + k\(p)] cot k(P) dp da. 
a 0 JP \ JBQ I 

(13.38) 

13.11 Differential equations of the central dispersions 

The central dispersions of the first kind of the differential equation (q) satisfy a non
linear differential equation of the third order; the same is true for central dispersions 
of all higher kinds when the carrier q e C2. These non-linear differential equations of 
the third order are, as we shall see, special cases of the Kummer differential equation 
(11.1), whose significance is fundamental for the theory of transformations. We now 
wish to derive these third order differential equations from the Abel functional 
equation. 

Let X be a central dispersion of the kind K ( = 1, 2, 3, 4). We choose an arbitrary 
basis (w, v) of the differential equation (q). Then, as we have seen in (26), we have the 
Abel functional equation 

y(X) = y(0, (13.39) 

holding in the interval/ for appropriate first or second phases y, f of the basis (u, v). 
When K = 1 or 2 respectively this equation holds if both y, f are first phases or if 

both are second phases of the basis (u, v); in the cases K = 3 or 4 it holds if y is a second 
and y a first phase, or y is a first and f a second phase respectively. 

From formula (39) it follows that for all t ej, apart from the singular points where 
IT 

the functions y(X), f(t) are odd multiples of -> 

tan y(X) = tan f(t). (13.40) 

If the central dispersion X is of class C3, then at every non-singular point t ej we 
can take the Schwarzian derivative of this relation. When we take account of (1.17), 
this gives 

~{X, t} - {tan y, X} • X,2(t) = -{tan y, t}. 

Now, from (5.18), (5.24), we have 

-{tan y, t} = q(t) or -{tan y, t} = qx(t)9 

according as y is a first or second phase of the basis (w, v) and an analogous formula 
for tan y, the right-hand side of (40). Here, qx denotes of course the carrier of the first 
associated differential equation (q0 of (q): 

ąi(t)~ф) + vm{j=\- ( 1 3 - 4 1 > 
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We come thus to the following theorem: 

Theorem. All the central dispersions <f> of the first kind, with arbitrary indices, satisfy 
in the interval] the non-linear third order differential equation 

-{4>,t}+q(+)-<l>'*(t)=q(t). (qq) 

Moreover, if the carrier q e C2 all the central dispersions ip, %, co of the second, third 
and fourth kinds, with arbitrary indices, satisfy in the interval j the equations: 

-{V, t} + q±(v)' ¥2(t) = 9i(t). (qicjx) 

-{z,t} + 4i(z)-x'2(t) = q(t), (m) 
-{co, t} + q(co) • coe2(t) = q±(t). (qqx) 

These are the so-called non-linear third order differential equations for central dis
persions; more precisely for central dispersions of the first, second, third and fourth 
kinds. 

13.12 Solutions of the Abel functional equations with unknown phase functions a, ft 

The problem of determining the differential equat ion (q) from a knowledge of its 
central dispersions leads us to consider the Abel functional equations for the central 
dispersions with unknown phase functions a, /?. 

Let </>v or ipv be a central dispersion of the first or second kind of the differential 
equation (q). A phase function a, f} (§ 5.7) of class C 3 or C± respectively, which satis
fies the Abel functional equat ion (21) in the intervalj , represents a first or second phase 
of a differential equation (q), whose v-th central dispersion of the first or second kind 
coincides with the function (j>v or ipv. The carrier q is thus determined, respectively, in 
these two cases by (5.16) or by means of a certain solution of a non-linear second order 
differential equation (§ 5.12). 

N o w let Xn o r o-v be a central dispersion of the third or fourth kind of a differential 
equation (q). If we have two phase functions a, {$ e C3 , Ct respectively, which are 
related in the in te rva l j by a formula such as (5.34), and satisfy the Abel functional 
equation (22), say, then these represent a first and second phase of the same basis of a 
differential equation (q), whose fc-th central dispersion of the third or fourth kind 
coincides with the function Xu o r °V The carrier q is determined uniquely from the 
phase a, by the formula (5.16). 

We shall restrict ourselves from now on to the solution of the Abel functional 
equation by phase functions, of class C3, of a given fundamental dispersion of the 
first kind. 

First we observe that by (12.1) and §§ 13.1,13.3,13.4 the fundamental dispersion of 
the first kind <f> of every differential equation (q) has the following properties in the 
intervalj = (a, b). 

1. tff)>t> 
2. lim <f>(t) = a, lim <f>(t) = b, 

t~*a+ t-&- ) (13.42) 
3. (j) e C 3 , 

4. f (t) > 0. 
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Now we have the following result due to E. Barvinek [2]. 

Theorem. Corresponding to every function cj> defined in the interval j and with proper
ties I to 4 above, there exist infinitely many phase functions a e C3 which are solutions 
of the Abel functional equation 

a(<f>) = a ( 0 + IT • sgn a' (13.43) 

and which may, moreover, be obtained constructively. 

Proof Let <f> be a function defined in the interval j with the above properties 1-4. We 
shall, as an illustration, construct an increasing solution a e C3 of (43). 

We select a number t0 ej and put tv = <f>v(to) for v = 0, ± 1 , ± 2 , . . .. Then the 
interval j separates into sub-intervals j v = [tv, tv + 1). 

Now in the interval j 0 we choose any function fie C3 with a continuous positive 
derivative fi, which has the following behaviour in a left neighbourhood of t±: 

lim f(t)=f(tQ)+7T, 
t-+tx-

lim f'(t) = Q T 
t-.i- 9 Vo) 

lim f'\t) =-
t-*tx- 9 \l0J \YVJ/ t 

t-Í!- ФVO) 

_L_ /Jw* 
'(to)\<f>'(t)J 

i (f+(t)\ 

'(oU'(o/ 

o 

1 

Here, the + symbol indicates a right derivative so that, for instance, f,+(t0) is 
the right derivative off at the point t0. 

By means of this function f we can now define in the interval j the function a as 
follows 

( fi(t) for tefi, 

a(t) = I a t^" 1 ^)] + TT for t ejv, v > 0, 

I «[^(t)] —^ f°r t Ejv» v < 0. 

This function a is obviously an increasing phase function e C 3 and satisfies the 
Abel functional equation (43), so the proof is complete. 

We know that when a first phase a of the differential equation (q) is given, the 
carrier q is uniquely determined by the formula (5.16). From this fact and the above 
result we expect that to every function <f> defined in the interval j with the properties 
(42) there will correspond in general infinitely many oscillatory differential equations 
(q) having the function ^ as fundamental dispersion of the first kind. Later, (§ 15.10), 
we shall show that the power of the set of all differential equations (q) in the interval 
(—oo, oo) with the same fundamental dispersion of the first kind <f> is independent of 
the choice of the latter and is equal to the power ^ of the continuum. 

For the solution of the Abel functional equations, by means of phase functions 
e C1 ? with given fundamental dispersions of the second, third or fourth kinds, we 
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refer to the papers by J. Chrasitna [38] and F. Neuman [54]. In general, the situation 
is as follows: 

Let A(0 be a function defined in the intervalj = (a, b) with the following properties 

1. Kt) > t, 
2. lim A(0 = a, lim A(t) = b, 

t~>a + «->6- ) (13,44) 
3. AeC1? 

4. A'(0 > 0. 

(a) There are in the interval j infinitely many oscillatory differential equations (q) 
with q < 0, whose fundamental dispersion of the second kind xp coincides with A; 
tp(t) = A(t) for t ej. 

(b) Let to e j be an arbitrary number. There are in the interval [t0, b) infinitely 
many right oscillatory differential equations (q) with q < 0, whose fundamental dis
persion % of the third kind coincides with A: %(t) = A(t) for t e [t0, b). 

(c) Let to ej be an arbitrary number. There are in the interval (a, t0] infinitely 
many left oscillatory differential equations (q) with q < 0, whose fundamental dis
persion co of the fourth kind coincides with A in the interval (a, A_1(l0)]: co(t) = A(0 
for te(a, A" 1^)] . 

It should be noted that problems of this kind are associated with the solutions 
of appropriate non-linear differential equations of the second order with delayed 
argument. 

13,13 Consequences of the above results 

Now we derive some consequences of the above theory. 

2. Monotonic character of the differences. <f>v(t) — t, tpv(t) — t, %v(t) — t, cov(t) — t. 
Consider the differences 

MO - t, Vn(t) - t, %n(t) - t, con(t) - t, (13.45) 

<f>-n(t)-t, V - n ( 0 - ^ X-n(t)-t, G>_n(0-f (13.46) 
( « - 1 , 2 , . . . ) 

in the interval/*. 
From the formulae in § 13.6 we deduce that if the carrier a is a non-increasing or 

a decreasing function in the interval j , then the quantities 

ft(0-l, K ( 0 - L X'n(t)-l, a/n(t)-l 

are respectively < 0 or < 0, and the quantities 

f _ n ( 0 - L v'_»(0-i, z ' -„(0- i , « / - - (0 - i 

are > 0 or > 0 respectively. 
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Hence 

If the carrier q is a non-increasing or a decreasing function in the interval], then the 
same is true of all the differences (45), while the differences (46) are non-decreasing or 
increasing functions. 

Similarly we show that 

If the carrier q is a non-decreasing or an increasing function in the intervalj, then the 
same is true of the differences (45), while the differences (46) are non-increasing or 
decreasing functions. 
Corollary. Let 

• • • < t ^ 2 < t - l < t 0 < t l < t 2 < ' - -

be the sequence of zeros of any integral of the differential equation (q) and let 

••• < t ~ 2 m < t - m < t 0 < tm<t2m<*<- ( m ^ l ) (13.47) 

be a subsequence of it. 
If the carrier q in the Interval j is non-increasing or if it is decreasing, then (47) 

denotes respectively a concave or a strictly concave sequence. If the carrier q in the 
interval j is non-decreasing or increasing then (47) is a convex or a strictly convex 
sequence. For the case m = 1 this gives a result of Sturm-Szego. 

An analogous result holds for the sequence of zeros of the derivative of an arbitrary 
integral of the differential equation (q). 

2. Derivatives of composite functions. According to a classical result, the composition 
of two or more functions of a class Ck (k = 0, 1,...) is a function of the same class. 
It can happen, however, that the function arising from such composition belongs to a 
higher class than the original functions. Our results on derivatives of central dispersions 
lead to many situations of this kind. We shall content ourselves with a few remarks on 
this topic, since a deeper investigation would be beyond the scope of this book. 

We shall show that: 

Let q be a negative continuous function in the interval j = (a, h), such that the differ
ential equation (q) is oscillatory. Then there are in the interval j two functions X, Y 
satisfying the inequality t < X(t) < F(t), such that the function q[X(t)]jq[Y(t)] belongs 
to the class C2. If the function q is strictly monotonic, then there are continuous functions 
X, Y with the property quoted. 

For we obtain functions X, Y of the kind described if we evaluate X(t), Y(t) at 
every point tej according to the theorem of § 13.6, taking X(t) = tl9 Y(t) = t3; 
t < ti < t3. The function q[X(t)]jq[Y(t)] ( = $'(0) has at the point t a continuous 
derivative of the second order, as we know from § 13.4. If the function q is strictly 
monotonic, then it follows from the result in § 13.6 and the relationship w% = ^ that 

x(t) = ? -W) l • z'(01; nt) = r WO]: o>f[%(t)]i 
where naturally q"~x denotes the inverse function off. It follows from these formulae 
that the functions X, Fare continuous in the interval/ 
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