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C H A P T E R I I I 

TOPOLOGICAL SPACES 

(Sections 14-22) 

The general theory of topological spaces had its origin at the beginning of the 
20th century. Previously topological problems had usually been investigated for 
only those individual spaces and their subsets for which the concepts of a limit, a clus-
ter point, the closure of a set, etc., had a clear intuitive meaning. In the thirties, a 
new type of structure was introduced (partly to meet the needs of functional ana-
lysis), namely uniformities, and in the fifties proximity spaces were investigated. 

Various other types of what may be called "continuity structures" have been 
examined in recent years. Pending further developments, however, it seems that 
three kinds of these "continuity structures" constitute a substantial part of general 
topology, a part which, on the one hand, can be given a systematic development 
and, on the other hand, can serve as a sufficiently broad basis for most investigations 
in which we are confronted with an underlying "continuity structure". Some other 
"continuity structures" are mentioned in the Notes at the end of this book where we 
also indicate a possible unified approach to various continuity structures. 

We shall now try to explain in a brief and informal manner some general ideas 
which concern the continuity structures under consideration (that is, closure struc-
tures, uniformities, proximities) and lead to concepts playing an important role in 
the subsequent developments. Disregarding historical questions, we shall concentrate 
on basic ideas from the standpoint of the present state of knowledge, giving special 
attention to their connection with mathematical analysis. 

Two basic concepts appear in almost every problem of mathematical analysis, 
namely the concept of an operation and the concept of approximation. In applica-
tion of numerical analysis, certain operations, constituting an "algorithm", are 
effectively performed; the degree of approximation (required or actually achieved) 
is also actually given. In theoretical questions of mathematical analysis, properties 
of various operations are investigated; instead of the actual degree of approximation, 
we are really interested in the possibility of approximation; we ask whether a certain 
series converges to an element, whether a function admits arbitrarily "good" approx-
imation by functions of a certain kind, or whether two approximative procedures 
give, "in the limit", the same solution of a certain equation. 

This observation, although almost trivial, leads to a more precise (but still vague) 
description of the "continuity structures" to be investigated. 
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Namely, if we put aside questions concerning operations, we are confronted with 
a pure theory of approximation, or rather of the possibility of approximation of 
elements of a set P by elements of P. Now, the structure of the "possibility of appro-
ximation" of elements of P may be conceived in various ways. We may consider 
this structure as given as soon as it is known, for any x e P and any X <= P, whether x 
admits of an arbitrarily close approximation by elements of X; this approach leads 
to topological spaces. On the other hand, we may require a more detailed description 
of the "possibilities of approximation", considering the structure as given if, for 
any set M of pairs (x, y) e P x P, it is known whether or not M contains pairs 
<x, y) with y arbitrarily close to x; this approach leads to uniform spaces. Finally, 
there is an "intermediate" approach under which the structure in question is given 
as soon as we know, for any A c P, B <=. P whether or not there are x e A, yeB 
with y arbitrarily close to x (or, which will be shown to be equivalent, if we know 
whether A and B are "proximal"); this approach leads to proximity spaces. 

To be more concrete, consider a set P endowed with a "distance", i.e. with a real-
valued function g on P x P such that 0 g g<x, _y> = g(y, x> g g<x, z) + g<z, y). 
If x e P, X c: P and X contains elements y with g(x, y~) arbitrarily small, we say that x 
may be approximated by elements of X or that "x is close to X". If we restrict our 
attention to the fact that, for any X <= P and x e P, it is known whether or not x 
may be approximated by elements of X, and disregard the metric g, then we consider, 
in fact, a topological space. If we say that a set X is close to a set Yif there are elements 
x e X, y e Y with g<x, y} arbitrarily small, and confine our attention to this relation 
disregarding other properties of g, then we investigate a proximity space, and so on. 
Of course, a topological, proximity or uniform structure need not be determined 
by a metric, and may be described in any manner sufficient for a determination of the 
"structure of approximation" concerned. 

Of course, whether or not the investigation of the structures indicated above (and 
described exactly in 14, 23 and 25) is useful and has its place in mathematics can 
hardly be answered on the ground of any a priori considerations (although this may 
give an important heuristic lead); this can be settled only by the future development of 
mathematics. In the same sense, only a small part of the main results of the theory 
of these structures follows from general considerations only; the core of the theory 
constitutes, in the last instancfe, an answer to problems raised by the development 
of general analysis. 

In the present chapter we shall consider basic ideas concerning closure spaces which 
include topological ones. A topological space is currently defined to be a struct 
<P, such that P is a set and ^ is a collection of subsets of P satisfying certain 
conditions; the elements of are called open sets. Given such a space <P, we 
can define the closure operation u associated with as follows: u is a single-valued 
relation, Dm = exp P 3 Eu, and uX is the smallest set containing X such that 
(P — uX) e The relation u has the following properties: u0 = 0, X <= uX, 
u(X u Y) = uX u uY, and uuX = uX. We shall examine a more general kind of 
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spaces, the so-called closure spaces. A closure space is defined to be a struct 0* = 
= <P, «> where P is a set and u is a closure operation for P, i.e., a relation with the 
properties mentioned above except for the last property; if u also has the last property 
then u is termed a topological closure operation and 2P is termed a topological closure 
space, or merely a topological space. A classical example of a closure space which 
is not topological is the following: Let P be the set of all functions on the interval 
I = [0,1] of real numbers and let uX, where X c P, be the set of all functions / such 
that some sequence {/„} in X converges pointwise to / . Clearly <P, ti> is a closure 
space. If C is the set of all continuous functions on I then uC consists of all functions 
of the 1st Baire class, uuC is the set of all functions of the 2nd Baire class, etc., and hence 
u is not topological. 

It may be in place to explain the reasons which led to an examination of more 
general spaces than topological ones, namely closure spaces, although currently 
topological spaces form the adopted background for topological investigations. It 
turns out that there are some important closure spaces which are not topological; 
e.g. spaces of mappings with pointwise convergence of sequences, quotient spaces, 
and the "sequential continuity" of mappings of topological linear spaces can be 
regarded as the usual continuity with respect to some closure spaces which are not 
topological. Furthermore, a great deal of basic definitions and theorems for topological 
spaces carries over to closure spaces. Finally, one can set up a general background 
for various continuous structures, such as uniform spaces, proximity spaces, etc. 
Discussing this problem we can conclude that the condition uuX = uX is rather spe-
cial in character. Some investigations of the present chapter are motivated by general 
considerations (e.g. the examination of subspaces, sums, products, etc.); to a certain 
degree, this also applies to the examination of pseudometrics, etc. For some proper-
ties, the motivation comes from analysis. Thus, the examination of meager and 
non-meager sets has its origin in the fact that some properties (by the way, unpleasant 
ones, as a rule) are possessed by "almost all continuous functions"; the exact 
definition of "almost all" involves topological properties. Naturally, the properties 
of being meager or non-meager, investigated in general topology, have lost their 
connection with this motivation and are investigated for their own sake. Nevertheless, 
pertinent facts from analysis remain, at least, a valuable heuristic lead. 

In Sections 14 and 15 we shall describe closure spaces and characterize topological 
spaces among closure spaces by means of neighborhoods, cluster points and con-
vergent nets. Section 16, which contains elementary facts concerning continuous 
mappings, is followed by a closely related section (17) in which some constructions 
of new spaces from older ones will be examined, namely subspaces, sums, products 
and inductive products. In Section 18 pseudometrics (more generaly, semi-pseudo-
metrics) and some special closures for ordered sets will be examined. Subsection 
18 B may serve as an introduction to uniform spaces. The results of 14—18 are 
applied to topologized algebraic structs in Section 19; the basic concepts are a topo-
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logized internal composition <<7, u> and a topologized external composition <u, g, v) 
for which we define continuity and inductive continuity. Special attention is given 
to topological groups, which are treated as continuous topologized groups with 
continuous inversion. 

In Section 20 separation and semi-separation in a closure space are examined and 
applied to connectedness. In Section 21 a general discussion of the localization 
of properties is given and applied to locally connected spaces. 

The last section contains basic facts concerning dense, nowhere dense, meager 
and non-meager sets, and also Baire sets, Borel sets and Baire or Borel measurable 
mappings. 
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14. C L O S U R E S P A C E S 

All definitions, examples and propositions in this section are fundamental and they 
appear frequently in later developments. Most of the results of this section will be 
used without any reference, and therefore the reader is asked to read it carefully 
even though all proofs are almost evident. 

In the first subsection we shall introduce the notions of a closure operation, closure 
space, open set, closed set, interior of a set and a closure-preserving family. In addi-
tion, we shall introduce an order in the class of all closure operations, which will 
be studied throughout this book. 

The second part is concerned with the description of a closure operation in terms 
of neighborhoods. Theorems of this subsection are illustrated by two rather general 
examples, namely we shall introduce the order closure and the notion of a generalized 
order closure for a monotone ordered set; in particular, we shall define the space R 
of reals as the ordered set of reals endowed with the order closure, and we shall 
introduce a closure operation for the set of all ultrafilters of a given set X. (It should 
be noted that the resulting space, called the ultrafilter space associated with the set 
X and denoted by 0X, is the tech-Stone compactification of X endowed with the 
discrete closure operation.) Next, the notion of a locally finite family is introduced 
and its relation to closure-preserving families is clarified. 

In the last subsection notions such as a cluster point, an isolated point, a regular 
closed and a regular open set are introduced and studied. 

A. C L O S U R E O P E R A T I O N S 

14 A.l. Definition. If P is a set and u is a single-valued relation on exp P ranging 
in exp P, then we shall say that u is a closure operation (or simply a closure) for P 
provided that the following conditions (also called axioms) are satisfied: 

(cl 1) u<D = 0, 
(cl 2) X <= uX for each X <= P, 
(cl 3) u(X uY) = uXuuY for each I c P and Y c P. 
A struct <P, m>, where P is a set and u is a closure operation for P, will be called 

a closure space. If <P, is a closure space and X <=. P, then the set uX will be called 



238 I I I . T O P O L O G I C A L S P A C E S 

the closure of X in <P, u> or under u. The closure of a set X in a closure space SP 
will also be denoted by X i f there is no danger of misunderstanding, then we shall 
write simply X instead of X9. 

Convent ions. In accordance with the conventions introduced in 7 A.2 we shall 
often write P instead of <P, u} and we shall speak of subsets of a closure space 
instead of subsets of the underlying set of the space in question. Moreover, we shall 
rarely speak of elements of a space (cf. 7 A.2); for the most part, if x belongs to the 
underlying set of a closure space, we shall say that x is a point of the space in question. 

Let us notice that the underlying set of a space <P, u> is uniquely determined by u; 
indeed, P is the union of the domain of u. It follows that the relation {« -»• < U D u , w > | 

| u is a closure} is a one-to-one relation on the class of all closure operations ranging 
on the class of all closure spaces. 

14 A.2. Definition. The class of all closure operations as well as the class of all 
closure spaces will be denoted by C. According to the above remark this ambiguity 
cannot lead to a confusion. A closure u is said to be coarser than a closure v, and v 
to be finer than u, if Dm = Dp and uX => vX for each X (in the common domain 
of both u and v). Evidently the relation 

< = E{<u, u}\v,ueC,u is coarser than v} 

is an order on the class C. If P is a set then the set of all closures for P is denoted 
by C(P) and the restriction of < to C(P) is also denoted by < . Usually C also denotes 
the class C ordered by < , and C(P), P being a set, the set C(P) ordered by < . 

14 A.3. Let P be a set. The identity relation on exp P is clearly a closure operation 
for P which is finer than any closure for P; in other words, the identity relation 
on exp P is the finest closure for P. It will be called the discrete closure for P. A 
discrete space is a set endowed with the discrete closure. Setting «0 = 0 and uX = P 
for each non-void subset of P, we obtain a closure operation for P which is obviously 
coarser than any other closure for P, in other words, which is the coarsest closure 
operation for P. This closure will be called the accrete closure for P, and a set endowed 
with the accrete closure will be called an accrete space. It is to be noted that some 
authors employ the word indiscrete instead of accrete. 

We have just seen that the ordered set of all closure operations for a given set P 
possesses the least and the greatest elements. Rather extensive investigations of this 
ordered set are given in Chapter VI. For example it will be shown that the set of all 
closures for a given set is order-complete. These investigations become the starting 
point for many general constructions. Nevertheless, even in Chapters III and IV we 
shall make use of the notation and we shall prove some preliminary results. 

14 A.4. Definition. A subset I of a closure space <P, u> will be called closed if 
uX = X, open if its complement (relative to P) is closed, i.e. if u(P — X) = P — X. 
If u is a closure operation, then a set X is called «-closed (u-open) if X is closed 
(open) in the space <UDw, «> . 
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Thus closed sets of a space <P, u ) are exactly the "fixed elements" of u. Since 
always X c uX (by axiom (cl 2)) we obtain that a subset X of a space <P, w> is 
closed if and only if X => uX. 

14 A.5. Example s , (a) Let P be a set. Setting uX = X if X is a finite subset 
of P and uX = P if X is an infinite subset, we obtain a closure operation u = 
= {X ->• uX} for P (prove!). Observe that X <= P is closed in <P, u> if and only 
if X is finite or X = P. The closure of any subset is a closed set. The space <P, u> 
is discrete if and only if P is finite. 

(b) The construction in (a) admits the following generalization. Let P be a set 
and let m be an infinite cardinal. Define a closure operation u for P by setting uX = X 
if the cardinal of X is less than m, and uX = P otherwise. The space of (a) is obtained 
for m = X0. A set X <= P is closed in <P, u> if and only if the cardinal of X is less 
than m or X = P. The space <P, u) is discrete if and only if the cardinal of P is less 
than m. 

(c) Let <P, g ) be a well-ordered set. For each X c: P let uX be the subset of P 
consisting of all points of X and the successors of all x e X. The relation u = 
= {X -» uX} on exp P is a closure operation. If P contains at least three elements, 
then there exists a subset X of P such that uuX #= uX. Indeed, if x is the least ele-
ment, then u(x) 4= uu(x). 

(d) Let P be a set. Fix a point x of P. Let us define a closure operation u for P 
by setting uX = X if X is finite and uX = X u (x) otherwise. A subset X of P is 
closed in P if and only if X is finite or x e X. The closure of any subset is a closed set. 

(e) Let P be a set. Fix a point x of P. Put «0 = 0 and uX = X u (x) for X # 0. 
Clearly u = [X ^ uX} is a closure operation for P and I c P is closed in <P, u> 
if and only if X = 0 or x e X. 

(f) Let g be a reflexive relation for a set P, i.e. \P c g cz P x P. The expansion 
{X -> of g (see 1 E.14) is a closure operation for P which will sometimes be 
called the closure operation associated with g. Indeed, g[0] = 0, X c: 
because JP c Q and obviously u 7 ] = u If g is a reflexive quasi-order 
(that is, if g is also transitive), then the closure of any set is a closed set. A closure u 
for a set P is associated with a reflexive relation if and only if 

(*) uX = U{«(*) | xeX} 
for each X <=. P, i.e. the closure of a set X is the union of closures of all one-point 
sets contained in X. Indeed, if u = {X ^ g[X]}, then clearly (*) is fulfilled for each 
X c P. Conversely, if u fulfils (*) and g = 2{u(x) | x e P} ( = E{<x, y} | y e u(x)}), 
then clearly g is reflexive and uX = £>[X] for each X cz P, i.e., u is the closure asso-
ciated with g. The closures associated with reflexive relations will be studied in 
Section 26 under the name quasi-discrete closures. 

By induction we obtain at once from condition (cl 3) that 

(**) u W = C P J 
for every finite family of subsets of a space P. Formula (**) need not be true if the 
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family is infinite. For example, if <P, u> is the space in the example 14 A.5 (d), then 
the family {X a | a e A], where X„ = (a) and A c (P — (x)), fulfils (**) if and only 
if A is finite. For convenience we shall introduce the following important notion. 

14 A.6. Definition. A family {X a | a e A} of subsets of a closure space P will be 
called closure-preserving if, for each B c A, | a e = | a e 

14A.7. Every subfamily of a closure-preserving family is a closure-preserving 
family. Every finite family of subsets of space a is a closure-preserving family. 

Proof. The first statement is obvious and the second one has already been proved. 
Using the fact that Z u Y = Y if and only if X <= Y, we obtain from condition (cl 3) 

the following proposition, which asserts that if u is a closure operation for a set P, 
then the mapping u : <exp ?,<=)->• <exp P, <=> is order-preserving. 

14 A.8. IfX and Y are subsets of a closure space P such that X c Y, then X cz Y. 

14 A.9. Theorem. The collection of all closed subsets of a space P is closed 
under finite unions and arbitrary intersections, i.e. additive and completely multi-
plicative. The collection of all open sets of a space P is closed under arbitrary 
unions and finite intersections, i.e. completely additive and multiplicative. The 
sets 0 and P are simultaneously closed and open. 

Proof. If X is the union of a finite family { X J , then X = (j{Xa}, because any 
finite family is closure-preserving by 14 A.7, and if, moreover, all Xa are closed, i.e. 
Xa = Xa, we obtain X cz U{Xa} = X which means that X is closed. Now let X be the 
intersection of a family {Xa} of closed sets. Since X c Xa for each a, by 14 A.8 
we obtain X cz Xa = Xa for each a, i.e. X <= = X, which implies that X is closed. 
The set 0 is closed by (cl 1) and P is closed by (cl 2). The proof of all assertions 
concerning closed sets is complete. The statements concerning open sets follow from 
the statements concerning closed sets and de Morgan formulas. Indeed, for any family 
{Xa} in exp P the following de Morgan formulas are valid (see 2.16): 

p - n{*„} = u ^ - x . ) , 

p - u{*«} = n { p - xa]. 
Now, if X is the intersection of a finite family of open sets, then X is open because, 
by the first formula, the complement of X is closed as a finite union of closed sets. 
Similarly, the union of any family of open sets is open because, by the second for-
mula, its complement is closed (as the intersection of a family {P — Xa} of closed 
sets). Finally, since 0 and P are closed, their complements P and 0 are necessarily open. 

14 A.10. Definition. With any closure u for a set P there is associated the interior 
operation inta, usually denoted briefly by int, which is a single-valued relation on 
exp P ranging in exp P such that, for each X <= P, 

intu X = P - u(P - X) 
The set intuX is called the interior of X in <P, u> or the u-interior of AT. 
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From the definitions of a closure operation and an interior operation one immedia-
tely obtains the following assertion: 

14 A.l l . In any space P the following three conditions are fulfilled: 
(int 1) int P = P 
(int 2) For each AT cz P, intXaX 
(int 3) For each X <= P and Y cz P, int (AT n Y) = int X n int Y. 

It is worth noticing that the conditions (int 1), (int 2) and (int 3) are characteristic 
for the interior operation. More precisely, one can prove the following assertion: 
If int is a relation on exp P ranging in exp P satisfying the conditions (int k), k = 
= 1, 2, 3, and if we define 

uX = P - int (P - X) 

for each X <= P, then u = {Jf -*• uX} is a closure operation for P and int„ = int. 
Next, it is to be observed that open sets are exactly the "fixed elements" of the inte-
rior operation; stated in other words: 

14 A.12. A subset X is open if and only if int X = X. 
If u is a closure for P and intu is the corresponding interior operation, then Du = 

= D int„ and int„ X = P - u(P - X), uX = P - int„ (P - X). Thus the closure 
of a space is uniquely determined by the interior operation of the space (and of 
course, the interior operation is uniquely determined by the closure). In consequence, 
the relation 

{« -»• int„ | u e C} 

is a one-to-one relation ranging on the class of all interior operations, and every 
notion based upon the notion of a closure operation can be described in terms of 
interior operations. Closely related to the interior operation of a space P is the 
notion of a neighborhood of a subset of P. The next subsection is devoted to an 
examination of neigborhoods and the description of a space in terms of neighbor-
hoods. 

B. N E I G H B O R H O O D S 

14 B.l. Definition. A neighborhood of a subset AT of a space P is any subset U 
of P containing X in its interior. Thus U is a neighborhood of X if and only if AT c 
c P — P — U. By a neighborhood of a point x of P we mean a neighborhood of 
the one-point set (x). The neighborhood system of a set AT c P (a point xe P) in 
the space P is the collection of all neighborhoods of the set X (the point x). 

14 B.2. Let P be a space. A subset U of P is a neighborhood of a subset X of P 
if and only ifU is a neighborhood of each point ofX. A subset U of P is open if 
and only if it is a neighborhood of all of its points, or equivalently, it is a neighbor-
hood of itself. 

16 — Topological Spaces 
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Proof. The first assertion is obvious and the second one is a restatement of 14 A.12 
in view of the first statement. 

From 14 A.11 and the definition of neighborhood one obtains at once the fol-
lowing result: 

14 B.3. Theorem. Let be the neighborhood system of a subset X of a space P. 
Then fy is a filter on P (see 12 B.2) the intersection of which contains X, i.e. every 
element of "U contains X, finite intersections of members of °U belong to "U and if 
P ZD V ZD U e then Ve "U. 

14 B.4. Definition. Let P be a space. By 14 B. 3 the neighborhood system of a set X 
(a point x) in P is a filter. A base or a sub-base of this filter is called, respectively, 
a base or a sub-base of the neighborhood system of X in P. Thus a collection "f 
of subsets of P is a base of the neighborhood system of a set X (point x) if and only 
if each Ve V is a neighborhood of X (of x) and every neighborhood of X (of x) 
contains a Ve ir. A collection if of subsets of P is a sub-base of the neighborhood 
system of a set X (a point x) if and only if the collection of all finite intersections 
of elements of is a base of the neighborhood system of X (of x). The terms a local 
base at x and a local sub-base at x will often be used instead of a base and a sub-base 
of the neighborhood system of the point x. 

By 14 B.3 a local base at a point x is a base of a filter whose intersection contains x. 
There follows: 

14B.5. If is a local base at a point x, then the following assertions are 
true: 

(nbd 1) %(x) * 0. 
(nbd 2) For each U e <%(x), xeU. 
(nbd 3) For each Uy and U2 in ai'¿(x) there exists a U in with U c Ut n U2. 
The following simple but very important theorem shows that the closure of a set 

is completely determined by neighborhoods of points of the space. 

14 B.6. Theorem. A point xeP belongs to the closure of a subset X of a space 
<P, u> if and only if each neighborhood of x in <P, w> intersects X. 

Proof. If a neighborhood U of x does not meet X, then x 6 int U cz int (P — X) = 
= (P — uX), which shows that x $ uX. Conversely, if x $ uX, then P - X is a 
neighborhood of x which does not meet X. 

14 B.7. Corollary. If % is a local base at a point x in a space P, then xe X if 
and only if X cz P and each U e ¿U intersects X. 

Proof. If x eX, then by 14 B.6 each neighborhood of x, and hence each member 
of "U intersects X. Conversely, if each member of % intersects X, then obviously 
each neighborhood of x intersects X, and by 14 B.6 we obtain x e X. 

14 B.8. Let u and v be two closure operations for a set P. In order that u should 
be coarser than v it is necessary and sufficient that, for each xe P, every u-neigh-
borhood of x be a v-neighborhood of x. 
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Proof . If u is coarser than v, then x e i n t u l / = (P — u(P — U)) implies x e 
e (P - v(P - U)) = int„ U because u(P - U) => v(P - U). It follows that every 
u-neighborhood of a point x is a «-neighborhood of the point x. Conversely, if 
every u-neighborhood of a point x is a u-neighborhood of the point x, then by Theo-
rem 14 B.6, xevX implies xeuX for each Z <= p, that is, uX => vX for each X a P, 
which means that u is coarser than v. 

We must keep in mind that, in general, there exist many local bases at a point x. 
Indeed, if °U is a local base at x and U is any element of then the collection of all 
Ve V <= U, is also a local base at x. Therefore it will be useful to state the 
following corollary of the foregoing result. 

14 B.9. Corollary. Let u and v be two closure operations for a set P. For each x 
in P let <%(x) and y ( x ) be local bases at x in <P, u> and <P, t>> respectively. Then 
u is coarser than v if and only i f , for each xe P, every element of <%(x) contains 
an element of x). In particular, u = v if and only i f , for each x in P, every 
U e x) contains a Ve f (x) and every Ve y ( x ) contains a U e <%(x), or equi-
valently, %{x) and "V(x) are bases of the same filter on P. 

Remark. A collection 38 of subsets of a space P is sometimes said to contain 
arbitrarily small neighborhoods of a point x if 3$ contains a local base at x. 

The foregoing corollary 14B.9 asserts that every closure operation is completely 
determined by local bases at all points. It is sometimes convenient to define a closure 
operation for a set P by specifying which subsets of P are neighborhoods of what 
points, or, stated in other words, which filters on P are neighborhood systems of 
points, or, which filter bases are local bases at points. Now we shall prove that if 
{^(x) | x e P} is any family of filter bases on P such that x e f)^(x) for each x, 
then there exists a closure operation u for P such that, for each xe P, %(x) is a local 
base at x in <P, u>. 

14 B.10. Theorem. For each element x of a set P let Hf(x) be a collection of 
subsets of P satisfying conditions (nbd 1), (nbd 2) and (nbd 3) of proposition 14 B.5. 
Then there exists exactly one closure operation u for P such that, for each xeP, 
<^(x) is a local base at x in <P, u>. 

Proof. I. If there exists such a closure operation u for P, then by 14 B.7 

(*) uX = E{x | x e P, U e W(x) => U n X 4= 0} 
for each X a P. Thus there exists at most one closure operation u on P such that the 
%(x) are local bases. We must prove that the relation u defined by (*) is a closure 
operation on P and "K(x) are u-local bases. — II. Clearly (cl l) is fulfilled. The axiom 
(cl 2) follows from (nbd 2). To prove (cl 3), let X and Y be subsets of P. If 
x e (uX u u 7), then by (*) each set from <%(x) meets X or Y, and consequently, X u Y. 
By (#) we have x e u(X u Y) which proves (uX u u F ) c u(X u Y). To prove the 
converse inclusion, let x (uX u u Y). By (*) there exist U and Fin Hi(x) with U n X = 
= 0 = Vn Y. By (nbd 3) there exists a W in <flr(x) contained in VnU. Clearly 

16» 
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W n (AT u Y) = 0. By (*) x£ «(AT u Y) which proves «(X u Y) a (uX u uY). 
We have proved that u is a closure operation. — III. If x e P and U e then U 
is a «-neighborhood of the point x for, otherwise, x e u(P — U) and by (*) V n 
r\ (P — U) 4= 0 for each V e %{x), which is not correct for V = U. It remains 
to prove that every «-neighborhood W of x contains a U e 'W(x). Let us suppose 
U-W=Un(P-W)*Q for each U e %(x). Then by (*) xeu(P - W), 
which shows that W is not a neighborhood of x. 

14 B. l l . Corollaries, (a) For each element x of a set P let be a filter on P 
such that x e fl^(x). Then there exists exactly one closure u for P such that °U{x) 
is the neighborhood system at x in <P, u} for each x in P. 

(b) For each element x of a set P let <%(x) be a non-void family of subsets of P 
such that x e Then there exists exactly one closure u for P such that $f(x) 
is a local sub-base at x in <P, u) for each x in P. 

Theorem 14 B.10 and its corollaries 14 B.11 (a) and (b) will be used in the defini-
tion of the space of ultrafilters of a given set P and the generalized order closures 
for ordered sets, especially for the ordered set of reals. The set of all ultrafilters on 
a given set was considered in 12. 

14B.12. Ul traf i l ter space (associated with a given set A"). Suppose that A" is 
a set and fiX is the set consisting of all elements of X and all free ultrafilters 
on X. We shall define a family {<%x | x e flX} such that aUx is a filter base on fiX 
and x £ for each x. If xe X, then we put °UX = ((x)). If x is a free ultrafilter 
on X, then 

(*) mx = E{7 u B{y\ye (/IX - X), Ye y} \ 7 e x}. 
Obviously x £ (\aUx for each x. By virtue of 14 B.10 there exists exactly one closure 

for PX such that °UX is a local base at x for each x in PX. The set PX endowed with 
this closure operation will be called the ultrafilter space associated with X and it 
will also be denoted by PX. If X is finite, then evidently PX is defined to be the discrete 
space with underlying set X. In the following development let AT be a fixed infinite 
set and <UX be the collection given by (*). 

(a) If x £ (PX - X), then Wx = E{F| Ye x} and [<Tj n X = x. 

Proof. Fix an x in PX — X. Obviously, if Ye x then 

F = 7 u E{y\ye(pX - X), Ye y} 

Comparing this formula with (*) we obtain the first formula. The second one is 
self-evident. 

(b) If | i g n} is a disjoint finite cover of X, then {y,} is a disjoint cover 
of PX. 

Proof. I. If x £ PX — X, then YtE x for some i because x is an ultrafilter on AT 
and {Y;} is a finite cover of X (see 12 C.8). It follows that {Yf} is a cover of PX. — 
II. If x £ F( n Yj with i * j, then x e (PX - X) because X n F; = Y(, X n Yj = Yy 
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and Y; n Y, = 0. Thus x is an ultrafilter on X and, by definition, Y; as well as Yj 
belong to x. But this is also impossible because Yf n Yj = 0. 

(c) If Y c X, then Y is simultaneously open and closed in fiX. 
Proof. It is obvious that Yis a neighborhood of each of its points and hence Y 

is open. The collection (Y, X — Y) is a disjoint cover of X and consequently, 
(Y, X — Y) is a disjoint cover of fiX by (b). Since X — Yis open, as was just proved, 
its complement Yin /}X is closed. 

14B.13. General ized order c losures formonotone ordered sets. Suppose that 
<P, ^ ) is a monotone ordered set. Intervals of the form ] a, /J [, ] <-, ¡3 [, ] a, -»• [ 
and ] «-, -> [ ( = P) will be called order-open. Evidently, the collection of all order-
open intervals containing a given point x is multiplicative and non-void, and thus 
it is a filter base. By virtue of 14B.10 there exists exactly one closure operation u 
for P such that, for each x in P, the collection of all order-open intervals containing 
x is a local base at x in <P, w). This closure will be called the order closure for 
<P, ^ ). More generally, a closure v for P will be called a generalized order closure 
for <P, ^ ) if, for each x in P, there exists a local base at x consisting of intervals 
and containing all order-open intervals containing x. 

(a) If v is a generalized order closure for <P, ), then every order-open interval 
is open in <P, u). Indeed, any order-open interval is a neighborhood in <P, u> 
of all of its points (14 B.2). 

(b) The order closure u for <P, ^ ) is the coarsest generalized order closure for 
<P, :£>. By definition the order closure u is a generalized order closure for P. If 
v is any generalized order closure for <P, ), then v is finer than u by 14 B.9, be-
cause, for each x, the collection "Ux of all order-open intervals containing x is a local 
base at x in <P, m> and simultaneously °UX is contained in the neighborhood system 
at x in <P, v>. 

(c) Let v be a generalized order closure for <P, ) and let x e P. Only the fol-
lowing four cases are possible: 

(a) Order-open intervals containing x form a local base at x in <P, u); 
(p) intervals of the form [ x, J3 [, x < /?, form a local base at x in <P, u); 
(y) intervals of the form ] a, x ], a < x, form a local base at x in <P, u); and 
(8) the collection ([ x, x ]) is a local base at x in <P, u>. 
Of course none of these possibilities excludes any of the other ones. For example, 

if x is a point of P such that ] a, /? [ = (x) for some a and /?, and u is a generalized 
order closure for <P, ^ ), then all cases (a) — (8) actually appear. On the other hand 
if ] a, x ] 4= (x) for each a < x and [ x, /? [ 4= (x) for each x < then each case 
excludes each of the other ones. The simple proof of these statements is left to the 
reader. If (a) is fulfilled for each x, then the closure u is the order closure for <P, ^ >. 
If condition (|3) (condition (y)) is fulfilled for each x, then u is said to be the closure 
of the approximation from the right (from the left). In accordance with this termin-
ology the order closure is sometimes called the closure of two-sided approximation. 
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If condition (5) is fulfilled for each x in P, then evidently u is the discrete closure 
for P. It is to be noted that all foregoing definitions are meaningful, with slight 
modifications, for ordered sets which are not necessarily monotone. Nevertheless, 
the resulting closures are not too significant for general ordered sets and therefore 
we want to employ the term "order closure" for a more significant situation. 

(d) A generalized order closure v for an ordered set <P, ^ ) is the order closure 
for <P, ^ ) if and only if every open interval (i.e. every interval in <P, g >which is 
open in <P, v}) is order-open. 

14 B.14. Definition. The set R of reals endowed with the order closure will be 
called the space of reals and will be denoted by R. 

By 14 A.7 every finite family in a closure space is closure-preserving. Now we will 
introduce a wide class of closure-preserving families containing all finite families. 

14 B.15. Definition. A family {Xa | a e A} of subsets of a space P is called locally 
finite if each point x of P possesses a neighborhood intersecting a finite number 
of Xa only, i.e. for each x in P there exists a neighborhood U of x such that the set 
E{a | a e A, Xa n U 4= 0} is finite. 

As a straightforward consequence of the definition we obtain: 

14B.16. If {Xa\aeA} is a locally finite family in a space P, B '<= A and 
Ya cXafor each a in B, then the family {Yq\aeB} is also locally finite. In 
particular, every subfamily of a locally finite family is locally finite. 

14 B. 17. Theorem. Every locally finite family is closure-preserving. 
Proof. Since any subfamily of a locally finite family is locally finite, it suffices to 

show that if {Xa | a e A} is a locally finite family in a space P, then [ J { X ^ \ a e A ] = 
= | a eA}. The inclusion => follows from proposition 14 A.8 asserting that 
the closure considered as a mapping of <exp P, c ) into itself is order-preserving. 
To prove the converse inclusion, let us choose a point x in the set on the left side. 
The family being locally finite, we can choose a neighborhood U of x such that the 
set At of all a e A for which U n Xa 4= 0 is finite. In consequence, x belongs to the 
closure of the family {Xa | ae At}. But {Xa | a e A^ is finite and hence closure-
preserving. Thus xeXa for some a e Au which establishes that x belongs to the right 
side of the above equality and completes the proof. 

Of course, a closure-preserving family need not be locally finite. For example, 
if P is a space and A is any set, then {Xa | a e A} is closure-preserving, when Xa = P 
for each a in A. This family is not locally finite, not even point-finite, provided 
that A is infinite. By 14B.16, if {Xa} is locally finite and Ya c Xa for each a, then 
also {Yj is locally finite. The similar assertion for closure-preserving families is not 
true. This follows from the following observation: if {Ya} is any family in a space P 
and if Xa = P for each a, then {Xa} is closure-preserving as we have noted above, 
and obviously Y,, <= Xa for each a. To clarify the relationship between closure-pre-
serving and locally finite families we shall prove the following theorem. 
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14B.18. Theorem. The following two conditions are necessary and sufficient 
for a family {X0} of subsets of a space P to be locally finite: 

(a) [Xa] is closure-preserving; 
(b) {Xa} is point-finite. 
Proof. By the foregoing theorem 14 B.17 every locally finite family is closure-pre-

serving. Evidently, if {ATa} is locally finite then is point-finite. Thus conditions 
(a) and (b) are necessary. Conversely, let {X a \ a e A) be a family of subsets of 
a space P such that (a) and (b) are fulfilled. Choose a point x e P. We must find 
a neighborhood U of x intersecting only a finite number of Xa. Put 

Y = U { X | a eA,x$Xa). 

According to (a) the point x does not belong to Y and hence U = P — Y is a neigh-
borhood of x. According to (b) the set At = E[a | a e A, x e Xa} is finite. It follows 
that U intersects only a finite number of Xa, namely those Xa for which a e At. 

It is to be observed that condition (b) cannot be replaced by the weaker condition 
"{Xa} is point-finite". Indeed, if (P, u) is the space from 14 A.5 (e) such that P 
is infinite, then the family {(y) | y 6 P — (x)} is point-finite as well as closure-pre-
serving, but not locally finite. 

14B.19. Corollary of 14B.18. The union of any locally finite family of closed 
sets is a closed set. In other words, the collection of all closed subsets of a space 
is closed under locally finite unions. 

In conclusion we shall prove a property of open sets, the usefulness of which will 
become clear later. 

14B.20. Theorem. IfX and Y are subsets of a space P and U is a neighborhood 
ofX, then 

(*) X nY=X n YrTU. 
In particular, ifU is an open subset of P, then 

(**) U n F = U n Y n U. 
Proof. By proposition 14A.8 asserting that every closure operation is order-

preserving, the inclusion => (in (*)) holds. Let us suppose that there exists a point x 
in (X n Y) - (X n Y n U). Since Y c ( Y n U) u (P - U), we have F <= Y n U u 
u P — U. It follows that x e P — U, which contradicts the fact that U is a neigh-
borhood of The second assertion is a consequence of the first one. Indeed, if U 
is open, then U is a neighborhood of itself (by 14 B.2) and we may put X = U in (*). 

C. CLUSTER POINTS 

14 C.l. Definition. A cluster point or an accumulation point of a set X in 
Vspace P is a point x belonging to the closure of X — (x). A cluster point or an 
acdumulation point of a space P is defined to be a cluster point of the underlying 
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set of P. The set of all cluster points of a set X is denoted by X' and called the 
derivative of X in P. 

14 C.2. In any space P the following assertions are true: 
(a) X <= P implies X = XuX', (X - X) <= X'; 
(b) 0' = 0; 
(c) X <=. P, Y <= P imply. (X u Y)' = X' u Y'; 
(d) X <= Y a P implies X' c Y'. 
Proof. I. Clearly X' <= X, and if x e(X - X) then xeX'. Thus (a) is true. -

II. The statements (b) and (d) are evident. - III. Since X c (Z u Y), Y <= (X u 7), 
we obtain from (d) that X' c (X u Y)', Y' <=. (X u Y)' and hence (X' u Y') <=. 
c (X u Y)'. I f x e ( l u 7)', i.e. x e ( X u Y) - (x), then x e X - (x) u Y - (x) 
by (cl 3), and consequently, xeX' or x e Y', i.e. x e (X' u y') which completes 
the proof. 

It follows from 14 C.2 (a) that the closure of a space is a uniquely determined by 
the relation {Z -»• X' | X c P}. In consequence, every notion based upon the closure 
operation can be described in terms of cluster points. One can show that conditions 
(b) and (c) are almost characteristic for the relation {X —>• X'} of a closure space. 
More precisely, if {X -> X'} is a single-valued relation on exp P ranging in exp P, 
satisfying conditions (b) and (c), and such that x £ (x)' for each x e P, then there 
exists exactly one closure u for P such that X' is the derivative of X in the space 
<P, u}. 

14 C.3. Definition. An isolated point of a set X in a space P is a point x of X 
which is not a cluster point of X. Isolated points of a space P are defined to be the 
isolated points of the underlying set of P. 

14 C.4. The closure of a subset X of a space P is the disjoint union of the set of all 
cluster points of X and the set of all isolated points of X. — Obvious. 

14 C.5. A point x is an isolated point of a subset X of a space P if and only if there 
exists a neighborhood U of x in P so that U n X = (x). A point x is an isolated 
point of a space P if and only if (x) is an open subset of P. 

Proof . The second statement is a corollary of the first one. We shall prove the 
first statement. If U n X = (x) for some neighborhood of x, then U n (X — (x)) = 
= 0 and hence x $ X — (x), which means that x is not a cluster point of X, i.e. x 
is an isolated point of X. Conversely, if x $ X — (x), then the complement U of the 
set X — (x) is a neighborhood of x and clearly U n X = (x). 

Corollary. A space P is discrete if and only if each of its points is isolated. 

14 C.6. Cluster poin ts in ordered spaces. Suppose that <P, is a mono-
tone ordered set and u is a generalized order closure for <P, By 14 C.5 x e P 
is an isolated point of <P, u) if and only if [ x, x ] = (x) is a neighborhood of x. 
A point x of P will be called isolated from the left (from the right) or simply left-
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isolated (right-isolated), if the interval [ x, - » [ ( ] < - , x ], respectively) is a neighbor-
hood of x in <P, u>. Obviously: 

x is isolated from the left in <P, u) if and only if x$u E{y | y < x}, and x is 
isolated from the right if and only if x$u E{y [ x < y}. 

It is to be noted that left-isolated and right-isolated points were defined for a gene-
ralized order closure for a monotone ordered set <P, g ) , and they depend essen-
tially upon both u and g . For example, if u is a generalized order-closure for <P, g ) 
then u is also a generalized order closure for <P, g - 1 >, and clearly x is left-isolated 
in <P, «> relative to g if and only if x is right-isolated in <P, u> relative to g _ 1 . 
There are many notions depending on both g and u. Therefore it is convenient 
to introduce the following definition. 

14 C.7. Definition. An ordered space (a generalized ordered space) is a struct 
<P, g , u) such that <P, g ) is a monotone ordered set and u is the order closure 
(a generalized order closure) for <P, g >. It will be convenient to employ the term ge-
neralized ordered space also for an underlying space of a generalized ordered space. 

14 C.8. The ordered space of all ordinals ft < £ will be denoted by The spaces 
have several special properties, in particular if £ is an initial ordinal, and they 

will often be used as counter-examples. For any ordinal a we denote by coa the 
initial ordinal rj (see 11 B.6, remark 2) such that card Ord^ = X„. 

14C.9. Definition. A regular open set of a closure space P is an open subset U 
of P such that U = int U. A regular closed set is a closed set X such that X = 
= int X. 

14 C.10. Let P be a space. A subset U is regular open if and only if its comple-
ment P — U is regular closed. The collection of all regular open (regular closed) 
subsets of P is multiplicative (additive) and contains P and 0. 

Proof. It is easily seen that U = int U if and only if (P - U) = int (P - U) 
which proves the first statement. According to the de Morgan formulae it remains 
to prove, for instance, the statements concerning regular closed sets. Obviously P 
and 0 are closed, and int P = P = P, int 0 = 0 = 0, which show that both P 
and 0 are regular closed. If X and Y are regular closed, then X u Y is closed by 
14 A.9 and 

int (X u Y) => int X u int Y = intX u int Y = X u Y 

which shows that int (X u 7) = X u Y and completes the proof. 
The union of two regular open sets need not be regular open. Indeed, in 

every generalized ordered space every order-open interval is regular open, but the 
union of two order-open intervals need not be regular open. For example, X = 
= (] 0, 1 [ u ] 1, 2 [) is not regular open in the space R of reals, because the closure 
of X is [0, 2] and the interior of [0, 2] is ] 0, 2 [ * X. 
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15. T O P O L O G I C A L S P A C E S 

In this section an extensive and important class of closure spaces, called topological 
spaces (Definition 15 A.1), will be introduced and studied. A closure operation is 
not uniquely determined by the collection of all open sets while two topological 
closures coincide provided that the corresponding collections of open sets coincide. 
Thus a topological closure for a set P is uniquely determined by a subset of exp P. 
Here we shall show that generalized ordered spaces are topological and later we shall 
show that also metrizable spaces (18 A.12) and uniformizable spaces ( = completely 
regular spaces) (24 A.2) are topological and that every topological group is 
a topological space (19 B.4). 

The second part is devoted to a preliminary exposition of the convergence of nets. 
It will be shown that topological closures are characterized (among closure spaces) 
by the condition on iterated limits (15 B.13). 

A. T O P O L O G I C A L CLOSURES 

15 A.1. Definition. A topological closure operation (or simply a topological 
closure or merely a T-closure) for a set P is a closure operation u for P satisfying 
the following condition: 

(cl 4) For each X <= P, uuX = uX. 
A closure space P is said to be topological (or simply a T-space) if the closure of P 
is topological. 

Stated in other words, a closure u is topological if and only if u is a transitive 
relation. Next, a closure u is topological if and only if u 0 u = u, i.e. u is an "idem-
potent element" relative to the internal composition o. 

Notice that the discrete and the accrete closures for a set are topological, and 
so are all closures from 14 A.5 with the exception of those in (c) and (f). 

15 A.2. Theorem. Each of the following four conditions is necessary and suf-
ficient for a closure space P to be a topological space. 

(a) The closure of each subset of P is closed in P; 
(b) The interior of each subset of P is open in P; 
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(c) For each xe P the collection of all open neighborhoods of x is a local base 
at x; 

(d) For each x in P, if U is a neighborhood of x, then there exists a neighbor-
hood Vof x such that U is a neighborhood of each point ofV. Stated in other words, 
every neighborhood of any point x e P is a neighborhood of a neighborhood of x. 

Proof. The pattern of the proof is (a) => (b) => (c) => (d), (a) is necessary and (d) 
is sufficient. Condition (a) is a restatement of condition (cl 4). In particular, 
(a) is necessary. If the closure of every subset of P is closed, then the interior of any 
set X is open as the complement of the closed set P — X (by definition 14 A.10, int X = 
= P — P — X). Thus (a) => (b). Now assume (b) and let us consider a neighbor-
hood U of a point x of P. By (b) int U is open and by 14 B.2 int U is a neighborhood 
of each of its points, in particular, of x. Since obviously int U c U, condition (c) 
is fulfilled. Thus (b) implies (c). The implication (c) => (d) is obvious because an 
open set is a neighborhood of itself (pick an open F such that x e F c C7). It remains 
to prove that (d) is a sufficient condition. Suppose x e uuX. We must prove x e uX. 
By 14 B.6 it is sufficient to show that every neighborhood U of x intersects X. By 
condition (d) we can choose a neighborhood F of x such that U is a neighborhood 
of each point of F. Since x e uuX, by 14 B.6 F intersects uX, and therefore we can 
choose a point y in F n uX. Since y e uX and U is a neighborhood of y (U is a neigh-
borhood of each z e F), again by 14 B.6 U intersects X. 

15 A.3. Corollary. Each of the following two conditions is necessary and suf-
ficient for a closure space P to be a topological space: 

(a) the closure of any subset XofP is the intersection of all closed sets contain-
ing X; 

(b) the interior of any subset X of P is the union of all open subsets contained 
in X. 

For further characterizations of topological spaces see the exercises. 
According to 15 A. 3 a topological closure operation is uniquely determined by the 

collection of all open sets and also by the collection of all closed sets. This fact 
enables us to define a topological closure operation on a set P by declaring a suit-
able subcollection of exp P to be the collection of all open or closed sets (Theorem 
15 A.6, 15 A.10). It will be seen that it is sufficient to specify suitable subco!lections 
of open or closed sets, the so-called bases and sub-bases (Theorems 15 A.9, 15 A.13). 

We begin with an adaptation of Theorem 14 B.10 to topological closures. 
15 A.4. Theorem. Let P be a set and for each x in P let ^(x) be a collection 

of subsets of P satisfying the conditions (nbd 1), (nbd 2) and (nbd 3) of 14 B.5 
and also the following condition: 

(nbd 4) For each x in P and each U in °U(x) there exists a V in ^f(x) such that 
for each y in V, some We at'¿(y) is contained in U. 

Then there exists exactly one closure operation u on P such that °ll{x) is a local 
base at x in <P, u ) for each xe P. The closure operation u is topological. 
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Proof. According to Theorem 14B.10 there exists exactly one closure operation 
u on P such that the collections Hl(x) are local bases (condition (nbd 4) is not used). 
It remains to prove that u is a topological closure; this follows from Theorem 
15 A.2 because condition (nbd 4) implies condition (d). 

15 A.5. Theorem. Let be a collection of subsets of a set P such that the 
following two conditions are fulfilled". 

(ob 1) The union of is P; 
(ob 2) For each B1 and B2 in 38 and for each x in Bt n B2 there exists a B in 38 

with x e B c Bj n B2. 
.Then there exists exactly one closure operation u on P such that, for each x in P, 

the collection 38(x) = E{5 | xe Bs 38} is a local base at x in <P, u>. This closure 
is a topological closure operation, and a subset U of <P, is open if and only ifU 
is the union of a subcollection of 38. In particular, all sets of 38 are open in <P, u>. 

Proof . Obviously the collections 38{x) fulfil conditions (nbd 1) — (nbd 4). By 
Theorem 15 A.4 there exists exactly one closure u on P such that the collections 
38{x) are local bases and this closure is topological. Next, every B e 38 is open in 
<P, u) because it is a neighborhood of each of its points. Indeed, if xeB then 
B e 38 (x). Since any union of open sets is an open set, we have proved that unions 
of sets from 38 are open. Finally, if U is an open subset of <P, u>, U is a neighbor-
hood of each of its points, and consequently we can choose a family {Bx | x e U} so 
that x e Bxe 38(x) and Bx <= U. Obviously the union of {Bx} is U. Thus every open 
subset of <P, u) is the union of a subcollection of 38, concluding the proof. 

By 14 A.9 the collection <9 of all open subsets of a closure spaces <P, u> fulfils 
the following three conditions: 

(o 1) The set P belongs to <9; 
(o 2) The union of any subcollection of <9 belongs to (9; 
(o 3) The intersection of any two members of 0 belongs to 0. 
It is to be observed that by (o 2) the empty set belongs to (9, since the union 

of an empty collection is, by definition, the empty set. In the converse direction we 
shall prove the following result. 

15 A.6. Theorem. Let (!) be a collection of subsets of a set P fulfilling con-
ditions (o l), (o 2) and (o 3). Let C be the set of all closure operations u for P such 
that (9 is the collection of all open subsets of <P, u>. There exists exactly one 
topological closure operation in C and this closure is a coarsest element in C. 

Proof . Clearly, the collection <9 fulfils conditions (obi) and (ob 2) of 15A.5. 
By Theorem 15 A.5 there exists exactly one closure operation u on P such that, for 
each x e P, the collection of all U e Q containing x is a local base at x in <P, w); 
again by 15 A.5 a set Fis open in <P, u> if and only if Fis a union of a subcollection 
of <9. But <9 is closed under unions by (o 2) and consequently <9 is the collection of all 
w-open sets. Thus u e C. Moreover, Theorem 15 A.5 asserts that u is a topological 
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closure. It remains to show that u is the coarsest closure from C; this follows 
from the following result which will often be needed in the sequel. 

15 A.7. A topological closure u e C(p) is coarser than a closure v e C(P) if and 
only if every u-open set is v-.open, or equivalently, if every u-.closed set is v-closed. 
In particular, two topological closures u and v for a set P are identical if and only 
i f , for each subset X of P, the following two equivalent conditions are fulfilled: 

(a) X is u-open o X is v-open; 
(b) X is u-closed o X is v-closed. 
Proof. First suppose that a closure u is coarser than a closure v. By 14 B.8, if U 

is a u-neighborhood of a point x, then U is a ^-neighborhood of x. Since a set is open 
if and only if it is a neighborhood of each of its points (by 14 B.2), it follows that every 
w-open set is u-open (observe that the assumption that u is topological was not needed). 
Conversely, let u be topological and let every u-open set be u-open. By 14 B.9, to 
prove that u is coarser than v it is sufficient to show that, for each point x, there 
exists a local base ^f(x) at x in <P, u> such that any member U of %(x) is a u-neigh-
borhood of x. Since u is topological, by 15 A.2 the collection %{x) of all u-open 
sets containing x is a local base at x in <P, u). Now, if U e °U(x), then U is u-open, 
by our assumption U is also u-open, and since an open set is a neighborhood of each 
of its points, U is a u-neighborhood of x. 

15 A.8. Definition. An open base of a topological space <P, u> is a collection 38 
of subsets of P such that a subset U of <P, u) is open if and only if it is the union 
of subcollection of 38. An open sub-base of a topological space <P, u> is a col-
lection 38 x of subsets of P such that the collection 38 of all finite intersections of sets 
from 38j is an open base of <P, u). 

Stated in other words, an open base of a topological space is a collection 38 of 
sets such that the smallest completely additive collection of sets containing 38 is 
identical with the collection of all open sets. It is easy to find necessary and sufficient 
conditions for a given family of sets to be an open base or an open sub-base of 
a topological space. 

15 A.9. Theorem. Let 38 be a collection of subsets of a set P. There exists a topo-
logical closure operation u on P such that 38 is an open base of <P, u> if and only 
if the family & fulfils conditions (ob 1) and (ob 2) of 15 A.5. In order that 38 
be an open sub-base for a topological space <P, u> it is necessary and suffici-
ent that the union of 38 be P. 

Proof. The assertion concerning sub-bases is a straightforward consequence of 
that concerning open bases which will now be proved. According to Theorem 
15 A.5 the conditions (ob 1) and (ob 2) are sufficient for the collection 38 to be an 
open base of a topological space <P, u). Conversely, suppose that 38 is an open base 
of a topological space <P, u). The union of 38 is P because P is open in <P, u> 
(by 14 A.9). Next, suppose xeBt n B2 with e 38. Since Bt and B2 are open, their 
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intersection Bi n Bz is also open (by 14 A.9). Since 88 is an open base, Bt n B2 

is the union of a subcollection 0Si of 08. Clearly some Be 88Y contains x. 
Up to now we have restricted ourselves to open sets. Since a set is open if and only 

if its complement is closed, the collection of all open sets is uniquely determined by 
the collection of all closed sets. By 14 A.9, the collection of all closed subsets of 
a space <P, u> fulfils the following three conditions: 

(c 1) The empty set belongs to (€; 
(c 2) The intersection of any subcollection of ^ belongs to c€; 
(c 3) The union of any two members of belongs to c6. 
It is to be noted that condition (c 2) implies P e <€. Indeed, the intersection of an 

empty family of subsets of P is P by our Definition 2.11. 

15 A.10. Theorem. If ^ is a collection of subsets of a set P satisfying the con-
ditions (c 1), (c 2) and (c 3), then there exists exactly one topological closure oper-
ation u for P such that <€ is the collection of all closed sets of <P, u>. For any X c P 
the closure ofX is the intersection of all C eW containing X. 

15 A. l l . Definition. A closed base of a topological space P is a collection 08 
of subsets of P such that X c= P is closed if and only if X is the intersection of a sub-
collection of 08. A closed sub-base of a topological space P is a collection 08i of 
subsets of P such that the collection 08 of all finite unions of members oi88i is a closed 
base of P . 

From the de Morgan formulae 2.16 the following result follows at once: 

15 A.12. 08 is a closed base or a closed sub-base of a topological space P if and 
only if the collection consisting of the complements (in P) of all Be 08 is an open 
base or an open sub-base, respectively, of P. 

Combining 15 A.12 and 15 A.9 we obtain at once the following characterization 
of collections which are closed bases or sub-bases of a topological space (applying 
the de Morgan formulae). 

15 A.13. Theorem. A collection 88 ̂  of subsets of a set P is a closed sub-base 
of a topological space <P, u> if and only if the intersection of 88x is empty. A col-
lection 88x of subsets of a set P is a closed base of a topological space <P, «> if 
and only if the following two conditions (cb 1) and (cb 2) are fulfilled: 

(cb 1) The intersection of 88x is empty; 
(cb 2) For each Bt and B2 in 88^ and x $ (Bx u B2) there exists a B in 88^ such 

that x $ B =5 u B2. 
The introduced notions will be illustrated upon generalized ordered spaces. We recall 

that generalized order closures for monotone ordered sets were introduced in 14 B.13. 

15 A.14. Theorem. Let <P, be a monotone ordered set. The order closure u 
for <P, is topological and the collection of all order-open intervals is an open 
base for <P, u>. A closure v for P is a generalized order closure for <P, if 
and only if v is topological, every order-open interval is v-open (i.e. v is finer 
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than the order closure) and a collection of intervals forms an open base for <P, 
Proof. Let Hi by the collection of all order-open intervals in <P, ). — I. The 

first statement is almost evident. By definition, °UX = E{(7 | U e Hi, x e U} is a local 
base at x in <P, u> for each x. By virtue of 15 A.5 the closure u is topological and Hi 
is an open base for <P, u>. — II. Now let v be a generalized order closure for <P, g >. 
For each x in P let "Vx be the set of all neighborhoods of x in <P, v} of the following 
form: ] a, /? [ or ] «-, [, ] a, x ], [ x, j8 [ or [ x, x ] = (x) (see 14 B.13 (c)). Each 
element I of each f , i s open in <P, v). Indeed, it is easily seen that I is a neighborhood 
of each of its points. This is evident in the last case (/ = (x)) and this has already been 
shown for the first case (7 = J a, jS [ or J = ] < - , - > [ ) ; in the remaining two cases, 
/ = J a, x ] or I = [ x, P [, the interval I is, by definition, a neighborhood of x, and 
I — (x) is open as an order-open interval. Now according to 15 A.2 the space <P, v} 
is topological (there exists a local base at x consisting of open sets for each point x). 
Finally, for instance the union of { f x \ x e P} is an open base for <P, u). — III. Now 
let v be a topological closure for P such that some collection if of intervals containing 
the collection Hi of all order-open intervals is an open base for <P, u>. For each x 
in P the collection iPx = E{K| x e F e f } i s a local base at x in <P, v} and clearly 
f , contains all order-open intervals containing x. By definition 14 B.13 the closure 
v is a generalized order closure for <P, ^ ). 

Let <P, be a generalized ordered space and let "f be the collection of all 
open intervals of <P, gj, v). Since "f is an open base of <P, t>>, every open subset 
of <P, v} is the union of a subcollection of "V. It will be shown immediately, that 
an open subset of <P, v) need not be the union of a disjoint subcollection of "V. 
On the other hand, we shall show that every open subset of <P, u> is the union 
of a disjoint collection of open (in <P, v}) interval-like sets (in <P, ^ >). Recall 
that an interval-like set is a set I such that xel, y el implies [ x, y ] <=. I. 

15 A.15. Theorem. Let if be the collection of all open interval-like subsets 
of a generalized ordered space <P, v). For each open subset U of <P, v> there 
exists (exactly one) disjoint subcollection 'W^ofiV such that 

(a) U is the union of and 
(b) if "W is a disjoint subcollection of "HP with union U, then W is a refine-

ment of T^q. 
Proof. Let U be an open subset of <P, t>>. If U is empty then iT' = (0) possesses 

the required properties. Suppose U 4= 0. For each x in U let Vx be the union of 
all We i f containing x and let 

ir0 = e{vx | x e u). 

It is easily seen that "#"0 possesses all the required properties. 
It can be easily shown that an ordered set <P, ^ ) is boundedly order-complete 

(i.e., every non-void bounded subset possesses a least upper bound as well as a greatest 
lower bound) if and only if every interval-like subset of <P, ^ ) is an interval (ex. 11). 



256 I I I . T O P O L O G I C A L S P A C E S 

Combining the "only if" part of this result with the foregoing Theorem 15B.15 
we obtain at once the following important result. 

15 A. 16. Theorem. If v is a generalized order closure for a boundedly order-
complete ordered set <P, then every open subset of <P, v) is the union of a dis-
joint collection of open (in <P, u>) intervals (in <P, g>). 

Corollary. If u is the order closure for a boundedly order-complete ordered set 
<P, then every open subset of <P, u) is the union of a disjoint collection of 
order-open intervals. 

Proof. By 14B.13 every open interval in <P, u> is an order-open interval in 
<P, 

B. C O N V E R G E N C E 

In this subsection we begin the study of convergence of nets. Here we restrict 
ourselves to the definition and some elementary properties; an advanced theory will 
be developed in Section 35. The main results are the description of the closure-
structure of a space in terms of convergent nets (15 B.4), and the very suggestive 
characterization of topological spaces by the condition on iterated limits (15 B.13). 
The reader will see that the concept of a net converging to a point is a generalization 
of the notion of a sequence of real numbers converging to a real number, with which 
the reader is surely familiar. It is to be noted that the concept of a net converging 
to a point is a fundamental notion in analysis. 

Recall that a subset B of an ordered set {A, is said to be right (left) cofinal 
if each element of A is followed (preceded) by an element of B. The intersection of 
two right cofinal subsets need not be a right cofinal set. We shall work with sets which 
intersect any right (left) cofinal set in a right (left) cofinal set, and ordered sets such 
that if a subset does not have the property just mentioned then its complement is 
right (left) cofinal. 

15 B.l. Definition. A subset B of an ordered set (A, g > is said to be right (left) 
residual if each element of A is followed (preceded) by an element b of B such that 
the fibre (inverse fibre) of g at b is contained in B, i.e. g [(b)] <= B ( g ~1 [(ft)] cz B, 
respectively). Recall that a right (left) directed set (cf. Definition 10 E.1) is a non-
void quasi-ordered set such that all its finite subsets are right (left) bounded, i.e. a 
quasi-ordered set <A, such that A * 0 and g [(a)] n g [(b)] * 0 ( g - 1 [(a)] 
n g ~1 [(£>)] #= 0) for each a and b in A. For brevity we shall use directed, cofi-
nal, residual instead of right directed, right cofinal and right residual. Finally, we 
shall say that a relation g directs a set X if <X, g} is a directed set. 

In order that a set B be residual in an ordered set <A, it is necessary and 
sufficient that B n C be cofinal in (A, whenever C is cofinal in (A, Indeed, 
if B is residual and C cofinal and if a is any element of A, then g [(b)] c: B for some 
b, a g b because B is residual, and there exists a c in C such that b g c because C 
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is cofinal; thus a g e and ce B n C which proves that BnC is cofinal. Conversely, 
if B is not residual then there exists an a in A such that g [(b)] n (P — B) * 0 
for each b, a g b, and hence the set C = (P - g [(a)]) u ( g [(a)] n (P - 5)) 
is cofinal but B n C n ( g [(a)]) = 0 which shows that B n C i s not cofinal. 

It is evident (and follows from the preceding statement) that each residual set 
is cofinal and it follows from the preceding statement that the intersection of two 
residual sets is a residual set. Clearly a subset containing a residual set is residual, 
and therefore the collection of all residual subsets of an ordered set <A, g > is 
a filter on A which is proper whenever A #= 0. 

A cofinal set need not be residual; a cofinal fibre is, however, residual. 
Each of the following equivalent conditions characterize directed sets among 

all non-void ordered sets <A, g> : 
(1) Each fibre is cofinal (and hence residual). 
(2) If B <=. A intersects each residual subset of </4, g ) , then B is cofinal (i.e. 

if B is not cofinal then A — B is residual). 
(3) If B c: A intersects each cofinal subset of <A, g ) , then B is residual (i.e., 

if B is not residual then A — B is cofinal). 
(4) If {B,} is a finite cover of A, then some Bi is cofinal. 
Proof. Condition (l) is equivalent to the following statement: g [a] n g [b] =1= 0 

for each a, be A (i.e. any two elements are followed by an element). Consequently, 
if (A, g ) is directed then (l) is true, and if A * 0 and (1) is true then (A, g ) is 
directed. We shall prove that conditions ( l) —(4) are equivalent. Clearly conditions 
(2) and (3) are equivalent. Assuming (1), if B intersects each residual set then B 
intersects each fibre (because each fibre is residual), and hence B is cofinal. Thus 
(1) => (2). If (2) is true and {£;} is a finite cover of A such that no Bt is cofinal, then 
each A — Bt is residual, and hence C = f\{A — B;} is also residual. Next, clearly 
C = 0 and A 4= 0, which contradicts the fact that C is residual. Hence (2) => (4). 
Finally, assuming (4) let us consider the cover ( g [a], A — g [a]) of A. The set 
B = (A — g [a]) is not cofinal (because B n g [a] = 0); by (4) the fibre g [a] 
is cofinal. Hence (4) => (l). 

We shall need the following simple results whose proof is easy and therefore 
left to the reader. If B is a cofinal subset of <A, g ) and C is residual in <A, g ), 
then B n C is residual in <B, g„>. The product of a non-void family of directed 
sets is a directed set, and if B is cofinal in a directed set {A, g > then <B, g fl> is 
a directed set. It is self-evident that the assumption "B is cofinal" is essential. 

All the results just stated will be used without any reference. Now we are prepared 
to give fundamental definitions. 

15 B.2. Definition. A net is a pair <iV, g > such that N is a non-void family and 
g is an order for the domain of N. Thus a net is a domain-structured single-valued 
relation and in accordance with the general convention all terminology and all con-
ventions concerning relations apply to nets, e.g. a net <N, g ) ranges in a struct £ 

17 — Topological Spaces 



258 I I I . T O P O L O G I C A L S P A C E S 

if N ranges in the underlying class of A net (N, will be called monotone 
(directed) if the ordered set <DN, ^ ) is monotone (directed). A point x is said to be 
a limit point (an accumulation point) of a net (N, in a closure space <P, u> 
if x e P,N ranges in P and the set N~'[[/] is right residual (right cofinal) in (ON, ^ ) 
for each neighborhood U of x in (P, u>. 

One can go to examples 15 B.6. We prefer to begin with the proof of fundamental 
results which show the significance of the concepts just introduced. 

k 
15B.3. Every limit point of a net (in a closure space) is an accumulation point. 

Let Ji = (N, be a net in a closure space (P, u}. Consider the set X of all 
accumulation points of Ji in (P, m> and the intersection Y of the closures of sets 
N[/4], where A varies over all residual subsets of <DN, Then X c Y; parti-
cularly, if'Ji ranges in a subset Z of P then X <= uZ. If Ji is directed then X = Y. 

Proof. The first statement is evident. If x e (P — Y) then xe(P — u iV[,4]) for 
some residual set A and hence U = P — is a neighborhood of x. The set 
B = N - 1 [ [ / ] is not cofinal in <DN, because B n A = 0 and A is residual. By 
definition x is not an accumulation point of Ji. Conversely, assuming that Ji is 
directed and U is a neighborhood of a point x of Y, we must show that B = N~'[C/] 
is cofinal in <DN, ^ ) . As noted above it is sufficient to prove that B intersects 
each residual set. But this is almost evident: if A is residual then x e u 
and hence the neighborhood U of x intersects N[/ l ] which shows that A n B = 
= N _ 1 [ (7 n iV[>4]] is non-void. 

Remark. Show that in general X + Y. 

15 B.4. Theorem. Each of the following conditions (a) — (d) is necessary and 
sufficient for a point x to be an element of the closure of a subset X of a space 

(a) x is a limit point of a directed net ranging in X. 
(b) x is a limit point of a net ranging in X. 
(c) x is an accumulation point of a directed net ranging in X. 
(d) x is an accumulation point of a net ranging in X. 

Proof. By 15 B.3. each of the conditions is sufficient. Since condition (a) implies 
each of the conditions (b), (c) and (d) (obviously (a) implies (b), (c) implies (d), 
and (a) implies (c) by 15 B.3), it will suffice to prove that condition (a) is necessary. 
Assume that x belongs to the closure of X and consider the neighborhood system Hi 
at x. Since Hi is a proper filter on Sfi, Hi is directed by the inverse inclusion =>. Next, 
since each U e Hi intersects X, there exists a family {xv | U e Hi} such that xv e X n U 
for each U. Thus ({x^ | U e Hi}, =>) is a directed net ranging in X. It is almost self-
evident that this net converges to x in 0>. Indeed, if U is a neighborhood of x, 
then U eHi, and if Ve Hi, F c U, then xv e V <= U and hence xv e U; since the set 
(Hi, =>) is directed, the set E{F| VeHl, V <= U} is residual. 

The foregoing theorem shows that the closure structure of a space is uniquely de-
termined by the convergence of directed nets; more precisely, if u and v are closures 
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and Lim u and Lime denotes respectively the class of all pairs ( J f , x> such that^f 
is a directed net converging to x relative to u or v, then Lim u = Lim v implies u = v. 
It follows that every notion based upon closures can be described in terms of con-
vergence of directed nets. As an example of a description of a notion based upon 
the notion of a closure operation we shall state the following corollary of 15 B.4. 
Later we shall give a description of topological closures. 

15 B.5. A point x is a cluster point of a subset Yin a closure space P if and only 
if x is a limit point in P of a net (directed net) ranging in Y — (x). Similarly with 
"limit point" replaced by "accumulation point". 

Proof. We know that x is a cluster point of Y if and only if xeX, where X = 
= Y - (x). Apply 15B.4. 

As a further example one can observe that U is a neighborhood of a point x if 
and only if x is a limit point of no net (directed net) ranging in the complement 
of U. Similarly with "limit point" replaced by " accumulation point". 

15B.6. Examples, (a) If <JV, g ) is a constant net with the (unique) value x, 
then <N, g ) converges to x in any space containing its range. 

(b) If P is a discrete space, then a net <iV, g > in P converges to a point x of P 
if and only if Na = x for all a in a right residual subset of <DN, 

(c) A space P is an accrete space if and only if every net in P converges to each 
point of P. Thus a net may possess many limit points. 

(d) The notion of a convergent net appears frequently in elementary calculus. 
For example, the sum of a family {xa \ a e A} of real numbers is defined as the limit 
point, if it exists, of the net 

<{£{xa | a e F} | F is a finite subset of A), <= ) . 

We shall return to this example in Section 19, where the sum of a family in a com-
mutative topological group will be considered. Next, the upper and the lower Riemann 
integral of a function on an interval [ a, b ] of real numbers can be defined as the 
limit point of a net (N, g ) whose domain is the set of all subdivisions of [ a, b ], 
the values of N are upper and lower Darboux sums and g is an appropriate order. 

15 B.7. Convergence of sequences. Throughout the following, the word 
sequence will be used also for the net <S, g ) where S is a sequence, that is a single-
valued relation on N, and g is the natural order for DS = N. It is interesting to 
notice that the convergence of sequences can be described without mentioning the 
order for N. Indeed, a subset A of N is right residual in <N, g ) if and only if its 
complement in N is finite and a subset A of N is right cofinal if and only if A is 
infinite. Thus a sequence <S, g > in a space P converges to a point x of P if and only 
if each neighborhood of x contains all S„ except for a finite number of n's. Similarly, 
x is an accumulation point of <S, g ) if and only if every neighborhood of x contains-
Sn for an infinite number of n's. It is to be noted that one could define limit points 

17» 
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and accumulation points of a family {xa \ a e A} in a space P as follows: x is a limit 
point if every neighborhood of x contains all xa except for a finite number of a's, 
and x is a cluster point if every neighborhood of x contains x„ for an infinite number 
of a's, i.e., if {xB} is not "locally finite at x". Nevertheless these notions do not seem 
to be sufficiently important. 

In general the closure of a subset of a space cannot be described in terms of con-
vergence of sequences, that is, a point x may belong to the closure of a set X in 
a space P whereas no sequence ranging in X converges to x. This will be shown by 
the following two examples: 

(a) Let Tmi + 1 be the ordered space of all ordinals ^ a^. It is easily seen that no 
sequence S ranging in Tmi converges to ««j. Indeed, since the range ES of S is 
countable, there exists a right bound a of ES. Now clearly ] a, -» ] is a neighbor-
hood of co1 in Tmi + 1 which is disjoint with ES, and hence S does not converge to to,. 

(b) Let us consider the ultrafilter space PX of an infinite set X. The closure of X 
in PX is PX but no sequence ranging in X converges to any point of px — X. As-
suming that a sequence S ranging in X converges to a point y e (px — X) we shall 
derive a contradiction. If ES is finite, then PX — ES is a neighborhood of y and hence 
S does not converge to y, which contradicts our assumption. If ES is infinite then 
ES can be written as the union of two disjoint infinite sets, say Xt and X2, and hence 
Xt $ y or X2 $ y. If Xt $ y, where i = 1 or i = 2, then X — Xt is a neighborhood 
of y in PX (see 14 B.12) and hence an infinite number of S„ lies in the complement 
of a neighborhood of y, which implies that S does not converge to y. It is interesting 
to notice that any net (N, iS> ranging in X has at least one accumulation point 
in PX. For a proof let us consider the collection q of all sets Y <= X such that N[B] <=. Y 
for some residual set B in <DN, ^ >. Clearly tj is a proper filter of sets on X and there-
fore we can choose an ultrafilter y on X containing r\. If y is fixed and f j j ' = (*)> 
then clearly Na = x for all a in a cofinal subset of <DAT, and therefore x is an 
accumulation point of <N, in PX. If y is free, then y e ( p x — X) and if U is any 
neighborhood of y then Y c U for some Fin y; we shall show that cz Yfor some 
cofinal set B in <DN, £ >. If a e DAT then [(a)]] e /? and hence [(a)]] e y, 
which implies that [(a)]] n F 4= 0 and hence N^ e Y for some b following a. 
It is to be noted that it can be shown that each net in PX has an accumulation point 
in PX. 

The class of all spaces which can be described in terms of the convergence of sequen-
ces will be investigated in Section 35. Here we will consider a rather extensive and 
important subclass, consisting of spaces with countable local characters. 

15 B.8. Definition. Let P be a closure space. If x e P then the smallest cardinal 
of a local base at x is called the local character of P at x or the local character 
of x in the space P. The least upper bound of local characters of P at x, x e P, is called 
the local character of P. It is to be noted that a space of a countable local character 
is often said to satisfy the first axiom of countability. 
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If P is topological then the total character of P is defined to be the smallest cardinal 
of an open base for P. 

For elementary properties of local characters consult the exercises. Here we only 
observe that the space R of reals is of a countable infinite local character. Obviously 
the family {] x — 1/w, x + 1/n [ | n = 1, 2 , . . . } is a local base at x in R for each x 
and clearly no x e R is of a finite local character. 

15 B.9. Theorem. Let us suppose that a space P is of a countable local character 
at x. Then x belongs to the closure of a subset X of P if and only if x is a limit 
point in P of a sequence ranging in X. 

Proof. The "if" part is a particular case of 15 B.4 because a sequence is a net. 
Conversely, suppose that xeX and {U„ | n e N} is a local base of P at x. Choose' 
a sequence {xn} so that xn e \ k ^ n] r\ X for each n. Clearly the sequence 
{x„} ranges in X and converges to x in the space P. 

Sometimes it is convenient to know whether or not the closure structure of a space 
can be described in terms of the convergence of nets whose ordered domains belong 
to a given class of ordered sets; more precisely, given a space P and a class K of 
ordered sets, we ask whether x e X implies that x is a limit point of a net <JV, g ) 
ranging in X such that <DN, belongs to K. By 15 B.9 every space with a coun-
table local character can be described in terms of convergence of sequences. Some 
theorems of this type are given in the exercises where also the closely related theory 
of convergence of filters in a space will be sketched. 

Before proceeding further, we shall introduce some conventions which will be 
useful in the more complicated situations which follow. 

15B.10. Conventions, (a) A net is a struct and therefore all conventions con-
cerning structs apply to nets, e.g. if <N, g ) is a net then we often speak about N 
as a net, and moreover, in this case, if we say that a relation N is a net and the order 
for DN is not indicated, then automatically, in accordance with Section 12, this 
order is denoted by g . Often the order for DN is given by the context, e.g. as we 
agreed, if a sequence is considered as a net then the order is the natural order for N. 
— (b) The following conventions are more significant: we shall say that a net <7V, g > is 
eventually (frequently) in a struct £ if and only if the setN - 1 [ |^ | ] is residual (cofinal) 
in <DN, (remember that \£\ denotes the underlying class of £). Using this termi-
nology we can restate the definition of limit (accumulation) points as follows: a point 
x is a limit (an accumulation) point of a net Jf in a space P if and only if Jf is even-
tually (frequently) in each neighborhood of x. — (c) Finally, a limit point of a net (in 
a given space) is currently denoted by lim J f , and if Jf is denoted, in accordance 
with (a), by {Na}, then merely by lim Na or lim {Na}. This notation is very convenient 
if each net converges to at most one point. Then the symbol lim can be treated as 
a single-valued relation which assigns to each convergent net its limit point and then 
the symbol lim Jf denotes the value of lim at J f . 
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Now we proceed to a characterization of topological spaces in terms of con-
vergence. By definition, a closure space <P, u> is topological if uuX = uX for 
each X c P. Let x e uuX. By 15 B.4, in order that x e uX it is sufficient that some 
net Jt ranging in X converge to x in <P, u>. By 15 B.4 there exists a net Ji = 
= (N, ¿j > ranging in uX and converging to x in <P, «). Since each value Na of N 
lies in uX, we can choose a family {Ma \ a e DN} such that each .Jt" is a net <M", ^ a ) 
which ranges in X and converges to the point Na in the space <P, w>. It is natural 
to ask whether there is a net Jt, obtained in a certain manner from the nets Jta, such 
that the range of ̂ i s contained in the union of ranges of nets Ji" and that Jt converges 
to x, whenever the space is topological. Thus the requirement that Jt converge to x, 
for each choice of Ji and {Jta}, will be a necessary and sufficient condition for the 
space P to be topological. If Ji and all Jta are sequences then it is natural to conjec-
ture that some diagonal sequence can be taken as Jt; more precisely, if P is a topo-
logical space and {S" | n e N} is a sequence of sequences S" = {Snk | k e N} ranging 
in P and if S = {S„} is a sequence in P such that S„ is a limit point of S" for ^ach n 
and S converges to a point x, then some "diagonal sequence" {S„.t( | i e N} con-
verges to x. This is actually true if P is of a countable local character, as stated by 
the following theorem; that this is not true in general will be shown in the example 
15 B.12. 

15 B.l l . Theorem. The following condition is necessary and sufficient for a closure 
space <P, u> with a countable local character to be topological. 

If {Sn} is a sequence of sequences S" = {Snl | k e N} of points of P and S = {S„} 
is a sequence of points of P such that S" converges to Snfor each n and S converges 
to a point x, then some diagonal sequence {SntJ n e N} converges to x. 

Proof. I. The sufficiency will be proved although, in fact, it has been proved 
in the remarks preceding the Theorem. Suppose that x e uuX. Assuming the con-
dition we must prove x e uX. Since the space is of a countable local character, by 
virtue of 15 B.9 we can choose a sequence S = {S„} ranging in uX which converges 
to x in <P, m>, and then, for the same reason, a sequence {Sn} of sequences S" = 
= {Snt | k e N} ranging in X so that S" converges to the point Sn for each n in N. 
By the condition some diagonal sequence S' = {Sniki | i e N} converges to x. Since S' 
ranges in X, by 15 B.4 we obtain x e uX which completes the proof. — II. Now suppose 
that <P, w> is topological and S", S and x fulfil the assumptions of the condition. 
Choose a local base {U t | i e N} at x consisting of open sets (this is possible since P 
is topological and of a countable local character at x). Clearly we may assume that 
Ui => 17, if i ^ I, and since S = {S„} converges to x, that S; e Ut for each i (note 
that exercise 5 asserts precisely what is needed). Now, Ut being a neighborhood 
of S( and the sequence {Sin | n e N} being convergent to S,-, we can choose a Sin., 
in C/j. It is easily seen that {Sin{ \ i e N} converges tox; this completes the proof. 

15 B.12. Example to d iagonal sequences. We shall show that the con-
dition of the foregoing theorem need not be fulfilled in a topological space which 
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is not of a countable local character. Let us consider a set P consisting of all points 
of (N x N ) u N (here and in what follows we shall assume that the sets N x N 
and N are disjoint, see Notes) and of a further point x. Evidently the following three 
conditions determine exactly one closure u for P: 

(a) each element of N x N is isolated in <P, u>, that is, (y) is open in <P, u> 
for each y e N x N; 

(b) a set U <= P i s a neighborhood of an n e N if and only if neU and ((«) x N)) — 
— U is finite; 

(c) a set U is a neighborhood of the point x if and only if x e U and, except for 
a finite number of n e N, U is also a neighborhood of each n e N. 

It is almost evident that <P, u> is a topological space (use, for instance 15 A.2). 
Let S", n e N be the sequence {<n, i ) | i e N}. Clearly each sequence S" converges 
to n and the sequence {« | n e N} converges to x. It will be shown that no sequence 
{<«,-, mř> | í e N} converges to x. Suppose that some S = {</i;, wi(>} converges to x. 
Since P — ((n) x N) is a neighborhood of x for each n, S is frequently in no ((n) x 
x N), particularly ES n ((n) x N) is finite for each n. It follows that P — ES is 
a neighborhood of x which contradicts our assumption that S converges to x. 

Now we proceed to the general case. Example 15 B.12 shows that we must look 
for more complicated "diagonal nets" than the most natural ones, considered for 
sequences in 15 B.11. 

15B.13. Theorem. A closure space P is topological if and only if the following 
condition, called the condition on iterated limits, is fulfilled: 

Let si = <A, be a directed set and let {¡%)a \ a e A] be a family of directed 
sets, S8a = <£0, Put 

<€ = <C, <> = si x ]\{®a | a e A} 

and let g be the single-valued relation which assigns to each <a, {ba}) e C the 
element <a, bx} ofY,{Ba}, i.e., 

Q = {<«, {*.}> - <«, ba} | <«, {ba}} e C} . 
(Thus Dg = C, Eg = | a e A}.) Let N be a relation on B = £{B a | a e A) 
ranging in P, M be a relation on A ranging in P and x be a point of P such that the 
net <M, g ) converges to x in P, and, for each a in A, the net | b e Ba}, 
converges to Ma. Then the directed net <JV o <?,-<> converges to x. 

Proof . I. The proof of sufficiency was given in the remark preceding 15 B.11. — 
II. To prove necessity, first let us observe that if A' is residual in A and {B'a | a eA) 
is a family such that B'a is residual in 3Ba for each a, then the product set A' x 
x | a e 4̂} is residual in <C, -<>. — III. Now let P be a topological space and 
N, M and x fulfil the requirements of the condition. Suppose that U is any neigh-
borhood of x. We must show that <Nog, -<} is eventually in U. Choose an open 
neighborhood V of x contained in U. Since <M, g > converges to x, <M, g ) is 
eventually in V, and hence we can choose a residual subset A' of A so that M [ / ť ] c 
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c K If ae A', then V is a neighborhood of Ma, and <{JV<a>'6> \ b e Baj, being 
convergent to Ma, we can choose a residual subset B'a of 88 a so that e V for 
each b in B'a. If a e (A — A'), then put B'a = Ba. Consider the set 

C' = A' x Y[{B'a\aeA). 

As we remarked in II, the set C' is residual in <C, -<). By choice of {B'a} we have 
(N o g) [C'] = N[e[C']] c V which shows that <N o g, <) is eventually in V and 
hence in U . 

15B.14. Remarks, (a) In 15B.11 the "diagonal sequence" depends essentially 
upon the closure of the space. In 15 B.13 the net N o g does not depend upon the 
closure of the space because g depends upon the ordered sets si and 88 a only. 

(b) In accordance with the conventions 15 B.10 the conclusion of the condition 
in 15 B.13 can be stated more suggestively as follows: 

lim (N o g, <} = lim lim {N^^} 
a b 

provided that the iterated limit (on the right side) exists. 
15B.15. Convergence in ordered spaces. Let u be a generalized order 

closure for a monotone ordered set <P, ^ ). If A is a non-void subset of P, then 
clearly <JA, as well as (iA, ^ J 1 ) are directed nets. It turns out that the closure u 
can be described in terms of the convergence of such nets. 

(a) If x is a limit point of a net <JA, ^ A>, then x = sup A. 
Proof. Let x be a limit point of a net ^¿X If x ^ a, x + a for some ae A, 

then ]. <-, a [ is a neighborhood of x in which the net JA is not frequently. Thus 
x is an upper bound of A. If y is another upper bound and y ^ x, y # x, then 
] y, -» [ is a neighborhood of x which does not intersect A = E\A and hence x 
is not a limit point of iA. Thus x is the least upper bound. 

(b) If A 4= 0, sup A exists and the point sup A is not isolated from the left in 
<P, u>, then the net <Jx> =A) converges to sup A. 

Proof. Obviously <)A, is eventually in each set ] a, sup A ], a < sup A. 
Since sup A is not isolated from the left, each neighborhood of the point sup A 
contains an interval ] a, sup A ], a < sup A, and consequently \A is eventually 
in each neighborhood of sup A. 

(c) x G uX if and only if x is a limit point of either the net QA, ^ A) or the net 
(\A, ^ x 1 ) for some A cz X. 

15 B.16. Order convergence. Let <N, -<> be a net in an ordered set <P, (not 
necessarily monotone). The order upper limit (lower limit) of <JN, -<> in <P, ^ ) 
denoted by lim sup <N, -<> (liminf <JV, -<>), is defined to be the greatest lower 
bound (least upper bound) of the set of all x e P such that x is an upper (lower) 
bound of Af[yl] for some residual subset A of <DN, -<>. Obviously, 

lim inf <JV, <> g lim sup <JV, <> 
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whenever the limits exist. If lim sup <N, -<> = lim inf (N, -><>, then (N, «<> is 
said to be ordered-convergent and the point lim sup (N, -<> is denoted by lim (N, «<> 
and called the order-limit of <N, -<> in <P, 

(a) If ^ is monotone and u is the order closure for <P, then x is a limit 
point of a net <JV, «<> in <P, u> if and only if the point x is the order-limit of 
<N, -<) in <P, Roughly speaking, i / ^ is monotone and u is the order 
closure, then the convergence in <P, w> coincides with the order-convergence. 

Proof. We restrict ourselves to the case when x is neither the greatest nor 
the least element. First suppose that x is a limit point of a net <N, -<> in <P, w>. 
Let a < x < p. The interval ] a, /? [ is a neighborhood of x and consequently <JV, -<> 
is eventually in it, i.e. JV[.<4] cz ] a, P [ for some residual subset A of <DN, -<>. 
Since « and p were chosen arbitrarily, we obtain from the definition that 
lim sup <N, -<> = x = lim inf <N, «<>. Conversely, suppose that the order-limit 
lim <iV, -<> exists. By definition, if « < lim <iV, -<></?, then there exist points 
a' e P, P' G P and residual subsets A and B of <DN, -<> so that a < a' 
^ lim <N, -<} ^ P' < P, a' is a lower bound of N[^4] and /?'is an upper bound of . 
Evidently the set C = A n B is residual in <DN, -<> and clearly N[C] cz [ a', P' ] c 
<= ] a, p [. Thus <iV, -< > is eventually in the interval ] a, j3 [. But such intervals 
form a local base at x in <P, «> and hence, (N, -<> is eventually in each neigh-
borhood of lim <JV, -<) which means that lim <N, -<> is a limit point of (N, -<) 
in <P, u>. 

(b) Lei ^ fee monotone and let u be the order closure for <P, If (N, -<) 
is a directed net in <P, such that x = lim sup <JV, -<> exists, then x is an accu-
mulation point of <N, -<> in <P, «) . 

Proof. Let U be any neighborhood of x. Choose a neighborhood ] a, P [ c U 
of x. Thus a < x < p. Since x < P, (N, -<> is eventually in ]<-,/?[ and since 
a < x, <N, -<> is not eventually in ] <-, a ] , it follows that (N, -<> is frequently 
i n ] < - , ^ ] — ]•<-,a] = ] a, j8 | and hence in U, which shows that x is an accumul-
ation point of <N, -<> in <P, «>. 

(c) If <P, y> is order-complete (not necessarily monotone), then lim sup Jf and 
lim inf Jf exist for each net = <N, and 

lim sup Jf = inf {sup iV[>4] | A is residual in <DN, -<)} , 
lim inf Jf = sup {inf | A is residual in <DN, \ 

Proof. Obvious. 
From (c) it follows immediately that 
(d) i / < P , g ) is boundedly order-complete then lim sup Jf and lim inf Jf exists 

for each eventually bounded net Jf in <P, ^ > . 7 / Jf is bounded then the formulae 
of (c) hold. 

(e) Every directed net in an order-complete monotone ordered space has an 
accumulation point, and every bounded directed net in a boundedly order-complete 
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ordered space has an accumulation point. In particular, if ^ i s the ordered space [a, bj 
of reals or a closed segment of ordinals with the order closure operation, then each 
net in 0> has an accumulation point. Every bounded net in R has an accumulation 
point. 

The remaining part is devoted to the concept of a subnet and generalized subnet 
of net. 

15B.17. Definition. A net (M, -<> is a subnet of a net (N, under the rela-
tion Q if Dg = DM and g : (DM, -<> (DN, is an order-embedding (in parti-
cular, g is one-to-one and a -< b implies ga g gb) such that Eg is cofinal in <DN, g > 
and M = N a g. If, in addition, Eg is right residual, then <M, -<> is called a residual 
subnet oi (N, under g. A subsequence of a sequence S is a sequence which is a 
subnet of S. A net <M, -<> is a generalized subnet of a net (iV, g ) under g if 
g is a single-valued relation on DM ranging in DN such that M = N 0 g, and 
g - 1 [ B ] is residual in (DM, -<> provided that B is residual in (DN, g ) . 

15B.18. Remarks to the definit ion, (a) Our definition of a subsequence 
coincides with the usual one, that is, {Rt | i e N} is a subsequence of a sequence 
{S„ | n e N} if and only if there exists an increasing sequence {«; | i e N } of natural 
numbers such that Rt = S„( for each i in N. In this case is a subsequence of 
{S„} under {n,}. 

(b) If (N, g ) is a net and A is a right cofinal subset of <DN, g ) , then obviously 
( N a , is a subnet of <JV, under the identity relation JA (where NA is the 
restriction of N to A and is the restriction of the order g to A). Moreover, 
(NA, g AY is a subnet of <N, g ) under the identity relation if and only if A is a right 
cofinal subset of <D7V, 

(c) The notion of a subnet is a slight generalization of that of a net restricted to 
a right cofinal subnet (see (b)). Actually, it is almost self-evident that <M, «<> is 
a subnet of a net <N, g > under a relation g if and only if </VE£?, g E(?) is a subnet 
of (N, g ) under the identity relation. (Notice that g : (DM, < > <Eg, gE e> is 
an order-isomorphism.) 

(d) In the definition of a generalized subnet the requirement "B residual => g ~~1 [B] 
residual" can be restated as follows: for each residual subset B of <DN, g ) there 
exists a residual subset A of <DM, -<) such that g[/4] c B. In particular, if 
(DM, -<> and (DN, g ) are directed then the requirement is equivalent to each 
of the following conditions: for each residual subset B of (DN, there exists an 
element a of DM such that a -< a implies ga e B; for each /? in DN there exists 
an a in DM such that a -< a implies P g ga. 

15 B.19. If (M, -<> is a subnet of a net (JV, g > under g, then (M, «<> is a gener-
alized subnet of (iV, under g. 

Proof. We must show that g~'[B] is residual in (DM, -<> whenever B is residual 
in (DJV, But this is almost evident. Indeed, since Eg is cofinal in (DAT, 



15. T O P O L O G I C A L S P A C E S 267 

B n Eg is necessarily residual in the ordered subset Eg of <DN, since the map-
ping g : <DM, -<> -> Eg is an isomorphism of the ordered set (DM, -<> onto the 
ordered subset Eg of <DJV, it follows that g _ 1 [ B n Eg] ( = g -1[J3]) is residual 
in <DM, -<>, which completes the proof. 

15 B.20. Theorem. If a net (N, converges to a point x in a space P, then 
each generalized subnet of (N, ^ ) converges to x in P. 

Proof. Let <M, -<> be a generalized subnet of (N, ^ ) under g and U a neigh-
borhood of x; then clearly 

M-l[U] =q-1[N-l[t/]], 

and consequently, if N - 1 [ i 7 ] is residual in <DJV, ^ ) then M - 1 [ [ / ] is residual 
in (DM, -<> ; this establishes the theorem. 

15B.21. Theorem. If a directed net (N, in a space P does not converge to 
a point x of P, then there exists a subnet (M, -<> of (N, such that no general-
ized subnet of (M, -<> converges to x. 

Proof. Suppose that (N, ^ ) does not converge to x. By definition there exists 
a neighborhood U of x such that (N, ^ ) is not eventually in U, i.e., (N, ^ ) is 
frequently in P — U is directed). Put A = iV_ 1[P — [/] and consider the subnet 
Jt = (NA, of (N, ^ ) . Since Jt ranges in P — U, each generalized subnet 
ranges in P — U as well, and consequently, no generalized subnet of Jt converges 
to x. 

Remark. The assumption that the net is directed is essential. 

15 B.22. Theorem. If x is an accumulation point of a (directed) net Ji in a space 
P, then x is a limit point of some (directed) generalized subnet Ji of Ji. 

Proof. I. Suppose that x is an accumulation point of a net Ji = (N, in 
a space P. Let Hi be a local base of the neighborhood system at x, and consider the 
ordered subset <A, -<> of the product-ordered set 

(Hi, x <DN, 
where 

A = E{(U, b} | Nb e U] , 

and the following single-valued relation 

g = {<[/, BY ^b | (u, BYE A } , 

which is a restriction of the projection of the product Hi x DN onto DN. We shall 
prove that Jt = (N o g, -<) is a generalized subnet of (N, ^ ) under g which 
possesses the required properties. — II. First we shall prove that Jt is directed provided 
that JV is directed. Assuming = <Uh bty e A, i = 1, 2, choose a U in Hi so that 
U <= [/j n U2, and then choose a b in DN such that NbeU and b follows both b1 

and b2 in DN. Then (U, by e A and clearly <U, by follows both at and a2 in <A, -<>. 
— III. Auxiliary assertion: A is cofinal in (Hi, =>) x <DN, Let (U0, boy be any 
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element of % x DN. Since x is an accumulation point of JT and U0 is a neighbor-
hood of x, we can choose a b in DN such that b0 g b and Nb e U0. Thus <t/0, by e A 
and <170, by follows <C70, b0y in =>> x <DN, - IV. We shall prove that 
Jt is a generalized subnet of JT and that Jt converges to x. Let B be residual in DN 
and let U0 be a neighborhood of x. Choose a U in with U cz U0 and consider 
the set f x i where "T = E{F| Ve^,Vcz [/}. Since <<2r, is directed, "T is 
residual in Hence f x B is residual in ifU, =>> x <D JV, by III the set Ai = 
= .4 n ( f x B) is residual in -<>. 

It is easily seen that Q\_A^\ CZ B and (N » G) c U cz U0. Thus Ji is a general-
ized subnet of Ji, and Jt converges to x. The proof is complete. 

Corollary. If u is the order closure for a monotone order-complete ordered set 
<P, then each directed net in <P, u> possesses a convergent generalized subnet. 

Proof. By 15 B.16 (e), every net in <P, has an accumulation point. 

15 B.23. If x is an accumulation point of a net JT, then x need not be a limit 
point of a subnet of ^V. For example, in the ultrafilter space of an infinite set X, 
every sequence in X has a cluster point but a countable net in X is convergent in 
PX if and only if it is constant on a residual set. It follows that a cluster point of 
a sequence S may be a limit point of no subsequence of S. It is to be noted that 
generalized subnets were introduced to obtain 15 B.22. 

15 B.24. Theorem. In a closure space with a countable local character each 
accumulation point of a sequence S is a limit point of a subsequence of S. 

Proof. We shall prove somewhat more. Suppose that x is an accumulation point 
of a sequence {x„} in a space P and P is of a countable local character at x. Choose a 
local base {[/„} at x. By induction we can construct an increasing sequence {«,} 
in N so that 

x„, e n { f „ | n g i} . 
Clearly {x„( | i e N} is a subsequence of {x„} converging to x. 

Corollary. Every bounded sequence in R possesses a convergent subsequence. 
Proof. By 15 B.16 (e) every bounded sequence in R has an accumulation point 

and R is of a countable local character by the remark following Definition 15 B.8. 
15 B.25. Conven t ion . For conciseness of formulation, in the sequel by a net 

we shall mean a directed net (except for some cases in which the distinction is main-
tained expressly). 
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16. C O N T I N U O U S M A P P I N G S 

In this section we begin the study of the notion of a continuous mapping of one 
closure space into another. We shall describe the continuity of a mapping by 
means of neighborhoods and nets. Particular attention will be given to the case in 
which the range carrier of the mapping is topological; in this case the continuity 
admits a description by means of open sets or closed sets. In this connection in 
subsection B the notion of the topological modification of a closure operation will 
be introduced and studied. We shall see later that many theorems about topological 
spaces can be reduced to corresponding results for closure spaces by the appro-
priate application of the properties of topological modification. The section concludes 
with some remarks concerning homeomorphisms, i.e. bijective mappings / of closure 
spaces such that / as well as its inverse/_ 1 is continuous. 

A closure operation for a set P was defined to be a single-valued relation u on 
exp P and ranging in exp P satisfying certain conditions. A closure u for a set P is 
entirely determined by the relation Q = {x -»• X \ x e uX} which occurs in proofs 
more frequently than u; of course uX = e - 1 [ (X)] . This relation is more intuitive 
than u; it shows that a closure for a set determines, roughly speaking, what points 
are proximal to which sets, and this is precisely the intuitive sense of the notion of 
a closure operation. Now the definition of a continuous mapping as a mapping 
preserving the relation {x is proximal to X} is evident: a mapping/of a space <P, u) 
into a space <Q, u> is continuous if xeuX implies fx ev f\X~\. Without doubt, 
the reader is familiar with the notion of a continuous mapping, at least in the case 
of special closure spaces, e.g. functions on R, and therefore, perhaps, this moti-
vation will enable the reader to unterstand the intuitive meaning of theorems 
which follow. 

A. G E N E R A L I T I E S 

16 A.l. Definition. Let / be a mapping of a closure space 2P into a closure space 21. 
The mapping/is said to be continuous at a point x of 0> if 

(*) X c \0>\, x e X imply fx e f \ X \ . 
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The mapping / is said to be continuous if it is continuous at each point x of SP, 
or equivalently, if 

(**) X c \0>\ implies f\X] <= f\X], 
The set of all continuous mappings of a space SP into a space 2 will be denoted by 
C(&>, 2). 

Since the closure operation for a set P is an order-preserving relation under tz, 
condition (**) is equivalent to the following 

(***) Y <= \3\ c-f~l\Y\. 
Indeed, assuming (**), if X = f x [y] , then /[AT] <= Y, which obviously implies 
X c / _ 1 [ F ] and this is the right side of the condition (***). Conversely, assuming 
(***), choose an arbitrary X <=• P, and consider the sets Y = f\X~\ and Xl = 
= / " 1 [ Y ] ; by (***) we have X1 = / _ 1 [ Y ] c / _ 1 [ 7 ] which impl ies / [ZJ c F = 
= f[Xx~\ = f[X~\. Since X c Xu we have X <= Xx and hence f\X\ c / [ X J c 

From the definition it follows at once that every mapping of a discrete space into 
any space is continuous, and every mapping of any space into an accrete space is 
continuous. From the definitions one obtains the following description of the 
relation {u is coarser than v} in terms of continuity. 

16 A.2. A closure operation u for a set P is coarser than a closure operation v 
for P if and only if the identity mapping of <P, v) onto <P, u> is continuous. 

The following result is almost evident but very important. 

16 A.3. Let SP, 2. and Si be closure spaces, f a mapping of SP into SL and g 
a mapping of 2L into Si. If f is continuous at a point XE@> and g is continuous 
at the point fx, then the composition g of: 0 -»^ is continuous at the point x. 
In particular, if f \SP -* SL and g : 2. Sft, are continuous, then their composite 
g o / : 0 -* Si is continuous. 

Proof. If x e X, then fx s f\X\ by the continuity of / at x, and gfx e g\_f\_X\\ 
by the continuity of g at fx. But gfx = (g o f ) x and g o f[X\ = g[_f\_X\\. The 
continuity of g o / at x follows. 

Now we proceed to various characterizations of continuity. We begin with the 
characterization in terms of neighborhoods. 

16 A.4. Theorem. In order that a mapping f of a closure space SP into another 
one 2. be continuous at a point xe SP it is necessary and sufficient that the inverse 
i m a g e o f each neighborhood of fx be a neighborhood of x, or equivalently, 
that for each neighborhood V of fx there exist a neighborhood U of x such 
that flU] <= V. 

Proof. I. Necessity: If U = / - 1 [ F ] , where V ^ Q = \2\,is not a neighborhood 
of x, then by definition xeP — U, and finally by the continuity o f f at x,fx e f[P — t/] = 
= / [ P ] — V c Q — V which means that V is not a neighborhood of fx in Q. Con-
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sequently, if V is a neighborhood of fx then / *[F] is a neighborhood of x. II. — Suf-
ficiency: If x e P, X <= P and fx $f[X\, then F = Q - f\X] is a neighborhood 
of fx, and by hypothesis / _ 1 [ F ] is a neighborhood of x. Clearly, / - 1 [ F ] n X = 0 
which implies x$X. It follows that xeX implies fx ef\X\. Thus (*) of 16 A.1 
holds and / is continuous at x. 

16A.5. Corollary. A mapping of a space 0 into a space 2 is continuous if and 
only i f , for each x in 0, the inverse image of every neighborhood of fx is a neigh-
borhood of x, or equivalently, every neighborhood of fx contains the image of 
a neighborhood of x. 

16 A.6. If f is a continuous mapping of a space 0 into a space 2, then the in-
. verse image of each open (closed) subset of 2 is an open (closed) subset of 3P. 

Proof. If U is open in 2, then U is a neighborhood of each of its points (by 
14 B.2), and by 16 A.5, / _ 1 [ i / ] is a neighborhood of each of its points which means 
that / _ 1 [ t / ] is open (by 14 B.2). 

If Y is closed in 0>, then U = 2 — Y is open; it has just been proved that the set 
/ _ 1[£7] is open. But / _ 1 [ Y ] = P - / _ 1 [ t / ] . Thus / _ 1 [ Y ] is closed. 

16 A.7. Let f be a continuous mapping of a space 0 into a space 2. If {Ya} 
is a locally finite family in 2, then {Z-1^]} is a locally finite family in 0. 

Proof. If Fis a neighborhood of fx intersecting only a finite number of Ya then 
f~ 1 [F] is a neighborhood of x (by 16A.4) intersecting only a finite number of 
r i m . 

16 A.8. Theorem. Each of the following conditions is necessary and sufficient 
for a mapping of a space 0* into a space 2 to be continuous at a point x e 0: 

(a) If x is an accumulation point of a (directed)net N in0, then fx is an accumula-
tion point of the net f 0 N in 2. 

(b) I f x is a limit point of a (directed) net N in 0then fx is a limit point of the 
net fa N in 2. 

Proof. I. Necessity of both conditions. Suppose that / is continuous at 
x, N is a net in 0, x is an accumulation (a limit) point of N, and finally, Fis a neigh-
borhood of fx. We must show that/o N is frequently (eventually) in F But Fcontains 
the image /[£/] of some neighborhood of x (by continuity of / at x and 16 A.4); 
since N is frequently (eventually) in U, f o N is frequently (eventually) in / [ [ / ] c: V. 

II. Sufficiency of both conditions. Suppose that the condition (a) (the con-
dition (b)) obtains and x e X. By 15 B.4 there exists a directed net N ranging in X such 
that x is an accumulation (a limit) point N in 0. By our assumption, fx is an accum-
ulation (a limit) point of /o N. Since obviously f 0 N ranges in f\X~\, again by 15 B.4 
we obtain fx e / [ X ] which establishes the continuity of / at x. 

16 A.9. Corollary. Each of the following two conditions is necessary and suf-
ficient for a mapping f of a space 0 into a space 2 to be continuous: 
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(a) If a point xof 3P is an accumulation point of a (directed) net N in 0, then fx 
is an accumulation point of f o N in 2. 

(b) If a point xof 0 is a limit point of a (directed) net N in SP, then fx is a limit 
point offoN in 2. 

By 16 A.6, if / : ->• 2 is continuous, then for any X open (closed) in 2,f~l\X~\ 
is open (closed) in 0*. Now we shall prove that if 2 is a topological space, then each 
of these conditions is also sufficient for / to be continuous. 

16 A.10. Theorem. Each of the following conditions is necessary and sufficient 
for a mapping of a closure space F into a topological space 2 to be continuous: 

(a) The inverse image under f of every open subset of 2 is an open subset of 
0 (i.e. ifX is open in 2 t h e n i s open in 0). 

(b) The inverse image under f of every closed subset of 2 is a closed subset 
of 9 (i.e. ifX is closed in 2 then f~l\X~\ is closed in 0>). 

Proof. Both conditions are necessary by 16 A.6 (without assuming that 2 is 
topological). Both conditions are equivalent because, with P = \t?\, Q = \2\, 
f~l[X~\ = P-f~1[Q-X~\ for each X <= Q, and a set is open if and only if its 
complement is closed (by definition). We shall prove the sufficiency of (a). Let xe P 
and let V be a neighborhood of fx. Since 2 is topological, we can choose an open 
neighborhood U of fx with U c V(by 15 A.2 (c)). By condition (a) the set/_1[C/] is 
open in 0, and obviously x e / - 1 [ [ / ] . Thus/ - 1[l/] is a neighborhood of x in 0. 
Since Kand x were chosen arbitrarily, / is continuous by 16 A.5. 

It is to be noted that 16 A.10 is a generalization of 15 A.7 which asserts that 
a topological closure operation u for P is coarser than a closure v for P if and only 
if any u-open set is u-open. 

B. TOPOLOGICAL MODIFICATION 

Now let <P, u> be a closure space and let 6 be the collection of all open subsets 
of <P, u>. By 14A.9 the collection 0 fulfils the conditions (o 1), (o 2) and (o 3) 
of Theorem 15 A.6 according to which there exists exactly one topological closure 
operation v on P such that the collection & is the set of all u-open sets, and this closure 
v is the coarsest closure in the collection C0 of all closures w on P such that <9 is the 
collection of all w-open sets. In particular, v is coarser than u. If X c P, then 

(*) vX = f){F | X <= F, F is closed in <P, «>} . 
Indeed, since v is a topological closure, vX is closed in <P, v), P — vX is open 
in <P, u> and by our assumption, P — vX is open in <P, u> and hence vX is closed 
in <P, u>. In particular, (#) holds. 

16B.1. Definition. The topological modification, or simply the T-modification, 
of a closure u for a set P, denoted by tU, is defined to be the closure operation v = 
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= {X -» yX} for P where vX is given by (*). The topological modification of a closure 
space <P, u) is defined to be the space <P, v) where v is the T-modification of u 
and is denoted by t<P, u>. The relation t = {« xu} on the class of all closure 
operations is called topological modification. 

16 B.2. Each of the following conditions is necessary and sufficient for a closure 
operation v to be the topological modification of a closure u on a set P: 

(a) the closure v is topological and the collections of all u-open sets and of all 
u-open sets coincide; 

(b) the closure v is topological and the collections of all «-closed sets and of all 
u-closed sets coincide. 

Proof. By the considerations preceding Definition 16 B.1 condition (a) is neces-
sary and sufficient. Since a set is closed if and only if its complement is open, con-
ditions (a) and (b) are equivalent. 

16B.3. The topological modification of a closure operation u for a set P is the 
finest topological closure on P coarser than u. Stated in other words, the following 
condition is necessary and sufficient for a closure operation y on a set P to be the 
topological modification of a closure operation « for P: v is a topological closure 
(for P) coarser than u, and if w is any topological closure (for P) coarser than u, 
then w is coarser than v. 

Proof. Obviously xu is a topological closure coarser than u. If w is any closure 
on P coarser than u, then every w-open set is u-open (by 15 A.7, or 16 A.2 and 
16 A.10) and hence tu-open. If w is, in addition, topological, then this implies that 
w is coarser than xu (by 15 A.7 or 16 A.2 and 16 A.10). Thus the condition is 
necessary. Conversely, let c be a closure fulfilling the condition. We must prove 
xu = v. Since xu is a topological closure coarser than u, xu is coarser than v. Thus 
we have u -< v -< tu. Since the open sets of <P, u> and <P, TU) are identical, by 
15 A.7 the open sets of v and xu are identical, which implies v = xu because of 
15 A.7. 

Now we proceed to the formulation and proof of the main result. 

16B.4. Let u be a closure for a set P. In order that v be the topological modi-
fication of u it is necessary and sufficient that v be a topological closure for the 
set P and each mapping f of <P, u) into a topological space Q be continuous if 
and only if the mapping f is continuous as a mapping of <P, u> into Q (that is, 
f : <P, u> -> Q is continuous). 

Proof. I. First assume the condition. Since the identity mapping J of <P, u) 
onto <P, xu) is continuous, by the condition the mapping J : (P, v) ->• <P, tu) is 
also continuous which implies (by 16 A.2) that v is finer than xu. Since J : <P, v) -> 

<P, u> is continuous, by the condition the mapping J : <P, u> <P, v) is also 
continuous, which implies (by 16 A.3) that v is coarser than u. Thus y is a topolo-
gical closure coarser than u and finer than xu. By 16 B.3 necessarily v = xu. — 

18 — Topological Spaces 
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II. Conversely, let v = xu. If / is a continuous mapping of <P, xu) into a closure space 
Q (not necessarily topological), then / : <P, u> -> Q is also continuous as the com-
position of continuous mappings J : <P, u> -> <P, TU> and / : <P, xu} -» g. Con-
versely, if / : <P, u> -> Q is continuous, then the inverse image of every open subset 
of <2 is w-open (16 A.6), and hence in-open (16 B.2) which implies / : <P, TM> Q 
is continuous provided that Q is topological (16 A.10). 

Because of the importance of the topological modification we shall describe two 
further constructions which yield the topological modification of a closure operation u. 
The first construction describes neighborhoods in the topological modification in 
terms of neighborhoods in <P, u). 
- 16 B.5. Let <P, u> be a closure space and let x e Let Hi be the collection 
of all sets U of the form U = | n e N}, where U0 is a u-neighborhood of x 
and Un+1 is a u-neighborhood of U„ for each n e N. Then Hi is a local base at x 
in <P, xu}. 

Proof. It is sufficient to show that U e Hi if and only if U is a u-open set containing 
x. If U is open and xeU, then U can be written in the form U = U{^n} with U„ = U 
for each n. Indeed, an open set is a neighborhood of itself. Conversely, if U e Hi 
and U = U{^n}> where U0 is a u-neighborhood of x and Un+1 is a u-neighborhood 
of U„ for each n e N, then U is u-open, because U is a neighborhood of each of its 
points. Indeed, if y e U, then y eU„ for some n and Un+1 is a u-neighborhood of y, 
since U„+1 a U, U is also a u-neighborhood of y . Evidently xeU. 

Now the second construction will be described. We omit details but the reader 
is requested to complete all proofs. Let <P, u> be a closure space. Let us consider the 
transfinite sequence {ua} of relations on exp P ranging in exp P such that u0 = u 
and 
(*) uaX = U{«, oUfX\P< a] 

for each cardinal a ^ 1 and each X <= P. It is easy to verify that each ua is a closure 
operation (by induction) and uxX u^X for a ^ /?, i.e. ux is coarser than provided 
that a ^ p. In other words, {u }̂ is an increasing sequence of closure operations on P. 
If F is a closed subset of <P, u) containing a set X, then obviously uxX c F for 
each a. Thus every ua is finer than the topological modification xu of u. By definition 
of topological closures, u„ is topological if and only if ua = ua+1. If uxX = ux + 1X 
for some X, then by induction we obtain at once that uaX = u^X for each j8 ^ a. 
In particular, if ua = then ux = Up for a ^ p. But if ux = ux+1, i.e. if ux is 
a topological closure, then necessarily ua = xu because u -< ua -< xu. If y is an 
ordinal of cardinality greater than that of P, then uy = uy+l and hence uy = xu. 
Indeed, let X be any subset of P and let us consider the set 

Y= (j{uI+1X — uaX | a < y}. 

Since 7 c P, the cardinal of Y is at most that of P, that is, less than that of y. Since 
the family {ua+1X — uxX} is disjoint, necessarily at most one ux+1X — uxX must be 
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void, i.e. ua+ = uaX for some a < y. It follows that uy+lX = UyX. Since X was ar-
bitrarily chosen, uy+i — Uy. The results obtained are summarized in the following 
statement. 

16 B.6. Let u be a closure operation on a set P and let {w„} be the transfinite 
sequence. \f mappings of exp P into itself defined as follows: u0 = u and uaX is 
inven bj for each a ^ 1 and X a P. Then {«„} is a sequence of closure opera-
tions such th; ' > -- .".., for sufficient, large a and /?, and each ua is coarser than u 
and juier »/. ¡/a •= ua+1. then , = uffor all P ^ a and ua = tu. 

C. HOMEOMORPHISMS 

In conclusion we shall introduce the concept of a homeomorphism. 
16 C.l. Definition. A homeomorphism is a bijective mapping/for closure spaces 

such that both / and f~1 are continuous. We shall say that / is a homeomorphism 
of SP onto J if / is a homeomorphism such that 0 = D*/ and 2 = E*/. 

16 C.2. The identity mapping of a space onto itself is a homeomorphism; i f f 
is a homeomorphism then f 1 is also a homeomorphism; and finally the composition 
of two homeomorphisms is a homeomorphism. In particular, the relation 2) | 
| there exists a homeomorphism of SP onto 2} is an equivalence relation on the class 
of all closure spaces. 

Proof. The first and the second statement are self-evident and the third follows 
from the second and 16 A.3 (observe that (g of)'1 = / - 1 o g~x if both / and g 
are bijective). 

Remark. The relation of 16 C.2 is the class consisting of the structures of homeo-
morphisms. Indeed, a mapping / = <gr /, SP, 2 ) is a struct, gr / is the underlying 
class of /(called the graph of / ) and (J?, 2 ) is the structure of / . 

16 C.3. Definition. A space 2 is a homeomorph of 3P if there exists a homeo-
morphism of 3P onto 2. By 16 C.2 the relation E{<^, 2} \ 2 is a homeomorph of 0} 
is an equivalence on the class of all closure spaces. Two spaces are said to be homeo-
morphic if one is a homeomorph of the other. 

For example, two discrete spaces 0 and 2 (i.e. sets endowed with the finest closure 
operations) are homeomorphic if and only if there exists a one-to-one mapping 
of 0 onto 2, that is, if and only if the cardinals of SP and 2 are equal. This follows 
from the fact that every mapping of a discrete space into any space is continuous. 
Also two accrete spaces (sets endowed with the coarsest closure operations) are 
homeomorphic if and only if their cardinals are equal. This is so because every 
mapping into an accrete space is continuous, regardless of the domain space. 

The notion of a homeomorphism is fundamental and therefore we list a sequence 
of necessary and sufficient conditions for a mapping to be a homeomorphism. The 

18* 
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proof follows immediately from the definition and corresponding results for con-
tinuous mappings. 

16 C.4. Let fbe a one-to-one mapping of a space * into a space 2. I f f i s a homeo-
morphism, then all the following conditions are fulfilled. Each of the conditions 
(a) —(d) implies that f is a homeomorphism. If * and 2 are topological spaces, 
then also each of the conditions (e) and (f) implies that f is a homeomorphism. 

(a) = > / [ * ] = / [ F I T 
(b) for each xe|*| is a neighborhood of x if and only iff\X~\ is a neighbor-

hood of fx; 
(c) x is a limit point of a (directed) net N in * if and only if fx is a limit point 

offoN in 2; 
(d) x is an accumulation point of a (directed) net N in * if and only if fx is 

an accumulation point of f o N in 2; 
(e) X c |*| is open in * if and only if f [ X \ is open in 2; 
(f) X c |*| is closed in * if and only if / [ X ] is closed in 2. 
Remark. A more formal statement of conditions (a) —(f) may be in place. Let / 

.be a bijective mapping of <P, u> onto (Q, v). Denoting by g the relation 
[X -* f\X\ | X <= P}, we can state condition (a) as follows: (g x g) 0 u c v. Of 
course, this inclusion is equivalent with the equality (g x g) a u = v. Denoting by Jt 
the relation consisting of all pairs <X, x> such that X is a neighborhood of x in 
<P, u) and denoting by J f the similar relation for <Q, u>, we find at once that 
condition (b) can be stated as follows: g x f is a bijective relation for J i and JV. 
Denoting by o the single-valued relation which assigns to each net N in * its trans-
form foN under /, condition (c) can be stated as follows: the image of Lim u 
(see 15 B.4) under the relation o x f is Lim v (remember that o is bijective). 
A similar restatement of remaining conditions is left to the reader. 

In general it is often difficult to discover whether two spaces are homeomorphic 
or not. Usually, to show that two spaces are not homeomorphic, we try to find 
a property of spaces which is possessed by one of the spaces but not by the other 
and such that, if a space possesses this property, then all its homeomorphs also 
possess this property. Such a property is called a topological property. 

16 C.5. Definition. A topological property is a property such that if a closure 
space possesses this property, then all homeomorphs of P also possess this pro-
perty. 

For example, "the cardinal of the underlying set of * is m" and " * is discrete" 
are topological properties. A space exhibiting both these properties (for fixed m) is 
determined up to a homeomorphism. Next, is topological" is evidently a topo-
logical property, i.e. no topological space is a homeomorph of a space which is not 
topological. In general, every property described by means of closure operations, 
neighborhoods or convergence of nets is a topological property. Later on, many exam-
ples will be given in which the fact that two spaces are not homeomorphic is established 



16. C O N T I N U O U S M A P P I N G S 2 7 7 

by exhibiting a topological property which is possessed by one of them but not 
by the other. 

In conclusion we shall show that the following condition is not sufficient for two 
spaces <P, u> and <Q, v) to be homeomorphic: there exists a one-to-one continuous 
mapping/of <P, m) onto <Q, v> and a one-to-one continuous mapping g of (Q, v) 
onto <P, u>. 

Of course this condition is necessary. Stated more formally, the relation consisting 
of all pairs <<P, u), <Q, v)) with the property mentioned above is strictly larger 
than the class of all pairs of homeomorphic spaces. 

16 C.6. Example. Let Ai and A2 be disjoint countable infinite sets, and let us 
consider the closure u for A = A1 u A2 such that uX = u^X n Au u2(X n A2) 
where Uj is the discrete closure for At and u2 is the accrete closure, for A2. Let 
< A3, u3> be any countable space disjoint with A and let v be the closure for B = A u A3 
such that vX = n | ¡' = 1, 2, 3}. It is easily seen that there exists a one-
to-one continuous mapping / of <A, u) onto <5, v) and a one-to-one continuous 
mapping g of <B, u> onto <4, u). E.g. let / be a one-to-one mapping of <A, u> 
onto <B, u) such that f\A^\ = At u A3 and let g be a one-to-one mapping of <B, v) 
onto <y4, u) such that u = A2. It is easily seen that both /and g are con-
tinuous. It is easy to find a countable u3> such that the spaces <A, u) and 
<B, v} are not homeomorphic. E.g. let A3 consists of two points, say x and y, and let 
u3(x) = (x, y), u3(y) = (_y); clearly y(x) = (x, y), = (y). On the other hand 
there exists no pair <x1; j^) such that m(xx) = (xl5 «(yj) = (>>!). Thus <A, u} 
and <B, y) are not homeomorphic. In 20 ex. 7 we shall give another example. 
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This section is devoted to fundamental constructions of new spaces from given 
spaces. We begin with the motivation. It is to be noted that all results stated here 
will be proved in this section. 

If Q is a subset of the underlying set of a space <P, u}, then clearly the relation 
v = {X -» Q n uX | X cz Q] is a closure operation for Q which is called the relativ-
ization of u to Q; the space (Q, v) is said to be a subspace of (P, u>. It turns out 
that the relativization v of u to Q is the unique closure for Q such that a mapping 
/ of a space (R, w> into <6, u> is continuous if and only if the mapping gr / : w>—> 
-» <P, u) is continuous. Stated in other words, a subspace of a space is defined so 
that a mapping f for closure spaces will be continuous if and only if the mapping 
g r / : D*/ -» E/, where E/ is considered as a subspace of E*/, is continuous. Sub-
spaces are studied in subsection A. 

Now let {<Pfl, m„>} be a family of spaces. It is often necessary to construct a space 
<P, u) such that there exists a disjoint cover {Qa} of <P, u> consisting of open sets 
(and hence, each Qa is also closed because its complement in P is open as the union 
of open sets) such that each Qa endowed with the relativization of u is a homeo-
morph of <Pa, ua}. Such a space can be constructed as follows: we take for P the sum 
of the family {P„} of underlying sets and define uX = Y{uaXa} for each X = 
= c P. It turns out that each mapping inja : <Pa, ufl> inja [Pj , where 
inja [ P j is considered as a subspace of <P, u), is a homeomorphism, and {inj„ [Pa]} 
is a disjoint cover of <P, m> consisting of open sets. The space <P, u) is called the 
sum of the family {<Pa, ua>} and the closure u is called the sum closure. Next, the 
sum closure can be characterized as the finest closure for the sum P of underlying 
sets rendering all mappings inja: <Pa, wa> -> P continuous. Sum closures are examined 
in subsection B. 

In the subsection C products of spaces are studied. The product of a family {<Pa, ua>} 
of spaces, denoted by n{<Pa, ua>}, can be defined as the product P of the family 
{Pa} of underlying sets endowed with a closure operation u, called the product clos-
ure, such that the following two equivalent conditions are fulfilled: 

(a) a net <N, converges to x in <P, u> if and only if the net <pra «N, 
converges to the point pra x in <Pa, ua> for each a, 
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(b) u is the coarsest closure for P such that all mappings pr„ : <P, it) -»• <Pa, ua) 
are continuous. 

It is to be noticed that we shall define the product closure by specifying neighbor-
hood of points and statements (a) and (b) will be theorems. Next, the product closure 
is not the only appropriate closure for P. In Section 33 we shall introduce the induct-
ive product of a family of spaces and in Section 35 we shall introduce the sequen-
tial product of certain spaces (those which can be described by the convergence of 
sequences). — Here, in subsection D, the inductive product ind (<P, u> x (Q, v)) 
of two spaces <P, m> and <Q, u> will be defined to be the finest closure w for P x Q 
such that all mappings 

{x - <x, y>} : <P, u) <P x Q, w}, y e Q 
and 

{y -» <*, y>} • < 6 , »> - <P x 2 » w > , x e p 

are continuous. The significance of the inductive products lies in the fact that a map-
ping / : ind (<P, u) x <Q, u>) -»• <i?, w) is continuous if and only if all mappings 
{x /<x, y>} : <P, u) <R, w>, yeQ, and {y - > f i x , y>} : <Q, -> <K, w>, x 6 
e P, are continuous, that is, if and only if,/is "separately continuous", or continuous 
"separately in each variable". If °U is a local base at x in <P, «> and "V is a local 
base at y in <Q, u>, then x [tT] (= E{t7 x F| U e Ve "T}) is a local base 
at <x, y> in <P, u> x <Q, u), while the collection of all "crosses" (U x (y)) u 
((x) x V) is a local base at <x, y) in ind (<P, u) x (Q, y>). 

A. SUBSPACES 

17 A.l. Definition. Let <P, w) be a closure space and let Q <= P. It is easy to 
verify that the relation v = {X -> Q n uXj on exp Q ranging in exp Q is a closure 
operation for Q. The closure v is called the relativization of u to Q and the space 

v} is called a subspace of <P, u). Thus a subspace of a space is uniquely determ-
ined by the underlying set. If no confusion is likely to result and if P is a space, then 
a subspace of P is denoted by a single letter, say Q, the closure of a set 1 c Q in 
Q is denoted XQ and called the relative closure of X. It is clear what we mean by 
a relatively open or relatively closed set, a relative neighborhood, etc. 

A class of closure spaces is said to be hereditary if, with each space it contains 
all subspaces of 0>. 

For example, every subspace of a discrete space is discrete and every subspace 
of an accrete space is accrete. The relativization of a closure u for a set P to a subset 
Q of P is the coarsest closure v for Q such that the identity mapping of (Q, v) into 
<P, w> is continuous. More precisely: 

17 A.2. Let <P, u> be a closure space and let Q <= P. A closure v for Q is the 
relativization of u to Q if and only if the following two conditions are fulfilled: 
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(a) The mapping JQ : <Q, v> -* <P, u) is continuous; 
(b) if w is a closure for Q such that J c : (Q, w) <P, u) is continuous, then w 

is finer than v. 
Proof. I. First suppose that v is the relativization of u to Q, i.e., uX = Q n uX 

for each X c Q. The condition (a) is fulfilled because = vX <=. uX for each 
X <= Q. If JQ : (Q, w> -» <P, u) is continuous, then, by definition, Je[wX] c u Je[X] 
for each X c. Q, i.e. wX cz uX for each X a Q; but wX <= Q and hence wX <= Q n 
n uX for each X <=. Q, that is, wX cz vX for each X c Q, which shows that w is 
finer than v. — II. Now let v be a closure for Q satisfying conditions (a) and (b). 
The relativization v' of u to Q fulfils conditions (a) and (b) by I. From (b) we obtain 
that v is finer than v' and v' is finer than v which implies v = v'. 

The following two straightforward consequences of the definition will usually be 
used without references. 

17 A.3. Let 2L be a subspace of a space Then 
(a) if 8P is topological, then 2, is also topological; 
(b) if the underlying set of a space is contained in that of 2, then M is a sub-

space of 2 if and only if .it is a subspace of 0*. 

17 A.4. Let 2 be a subspace of a closure space Then 
(a) IfYis closed in SP, then Y n | j | is closed in 2. If 0> is topological, then every 

closed subset of 2 is of the form \2\ n Y with Y closed in ¿P. 
(b) IfYis open in 0P then Y n \2\ is open in 2.1f * is topological, then every open 

set of 2 is of the form \2\ n Y with Y open in SP. 
(c) If \2\ is closed (open) in * and X is closed (open) in 2, then X is closed 

(open) in 3P. 

Proof. Evidently assertions (a) and (b) are equivalent. Write P = , Q = \2\. 
We shall prove (a) and (c). If Y is closed in P, that is, if F = Y, then Yn Q° = 

= QnYnQc:QnY. Thus Q n Y is relatively closed. If P is topological and X 
is closfcd in Q, then X is closed in P and X n Q = X. Thus every relatively closed 
set is the intersection of a closed set with Q. If Q is closed in P and X c Q is relatively 
closed, that is, if Q = Q and XQ = X n Q = X, then X <= Q = Q and finally 
X = X n Q = XQ = X. Finally if Q is open and X is relatively open, i.e. P — Q <= 
<= P - Q and Q - X n Q <= Q - X, then P - X = P - Q u Q - X c P - X. 

If * is not a topological space, then a relatively closed (open) set need not be the 
intersection of the subspace and a closed (open) set. Actually, the following rather 
general result is true. 

17 A.5. In order that a closure space P be topological, it is necessary and suf-
ficient that for each subspace Q of P every relatively closed (open) set be of the 
form Q n Y with Y closed (open) in P. 
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Proof. The condition is necessary by 17 A.4 (a). Suppose that a space P is not 
topological. Then there exists a subset X of P such that X 4= X. Consider the sub-
space Q = X u (X — X) of P. Clearly X is closed in Q. Nevertheless, if Y is closed 
in P and Y => X, then Y => X and jience Y n Q = Q; it follows that QnY * X. 
Clearly the set Q — X is relatively open and Q — X = Q n U for no open set U. 

Let <Q, d> be a subspace of a closure space <P, u> and consider the topological 
modification (Q, xv) of (Q, v) and the subspace <Q, v*) of <P, xu>. The space 
<Q, u*> is topological as a subspace of a topological space (by 17 A.3 (a)). By 17 A.4 
(b) the collection f* of all u*-open sets consists of all sets of the form Q n U, U 
open in <P, xu); but xu is the topological modification of u, and hence U is open 
in <P, xu) if and only if it is open in <P, u). By 17 A.4 (b) each set from ir* is open 
in (Q, v) and hence in (Q, xv). Both closures v* and xu are topological, and there-
fore, if "V denotes the collection of all u-open sets, then v* = xv if and only if "T* = "V, 
and v* is coarser than xv if and only if "f* <= -f (by 15 A.7). Thus we have proved 
the following theorem. 

17 A.6. Theorem. Let (Q, v) be a subspace of a closure space <P, u>. The 
relativization v* of xu to Q is always coarser than xv. In order that xv = v* it is 
necessary and sufficient that every open (closed) subset of <2, u> be of the form 
Q r\U with U open (closed) in <P, u>. 

Combining 17 A.5 and 17 A.6 we obtain the following proposition. 
17 A.7. In order that a closure space P be topological it is necessary and suf-

ficient that for each subspace Qof P the topological modification xQ of xQ be a sub-
space of x P. 

It is to be noted that for some subspaces Q of P the topological modification TQ 
of Q may be a subspace of xP even if P is not topological. The following proposition 
describes a wide class of such subspaces. 

17 A.8. Let Q be a subspace of a closure space P such that Q = U n C, where U 
is open in P and C is closed in P. Then every closed (open) subset X of Q is of the 
form QnY with Y closed (open) in P. By 17 A.6 xQ is a subspace of xP. (Notice 
that the condition is fulfilled if Q is open or closed in P.) 

Proof. Let X be closed in Q. It is sufficient to find a closed subset Y of C such that 
Y n Q = X. Evidently the set Q is open in C and hence C — Q is closed in C. Put 
Y = X u (C - Q). Since clearly Yc = Xe u (C - Q) = X u (C - Q) = Y, Y is 
closed in C, and hence in P (17 A.4 (c)), and obviously Y n Q = X. If Fis open in Q, 
then X = Q — V is closed in Q and, as we have just proved, there exists a closed 
set Y in P with Yn Q = X = Q - V. Clearly P - Yis open in P and Q n (P - 7) = F 

Now we proceed to various descriptions of relativized closure operations. 

17 A.9. Theorem. Let <Q, u) and <P,u) be closure spaces such that Q <= P. 
Each of the following conditions is necessary and sufficient for (Q, v) to be a sub-
space of <P, u>: 
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(a) for each X e Q, int. X = Qn int„ (X u (P - Q)); 
(b) if xe Q, then a set V c Q is a neighborhood of x in <Q, v> if and only if 

there exists a neighborhood U of x in <P, u> such that U n Q = V; 
(c) ifN is a net in Q and x e Q, then x is a limit point (an accumulation point) 

of N in <P, w> if and only if x is a limit point (an accumulation point) of N in 
<fi> »>• 

Proof. The pattern of the proof will be: (a) is necessary, (a)=>(b) => (c) and (c) 
is sufficient. — I. Suppose that (Q, v) is a subspace and X <= Q. By definition of the 
interior operation we have int„ (X u (P - Q)) = P - u(P - (X u (P - Q)) = 
= P — u(Q — X) and consequently 

Q n int„ (X u(P - Q)) = Q - u(Q - X) = Q - (Qn u(Q - X)) = 
= Q — v(Q — X) = int„ X. 

Thus (a) is necessary. — II. Now suppose (a). If V is a neighborhood of an x e Q in 
<2, v), then by (a) the set U = F u (P — Q) is a neighborhood of x in <P, u> 
and clearly C7 n Q = V. Conversely, if U is a neighborhood of x in <P, «>, then also 
the set U u (P — Q) is a neighborhood of x in <P, u> and by (a) the set 
(U u (P - Q)) n Q = U n Q is a neighborhood of x in <Q, u>. Thus (a) => (b). -
III. Since the implication (b) => (c) is almost self-evident, it remains to show that 
(c) is sufficient. — IV. Suppose (c) and let x e Q, X <= Q. If x e vX, then there exists 
a net N in X such that x is a limit (an accumulation) point of N in (Q, v) (by 15 B.4). 
By the condition, x is also a limit (an accumulation) point of N in <P, m>, and 
hence xeuX by 15 B.4. Thus vX <= (Qr\uX). Conversely, if xeuX, then there 
exists a net N in X such that x is a limit (an accumulation) point of N in <P, u>. By 
the condition x is also a limit (an accumulation) point of N in <Q, v} and hence 
(by 15 B.4) x e vX. Thus i l s j g n uX). 

17 A.10. Corollary. Let Q be a subspace of a closure space P. If is a local 
base (a local sub-base) at a point xe Q in P, then n Q = E{U n Q | U e Hi} 
is a local base (a local sub-base) at x in Q. As a consequence, if "U is a base (a sub-
base) of the neighborhood system in P of a set X cz Q, then [Hf] n Q has the same 
property in Q. 

Let us state the following immediate consequence of 17 A.3 and 17 A.4. 
17A.11. Let Q be a subspace of a topological space P. If Hi is the collection 

of all open subsets of P or an open base or an open sub-base for P, then \Hl\ n P 
has the same property in Q. 

Sometimes we have defined a closure for a set by specifying neighborhoods of 
points. Often it will be convenient to define a closure u for a set P by specifying 
some subspaces of (P, «>, neighborhoods of some points and closures of some sets 
in such a manner that the closure u will be uniquely determined. E. g., let P be a set, 
xeP and let Hi be a filter base in P with x e (\Hl. By 14 B.10 there exists exactly one 
closure u for P such that Hi is a local base at x in <P, u> and, for each yeP — (x), 
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the filter base ((y)) is a local base at y in <P, u). Clearly P — (x) is an open discrete 
subspace of <P, u>, that is, P — (x) is an open subset of <P, u) and the subspace 
P — (x) of <P, u> is discrete. It is easily seen that the closure u can be defined as 
follows: u is the closure for P such that P — (x) is an open discrete subspace of <P, m> 
and °U is a local base at x in <P, u). For another example, let P be the union of two 
disjoint infinite sets Px and P2 and let x( e Ph i = 1, 2. Then there exists exactly 
one closure u for P such that Px and P2 are discrete subspaces of <P, u} and an 
x e Pj belongs to the closure of a subset X of P(, i 4= j, if and only if X is infinite 
and x = Xj. 

Having defined the notion of a subspace of a closure space, in accordance with 
7 B.5 we can define the restriction of a mapping for closure spaces as follows: 

17À.12. Definition. The restriction of a mapping f for closure spaces is 
a mapping g for closure spaces such that the underlying abstract mapping 
\g\ ( = <gr<7, \0*g\, |E*0|>) is a restriction of |/| ( = <gr/, |D*/|, |E*/[>) and D*g 
and E*g are subspaces of closure spaces D*/ and E*/ respectively. If D*g = D*/, 
then g is called a range-restriction of / , if E*g = E*/, then g is called a domain-
restriction of / . If g is a restriction of / , then g is said to be the restriction of f to 
a mapping of D*g into E*g, if g is a domain-restriction (range-restriction) of / , 
then g is said to be the domain-restriction (the range-restriction) of f to D*g (E*g). 
The domain-restriction of/to 0 is denoted by/| thus f \ & = <gr/| E*/>. 
A mapping / is said to be an extension (domain-extension, range-extension) of 
a mapping g for closure spaces if and only if g is a restriction (domain-restriction, 
range-restriction) of / . 

The result which follows will be used frequently in the sequel and therefore it 
will be proved in detail even though it is almost evident. 

17 A.13. Theorem. Every restriction of a continuous mapping is a continuous 
mapping. A mapping f for closure spaces is continuous if and only if the range-
restriction of f to the subspace Ef of E*/ is continuous. 

We shall need the following more general result: 

17 A.14. If g is the restriction of a mapping f for closure spaces and if f is a con-
tinuous at a point x ofDg, then g is also continuous at x. A mapping f for closure 
spaces is continuous at a point x if and only if the range-restriction g of f to the 
subspace Ef of E*/ is continuous at x. 

Proof. I. Suppose that g is the restriction of / and/ is continuous at an x e Dg. 
To prove that g is continuous at x, by virtue of 16 A.4 it is sufficient to show that 

is a neighborhood of x in D*g whenever Fis a neighborhood of gx in E*g. 
Let F be a neighborhood of gx in E*g. Since E*g is a subspace of E*/, by 17 A.9 
we can choose a neighborhood U of gx in E*/ so that F = U n E*g. Since gr g = 
= g r / n (D# x Eg) we obtain = / - 1 [L7] n D*g. Since/is continuous at x, 

/_1[C7] is a neighborhood of x in D*/, and hence, D*gi being a subspace of D*/, the 
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right side of the above equality is a neighborhood of x in D*g; this completes the 
proof. — II. The "only if" part of the second statement is a particular case of the first 
statement. To prove the "if" part, suppose that g is continuous at x and U is any 
neighborhood of /x( = gx) in E*/. The set U n E/is a neighborhood of gx in the 
subspace Ef of E*/and hence g~l[U n E/] is a neighborhood of x in D*g = D*/. 
But clearly / _ 1[17] = g~l\U h E/]. 

17A.15. Corollary to 17 A.13. Every range-extension of a continuous mapping 
is continuous. 

On the other hand, the domain-extension of a continuous mapping need not be 
continuous. Indeed, every mapping for closure spaces is the domain-extension of 
a continuous mapping (observe that every mapping of a one-point space into any 
space is continuous). 

Let / be a mapping of a space P into a space Q. If [Xa | a e A} is a cover of P 
(that is, by 12 A.1, a family of subsets of |P| the union of which is |P|) and if, for 
each a, the restriction of / t o the subspace Xa of P is continuous, then clearly /need 
not be continuous, but under certain additional assumptions (on the cover {Xa}) 
the mapping / is necessarily continuous. 

17 A.16. Theorem. Let {Xa | a e A} be a locally finite cover of a space P. If f 
is a mapping of P into a space Q such that the domain-restriction off to each sub-
space Xa is continuous, then f is continuous. 

Proof. Let us suppose that X c P, x e X. We must show that fx e/[AT]. Since 
{Xa} is a cover of P, the family {AT n Xa} is a cover of X, and being locally finite 
(14B.16) and hence closure-preserving (14B.18), x belongs to the closure of some 
set A' n Xa. Since the domain-restriction g of / to the subspace R = X n Xa is 
continuous and x sX n ATa ( = X n Xa), we obtain gx e g[X n Xa]; but gx = fx 
and f[X n A'J = g[X n A"a], and hence fx e f\X n ArJ, which implies fx e f\X\ 

It is to be noted that the assumption that the domain-restriction to each Xa is 
continuous cannot be replaced by the weaker assumption "the domain-restriction 
to each Xa is continuous". For example, if P is an accrete two-point space, A = 
= |P|, Xa = (a), then for each mapping / the domain-restrictions are continuous; 
however, obviously there exists a mapping / of P which is not continuous (for 
instance we can take the identity mapping of P onto |P| endowed with the discrete 
closure). 

Next, the assumption that {ATa} is locally finite cannot be replaced by the weaker 
assumption that {Xa} is closure-preserving. For example, let P be an infinite space 
with exactly one cluster point, say x, A = |P|, Xa = (a, x) for each a. It is easily 
seen that P is not discrete and hence there exists a mapping of P into a space which 
is not continuous, {ATa} is a closure-preserving family of closed sets and each sub-
space Xa of P is discrete, and consequently every mapping of Xa into any space 
is continuous. 
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17 A.17. Definition. A cover of a closure space P will be called closed (open) 
if each Xa is closed (open). An interior cover of a space P is a cover {X„} of P such 
that {int Xa} is a cover of P. 

For example, every open cover is an interior cover. As a corollary of 17 A.16 we 
obtain the following extremely useful theorem. 

17 A.18. If {Xa} is a locally finite closed cover of a space P and if f is a map-
ping of a space P into a space such that all restrictions f \ Xa are continuous, 
then f is continuous. 

17 A.19. If {Xa} is an interior cover of a space P and f is a mapping of P into 
a space Q such that all domain-restrictions f \Xa are continuous, then f is conti-
nuous. 

Proof. Let x e P and let U be a neighborhood of fx. Choose an index a so that 
x e int Xa. Since f\Xa is continuous, there exists a neighborhood F of x in Xa so 
that ( /| Xa) [F] c U, and hence / [ F ] c: U. It is easily seen that Fis a neighbor-
hood of x in P. By 16 A.4 f is continuous. 

17 A.20. Definition. An embedding of a space P into a space Q is a mapping / of 
P into Q such that the range-restriction of / to Ef is a homeomorphism. We shall 
say that a space P admits an embedding into a space Q if there exists an embed-
ding of P into Q. 

Thus every embedding for closure spaces is an injective mapping. If Q c P then 
the identity mapping of a space <Q, i?> into a space <P, m) is an embedding if and 
only if <Q, u> is a subspace of <P, From the corresponding definitions one can 
derive the following direct description of embeddings which will usually be used 
without reference in the sequel. 

17 A.21. A mapping f of a space <P, u> into a space v) is an embedding if 
and only if the following two conditions are fulfilled: 

(a) / is injective; and 
(b) for each X <= P, f[uX] = u / [ X ] n Ef. 
In conclusion we shall examine subspaces of ordered spaces. Let u be a generalized 

ordered closure for a monotone ordered set <P, Q a subset of P, v the 
relativization of u to Q and g Q the restriction of rg to Q. We shall prove that v 
is a generalized order closure for (2, gQ>, and if u is the order closure, then v need 
not be the order closure. Finally, if v is a generalized order closure for an ordered set 
<Q> then there exists an ordered set <P, such that (Q, gQ> is an ordered 
subset of <P, and v is the relativization of the order closure for <P, 

17 A.22. Theorem. A subspace <Q, v) of a generalized ordered space <P, u ) 
is a generalized ordered space; if g is a monotone order for P such that u 
is a generalized order closure for <P, then v is a generalized order closure 
for (Q, =q) where <Q, g Q > is an ordered subset of <P, 
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Proof. For each x in Q we must find a local base at x in <Q, v} consisting of 
intervals in <2, Fix an x in Q and let us consider the set Hi of all intervals in 
<P, which are neighborhoods of x in <P, u>. If U n Q = (x) for some U in Hi, 
then clearly ((x)) is a local base at x in <2, v), and evidently (x) is an interval in 
(Q, namely the closed interval with end-points x. In the remaining cases 
we shall need the evident fact that U n Q is an interval in (Q, ^ 2> whenever U 
is an interval in <P, ^ > with end-points belonging to Q. Suppose that U n Q =t= (x) 
for each U in Hi. If there exists a U in Hi such that U n Q <= [ x, -» [, then for each 
Ve Hi, V <=. U, there exists an interval WE Hi such that W n Q is an interval in 
<2, with end-points x and y e Q; indeed we can choose any y e Q, such that 
x" < y e V. Similarly in the case [ / n g c z ] + - , x ] f o r some U in Hi. In the remain-
ing case, for each U in Hi we can choose z e (Q n U), y e(Q n U) such that z < 
< x < y; clearly the interval ] z, y [ belongs to Hi and its intersection with Q is 
contained in U n Q. 

It is to be noted that the statement becomes false if the expressions "generalized 
order closure" are replaced by expressions "order closure"; e.g. if <P, > is the 
ordered set of reals and Q = ] «-, 0 ] u ] 1, -> [, then the order closure w for 
(6 , =q> is strictly coarser than the relativization v of the order closure for 
<P, actually, 0 e w ] 1, [ but 0 $ v ] 1, [. 

17 A.23. Theorem. Every generalized order closure v is a relativization of an 
order closure u; in addition, if v is a generalized order closure for an ordered set 
<Q, = Q) then (Q, is an ordered subset of an ordered set <P, such that v 
is a relativization of the order closure for <P, 

Proof. Let <J?, -<> be the lexicographic product of the ordered set <2, 
and the ordered set S of integers (the proof remains true with S = ( — 1, 0, 1)) 
(the order is not indicated), that is, R = Q x S and (x, ny (y , nty if and only 
if either x y, x # y, or x = y and m follows n in S. Let T be a subset of R 
(thus T is a relation) such that T[(x)] = S if x is isolated in <Q, v), 
T[(x)] = N if x is right-isolated but not left-isolated in <Q, v), T[(x)] = 
= (S — N) u (0) if x is left-isolated but not right-isolated in <Q, t>> and 
T[(x)] = (0) in the remaining case, i.e. if x is neither left-isolated nor right-
isolated. Let <T, -<Ty be an ordered subset of (R, -<>, u be the order 
closure for <T, -<r> and v' be the relativisation of v to the subset Q x (0) of T. 
It is easily seen that the mapping {x -» <x, 0)} : <Q, ¿Q> <T, -<T) is order-
preserving and the mapping {x -* <x, 0)} : (Q, v) (Q, v') is a homeomorphism. 
Now the reader will have no difficulties in constructing <P, ^ >; it is enough to find 
a set P => Q and a one-to-one mapping f of P onto T such that fx = <x, 0> for 
each x e Q. 

Remark. A generalized order closure for a set P need not be an order closure 
for P; more precisely, if u is a generalized order closure for <P, ^ ) then there need 
not exist an order -< for P such that u is an order closure for <P, «<>. In Section 20 
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we shall show that the closure structure of the subspace [ 0, 1 ] u ] 2, 3 [ of the space 
R of reals has this property. 

B. SUMS OF SPACES 

Let us recall that the sum of a family {Xa | a e A} of sets is the set E{Xa} of all 
pairs <a, x> such that a e A and x e Xa. If Y c E{Xa}, then there exists exactly one 
family { Y"a} such that Y = £{ Ya}. Next, for each element a, the injection relation 
at a, denoted by inja, is the single-valued relation which assigns to each element x 
of Xa the pair (a, x). Thus we can write 

Z{Xa) = U{injfl [*„]} • 

17 B.l . Definition. The sum of a family {<Pa, ua> | a e A} of closure spaces, 
denoted by £{<Pa, wa> | a e A}, is defined to be the space <P, u) where P is the sum 
of the family of sets {Pa} and u is the sum closure, denoted sometimes by £{«„} 
and defined by 

(Z{«.}) X{Xa} = Z{uaXa} 

for each subset X = S{Xa} of P. Thus 
2{<Pfl, "„>} = <E{Pa}, 2{ua}> . ' 

To show that the sum closure is well-defined, we must prove that the sum closure 
is actually a closure operation, i.e. that it fulfils the conditions (cl i) of Definition 
14 A.1. Since I{Xa} is empty if and only if each Xais empty, condition (cl l) is true. 
Since 2{Xa} c E{Ya} if and only if Xa c Ya for each a, we obtain condition (cl 2). 
Finally, additivity follows from the formula E{Xa u Ya} = (E{Xa}) u (E(Ya)). 

17 B.2. Theorem. Let <P, u> be the sum of a family {<Pa, u a ) | a e A} of closure 
spaces. Then 

(a) the mapping inja : <Pa, u0> -*• <P, u), called the canonical embedding of 
<Pa, ua> into <P, u>, is an embedding for each a in A, 

(b) the set inja [Pa] is simultaneously open and closed in <P, m> for each a in A, 
(c) if all <Pa, ua> are topological, then so is <P, uy, 
(d) if all <Pa, ua> are discrete, then so is <P, u). 
Proof. Let („'denote the mapping injfl: <Pa,ua> <P, u). — I. Clearly iais injective 

and ia[uaX] = u ia[X] = Eia n u ia[X], which shows that ia is an embedding (by 
17 A.21). — II. Obviously each set inja [Pa] is closed. Since clearly the family {inja [Pa]} 
is disjoint and closure-preserving, each set inja [Pa] is open because its complement 
is closed as the union of a closure-preserving family of closed sets (14 A.7), namely 
{inj6 [P6] | be A - (a)} — III. If all <Pa, ua> are topological then uu E{Xa} = 
= u I.{uaXa} = l,{uauaXa} = E{uaZa} = u which shows that u is topolo-
gical. — IV. If all <Pfl, ua> are discrete, then u E{Xa} = S{uXa} = £{Xa} which 
shows that u is also discrete. 
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Now we shall prove that, roughly speaking, the sum closure is the finest closure 
for the sum of underlying sets such that all injections are continuous. This descrip-
tion of sum closure may be compared with the description 17 A.2 of relativized 
closures. 

17 B.3. Let {<Pa, ua> | a e A) be a family of spaces. A closure u for P = £{Pa} 
is the sum closure if and only if the following two conditions are fulfilled: 

(a) All mappings inja : <Pa, ua> -*• <P, u> are continuous. 
(b) If v is a closure for P such that all mappings inja : <Pa, ua> -» <P, v) are 

continuous, then v is coarser than u. 
Proof. It follows from (b) that there exists at most one closure u.for P satisfying 

the conditions (a) and (b). It remains to show that the sum closure u fulfils conditions 
(a) and (b). Condition (a) is fulfilled by 17 B.2 (a). If v fulfils the assumptions of (b), 
then clearly 

which shows that v is coarser than u. 
In conclusion we shall prove an important description of the continuity of a map-

ping of a sum of spaces, which is a consequence of 17 B.3 but which will be proved 
directly here. 

17 B.4. Theorem. A mapping f of a sum space <P, u) = £{<Pa, wa>} into a space 
< Q, v~) is continuous if and only if each composition 

{*) fo (inj. : <Pa, «„> - <p, « » 
is continuous. 

Proof. If/is continuous then all mappings of (*) are continuous as compositions 
of continuous mappings. Conversely, suppose that all mappings of (*) are conti-
nuous. If X = Z{Xa} is any subset of P, then f[X] = U{ / ° inj0 [Xa]}, / [uX] = 
= U{/° inja ["A]} and f° inja [uaXa\ <= v(fo inja [ X j ) (by the continuity of map-
pings of (*)), so that we obtain 

vf[X] ^ U M / ° inja M } = U{/o inja [uaXa]} = f[uX] 

which establishes the continuity of / . An alternate proof of the continuity of / can 
be obtained from 17 A.19. Indeed, each set inja [Pa] is open by 17 B.2 and clearly 
the domain-restriction of / to each subspace inja [Pa] is continuous because inja : 
: (Pa> Ma> inja [J°a] ¡s a homeomorphism. 

It is to be noted that all results of this subsection become corollaries of the 
results of Section 33 devoted to the inductive construction of closure spaces. 

In conclusion we shall introduce the concepts of the sum and the reduced sum 
of a family of mappings. 

17B.5. Definition. The sum of a family of mappings for closure spaces { / , } 
is the mapping / of Z{D*/a} into E{E*/a} which assigns to each <a, x) the point 
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<,a,/ax>. Thus gr / is the relational sum of {gr / J (5 C.6). If E*/„ = * for each 
index a, then we define the reduced sum of {/a} to be the mapping of E{D*/a} into 0> 
which assigns to each point <a, x> the point fax. 

The proofs of the following two theorems are simple and therefore may be left 
to the reader. 

17B.6. Theorem. Let f be the sum of a family of mappings for closure spaces 
{/„}. Thenf is continuous, an embedding or homeomorphism if and only if each fa 

has the corresponding property. 

17 B.7. The reduced sum of a family of mappings for closure spaces {/„} is conti-
nuous if and only if each fa is continuous. 

C. PRODUCTS OF SPACES 

Recall that, by 5 A.4, the product of a family [Pa | a e A} of sets is the set n{Pa} 
consisting of all families {xa | a e A] such that xa e Pa for each a. Next, the projection 
relation at an element a is the relation pra which assigns to each family {xb | b e 5} 
with aeB the member xa. The mapping pra : n{Pj, | b e A} -> Pa, where a e A, 
will be called the projection of the product in question into its a-th coordinate set 
Pa, or simply into Pa. It is to be noted that each projection of a product is surjective 
whenever the product is non-void. 

Now let {<Pa, u„y | a e A} be a family of closure spaces, P be the product of the 
family {Pa} of underlying sets and na be the projection of P into Pa for each a. For 
each x in P let aUx be the collection of all sets of the form 

= E { y | y e P , p r a y e F } 

where a e A and V is a neighborhood of the point pra x in <Pa, ua>. By Theorem 
14B.11 there exists exactly one closure operation u for P such that Hlx is a local 
sub-base at x in <P, u> for each x in P. Clearly, for each x in P, the smallest multi-
plicative collection containing Hlx which is a local base at x in <P, u>, consists of 
all sets of the form 

(1) n { « ; 1 [ F ] I a e F} = E{y \ y e P, a e F => pra y e Va) , 
where F is a finite subset of A and Va is a neighborhood of pra x for each a in F. 

17 C.l. Definition. The product of a family {<P„, u„> | a e A} of closure spaces, 
denoted by n{<Pa, wa>}, is defined to be the product P of the family {Pa} of under-
lying sets endowed with the closure operation u defined above. This closure u, called 
the product closure, will sometimes be denoted by n{wa}. The neighborhoods of x 
of the form (l) will be called canonical neighborhoods (of x). The mappings 
pra : n{Pa} -> Pa will be called projections of the product (into coordinate spaces). 
The product (more precisely, pair-product) of two spaces <P, u> and (Q, v), the 

19 — Topological Spaces 
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definition of which is clear, will be denoted by <P, u> x (Q, v} and the product 
closure will be denoted by u x v. Thus we have: 

n{<pa, «„>} = <n{pa}, n{ufl}>, <p, «> x <q, vy = <p x Q, U x vy. 
A class K <= C is called completely productive if Tl{£Pa} e K for any {0a} in K. 

It is to be noted that the symbol n{ua}, where ua are closures, has many quite dif-
ferent meanings. It can be treated as the product of sets; in this case, it consists of 
all families {<Xa, 7a)} such that Ya = uaXa. Next, it can be treated as the relational 
product; in this case it consists of all pairs <{Xa}, {Y0}> such that Ya = uaXa for 
each a. Finally it can be treated as the product closure. In what follows, unless 

"otherwise stated, if ua is considered as a closure operation, then the symbol II{ua} 
will denote the product closure. It is interesting and also very important that the 
product closure !!{«„} is a relation-extension of the relation {n{Xa} Tl{uaXa}} 
for exp P ranging in exp P which is "induced" by the relational product IIrel{ua} 
and the relation {{A"a} -» n{JTa}}. Stated more directly: 

17 C.2. The closure of a set Il{Za} in a product space Il{<Pa, ua>} is II{uaXa}, i.e., 
(n{ua}) (n{xa}) = n{uaxa]. 

Proof. It is evident that each canonical neighborhood of a point x intersects 
n{Xa} if and only if pra x e uaXa for each a. 

It is to be noted that if a subset of the product is not of the form treated in 17 C.2 
then there exists no simple formula such as, for instance, in the case of the sum 
closure or relativized closure. 

17 C.3. Let x = {xa} be a point of a product space P = Il{Pa | a e A} and let 
{<^a} be a family. If °Ua is a local sub-base at xa in Pafor each a, then the collection 
of all sets of the form E{y | y e P, pra y eU}, where ae A and U e at'¿a, is a local 
sub-base at x in P. If each is a local base at x in Pa, then the collection of all 
sets of the form E{y | y e P, a e F => pra y e Ua}, where F <=• A is finite and Ua e "t'¿a 

for each a in F, is a local base at x in P. — The simple proof is left to the reader. 

17 C.4. Theorem. The product of a family of topological spaces is a topological 
space. 

Proof. Let P be the product of a family {Pa} of topological spaces. It is sufficient 
to show that, for each x in P, the open canonical neighborhoods of x form a local 
base at x. But this follows from 17 C.3. Indeed, if "Ua is the collection of all open 
subsets of Pa containing pra x, then is a local base at pra x in Pa because Pa is topo-
logical; then, by the second statement of 17 C.3, the collection of all canonical neigh-
borhoods formed of sets from collections is a local base at x, and obviously each 
of its elements is open in P. 

Obviously the product of any family of accrete spaces is an accrete space. Also 
finite products of discrete spaces are discrete spaces, but infinite products of discrete 
spaces need not be discrete spaces. More precisely, if P is the product of an infinite 
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family of at least two-point discrete spaces, then P is not discrete and moreover, 
P has an infinite local character at each of its points (prove!). Some examples will 
be given in the concluding part of this subsection, for further examples consult the 
exercises. 

From the corresponding definitions we obtain at once the following simple but often 
useful result, which asserts that the operation of taking subspaces commutes with the 
operation of forming products. 

17 C.5. If {Pa} is family of closure spaces and Qa is a subspace of Pafor each a, 
then n{2a} is a subspace o/II{P a}. 

Now we proceed to the two descriptions of product closures promised in the 
introduction. Recall that the sum closure is the finest closure for the sum of under-
lying sets rendering all injections continuous. 

17 C.6. Theorem. The projections of a product space into its coordinate spaces 
are continuous. Moreover, the product closure is the coarsest closure for the product 
of underlying sets rendering all projections continuous. 

Proof. Let <P, u> be the product of a family {<Pa) wa>} °f closure spaces and 
let 7ia denote the restriction of the relation pra to P. — I. The continuity of each 
7ta : <P, u} -y <Pa, wa> follows from 16 A.4 because, by the definition of product 
closure, if x e P and Fis a neighborhood of nax, then 7t a ' [F] is a canonical neigh-
borhood of x. — II. Now let v be a closure for P such that all mappings na : <P, v) -*• 

(Pa< Ma> a r e continuous. Again by 16 A.4, if x e P, a e A and Fis a neighborhood 
of Ttax in <Pa, wa>, then nJX[F] must be a neighborhood of x in <P, u>. Consequently, 
every canonical neighborhood of x in <P, u> is a neighborhood of x in <P, u>. Since 
canonical neighborhoods of x form a local base at x in <P, w), u is necessarily coarser 
than v (by 14 B). 

It may be appropriate to notice that the projections have the following significant 
property: 

17 C.7. If P is the product of a family {Pa} of closure spaces and X is a neighbor-
hood of x in P, then pra [X] is a neighborhood of pra x in Pa; in particular, if X 
is open, then pra [X] is open. 

Remark. A subset X = n{Xa} of P is open is and only if all Xa's are open and 
Xa = Pa except for a finite number of a's. Such open sets are called canonical open 
sets. 

Next we shall observe that, if a product is non-void, then every coordinate space 
admits an embedding into the product. 

17 C.8. Let P 4= 0 be the product of a family {Pa | a e A} of spaces. Fix an cc 
in A and an x in P. The mapping of Px into P which assigns to each z ePa the point 
{ya} such that ya = z and ya = xa for a 4= a, is an embedding. — Obvious. 

Now we give a description of product closures in terms of convergence. 

19' 
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17 C.9. Theorem. Let P be the product of a family {Pa} of spaces and let <N, 
be a net in P. In order that a point x of P be a limit point of(N, in P it is ne-
cessary and sufficient that, for each a, the point pra x be a limit point of the 
net <pra o N, in <Pa, ua>. 

Proof. If x is a limit point of N in <P, u), then pra x is a limit point of pra 0 N 
in <Pa, wa>, because of the continuity of the projection of <P, u) onto <Pa, wa> 
(16 A.8, 17 C.6). Conversely, suppose that prax is a limit point of the net pra o N 
in <Pa, ua> for each a. Since canonical neighborhoods of x form a local base at x, 
it is sufficient to show that N is eventually in each canonical neighborhood. Recall 
that a net which is eventually in each member of a finite family of sets is eventually 
in the intersection of this family. Therefore, it is sufficient to show that N is eventually 
in each set of the form E{y | pra y e V}, where V is a neighborhood of pra x in 
<Pa, ua>. But this is clear because pra • N converges to pra x in <Pa, ua>. 

Remark. Since the convergence of nets uniquely determines the closure of a space, 
Theorem 17 C.9 can be restated as follows: In order that u be the product closure 
it is necessary and sufficient that a net N in P converge to a point x in <P, w> if and 
only if the net pra o N converges to pra x in <Pa, ua> for each a. For this reason the 
product closure is often termed the closure of pointwise convergence. 

Recall that a mapping / of the sum P = £{Pa} of spaces into a space is continuous 
if and only if all mappings / o (inja : Pa -> P) are continuous. For mappings into 
products of spaces we shall prove the following result. 

17 C.10. Theorem. A mapping f of a space into the product P of a family {Pa} 
of spaces is continuous if and only if the mapping 

(*) (pra : P ^ P a ) of 
is continuous for each a. 

Proof. I. If/is continuous then all mappings of(*)are continuous as compositions 
of continuous mappings.—II. Conversely, suppose that all mappings (*) are continuous. 
To prove that/is continuous, by 16 A.8 it is sufficient to show that, if a net N con-
verges to a point x in D*/, then the net / o N converges to the point fx in E*/ = P. 
Suppose that N converges to x. Since every mapping of (*) is continuous, again 
by 16 A.8, each net (pra of)oN converges to (pra ° / ) x in Pa. But (pra af)oN = 
= pra o ( /o N), (pr a o / )x = pra(/x), and consequently, by the preceding theorem 
17 C.9, the net f oN converges to fx; this establishes the continuity of /. 

Now let / be a mapping of a product Q = II[Qa \ a e A) into a product P = 
= n {P a | a e A}. Sometimes there exists a family {/„} such that fa is a mapping 
of Qa into Pa and gr / = {{xa} -> {/axa}}. Of course such a family, if it exists, is 
uniquely determined. Now we shall show that, excepting the trivial case 2 = 0, 
/ i s continuous if and only if all the fa are continuous. 

17 C.l l . Let {/], | aeA} be a family, each fa being a mapping of a space Qa 

into a space Pa. If all fa are continuous then also the mapping f of Q = n { g a } 
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into P = II{Pa} which assigns to each {xa} the point {/axa} is continuous. Conversely, 
if f is continuous and 2 4= 0, then all fa are continuous. 

Proof. L If all fa are continuous, then each mapping (pra : P -> Pa) o / i s conti-
nuous since it coincides with the composition fa 0 (pra : Q -+ Qa) of two continuous 
mappings. By Theorem 17 C.10 the mapping / i s continuous. — II. Now suppose that f 
is continuous and 2 + 0- Fix an a in A. Choose an x in Q and write the mapping 
fa in the form 

fa = (pra : P Pa) o / c h 

where h is the embedding of Qa into Q, described in 17 C.8, corresponding to x. 
Since all the mappings on the right side are continuous, fa is continuous by 16 A.3. 

Notice that the graph of / in 17 C.10 is the reduced relational product (5 C.5) 
of {pra o gr/}, and the graph of / in 17 C.11 is the relational product (5 C.2) of 
{gr/a}. According to 17 C.10 and 17C.11 it may be convenient to introduce the 
following definition. 

17 C.12. Definition. Let {/a} be a family of mappings for closure spaces. The 
product of {/a}, denoted by II{/a}, is defined to be the mapping 

n r e l{gr/a} : n{D*/a} - n{E*/a} , 

that is, its graph is the relational product of graphs, i.e. the set of all pairs <{xa}, 
{/axa}>. If the domain carrier of each /„ is equal to a space R, then we shall define 
the reduced product of {/a} as the mapping 

{ x - + { / a x } | x e K } : . R - + n { E * / a } , 

that is, the graph of the reduced product of mappings is the reduced product of 
graphs. 

Now Theorems 17 C.10 and 17C.11 can be restated as follows: 

17 C.13. Theorem. The reduced product of a family {/a} of mappings for 
closure spaces is continuous if and only if allfa are continuous. Let fbe the product 
of a family {/,} of mappings for closure spaces; if all fa are continuous, then f 
is continuous, and conversely if f is continuous and Df =j= 0, then all fa are conti-
nuous. 

17 C.14. Theorem. Let fbe the product of a family of mappings {/„} for closure 
spaces. If each fa is a homeomorphism (an embedding) then so is f . Conversely, 
if Of =|= 0 and f is a homeomorphism (an embedding) then so is each fa. 

Proof. Applying the second statement of 17 C.13 to both / and / - 1 we obtain 
immediately the statements concerning homeomorphisms. The statements concerning 
embeddings follow from the statements about homeomorphisms and from Proposition 
17 C.5 stating that the product of subspaces is a subspace of the product. 

Remark . It can be easily proved that the operation of forming products is, in 
a certain sense, commutative; more precisely, if {Pa | a e .4} is a family of spaces 
and cp is a bijective mapping of a set B onto A, then the products P = Il{Pa | a e A} 
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and Pi = n{P„,, | b e B} are homeomorphic. In fact, the mapping {{xa} -» {x^}} 
is a homeomorphism of P onto P t . Often we will be concerned with products of 
families all members of which coincide. To this end we introduce a special nota-
tion. 

17 C.15. Definition. The product of the family of spaces {P | a e A} will be denoted 
by PA. The product [ 0, 1 J'1 will be called a cube, where [ 0, 1 ] is taken as a 
subspace of the reals. 

It is to be noted that \PA\ = \P\A (the symbol XA, where X is a set, denotes the 
product of the family of sets {X \ a e .4}). 

17 C.16. If P and Q are homeomorphic spaces and A and B are equipollent sets, 
then the product spaces PA and QB are homeomorphic. — By 17 C.14. 

Convent ion. Sometimes we shall use the symbol where * is a closure space 
and K is a cardinal, to denote any closure space such that A is a set of cardinal X. 

In what follows we shall often construct an embedding/of a space Q into a product 
P = n{Pa} of spaces. Clearly / is the reduced product of the family of mappings 
{(pra : P -»• Pa) o/}. To avoid repetition we shall prove the following results which 
give a sufficient condition for the reduced product of a family of mappings to be an 
embedding. 

17 C.17. Embedding Theorem. The following three conditions are sufficient for 
the reduced product f of a family {/,} of mappings of a closure space Q (into 
spaces) to be an embedding: 

(a) Each fa is continuous. 
(b) The family distinguishes between points of Q, that is, if x, y e Q, x 4= y, 

then fax 4= fay for some a. 
(c) If x e Q, X c Q, x $ X, then, for some a, the point fax does not belong to 

the closure of /,[Z] in E*fa. 
Supplement: If Q is topological, then condition (c) can be replaced by the follow-

ing weaker one: 
(c') If X is closed in Q and x e Q — X, then there exists an a such that fax is 

not in the closure of /fl[.Y] in E*/a. 
It is to be noted that conditions (a) and (b) are also necessary. The necessity of (b) 

is obvious ( f x = f y if and only if fax = fay for each a) and the necessity of (a) fol-
lows from 17C.13 (because every embedding is continuous). On the other hand, 
condition (c) is not necessary. 

Proof. Suppose t ha t / i s the reduced product of a family {/a} satisfying conditions 
(<t), (b) and (c), where the space Q is the common domain-carrier of all fa. To prove 
that / is an embedding it will suffice to show that / is a continuous injective mapping 
satisfying the following condition: 

(*) xeQ, X <= Q, => fx $J\X-\ (in E*/). 
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According to 17 C.13 condition (a) implies tha t / i s continuous. Condition (b) implies 
tha t / i s injective (because /ax H= f„y for some a implies fx + fy). It remains to prove 
(*). Since each projection na = (pra : E */ -> E *fa) is continuous, to prove fx $ f\X] 
in E*/, it will suffice to show that 

p r . / * * p r . [ / [ * ] ] (in E*/a) 
for some a. But p r a f x = fax and pra [ / [X] ] = fa\X~\, and hence it is sufficient to 
find an a such that fax $ fa\X~\ in E*/a. But such an a exists by condition (c). The 
proof is complete. The supplement is evident ((c') implies (c), if Q is topological). 

As a rather general example we shall show that every closure space Q is homeo-
morphic with a subspace of a product PN where P is a certain three-point space 
independent of Q and X is a suitable cardinal depending on Q. 

17 C.18. Theorem. Suppose that P = (yx, y2, J>3) is a three-point set and u is 
a closure for P such that 

"(j'l) = CVi» yi) > u(y2) = u(y3) = P . 
(Obviously there exists exactly one such closure u.) Then every closure space 
(Q, vy is homeomorphic with a subspace of the product space <P, H>e,pQ. 

Proof. Let / be the reduced product of the family of mappings { f x \ X <= Q} 
where fx is the mapping of (Q, vy into <P, u) such that c {y\)ifx\yX — X] c: 
c (y2) and fx[Q - vX~\ c (y3). Thus / is a mapping of <Q, u> into <P, u> e , p e . 
We shall prove tha t / i s an embedding by showing that {/*} fulfils conditions (a), (b), 
(c) of 17 C.17. The continuity of any fx will be proved by showing that x e v Yimplies 
fxx e u fx\Y\ This is evident if Y n (Q — X) 0 because then fx\Y~\ contains y2 

or y3 and hence u /^[Y] = P. In the opposite case we have Y <=. X, and hence xevX 
fx\?~\ = (^i) (because Y 4= 0) and finally fxx e u(yx) = u which establishes 
the continuity of fx. Condition (b) is fulfilled because f\x)x #= f(x)y if x #= y. Finally, 
if x $ vX, then fxx = y3 $ m( j i) => u which shows that condition (c) is also 
fulfilled. 

It has already been shown that the operation of forming products is commutative. 
Now we shall prove that this operation is also associative. 

17 C.19. Assoc ia t iv i ty of p r o d u c t s . If A is the union of a disjoint family 
of non-void sets {Ab \ b e B] and if {Pa \ a e A} is a family of spaces, then the spaces 
P = Il{Pa | a e A} and P' = n{n{P a \aeAb}\beB} are homeomorphic. 

Proof. Consider the mapping / of P into P' which assigns to each x e P the ele-
ment {{xa | a e Ab} | b e B} (cf. 5 A.13). Obviously / is bijective, and it follows from 
17 C.9 that a net N converges to x in P if and only if the net / o N converges to fx 
in P'. By 16 A.8 both / a n d / _ 1 are continuous which means that / i s a homeomor-
phism. 

Corollary. If {Pa | a e A) is a family of spaces and At <= A, then the mapping 

{x ^ x | A,} : n{Pa | a e A} ^ II{Pa | a e A,} 
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is continuous (this mapping will be called the projection of II{Pa | a e A} into 
niP^aeA,}). 

Proof. Put A2 = A — Ai and consider the product P' = n{n {P a | aeA,} | 
| i = 1, 2}. Obviously the mapping in question can be written in the form g of, 
where /is the canonical mapping of P = Il{Pa | a e A} onto P' and g is the projection 
of P' into its first coordinate space P" = Il{Pa | a e A J . 

D. INDUCTIVE PRODUCTS 

Let us consider the product <P, u> x <Q, u> of closure spaces <P, u) and (Q, v). 
By definition, the collection of all sets of the form U x F, where U is a neighborhood 
of x in <P, u> and Fis a neighborhood of y in u), is a local base at <x, in 
<P, u> x <Q, u> for each <x, y). Now, for each <x, e P x Q let "V^ ̂  be the 
collection of all sets of the form 

(*) ((*) x F)u(C7 x (j,)) 
where Fruns over all neighborhoods of y in (Q, v) and U over all neighborhoods U 
of x in <P, u>. Obviously, each-f ¡^^ is a filter base in P x Q and <x, y) e 
By virtue of 14 B.10 there exists exactly one closure operation for P x Q such that 

is a local base at z for each z in P x Q. 
17 D.l. Definition. The inductive product of two spaces <P, u> and (Q, v}, 

denoted by ind (<P, u) x (Q, v>), is the set P x Q endowed with the closure opera-
tion defined above. The closure of ind (<P, u> x (Q, v}), denoted by ind (u x v), 
is called the inductive product closure. The neighborhoods of the form (*) are called 
canonical neighborhoods for the inductive product, or simply canonical inductive 
neighborhoods. 

17 D.2. Theorem. The product closure is coarser than the inductive product 
closure. 

Proof. Every canonical neighborhood U x Fof a point z for the product contains 
the canonical neighborhood (*) of z for the inductive product (use 14 B.9). 

If one of the spaces is discrete, then clearly the product closure and the inductive 
product closure coincide. On the other hand, the reader may show without difficulty 
that the product closure and the inductive product closure are distinct provided 
that neither <P, m> nor (Q, v) is discrete (pick cluster points x of <P, u) and y of 
<Q, y> and show that no canonical inductive neighborhood (*) of <x, y) contains 
a neighborhood of the form U x F, that is, a canonical neighborhood for the product). 

Recall that the product closure is the coarsest closure for the product of under-
lying sets making all projections continuous. The inductive product closure can be 
characterized as follows: 

17 D.3. Theorem. A closure vv for P x Q is the closure structure of ind (<P, u) x 
x f ) ) if and only if the following two conditions are fulfilled: 
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(a) Each mapping {x <x, y>} : <P, u> -»• <P x g , w>, y e Q, and also each 
mapping {y -* <x, y>} : <Q, v) -> <P x Q, w>, x e P, is continuous; 

(b) If a closure Wyfor P x Q fulfils (a) with w replaced by wx, then wt is coarser 
than w. 

Roughly speaking, the inductive product closure is the finest closure for the 
product of underlying sets rendering all the mappings o / ( a) continuous. 

Proof. Since clearly there exists at most one closure for P x Q satisfying con-
ditions (a) and (b), it is sufficient to show that the inductive product closure w fulfils 
these conditions. The continuity of mappings of (a) follows from the evident fact that 
the inverse images of canonical inductive neighborhoods are neighborhoods. We shall 
prove condition (b). Suppose that Wj fulfils (a) and let W be a neighborhood of a 
point <x, y> in <P x Q, u^). We shall prove that W is a neighborhood of <x, y> in 
<P x Q, w>, which will imply, by 14 B.8, that wt is coarser than w. Since the mapping 
{f -» <x, i>} of <Q, v) into <P x Q,wty is continuous at y, we can choose a neigh-
borhood V of y in <Q, v) whose image (x) x V under this mapping is contained in 
W. Similarly we can choose a neighborhood U of x in <P, w> such that U x (y) is 
contained in W. Thus ((x) x V) u (U x 0)) c W. 

17 D.4. If <P, u ) and (Q, v) are closure spaces, then all mappings 
{x - <x, y>} : <P, u> - ind (<P, u> x <6, »>) 

and 
{y - <*, y>} • <Q, v> - ind (<P, m> x <e, » > ) 

are embeddings. They will be called canonical embeddings into the inductive 
product. — Evident. 

Recall that a mapping / into a product space is continuous if and only if the com-
position of / with each projection is continuous. 

17 D.5. Let 0>, 3., and be closure spaces. A mapping f of ind ( 0 x 2) into 01 
is continuous at a point <x, y} if and only if the mapping {£ /<<!;, y>} 
is continuous at x and the mapping {q -> /<x, >;)} : 2. 0. is continuous at y. 
Consequently, f is continuous if and only if each mapping 

(*) {£ - / < £ , y>} y e | 4 
and also each mapping 

(**) {rj /<x, »/>} : 2 -> m, x e \0\, 

is continuous. 
The simple proof is left to the reader. 

17D.6. Example. Let us consider a single-valued relation g on the set R x R 
ranging in R which assigns zero to the point <0, 0> and the number xy/(x2 + y2) 
to each other point <x, y). Now let R denote the space of reals. One can easily show 
that the function . , _N 

g : md (R x R) -> R 
is continuous, but the function 

g : R x R R 
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is not continuous (at the point <0, 0>). More interesting examples will be given in 
Section 19 devoted to continuous algebraic structs. 

17 D.7. A point <x, y) belongs to the closure of a subset Z of ind « P , u> x 
x (Q, v)) if and only if either x e u Z _ 1 [ ( y ) ] or y e u Z[(x)]. 

Proof . First notice that Z is a relation and hence Z - 1[(y)] = E{x | <x, y) eZ} 
and Z[(x)] = E{y | <x, y} e Z}. It follows from the definition of neighborhoods 
in the inductive product that <x, belongs to the closure of Z if and only if it 
belongs to the closure of the set (((x) x g ) u ( P x (y))) n Z, and hence to the 
closure of the set ((x) x Q) n Z or the set (P x (y)) n Z. Now the result follows 
from 17 D.4. 

Recall that the product of topological spaces is a topological space. On the other 
hand, it is easily seen that the inductive product of two topological spaces need 
not be topological. 

17 D.8. Definition. The topological inductive product of two closure spaces (not 
necessarily topological) * and 2 is defined to be the topological modification of the 
inductive product of * and 2, i.e. t ind ( * x 2). 

17 D.9. Theorem. For any two closure spaces * and 2 we have t ind ( * x 2) = 
= t ind (x0> x t2) . 

The proof follows from the following simple result. 

17 D.10. A subset Z of ind (S? x 2) is open (closed) if and only i /Z[(x)] is open 
(closed) in 2 and Z~1 [(y)] is open (closed) in 0 for each x in 0 and y in 2. 

Proof: 17 D.7. 

17 D. l l . Theorem. A closure w for P x Q is the closure structure of 
x ind (<P, «> x d>) if and only if w is a topological closure satisfying the 
following two conditions: 

(a) Each mapping {x -* <x, : <P, u> -> <P x Q, w>, y e Q, and also each 
mapping {y -»• <x, j>>} : ( 2 , c ) - > ( P x Q, w>, xeP, is continuous; 

(b) if a topological closure Wj for P x Q fulfils condition (a) with w replaced 
by wi, then vvt is coarser than w. 

Proof: 17 D.3, 16B.3. 
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18. S P E C I A L S P A C E S 

Most of this section is concerned with defining and developing the properties 
of pseudometric spaces and of their generalization, semi-pseudometric spaces. In the 
last two subsections we shall introduce new closure operations for ordered sets which 
are used to define upper semi-continuous and lower semi-continuous mappings of 
a closure space into an ordered set, in particular, into the set of reals, and we shall 
introduce the usual closure operation for the set of all prime ideals of a semi-ring which 
is a generalization of the closure for the set of all ultrafilters on a set (14 B.12). 

In subsection A we shall introduce the concepts of a semi-pseudometric, a pseudo-
metric and a closure operation induced by a semi-pseudometric. In subsection B 
the concepts of a Lipschitz continuous mapping and a uniformly continuous mapping 
are introduced and studied. The main results are the metrization lemma 18 B.10 
and Theorem 18 B.16 which gives a necessary and sufficient condition for a given 
semi-pseudometric to be uniformly equivalent with a pseudometric. 

In subsection C we shall prove that the class of all pseudometrizable spaces as well 
as the class of all semi-pseudometrizable spaces is hereditary, countably productive 
and closed under the operation of forming sums. Various pseudometrizations and 
semi-pseudometrizations of subspaces, spaces and products are discussed. Sub-
sections A and B are intended to be an introduction to sections 23 and 24 devoted 
to the examination of uniform spaces. 

A. PSEUDOMETRICS 

Beginning with this section we shall be much concerned with real numbers. It 
seems more natural to use a terminology which is current for this situation in prefer-
ence to that introduced in 10 H.14. 

Convention. A real r will be termed positive if r > 0, and non-negative if r Si 0 
(the corresponding terminology of 10 H.14 would be strictly positive and positive, 
respectively). 

18A.1. Definition. A real-valued relation is a single-valued relation ranging in 
the set R of reals. A semi-pseudometric for a set P is a real-valued relation d on 
P x P which fulfils the following two conditions: 
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(m 1) for each x in P, d(x, x> = 0 (i.e. d vanishes on the diagonal of P x P), 
(m 2) for all x, y in P, d<x, _y> = d(y, x> ^ 0 (i.e., d is symmetric and non-

negative). 
A semi-pseudometric d for P is a pseudometric for P if 
(m 3) for each x, y and z in P, d<x, y) g d(x, z> + d<z, y> (i.e., d fulfils the 

triangle inequality). 
Finally, a semi-pseudometric (a pseudometric) is said to be a semi-metric (metric) if 

(m 4) d(x, y} = 0 implies x = y. 
A semi-pseudometric space is a pair <P, d} where P is a set and d is a semi-pseudo-

metric for P. Similarly we define pseudometric, semi-metric and metric spaces. 
Thus a metric fulfils all conditions (ml)—(m4), "pseudo" indicates that (m 4) 

is not assumed and "semi" indicates that the triangle inequality is not assumed. 
It is to be noted that if d is a semi-pseudometric then there exists exactly one set P 
such that d is a semi-pseudometric for P (and hence, <P, d} is a semi-pseudometric 
space), namely P = DDd; actually Dd = P x P for exactly one P and P = D(P x P). 

18 A.2. Definition. Let <P, d} be a semi-pseudometric space. The number d(x, y} 
is called the distance from x to y in <P, d) or under d or the d-distance from x to y. 
If X and 7 are subsets of P, then the distance distd ( X , Y), or simply dist (X, 7), from 
X to Y is defined to be + oo if X = 0 or Y = 0 and inf {d <x, y} | x e X, y e 7} = 
= inf d\X x Y] otherwise. The distance dist (x, X) from a point x to a set X is 
defined to be dist ((x), AT). The diameter of X <= P in <P, d} is defined to be zero if 
X = 0, sup d[X x X\ if d[X x I ] is a non-void bounded subset of R and + oo 
in the remaining case. If r is a positive real and xeP, then the set E{_y | d(x, y~) < r} 
(E{y | d(x, y} g r) is called the open (closed) sphere of radius r about x or briefly, 
the open (closed) r-sphere about x. A mapping / : <P, d} <P1; d t> is said to be 
distance-preserving if d ^ f X j f y } = d(x, y) for each x and y in P. Two semi-
pseudometric spaces are called isomorphic if there exists a distance-preserving 
bijective mapping of one onto the other. 

With every semi-pseudometric there is associated a closure operation which will 
be described now. Let d be a semi-pseudometric for a set P. The relation 

(*) u = {X -> E{x | dist (x, X) = 0} | X <= P} 
is a closure operation for the set P. Obviously u is a relation on exp P ranging in 
exp P. Conditions (cl i), i = 1,2,3, of Definition 14A.1 are verified as follows: 
since dist (x, 0) = +oo # 0 we obtain u0 = 0 which is (cl 1); the self-evident 
implication x eX => dist (x, X) = 0 yields X c uX which is (cl 2); finally, the ad-
ditivity of u is a straightforward consequence of the following obvious equality: 

dist (x, X u 7) = min (dist (x, X), dist (x, 7)). 

18 A.3. Definition. If d is a semi-pseudometric for a set P, then the closure u 
of (*) is said to be the closure induced by d. Unless otherwise stated every semi-
pseudometric space <P, d} will be considered as a closure space <P, w> where u 



18. S P E C I A L S P A C E S 301 

is the closure induced by d. For example, if we say that / is a continuous mapping 
of a semi-pseudometric space <PX, into another one <P2, d2), it is to be under-
stood that the mapping/: <P1; Mj) -» <P2, w2> is continuous, where U;is the closure 
induced by Similarly we shall speak, e.g., about closed or open subsets of a semi-
pseudometric space. A closure operation u (a closure space <P, u>) is said to be 
semi-pseudometrizable (semi-metrizable, pseudometrizable, metrizable) if u is 
induced by a semi-pseudometric (semi-metric, pseudometric, metric). For conve-
nience, two semi-pseudometrics will be called topologically equivalent if they induce 
the same closure operation (especially, they are for the same set). 

For convenience, before going to examples, we shall describe neighborhoods in 
a semi-pseudometric space. 

18A.4. Suppose that a closure operation u for a set P is induced by a semi-
pseudometric d. Then a subset X of P is a neighborhood of x in <P, u> if and only 
if the d-distance from x to P — X is not zero. Stated in other words, for each x 
in P, the collection of all open r-spheres about x is a local base at x in <P, u). 
Moreover, if M is any set of positive reals such that inf M is zero, then the open 
r-spheres about x with r taken in M also form a local base at x in <P, u>. Since M 
can be taken countable, every point of <P, u> possesses a countable local base, 
i.e. <P, m> is of a countable local character. 

Proof. Obviously, if r and s are reals such that s < r, then the open s-sphere 
about x is contained in the open r-sphere about x. Next, if M = E{rc-11 n = 1,2 ...}, 
then inf M = 0. 

Corollary. In a semi-pseudometrizable space P a point x belongs to the closure 
of a subset X of P if and only if there exists a sequence {x„} in X converging to x 
in P. - 15 B.9. 

Remark. IfO < r < s, then the closed r-sphere about x is contained in the open 
s-sphere about x. In consequence, "open r-spheres" can be replaced by "closed 
r-spheres" in 18 A.4. 

18 A.5. Examples, (a) The relation d = {<x, y} -» |x — | <x, y} e R x R} 
is a metric for R inducing the closure of R. Since |z| = 0 <s> z = 0, we obtain 
d(x, y} = |x — = 0 if and only if x = y, and consequently d fulfils (m 1) and 
(m 4). Next d(x, y} = |x - = - x\ = d(y, x> ^ 0 which is (m 2). Finally, 
the triangle inequality |x — g \x — z| + |z — follows from obvious equality 
(x — y) = (x - z) + (z - y) because always |zv + z2| ^ |z t | + |z2|. Thus d is 
a metric. Next, the open r-sphere about x is the open interval ] x — r, x + r [ 
and consequently, by virtue of 18 A.4, the closure induced by d coincides with the 
order closure for R. In what follows, unless otherwise stated, if R is considered as 
a metric space, it is to be understood that the metric for R is the metric just defined. 

(b) Let P be a set. The relation {<x, y} 0 | <x, j/> e P x P} is a pseudometric 
for P inducing the accrete closure for P. Conversely, if a semi-pseudometric d 
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induces the accrete closure for P, then necessarily d(x, y> = 0 for each x and y 
in P because d(x, y> =# 0 implies that x does not belong to the closure of (y). 

(c) If d is a semi-pseudometric (pseudometric) for a set P and r is a positive real, 
then the relation {<x, y) ->• r . d(x, y>}, denoted by r . d, is a semi-pseudometric 
(pseudometric) for P inducing the same closure as d. Since clearly d = r . d if and 
only if d(x, y> = 0 for each <x, y>, we obtain that the accrete closure for P is the 
only closure for P induced by exactly one semi-pseudometric (pseudometric). 

(d) Given a set P, let us consider the real-valued relation d on P x P which assigns 
to a pair <x, y> the element 0 if x = y and 1 if x 4= y. Obviously d is a metric for P 
inducing the discrete closure for P. 

(e) If d is a semi-pseudometric for a set P, then the relation 

D = {<X, 7> distj (X, Y) | 0 * X c P Y * 0} 

is a semi-pseudometric for the set exp P — (0) and d(x, y> = D((x), (y)> for each 
x and y in P. If d(x, y> #= 0 for some <x, y>, that is, if d does not induce the accrete 
closure for P (by (b)), then D is not a pseudometric and the closure induced by D 
is not topological. Indeed, put X = (x, y) and notice that D<(x), X} = £><(y), X} = 
= 0 and hence D<(x), (y)> > (D<(x), X} + D(X, (y)>) = 0 (which shows that 
the triangle inequality is not fulfilled), and (x) 6 w«((y)) but (x) £ w((y)), where u 
is the closure induced by D. 

(f) Let / i b e a measure for a set P and let 9C be the set of all X <=. P such that ¡J.X 
is finite. Then d = Y> fi(X + Y)\Xe&, Ye is a pseudometric for 3C 
(here X ^ Y denotes the symmetric difference of X and Y, i.e. the set X u Y — 
— (X n Y)). If /ii(/i2) is the corresponding outer (inner) measure and 3Ti(#"2) 
is the set of all X c P such that iixX(ii2X) is finite, then d{ = {<Z, Y> ^(X + Y) \ 
| X e 3C{, Ye SCi} is a semi-pseudometric for , is a pseudometric but d2 need 
not be a pseudometric. 

(g) Let ¡j. be a measure for the set R of reals such that every closed interval [ x, y ] 
has finite measure and /¿(x) = 0 for each x e R. Then d = {<x, y) -> x, y ] u 
u [ y, x ]) | <x, y> e R x R} is a pseudometric for R. If each interval [ x, y ], x < y 
has a positive measure, then d is a metric, and moreover d induces the closure of R 
(i.e. the order closure for R) (in proving this, recall that /iX„ converges to fi fl{-^n} 
in R provided that ¡iX0 < oo and {X„} is a decreasing sequence of subsets of R). 

(h) Let m be the Lebesgue measure for R and A a subset of R such that 
m(A n [ x, y ]) > 0 for each interval [ x, y ] with x < y, and let 

dA = {<*> - rn{A n ([ x, y ] u [ y, x ])) | <x, y> e R x R} . 

Then dA is a metric inducing the closure of R. Notice that if n = {X m(A n X)}, 
then dA is the pseudometric d from (g). 

18 A.6. Theorem. Let <{xa}, be a net in a semi-pseudometric space <P, d}. 
Then a point x of P is a limit point (an accumulation point) of <{xfl}, in 
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<P, d} if and only if zero is the limit point (an accumulation point) of the net 
<{d<x,x0>}, in R. 

Proof. Obviously, given a positive real r, the r-sphere Ur about x is the set of all y 
such that d(x, j>)e] — r, r [. Thus <{xa}, g ) is eventually (frequently) in Ur if 
and only if the net <{d<x, xa>}, g ) is eventually (frequently) in ] — r, r [. Now 
both statements follow from the fact that open spheres about x form a local base 
at x in <P, dy and the intervals ] — r, r [, r > 0, form a local base at zero in R. 

18 A.7. Theorem. A mapping f of a semi-pseudometric space <P, dy into another 
one <Pt, dxy is continuous at a point x e P if and only if the following conditions 
is fulfilled: 

For each positive real r there exists a positive real s such that d(x, yy < s 
implies dx(Jx,fyy < r. 

Proof. The implication d(x, yy < s => d^fx,fyy < r is equivalent to this 
assertion: the image under f of the open s-sphere about x in <P, dy is contained in 
the open r-sphere about fx in <P1; dxy. Since open spheres form local bases, the 
statement follows from 16 ex. 3. 

Remark. It is to be noted that we may write g instead of < in 18 A.7. 

18 A.8. Definition. A Lipschitz continuous mapping or simply a Lipschitz 
mapping of a semi-pseudometric space <P, dy into another one (P 1 ; d ty is a mapping 
/ of <P, dy into <Pl5 d{y such that there exists a non-negative K, called a Lipschitz 
bound o f / , with K . d(x, yy ^ di</x,/y> for each <x, e P x P . 

As a corollary of 18 A.7 we obtain: 

18 A.9. Every Lipschitz continuous mapping is continuous. 
Proof . Let / b e a Lipschitz continuous mapping of <P, dy into <Pj, dxy and let 

always K.d(x,yy S: dx(Jx,fyy where K is a positive real. Given r > 0 put 
s = r . K-1 and apply 18 A.7. 

18A.10. The composition of two Lipschitz continuous mappings is a Lipschitz 
continuous mapping; more precisely, if f = <P, dy -» <P1( d^y and g : <P1; dYy 
-» <P2, d2y are Lipschitz continuous, then g of: <P, dy -*• <P2, d2y is also Lip-
schitz continuous. 

Proof. Assuming Xi . d(x, ^ di</x,/y>, K2 . d^z, i> ^ d2(gz, gty, we 
obtain . K2 . d(x, ^ d2(g ofx, g o/y>. 

Before proceeding to an examination of the properties of semi-pseudometric and 
pseudometric spaces, we derive from the triangle inequality two important in-
equalities. 

18 A.l l . If <P, dy is a pseudometric space, x, y, x and y' are points of P andX 
is a non-void subset ofP, then 

(*) |dist (x, X) - dist (y, X)\ g d(x, yy, 
(**) |d(x, yy - d(x', />| g d(x, x'y + d(y, />. 
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Proof. I. If zeX, then dist (x, X) g d(x, z) and by the triangle inequality 
dist (x, X) ^ d<x, y) + d(y, z). Taking the greatest lower bound of d(y, z> for z 
in X, we obtain dist (x, X) g d(x, y) + dist (y, Z) which implies (dist (x, X) — 
— dist (y, X)) g d(x, y). The same inequality holds withx and y interchanged. For-
mula (*) follows. — II. Formula (**) follows by a double application of the triangle 
inequality: d(x, y) g d(x, x'> + d(x', y> ^ d(x, x'> + d(x, /> + d(y', y>, and 
consequently d(x, — d(x', y') ^ d(x, x') + d(y, y'}; now the conclusion 
follows as in the proof of (*). 

18 A.12. Theorem. If <P, d} is a pseudometric space, then 
(a) the function {x dist (x, X)} : <P, dy -» R is continuous for each non-void 

subset X of P; 
(b) <P, dy is a topological space; 
(c) every open sphere in <P, dy is an open subset of <P, dy and every closed 

sphere in <P, dy is a closed subset of <P, d); 
(d) if a net <{xa | a e A}, converges to x in <P, dy, then the net ({d(xa, x6> | 

| <a, by e A x A], -<> converges to zero in R, where -< is the product order (i.e. 
<a, by > <a1; b^oa ^ au b ^ bj). 

Proof. I. It follows from (*) that each function of (a) is a Lipschitz continuous 
function with bound 1 (R is a metric space with metric {<r, s> -*• |r — s|}, see 
18 A.5 (a)). By 18 A.9 each mapping of (a) is continuous. — II. To prove (b) it is 
sufficient to show that the closure of X is closed for each non-void X <= P. If / is the 
function of (a) corresponding to X, then clearly X = / - 1 [ (0) ] . Since / is continuous 
and (0) is a closed subset of R, X is a closed subset of <P, dy by 16 A.6. — III. The 
open (closed) r-sphere about an x e P is clearly the inverse image of the open inter-
val ] — r, r [ (closed interval [ — r, r ] ) of R under the function -»• d(y, x>} : 
: <P, dy -y R which is continuous by (a) because d(y, x> = dist (y, (x)). Now state-
ment (c) follows from 16 A.6. — IV. Let r be a positive real. By 18 A.6 we can choose 
a residual subset B of (A, ^ ) such that b e B implies d(x, xfc> < r. Clearly B x B 
is residual in <A x A, -<.y, and by the triangle inequality d(xa, xby ^ d(xa, x) + 
+ d<x, xby < 2r for each <a, by e B x B. 

Corollary. If P is a pseudometrizable space and U is a neighborhood of a point x 
of P, then there exists a continuous function f on P such that fx = 0 and f y ^ 1 
for y e (P - U). 

In a semi-pseudometric space the statements of 18 A.12 need not hold. We know that 
a semi-pseudometric space need not be topological (cf. 18 A.5e). In a semi-pseudo-
metric space which is not topological there exists at least one open r-sphere which 
is not open. Indeed, at least one point has no local base consisting of open sets and 
open spheres about each point x form a local base at x. Now it follows from the 
proof of 18 A.12 that in a semi-pseudometric space which is not topological, the 
condition (a) is not fulfilled and it is easy to show that (d) may hold. Another example 
may be in place. 
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18A.13. Example. Fix an element x of a set P and consider the real-valued 
relation d on P x P such that d(y, z> = 1 i f x + y + z + x and d(y, z> = 0 
otherwise. It is easily seen that d is a semi-pseudometric for P. Let u be the closure 
induced by d. It is easily seen that 

(a) y e u Yif and only if y e P, Y <=. P and y e For x e Y or both y = x and Y 4= 0. 
(b) If y e P — (x), then u(y) = (x, y), u(x) = P, and consequently uu(y) => u(x) = 

= P; thus u(y) 4= uu(y) if P has at least three elements. 
(c) Every sphere about x is equal to P, whereas every r-sphere about a y e (P — (x)) 

with r < 1 is equal to (y, x). If (j>, x) 4= P, then the set (x, }>) is neither open nor 
closed in <P, m) (by (a)). It follows that, if P has at least three points, y e (P — (x)) 
and 0 < r < 1, then the open r-sphere about y as well as the closed r-sphere about y 
is neither open nor closed. 

(d) Every continuous function on <P, m> is constant (compare with the corollary 
to 18A.12). 

Indeed, if / is a continuous function on <P, w>, then f y e (fx) = (fx), because 
y e u(x), and hence fy = fx for each y e P. 

(e) Let A = P — (x) and let g be the identity relation )A, that is, g is the smallest 
order for A. If A 4= 0, then QA, g > is a net in <P, d} which converges to x (because P 
is the only neighborhood of x). On the other hand d(y, z) = 1 if y =|= z, y e A, z e A. 

Remark. In a pseudometric space the closure of each open r-sphere about a point x 
is contained in the closed r-sphere about x (because every closed sphere is a closed 
set in a pseudometric space). This is not true for semi-pseudometric spaces; e.g. in the 
semi-pseudometric space of 18 A.13 the closed and open r-spheres about a point y 
of P — (x) with r < 1 are equal to (y, x) and the closure of (y, x) is P. Finally, it is 
to be noted that, in a pseudometric space, the closure of an open r-sphere about 
a point x need not be identical with the closed r-sphere about x. For example, if P 
is a set and d is the metric for P which is equal to 1 outside of the diagonal, then the 
open 1-sphere about each x is (x), but the closed 1-sphere about x is P and the set (x) 
is closed because the closure induced by d is discrete. 

18A.14. Remark. In a semi-pseudometric space open spheres need not be open 
even if the induced closure is topological. This will be clear from the proof of thé 
theorem which follows (one can semi-metrize the space of reals such that no open 
sphere is open). It will be shown in 22 ex. 9 that there exists a topological semi-metriz-
able space which cannot be semi-metrized in such a manner that each open sphere 
is open. 

18 A.15. Theorem. A closure space <P, u ) is semi-pseudometrizable if and only 
if there exists a sequence {i/„} of subsets ofPxP so that U„ = U~l for each 
n and {t/„[x] | n e N} is a local base at x in <P, w> for each x e P. 

Proof. I. If a semi-pseudometric d induces u, then we can put Un = E « x , y} \ 
d(x, y} < (n + l ) - 1}, because £/„[x] is then the open (n + l)~'-sphere about x. — 

20 — Topological Spaces 
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II. Conversely, suppose {[/„} fulfils the condition of the theorem. Put F„ = | 
| i ^ n). Clearly {F,} also fulfils the condition (of course, with [/„replaced by F„). We 
shall define a semi-pseudometric for P as follows: if <x, y) belongs to no V„ then d(x, 

= 1, if <x, j/> belongs to each F„then d(x, = 0 and if (x, y}e(V„ - F„+1)then 
d(x, y) = (n + l ) - 1 . Evidently F„[x] is the closed (n + 1)"'-sphere about x in 
<P, d} for each x and n. It follows that d induces u. 

18 A.16. Definition. A continuous semi-pseudometric for a closure space <P, w> 
is a semi-pseudometric d for <P, u> such that the closure induced by d is coarser 
than u, i.e., the identity mapping of <P, u> onto <P, d) is continuous. A semi-
neighborhood of the diagonal of <P, u> x <P, u>, where <P, u> is a closure 
space, is defined to be a neighborhood of the diagonal in ind (<P, u> x <P, w>), 
that is, a subset U of P x P such that the set 

(C/ n I/"1) [x] = (L/[x]) n ([/- ' [x]) = E{y | <x, e U, <y, x> e 17} 

is a neighborhood of x in <P, u> for each x in P. 
Stated in other words, U <= P x P is a semi-neighborhood of the diagonal of 

<P, u> x <P, u) if and only if, for each x in P, there exists a neighborhood V of x 
in <P, u) such that the cross ((x) x V) u (F x (x)) is contained in U. On the 
other hand, U <= P x P is a neighborhood of the diagonal in <P, u> x <P, u) 
if and only if, for each x in P, the square F x F is contained in U for some neigh-
borhood Fof x. 

18 A.17. Theorem. Each of the following conditions (a), (b), (c) and (d) is neces-
sary and sufficient in order that a semi-pseudometric d for a closure space P be 
continuous: 

(a) For each x in P and each positive real r there exists a neighborhood V of x 
in P such that d(x, y) < r for each y in F 

(b) For each x in P the function {y -* d(x, _y>} on P is continuous at x. 
(c) The function d : ind (P x P) -> R is continuous at each point of the diagonal. 
(d) For each positive real r the set 

d-'U«-. ' [ ] = L0-)]] = E K*. y> I d <x, < r} 
is a semi-neighborhood of the diagonal of P x P. 

If d is a pseudometric then also each of the following two conditions is necessary 
and sufficient (of course, each of these is always sufficient): 

(e) The function d : P x P R is continuous; 
(f) For each positive real r, the set E{<x, y) | d(x, y> < r} is a neighborhood 

of the diagonal of P x P. 
Proof. I. The conditions (a), (b) and (d) are restatements of the definition. Con-

dition (c) is equivalent to (b) by virtue of 17 D.5 (remember that d is symmetric). — 
II. Obviously (e) implies (c) and (f) implies (d). Thus both conditions (e) and (f) 
are sufficient. — III. Condition (e) implies (f) because the inverse image under a con-
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tinuous mapping of an open set is an open set (by 16 A.6). — IV. It remains to show 
that some of the conditions (a) —(d) imply (e). The proof of each of these implica-
tions requires the triangle inequality. It will be shown that (a) implies (e). Suppose (a), 
<x, y ) e P and r > 0. By (a) there exist neighborhoods U of x and Fof y in P such 
that d(x, x'y < 2~1 r for x' in U and d(y, / > < 2 - 1 r for y' in V. Now if 
<x', / > eU x V, then from formula (**) of 18 A.11 we obtain 

|d{x, y> - d{x', / >| g d<x, x'> + d(y, / > < 2.2~V = r 

which establishes the continuity of d : P x P ->• R at the point <x, (by 18 A.7). 

B. CLASSES OF SEMI-PSEUDOMETRICS 

Pseudometrizable spaces possess many properties which are not possessed by semi-
pseudometrizable spaces. In 18 A.12 we proved that every pseudometrizable space 
is topological and that there are enough (in the sense of the corollary of 18 A.12) 
continuous functions on it; on the other hand, the semi-pseudometrizable space 
of 18 A.13 is not topological and every continuous function is constant. Nevertheless, 
these two properties are far from sufficient for a semi-pseudometrizable space to be 
pseudometrizable. Now we are able to prove that every open cover of a pseudo-
metrizable space has a locally finite (open) refinement. Nevertheless, an understanding 
of this property, which added to semi-pseudometrizability "almost" gives pseudo-
metrizability, requires more advanced development and therefore we shall consider 
this property later. Without this property we cannot satisfactorily solve the so-called 
metrization problem: under what necessary and sufficient conditions is a given semi-
pseudometrizable space pseudometrizable? On the other hand we can find some 
sufficient conditions which are, perhaps, more important in practice than any solution 
of the metrization problem. 

Let us state the problem to be treated in this subsection as follows: given a semi-
pseudometric d, we want to find sufficient conditions, involving no properties of the 
closure induced by d, for d to be topologically equivalent to a pseudometric. 

The exposition will be based upon the fact that, given a semi-pseudometric d for 
a set P, there exists a pseudometric D for P such that D<x, y> g d<x, y) for each 
<x, and if D' is a pseudometric for P such that D\x, g d<x, y) for each <x, j>>, 
then D'(x, y> g D<x, y) for each <x, (18 B.3). 

For convenience we shall introduce some relations connected with the class 
of all real-valued relations. 

18 B.l. Remark. Let g be the relation consisting of all pairs </, g) such that 
/ and g are real-valued relations, D/ = Dg and fx g gx for each x 6 D f . Obviously 
g is an order for the class of all real-valued relations and, for each set X, the product 
ordered set R* is an ordered subset of the class of all real-valued relations ordered 
by g. Next, we shall denote by + (., respectively) the partial composition on the 

20* 
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class of all real-valued relations such that « / , g}, ft) e + (e ., respectively) if 
and only if D / = D g and h = {x ->• f x + gx | x e D/} (ft = {x f x . gx\xe 
e P/-}). Thus f + g is defined if and only if D/ = Dg, and if / + g is defined, then 
(/+ 9) x = f x + gx for each x e D(/ + g). Obviously both + and . are strongly as-
sociative, and hence, by 13 A.4, form categoroid structures. Next, both + and. are 
commutative. Finally, if r is a real number and / is a real-valued relation, then r . f 
denotes the real-valued relation (x -» r .fx \ x e D/} = {x r | x e D/} . / . Thus 
an expression r . f has two meanings; if both r and / are relations, then r . f = 
= {x -» rx . fx} and if r is a real number and / i s a relation than r . / = {x -» r . fx}. 

18 B.2. Theorem. The ordered class of all real-valued relations is boundedly order-
complete. Let { f a \ a e A} be a non-void family of real-valued relations with common 
domain P x P, where P is a set, and let there exist sup {/ ,} and inf {/,}. Then 

(a) If each /„ is symmetric, then so is sup {/,} and inf {/,}. 

(b) I f X c P x P andf„ \X = gfor each a, then (sup {/,}) | X = (inf {/,}) | X = 
= g. In particular, if all the fa vanish on the diagonal o f P x P , then both inf {/„} 
and sup { f y vanish on the diagonal. 

(c) If each fa fulfils the triangle inequality (i.e. fa(x, y > ^ / a <x, z> + / a <z, j/>), 
then sup {/a} also fulfils the triangle inequality (although inf {/,} need not do so). 

(d) If each fa is a semi-pseudometric then so is sup {/ ,} and inf {/a}. 
(e) If each fais a pseudometric, then sup {/ ,} is also a pseudometric (although 

inf { f a } need not be a pseudometric). 

Proof. The statements (a) and (b) are obvious, (d) follows from (a) and (b), (e) 
follows from (c) and (d). Statement (c) perhaps needs a detailed proof. Let / stand 
for sup {/a} and let x, y, z be any elements of P. To prove /<x, y} g /<x, z> + 
+ /<z> J7) it is sufficient to show that /<x, y} - r ^ /<x, z> + /<z, y> for each 
positive real r. Given a positive real r we can choose an a in A so that /a<x, y} ^ 
^ fix, - r. Clearly, /<x, - r ^ /a<x, y> ^ /a<x, z> + /a<z, ^ /<x,z> + 
+ /<z, y}, which concludes the proof. 

Remark. On can construct without difficulty two pseudometrics d and d1 such 
that inf (d, dx) is not a pseudometric. It is easily seen that if d and d1 induce the same 
closure operation, say u, then inf (d, dt), which is a semi-pseudometric, also in-
duces «.On the other hand, we shall prove in ex. 11 the following surprising result: 
there exist two metrics d and dx inducing the closure structure of the interval [ 0,1 ] 
of reals such that no pseudometric d2 ^ inf (d, dj) induces the closure structure 
of [ 0 , 1 ] . 

18B.3. Corollary. For each semi-pseudometric f there exists a greatest pseudo-
metric d smaller than f i.e. d ^ / and if a pseudometric dt is smaller than f , 
then dt ^ d. 

Proof. Let J ( be the set of all pseudometrics smaller than / . Since the constant 
relation {z -* 0 | z e D/} is a pseudometric smaller than / , the set J i is non-void 
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and by 18B.3 d = sup Jt is a pseudometric. Obviously d is the greatest pseudo-
metric smaller than f . 

We shall need the following description of the greatest pseudometric smaller than 
a given semi-pseudometric. 

18 B.4. Theorem. Let d be the greatest pseudometric smaller than a given semi-
pseudometric f for a set P. Then 

(a) For each (x, y} e P x P the number d(x, y) is the greatest lower bound of 
all the numbers 

(*) E { / < x , , x i + 1 > | i 5 S ( n - l ) } , 
where n e N and {xf | i g n} is a finite sequence in P such that x = x0 and y = x„. 

(b) If h is a one-to-one relation such that Dh = Eh = P and f = f o (h x h), 
then d = d a(h x h) (i.e., if f is invariant under a one-to-one relation h on P 
ranging on P, then d is invariant under h as well). 

Proof. For brevity, call any finite sequence {xf | i g n} in P such that x0 = x 
and x„ = y a chain from x to y. 

I. Denote by D the real-valued relation on P x P which assigns to each <x, y> 6 
e P x P the infimum of all the numbers (*) where {x ; | i g «} runs over all finite 
chains from x to y. If {x; | i g n} is any chain from x to y, then the corresponding 
number (*) is greater than E{d<x(, x i + 1 > | i g n — 1} which, by the triangle in-
equality, is greater than d(x, y). As a consequence, D(x, y} d(x, y} for each 
<x, y ) e P x f , i.e. D ^ d. Since clearly D the proof of (a) will be complete 
if we show that D is a pseudometric. 

II. Obviously D is non-negative and D vanishes on the diagonal. The symmetry 
of D follows immediately from the following two evident facts: given a pair <x, y) e 
e P x P, the single-valued relation g, which assigns to each chain {x ; | i g n} from 
x to y the chain {x„_; | i g n} from y to x, is one-to-one and ranges on the set of all 
chains from y to x; and the number (*) corresponding to a chain {x( | i g n} from x 
to y is equal to the number (*) corresponding to the chain e{x,} = {x„_; | i g n}. 
It remains to prove the triangle inequality. Let x, y, z e P. Let {x( | i g n} be any 
chain from x to z, | i g m} be any chain from z to y. Consider the chain 
[zj | i g n + m}, where Zj = Xj i f j g n and Zj = yj_n if/' ^ n (notice that x„ = _y0). 
Clearly {Zj} is a chain from x to y and the number (*) corresponding to {zj} is the 
sum of numbers corresponding to {x ;} and Thus 

D(x, y> g Ei/Cx^x,.^)} + Z{Kyt, yi+1>} 

where {x,} is any chain from x to z and {j>;} is any chain from z to y. Taking the 
greatest lower bound over all finite chains {x,} from x to z we obtain 

D<x, y> g D<x, z> + yi+i>} 

for each chain { y j from z to y, and finally, taking the greatest lower bound over all 
{>>,} we obtain the required triangle inequality. 
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III. The proof of (b) follows the proof of the symmetry of D in II. Suppose / o 
o (h x h) = / , where h is one-to-one and D/j = E/i = P. Fix a pair y) in P x P. 
We must show that d(x, y) = d(hx, hy). Consider the single-valued relation g 
which assigns to each chain { x j from x to y the chain {frxj from hx to hy. It follows 
from our assumptions on h that g is one-to-one and ranges on the set of all chains 
from hx to hy. Now the conclusion follows from the fact that the number (*) cor-
responding to a chain { x j from x to y is equal to the number (*) corresponding 
to the chain f?{xj = {frxj. 

18 B.5. Examples, (a) First consider the semi-metric/for N such that/<0, n) = 
= n_ 1 , /<w, m) = 1 for each n 4= 0 =f= m 4= n. It is easily seen that 0 is the only 
accumulation point of <N,/>, and that the sequence {n + 1 | n e N} converges 
to 0. Next, if d is the greatest pseudometric smaller than /, then ¿<0, n) = n - 1 

and d(n, m) = n - 1 + m - 1 whenever n 4= 0 4= m 4= n. It follows that / and d 
are topologically equivalent. 

(b) Now we shall show that a semi-metric need not be topologically equivalent 
to the greatest smaller pseudometric. Let <N, u> be a space such that 0 is the only 
accumulation point and the sequence {n + 1 [ rt e N} converges to 0. By (a) the 
space <N, u> is metrizable. Let Q be the discrete space whose underlying set is the 
two-point set (0, 1) and let us consider the product space <P, v} = Q x <N, u>. 
The space <P, u> is metrizable because it can be metrized, for instance, by the metric d 
which assigns 1 to each point « 0 , «>, <1, m » , n _ 1 to each point « / , 0), <i, n>>, 
n =)= 0, and n - 1 + m"1 to each point «¿ , n), <i, m>> where n =(= 0 =|= m # n. 
Now let/be the semi-metric for P such that /<<0, n>, <1, « ) ) = n'1 if n 4= 0 and 
/<*, y> = d(x, y> otherwise. Clearly / induces the same closure as d but if D is the 
greatest pseudometric smaller than /, then D«0, 0>, <1, 0 » = 0 (consider the 
chains <<0, 0), <0, n), <1, n), <1, 0>>), and consequently, D is not topologically 
equivalent to / . 

18 B.6. Definition. Two semi-pseudometrics d and dt are said to be Lipschitz 
equivalent if they are for the same set, say P, and the identity mapping of <P, d) 
onto <P, ti1> as well as its inverse is Lipschitz continuous (see 18 A.8). 

18 B.7. Theorem. Lipschitz equivalent semi-pseudometrics are topologically 
equivalent. The relation E{(d, dt} | is Lipschitz equivalent with d} is an equi-
valence on the class of all semi-pseudometrics. Two semi-pseudometrics d and dt 

are Lipschitz equivalent if and only if there exist positive reals r and s such that 
r . d ^ dt g s .d. 

The proof follows at once from the definitions and from properties of Lipschitz 
continuous mappings (18A.9, 18A.10). 

Remark. Let «< be the relation consisting of all pairs (d , dx} such that d and J, 
are semi-pseudometrics and d ^ r . d1 for some positive real r. It is easy to see that 
-< is a quasi-order on the class of all semi-pseudometrics and d -< d^ -< d if and only 
if d and dl are Lipschitz equivalent. 
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18 B.8. A semi-pseudometric d is Lipschitz equivalent to a pseudometric if and 
only if d is Lipschitz equivalent to the greatest pseudometric D smaller than d. 

Proof. "If" is self-evident. Conversely, suppose that r . d1 d g s . di for some 
pseudometric and positive reals r and s. Since r . d1 is a pseudometric smaller 
than d, we have r.dx ^ D; since obviously D ^ d, we find that D is Lipschitz equiva-
lent to du and hence to d. 

Suppose that a semi-pseudometric / for a set P is Lipschitz equivalent to the 
greatest pseudometric d smaller than / , that is, L. / ^ d ^ / for some positive 
real L. If {x ; | i ^ n} is a finite sequence in P, then /<x0, x„> LT1 . d(x0, x„> ^ 
g L"1 E{d<x;, xi + 1> | i g (n - 1)} g L-1 . ! { / <*„ x i + 1 > | / g (n - 1)}. Con-
versely, if ^ ^ L _ , X ( + ^ | f ^ „ _ 1 } , 

for each finite sequence {x( | i ^ n} in P, then L/ ^ d by 18 B.4. Thus we have proved: 

18B.9. A semi-pseudometric for a set P is Lipschitz equivalent to a pseudo-
metric if and only if 

f(x o, xny^K. £{/<*<, x1 + (>|i^(n- 1)} 

for some real K and each finite sequence {x ; | i ^ n} in P. 
Now we shall prove that the inequality of 18 B.9 is fulfilled with K = 2 whenever / 

fulfils a very curious inequality involving sequences of four points. Another suffici-
ent condition for the inequality of 18 B.9 will be given in ex. 7. 

18 B.10. Lemma. Let f be a real-valued relation on a class P x P such that 
/<x, x ) = 0 and/<x, ^ 0 for each x e P, y e P (i.e. f is non-negative and vanishes 
on the diagonal) and 

(*) f(xo> *3> ^ 2 max (/<x0, x ^ , / ^ , x2>,/<x2 , x3>) 
for each sequence {x ; | i ^ 3} in P. Then 

(**) /<*<» *« + i> ^ 2 £{/<x ;, xi + 1> | i ^ n} 
for each finite sequence {x ; | i ^ n + 1} in P. 

Proof. Assuming that (**)is not true, let us consider the smallest n in N such that 
(*) is not true for an appropriate sequence {x;| i ^ n + 1} andputr = E{/<x(, x i + 1 > | 
| i g n}. Thus /<x0, x„ + 1 ) > 2r ^ 0. It is easily seen that n > 3 (if n = —1, then 
it is to be understood that the sum of a void family is zero). Let us consider the 
greatest integer m such that — 1 ^ m ^ n and E{/<x ;, x i + 1 ) | i ^ m} ¿j \r. 

If m = n, then clearly r = 0 and hence/<xf, x i + 1 ) = 0 for each i ^ n (/is non-
negative) which implies that /<x0, x„+1> = 0 (because (**) is true for n ^ 3) and 
this contradicts our assumption /<x0, x„+1> > 0. Thus m < n. According to the 
choice of n we have /<x0, xm + 1> ^ 2 £{/<x ;, xi + 1> | i ^ m} ^ 2 . \r = r. Clearly 
/<xm + 1 , xm + 2> ^ r and E{/<x,-, xi + 1> | i = m + 2, ..., n} ^ ¿r, and therefore, 
by our choice of «, /<xm + 2, xn + 1> ^ 2 . \ r = r. Thus /<x0, xn + 1> ^ 
^ 2 max (/<x0, xm + 1>, /<xm + 1 , xm + 2>, /<xm + 2, xn + 1>) ^ 2r which contradicts our 
assumption. The proof is complete. 
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Remark. If / is a symmetric real-valued relation on P x P vanishing on the 
diagonal and satisfying condition (*), then / is non-negative (put x0 = x2 = x and 
xx = x3 = y in (*)). Thus (**) is true whenever / is symmetric, vanishes on the , 
diagonal and satisfies (*). 

18 B . l l . Theorem. Let fbe a semi-pseudometric for a set P such that/<x0, x 3> g 
g 2 max { /<x ; , xi+iy \ i g 2} for each sequence {x f | i g 3} in P. Then there exists 
a pseudometric d such that 2"1 . / g d g f , and if h is a one-to-one relation such 
that Dh = Eh = P and f o (h x h) = / , then d o (h x h) = d. For d one can take 
the greatest pseudometric smaller than f . 

Proof. Consider the greatest pseudometric d smaller than / and apply 18B.10 
and 18B.4. 

18 B.12. Corollary. Let P be a set and let {[/„} be a sequence of subsets o f P x P 
such that U0 = P x P, Un + 1 a Un + 1 o Un+i cz U„ = UZD JP for each n. Then 
there exists a pseudometric d for P such that 

(*) Un+1 CZ E{<x, I d<x, y} < 2-(a+1>} CZ un 

for each n, and i f h is a one-to-one relation such that Dh = Eh = Pand(h x ti)\U„] = 
= U„ for each n, then d 0 (h x h) = d. 

Proof. Let us consider the real-valued relation / o n P x P which is 2~" on each 
set l/„ — Un+1 and zero on Since Un = U'1 => }P for each n, f is a semi-
pseudometric for P. If (xh xl+1) e U„+1 for each i g 2, then <x0, x3) e Un+l o 
o Un+i o Un+i c U„ and hence /<x0 , x3> g 2~" = 2 . 2~(n+1\ which proves that 
/<x0, x3> g 2 max [f(xh x j + 1 ) | / g 2} for each sequence {x ; | i g 3} in P. Let 
us consider the pseudometric d of 18 B.11. Clearly (*) holds. 

The foregoing result enables us to give a necessary and sufficient condition for 
a closure space to be pseudometrizable. Recall that by 18 A.15 a closure space P 
is semi-pseudometrizable if and only if there exists a sequence {[/„} of symmetric 
subsets of P x P such that {(7„[x] | n e N} is a local base at x for each x in P. 

18 B.13. Theorem. A closure space is pseudometrizable if and only if there 
exists a sequence {Vn} of symmetric subsets of 0 x 0 such that Vn+i o F„ + 1 cz V„ 
for each n and {F„[x] | n e N} is a local base at x for each x in 8P. 

Proof. If the closure structure of a space & is induced by a pseudometric d then 
we can take V„ = E{<x, y) | rf<x, y) < 2 -"} . Conversely, given {V„}, let us consider 
the sequence {t/„} where U0 = \0"\ x \g?\ and U„ = V2n for n > 1, and the pseudo-
metric d of 18 B.12. It is easily seen that d induces the closure structure of 

18 B.14. Definition. A mapping / of one semi-pseudometric space <P, d} into 
another <P1; dj) is said to be uniformly continuous if for each positive real r 
there is a positive real s such that i/<x, y} < s implies dx(fx,/y) < r, that is 
( f x /)[E{<X> y> \ d<x< y> < s } ] c EK*1> yi> I ¿1<*1> yi> < r}- Semi-pseudomet-
rics d and are said to be uniformly equivalent if they are for the same set, say P, 
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and the mappings J : <P, d} <P, d^ and J : <P, dx} -> <P, d} are uniformly 
continuous. 

18 B.15. Every Lipschitz continuous mapping is uniformly continuous and every 
uniformly continuous mapping is continuous. Any two Lipschitz equivalent semi-
pseudometrics are uniformly equivalent and any two uniformly equivalent semi-
pseudometrics are topologically equivalent. The composition of two uniformly con-
tinuous mappings is a uniformly continuous mapping. Thus the composition of 
mappings is a strongly associative partial composition on the class of all uniformly 
continuous mappings. The relation E{<d, dxy \ d is uniformly equivalent with d j 
is an equivalence on the class of all semi-pseudometrics. 

The proof is simple and therefore left to the reader. 
Now we shall prove a very useful consequence of 18 B.11 and 18 B.12. The meaning 

of this result will be seen in Section 24. 

18 B.16. Theorem. A semi-pseudometric g for a set P is uniformly equivalent 
to a pseudometric if and only if the following condition is fulfilled: 

for each real r > 0 there exists a real s > 0 such that g(x, y> < s, g(y, z> < s 
imply g(x, z> < r. 

Proof . I. Suppose that g is uniformly equivalent with a pseudometric d and let r 
be a positive real. Choose a positive real r1 such that d(x, y) < rt implies g(x, y} < 
< r, and then a positive real s such that g(x, y} < s implies d(x, < If 
g(x, y) < s, g(x, z> < s, then d(x, z ) ^ d(x, + d(y, z> ^ 2 . \ . J*! = r± and 
hence g(x, z) < r. — II. Conversely, assuming that the condition is fulfilled, let us 
consider a sequence {r„} of positive reals such that g(x0, Xj) < rn+1, g(x0, x2> < 
< ''n+u 9(x2> ^3) < rn+i imply g(x0, x3> < r„, and also the sequence {[/„} where 
U0 = P x P and U„ = E(<x, y> | g(x, y> < rn} for n ^ 1. Let d be the pseudo-
metric of 18 B.12. It follows immediately from 18 B.12 that d is uniformly equivalent 
to g. 

Corollary. If a semi-pseudometric g is uniformly equivalent to some pseudometric 
and if h is a bijective relation on P with g o (h x h) = g, then g is uniformly 
equivalent to a pseudometric d with d o (/i x h) = d. 

In conclusion we shall state a few simple results which will be used without any 
reference. 

18 B.17. If d is a semi-pseudometric (pseudometric) and r is a positive real, then 
r. d is a semi-pseudometric (pseudometric) Lipschitz equivalent to d, and 
D = {x min (r, dx) | x e Dd} is a semi-pseudometric (pseudometric) uniformly 
equivalent to d but not Lipschitz equivalent to d provided that d is not bounded 
(i.e. such that Ed is not a bounded subset of R). 

18B.18. Let (p be a non-negative real-valued relation whose domain is the set 
of all non-negative reals and let (pQ = 0. Then 
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(a) If d is a semi-pseudometric then (p 0 d is a semi-pseudometric. but <p0d need 
not be a pseudometric if d is a pseudometric. 

(b) If (p(x + y) g <px + cpy for all non-negative reals x and y (a real-valued 
relation satisfying this condition is often said to be subadditive) and d is a pseudo-
metric, then (p o d is also a pseudometric. 

(c) If cpx 4= 0 whenever x 4= 0 and if d is a semi-metric, then cp o d is also 
a semi-metric. 

(d) If K . x g (px g L. x for each x ^ 0 and some reals K and L,K> 0, then 
(p o d is Lipschitz equivalent to d for each semi-pseudometric d. 

(e) If cp : [ 0, -»• ] -* [ 0, -> ] is continuous at 0 and d is a semi-pseudometric 
for a set P, then the identity mapping of <P, d) onto <P, <p a d} is uniformly 
continuous. 

C. SEMI-PSEUDOMETRIZATION OF SUBSPACES, 
SUMS AND PRODUCTS 

Various semi-pseudometrizations of subspaces, products and sums of semi-pseudo-
metrizable spaces will be discussed. The topological parts of the results of this section 
are summarized in the following theorem. 

18 C.l. Theorem. Each of the classes of all pseudometrizable, metrizable, semi-
pseudo-metrizable and semi-metrizable spaces is hereditary and closed under coun-
table products and arbitrary sums. The inductive product of two semi-pseudometri-
zable (semi-metrizable) spaces is a semi-pseudometrizable (semi-metrizable) space. 

18 C.2. If Q is a subset of a set P and if d is a pseudometric (metric, semi-pseudo-
metric, semi-metric) for P, then the domain-restriction dQof d to Q x Q is a pseudo-
metric (metric, semi-pseudometric, semi-metric) for Q, called the relativization 
of dtoQ or the restriction of dtoa semi-pseudometric for Q, and the closure induced 
by dQ is a relativization of the closure induced by d. The space <Q, dQy is sometimes 
called a subspace of <P, d}. 

The proof is simple and therefore left to the reader. 
18 C.3. Remark. If <<2, u> is a subspace of a semi-pseudometrizable space 

<P, u> and if v is induced by a semi-pseudometric d, then d is a relativization of 
some semi-pseudometric inducing the closure u. Actually, suppose that a semi-
pseudometric D induces u and consider the real-valued relation dl on P x P such 
that dt(x, y> = d(x, y) if y) e Q x Q and dY(x, y) = D<x, .y) otherwise; 
obviously d is a restriction of dt to d and one can prove without difficulty that 
dt is a semi-pseudometric inducing u. On the other hand, if d is a pseudo-
metric and <P, u> is pseudometrizable, then, in general, d is not a relativization of 
any pseudometric inducing u. For example, let us consider a non-void discrete sub-
space <Q, v) of a pseudometrizable space <P, m> such that Q has an accumulation 



18. S P E C I A L S P A C E S 315 

point, say x, in <P, u> (thus x e P — Q). Clearly v is induced by the metric d the 
only values of which are the numbers 0 and 1 (thus d(x, y} equals 0 or 1 for x = y 
or x 4= y respectively). Suppose that d is the relativization of a continuous pseudo-
metric D for <T, u>. Choose a sequence {x„} in Q which converges to x in <P, u). 
It follows that the sequence converges to x in <P, D>. By 18 A.12 we find that the 
net {D(xn, xm> | <n, m) e N x N} converges to zero in R. But this is impossible 
because D<x„, x„,> = d <x„, xm> = 1 for each n and m such that xm 4= x„. 

18 C.4. If Q is a subset of a set P and a pseudometric D for Q is Lipschitz 
equivalent to the relativization to Q of a pseudometric d for P, then D is the 
relativization of a pseudometric Lipschitz equivalent to d. 

Proof. Suppose that there exist positive reals K and L such that L. d(x, y} ^ 
^ D<x, y} ^ K . d(x, y) for each x and y in Q. Consider the real-valued relation / 
on P x P which assigns to each <x, y> the number D<x, y> if <x, y) e Q x Q and 
K. d<x, j>> otherwise. Clearly / is a semi-pseudometric for P and L. d g f g K . d. 
Let di be the greatest pseudometric smaller than /. Thus d1 ^ / and, L. d being 
a pseudometric, L. d S d{, so that L . d ^ dt ^ K . d. On the other hand, using 
the description of d given in 18 B.4, we see immediately that D is a relativization of dY. 

18 C.5. Suppose that P is the sum of a family {Pa \ a e A} of sets and {da} is 
a family such that da is a semi-pseudometric for Pa. Choose a positive real number 
r and put, for each <a, x) and <b, y) in P, 

d«a, x>, <6, y>> = r if a 4= b , 
= dfl<x, y> if a = b . 

It is' easily seen that d is a semi-pseudometric, and the closure induced by d is the sum 
of the induced closures. Next, if each d„ is a semi-metric, then d is also a semi-metric. 
On the other hand, if all the da are pseudometrics then d need not be a pseudometric. 
For example, if there exist a, be A, a 4= b, xe Pa and y, z e Pb such that db(y, z) > 
> 2r, then d(injt y, injfc z> = db(y, z> > 2r = d(injb y, inja x> + d(inja x, inj6 z>. 
Nevertheless, if 2r ^ da(x, y> for each a and <x, y} e Pa x Pa, then clearly d is 
indeed a pseudometric. Now if {<Pa,wa>} is a family of pseudometrizable spaces then 
we can find a family {da} such that da is a pseudometric inducing ua and da(x, ^ 1 
for each x and y in Pa, and the semi-pseudometric d constructed above with r = 1 
will be a pseudometric inducing the closure of £{<Pa, wa>}. It is to be noted that the 
mappings inja : <Pa, da> <P, d} are distance-preserving (i.e. isometric). 

18 C.6. Let {<Pa, da} | a e A} be a finite family of semi-pseudometric spaces 
and let ua be the closure induced by da. Each of the following three real-valued 
relations on n{P a } is a semi-pseudometric for P inducing the closure o/Il{<Pa,ua>}: 

(*) <{*,.}> {yj> = max [da(xa, ya} \ a e A] , 
(**) d2({xa], {ya}}> = (E{(da<xa, ya»2 \ a e A})* , 

(***) d3({xa}, {ya}> = E{rfa<xa, ya}\aeA}. 
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If all the da are pseudometrics, metrics or semi-metrics, then have the same 
property. We always have 

(t) ¿1 ^ d2 g d3 g card A . dt, 
and consequently all three semi-pseudometrics are Lipschitz equivalent. 

Proof . Obviously all the di are semi-pseudometrics, and if all the da are semi-
metrics, then all the dt are again semi-metrics. Also it is clear that and d3 are 
pseudometrics if all the da are pseudometrics. The triangle inequality for d2 follows 
at once from the following well-known Cauchy inequality 

(Z{(ra + sa)2})* <; (l{ra
2})* + (£{sa

2})± . 

which holds for each finite family {ra} and {sa} in R. The inequality (f) follows from 
the inequality 

max {ra} g g E{ra} g card A . max {ra} 

which holds for each finite family {ra | a e A} of non-negative reals. Since all the dt 

are Lipschitz equivalent, they are topologically equivalent, and consequently, to prove 
that each di induces the product closure u = II{ua}, it is sufficient to show that one 
of them induces u. It is clear that d± induces u because for each {xa} e P and each 
positive real r we have U = Tl{Ua | a e A}, where U is the open r-sphere about {xa} 
in <P, d j ) and Ua is the open r-sphere about xa in <Pa, da}. 

18 C.7. Remarks, (a) Under the assumptions of 18 C.6, if all the da are pseudo-
metrics, then d3 is the greatest pseudometric for P such that, for each a. in A and each 
{xa} e P, the mapping of <P„, da} into <P, d3> which assigns to each y e Pa the 
element {y„} e P where ya = y and ya = xa for a e A — (a), is a distance-preserving 
mapping. 

(b) Under the assumptions of 18 C.6 let us consider the semi-pseudometrics 
d* = {<*, -»• da(pra x, pra y> | <x, y> e P x P}, a e A, for P. Clearly dx = 
= sup {d*a}, d2 = ( 2 K . d*a}f, d3 = EK*}. 

18 C.8. Theorem. The mappings {<x, y} x + y} : R x R -> R, and {<x, y ) -»• 
- * x . \ y } : R x R - ^ R are continuous (roughly speaking, the addition and the 
multiplication of reals are continuous). 

Proof. We know that {<x, -»• |x — |<x, y} e R x R} is a metric inducing 
the closure of R. By 18 C.6, d = {«X!, <x2, y2» \xx - x2 | + - y2|} 
is a metric inducing the closure of R x R. Now to prove that addition is continuous 
it is sufficient to show that + : <R x R, R is a Lipschitz continuous mapping, 
and this is true because evidently 

|(*i + ^i) - (x2 + y2)\ ^ |*i - x2\ + |yt - y21 = rf«xl5 <x2, y2>> . 
Multiplication is not Lipschitz continuous on the whole <R x R, d}, but its 
restriction to each subspace Q = <[ — M, Af ] x [ — M, M J, dQ>, M > 0, is 
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Lipschitz continuous. Indeed, from the obvious inequality |xt . yl — x2 • y2\ ^ 
^ M • |*i - x2\ + IxJ . |yt - y21 we obtain 

• yi - *2 • yi\ ^ Md((xu y!>, <x2, y2>> 
for each «*i> ^i) , <x2, J>2» e fi. Thus multiplication is continuous on each indi-
cated subspace Q of R x R. But such Q interiorly cover R x R, and thus multi-
plication is continuous. 

From the last theorem we shall derive two important results; the first of these has 
already been proved directly and will be proved in a more general situation in the 
next section. It is to be noted that the proof is so arranged as to be applicable to 
the case where the range is a topological ring. 

18 C.9. Corollary. If the functions f : P R and g : P R are continuous, 
then so are the functions f + g : P R and f.g:P~* R. 

Proof. Since the composition of two continuous mappings is continuous, the proof 
follows at once from the following obvious equalities: 

/ + g : P R = ({<*, -* x + y} : R x R R) „ ({x -> </x, gx)} : ? - > R x R) 
/ . g : P R = ({<*, - x . y} : R x R R) „ ({x </x, gx}} : P -> R x R) 
18 C.10. Let fbe a real-valued relation on a closure space P. The function f:P~* 

—• R is continuous if and only if 

d = {<*, y> - \fx - fy\ |<x, y ) e P x P } 

is a continuous pseudometric for P. 
Proof. I. Suppose that d is a continuous pseudometric for P. Clearly ( / : P -»• R) = 

= ( / : <|P|, d) -> R) o(J|P| : P <|P|, d}). The identity mapping of P onto 
<|P|, d} is continuous by our assumption, and the mapping / of <|P|, d> into R is 

•clearly Lipschitz continuous and hence continuous. Thus / : P -»• R is continuous 
by 16 A.3. — II. Now suppose that / : P -» R is continuous. By 18 A.17 it is enough 
to show that d : P x P -»• R is continuous, and this follows from the following 
factorization of d: 

d = 03 ° 02 ° 9i o (/ x / ) , 
where gi = {<x, y)<x,-y>} (product of J)R, and {y -» -y}), g2 = {<x, y} -»• 

x + y} and g3 = {z -»|z| | z e R} — the latter is continuous because Hz^ — |z2|| ^ 

18 C.11. Remark. The product P of an uncountable family {P0 | a e A} of 
semi-pseudometrizable spaces need not be semi-pseudometrizable. Indeed, if P #= 0 
and if Pa is not an accrete space for an uncountable number of a's in A, then P is not 
of a countable local character by 17 ex. 3. For example, if m is an uncountable 
cardinal, then the spaces Rm and (0, l)"1 are not semi-pseudometrizable. 

Now if {da | a e A} is a countable infinite family of semi-pseudometrics, then the 
numbers (*), (**) and (***) in 18 C.6 may be infinite and therefore dt need not be 
meaningful. Nevertheless, if the da are sufficiently small, then dl7 d2 and d3 can be 
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defined by the same formulae (in (*) one must write sup). To prove this we need some 
elementary current results on the convergence of series of real numbers which will 
be derived in the next section. According to the commutativity of the operation of 
taking products we may restrict ourselves to the case where A = N. For the sake 
of completeness we shall give a direct proof of facts following from the elementary 
properties of series; the reader familiar with these can omit the first part of the proof. 

18 C.12. Let {<P„, d„y} be a sequence of semi-pseudometric spaces such that 
dn(x, y> g 2 f o r each <x, y> in P„ x Pn and n in N. Let un be the closure induced 
by dn and let <P, uy be the product of the sequence {<P„, «„)}. Let Dh i = 1, 2, 3 
be the real-valued relation on P defined by the following formulae: 

(*) D/x , yy = sup {dn<pr„ pr„ y> | n e N}, 
(**) D2(x, yy = (Z{(d„<pr„ x, pr„ y » 2 | n e N})* , 

( * * * ) £ > 3 < x , yy = I{rfn<pr„ x, pr„ y> | n e N} . 
Then Dh i = 1,2,3, is a semi-pseudometric inducing the closure u, and if all d„ are 
semi-metrics, pseudometrics or metrics, then Dt has the same property. 

Proof. I. Let D\, i = 1,2,3, k e N, be defined by the corresponding formula for Dh 

where the indices are restricted to the set of all n g k. As in the proof of 18C.6 
one can show that D\ g D\ g Dk

3 and clearly Dk
3(x, y> g Z{2_n | n g k) g 2. 

Next, obviously, for each <x, y) in P x P, the sequence {D;<x, y> | k e N} is non-
decreasing; being bounded, there exists its supremum which is equal to the only 
limit point of this sequence (which is defined to be the sum of corresponding series) 
i.e. D(<x, y>. Hence g D2 g D3, and if each Djis a semi-pseudometric, or pseudo-
metric then so is Df. But clearly each Dj is a semi-pseudometric, and if each d„ 
is a pseudometric, then each is also a pseudometric (the verification follows 
the proof of 18 C.6). Finally, if each d„ is a semi-metric and x, y 6 P, x 4= y, then 
pr„ x 4= pr„ y for some n, and consequently D"(x, y) ^ d„(pr„ x, prn y> > 0. 

II. It remains to show that each D; induces the closure u. Because of the inequality 
Dt g D2 g D3 it is sufficient to prove that D3 is a continuous semi-pseudometric 
for <P, uy, i.e. the closure induced by D3 is coarser than u, and the closure induced 
by D1 is finer than u (notice that \P : <P, D3) -» <P, 'Dty is Lipschitz continuous). 
Since the open r-spheres about x in a semi-pseudometric space form a local base, it is 
sufficient to show that, given an element x of P, each open r-sphere about x in <P, D3> 
is a neighborhood of x in <P, u), and that every neighborhood of x in <P, w) contains 
an open r-sphere about x in <P, Di>. Fix an r > 0 and choose an n0 so that 
E{2 -" | n > n0} g 2~"° < 2 _ 1 . r; choose a positive real s such that (n0 + 1 ) . s i 
g 2 _ 1 . r. It is clear that the set U = E{y | n g n0 => d„(pr„ x, pr„ y) < s} is 
contained in the open r-sphere about x in <P, D3>. But U is clearly a canonical 
neighborhood of x in <P, uy (each d„ induces u„). Now let Fbe any neighborhood 
of x in <P, m). By definition of the product closure, the set Fcontains a neighborhood 
W of x in <P, u) of the form 

E{y | n g n0 => prn y e W„}, 
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where n0 e N and Wn is a neighborhood of pr„ x in <P„, u„> for each n g n0. Since 
d„ induces u„, W„ contains an open r„-sphere about pr„ x in <P, d„>. Now, if r is 
a positive real, r < min {r„ | n ^ n0}, then clearly the open r-sphere about x in 
<P, Z)x) is contained in Wand hence in V, which completes the proof. 

18 C.13. Suppose that Pt and P2 are spaces and dt is a semi-pseudometric 
inducing the closure structure of Ph i = 1,2. Then the closure structure of ind 
(Pi x P2) is induced by the semi-pseudometric d which assigns to each pair 

y2>) the number i if x1 =|= and x2 4= y2, the number d1<x1, y^y if x2 = y2 

and d2(x2, y2> if xx = 
Proof. Notice that, given a positive real r < l,the open r-sphere about <xl5 x2> 

in <Pt x P2, d} is equal to the set ((xj) x U2) u {Ul x (x2)) where [/ (is the open 
r-sphere about x ; in <P;, 

D. SEMI-CONTINUOUS FUNCTIONS 

Occasionally we shall need the concepts of upper and lower semi-continuous 
functions. It turns out that semi-continuity can be considered as continuity in 
usual sense relative to an appropriate closure operation for the range carrier, 
and therefore it can serve as a useful exercise on continuity. The proofs are 
omitted. 

18 D.l. Definition. Let <P, rg > be a monotone ordered set. The collection con-
sisting of the set P and of all intervals ] x [, x e P, is a base for open sets of a topo-
logical closure operation for P which will be denoted by u + . Similarly, let u_ be the 
topological closure operation for P such that the collection consisting of the set P 
and all intervals ] x, -* [, x e P is an open base. We shall say that a mapping / 
of a closure space 2, into <P, is upper semi-continuous (lower semi-continuous) 
at a point y el if the mapping / : 2 <P, « + ) ( / : 2 ->• <P, u_>) is continuous 
at y. We shall say that / i s upper semi-continuous (lower semi-continuous) if / i s 
upper semi-continuous (lower semi-continuous) at each point ye 2, i.e. if the mapping 
/ : 2 -»• <P, u + > ( / : 2 -» <P, u_>) is continuous. 

It what follows the symbols P, ^ , u + and u _ have the meaning introduced in 18 D.1. 

18 D.2. The order closure u for <P, ^ > is the coarsest closure for P finer than both 
u+ and u_ . - Observe that ] x, y [ = ]<-, y [ n ] x, [. 

18 D.3. A mapping/of a space 2 into <P, u> is continuous (at y) if and only if the 
mapping/: 2 -» <P, ^ > is simultaneously upper and lower semi-continuous (at y). — 
18 D.2. 

18 D.4. Each of the following two conditions is equivalent to the upper semi-
continuity of a mapping / o f a space 2 into <P, 
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(a) the set / *[ [ « - , * [ ] = | f y < x} is open in 2 for each x in P; 
(b) the set / _ 1 [ [ x, -> ] ] = E{y | fy ^ x} is closed in 2 for each x in P. 

Similar result holds for lower semi-continuity. It may be worth-while to point out 
that: 

18 D.5. A mapping / : 2 <P, ^ > is upper semi-continuous (lower semi-con-
tinuous) at y if and only if, for each x > fy (x < fy) there exists a neighborhood U 
of y in 2 such that z e U => fz < x (z e U => fz > x). 

18 D.6. Let X be a subset of a closure space 2 and let f be the function on 2 which 
is 1 on X and 0 on \ Q\ — X (this function is often called the characteristic function 
of the set X in 2). Then f is lower (upper) semi-continuous if and only if X is open 
(closed). It follows that f is continuous if and only if X is simultaneously closed 
and open. — Use 18 D.4. 

18 D.7. Let {/a | a e A] be a family of mappings of a closure space 2 into <P, ^ ). 
I f / i s a mapping of 2 into <P, ^ ) such that f y = sup {fay} ( f y = inf {ftty}) for each 
y in 2, then / is lower (upper) semi-continuous whenever all the mappings fa are 
lower (upper) semi-continuous. 

Apply 18 D.5 or observe that 

and apply 18 D.4. 

18 D.8. Let / and g be functions on a space 2 and y e 2. If both / and g are 
upper (lower) semi-continuous then so is / + g, and if in addition / ^ 0, g ^ 0, 
then fg is also upper (lower) semi-continuous. Next, / is upper semi-continuous 
if and only if —/ is lower semi-continuous. Finally, if f y > 0 for each y in 2, then 
/ i s upper semi-continuous if and only if 1// = {y -» ( /y) - 1 } : 2-* R is lower semi-
continuous. 

Corollary. If f and g are continuous functions on 2, then each of the mappings 
f + g, f . g, —f and if f y > 0 for each y, then also 1// is continuous. 

Hint. The upper-semi-continuity of / + g: If U is a neighborhood of y in 2 such 
that fz < f y + r and gz < gy + r for each z e U, then ( / + g) z = fz + gz < 
< (f + g) y + 2r for each z in U. 

E. S T R U C T U R E SPACES 
r 

In this subsection the structure space of all prime ideals of a semi-ring 3% 
and the structure space SSJlfâ) of all maximal ideals of a unital semi-ring * will be 
introduced. The structure space of 0t is the set of all prime ideals of * endowed 
with the so-called hull-kernel closure operation. It turns out that the hull-kernel 
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closure operation is uniquely determined by the set of all ideals ordered by the in-
clusion c . Therefore we shall define the structure space of an ordered set (subject 
to some conditions) and the structure space will be defined as a subspace of the 
structure space of the ordered set of all ideals in ffl. 

We shall show that the ultrafilter space fiX of a set X is a homeomorph of the 
structure space of the semi-ring <exp X, n, u>. In 41 E we shall investigate the struc-
ture space of the ring of all bounded continuous functions on a given closure space. 

18E.1. Let <P, g ) be a non-void ordered set such that each non-void subset X 
of P has a unique greatest lower bound which will be denoted by AX• We shall 
write xt a x2 instead of /\(xY, x2). Clearly A(^ u Y) = (A-X") a (A^) for all 
non-void X and Y. 

Let us consider the single-valued relation v on exp P ranging in exp P which 
is defined as follows: v0 = 0 and vX = g [A-^] if x 4= 0- By definition u0 = 0. 
and it is easily seen that X <= vX = vvX for each X <= P, and X <= Y implies that 
vX <= vY. In particular, vX u vY <= v(X u Y) for each X and Y. On the other hand, 
the inclusion vX v vY <= v(X u Y) need not be true, and therefore v need not be 
a closure operation (this inclusion obtains, e.g. if g is a monotone order). 

Suppose that x e (v(X u Y) - (vX u v Y)). Clearly X 4= 0 4= Y, x ^ A(X u Y), 
but neither x ^ /\X nor x ^ /\Y. If follows that 

x e v(X u Y) => x e vX or x evY 

provided that x has the following property: 
(*) if x ^ y a z, then x ^ y or x ^ z. 

In fact, A(^ u Y) = A^ a Ai' for all non-void X and Y. Let S be the set of all x 
with property (*) and let u be the single-valued relation on exp S ranging in exp S 
which assigns S n vX to each X <= S. It follows from the properties of v that u is 
a closure operation for S. 

18 E.2. Definition. If <P, g ) is a non-void ordered set such that each non-void 
set has a unique greatest lower bound, then the topological space <S, u> defined in 
18 E.1 is called the structure space of <P, 

18E.3. Example. Let <P, g ) be a monotone ordered set satisfying the assump-
tions of 18 E.2, that is to say. 0 is boundedly order-complete and SP has a least 
element. Let us consider the structure space <S, u> of <P, g ). Clearly each element x 
of P has property (*) of 18 E.1, and therefore S = P. The set uX, X 4= 0, is the in-
terval [ /\X, -» [. Thus u is the closure of upper semi-continuity for <P, g ) (as 
defined in 18 D.1). 

18 E.4. Let 0 = <R, + , .) be a commutative semi-ring and let <P, g ) be the set 
of all ideals of 0t ordered by <=. Suppose that P 4= 0. If X is a non-void set of ideals 
of i.e. if X is a non-void subset of P, then f\X = | Jc e A"} is an ideal, and 
clearly f)-^ is the unique greatest lower bound of AT in <P, c ) . Thus <P, c > satisfies 

21 — Topological Spaces 
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the assumptions of 18 E.2 and therefore the structure space <S, u) of <P, c=> is well-
defined. 

Recall that an ideal x is said to be prime if a . be x implies that either a e x or 
be x. We shall prove that each prime ideal x belongs to S, i.e. has property (*) of 
18 E.1. If x => x t n x2 and a.t e x ; — x (— denotes set-difference), then a x . a2 e xt n 
n x2 (because bfii = afii e xf for each b; e R) and so certainly at . a2 e x; since x 
is a prime ideal we have a± e x or a2 e x which contradicts our assumption a ; £ x. 
Thus the set of all prime ideals is contained in S. 

18 E.5. Definition. If * is a commutative semi-ring and (S, u) is the space of 
18 E.4, then the subspace of <S, w> consisting of all prime ideals will be called the 
structure space of prime ideals o f * and will be denoted by 

18 E.6. The collection of all sets of the following form is a closed base for 
sp(*) : h(a) = E{x | x e $(*), a ex}, ae |*|. 

Proof. Evidently these sets are closed. Assuming that y does not belong to the 
closure of X in SP(*), we shall show that y $ h(a), h(a) •=> X for some a. By defi-
nition the prime ideal y does not contain fi{x | x 6 X} and hence we can choose an 
a in fiX — y. Clearly the element a has the required properties. 

18E.7. Let * = (R, + , . ) be a commutative semi-ring with unity which will 
be denoted by 1. We know that each ideal in * is contained in a maximal ideal 
in We shall prove that each maximal ideal is a prime ideal. Assuming x maximal, 
ax, a2$x, a1a2ex, we shall derive a contradiction. Since x is a maximal ideal we 
have 1 = b1a1 + c1 = b2a2 + c2 for some bte R and c, ex . Since ata2ex , we 
find that 1 = 1 . 1 = (b^ + c t) (b2a2 + c2)ex and this contradicts the fact that 
1 ix. 

18 E.8. Definition. If * is a commutative semi-ring with unity, then the subspace 
of the structure space SP(*) of * consisting of all maximal ideals of * will be called 
the structure space of maximal ideals o f * and will be denoted by 5W(*). 

18 E.9. Ul t ra f i l t e r space. The ultrafilter space ¡IX of a given set X was defined 
in 14B.12. We shall prove that PX is a homeomorph of 9fl(*) where * = 
= <exp X, n , u>. Recall that 0 is the unit element of * , X is the zero of * , 
ideals of * coincide with filters on X, and maximal ideals of * coincide with ultra-
filters on X. Next, recall that a proper filter SC on X is an ultrafilter if and only if, 
for each subset Y of X, either Y or X - Y belongs to SC. It follows that each prime 
ideal is a maximal ideal (and, of course, each maximal ideal is a prime ideal). Thus 
*})(*) = and the underlying set of 5TO(*) is the set ult X of all ultrafilters on X. 
Now we shall construct a homeomorphism / of pX onto 9Ji(*). The elements of 
PX - X are free ultrafilters on X, i.e. ultrafilters SC such that (\S£ = 0. Put 
fSC = SC for SC in PX - X. If x e X, then the collection of all Y c X, x e Y, is an ultra-
filter on X; let fx be this ultrafilter. 
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We know that any non-free ultrafilter is necessarily of the form fx, x e X, and 
clearly x #= y implies that fx + fy. Thus / is a bijective mapping. It remains to 
show that the mappings / and / _ 1 are continuous. It follows from the definition 
of px (and it was stated in 15 ex. 12) that the sets of the form 

(*) oY = Y u E{&\ Ye%e(pX - jf)}, Y <= X, 
form an open base for PX. Since o Y = PX — o (P — Y) for each Y <= X, the sets (*) 
form a closed base for PX. Clearly 

/ [ o Y] = E{$£ | Y e V e ultX} . 
By 18 E.6 the sets / [oY] form a closed base for 9)2(̂ 2). Thus / carries a closed base 
for PX onto the closed base for it follows that / is a homeomorphism. 

18E.10. Let 3k = (R, + , .> be a ring with unity, consisting of bounded real-valued 
relations on a set X, i.e. the elements of R are real-valued relations on X and the 
addition and the multiplication are defined pointwise; that is to say, M is a subring 
of the product ring R* consisting of bounded relations (not necessarily all). In 
41 E we shall examine the structure space SOt(̂ ) for the case when R consists of 
all bounded / such that / : (X, u> -*• R is continuous for a fixed closure operation u 
for X. In this case the ring 3k has the following property: for each x e X the set 

( * ) E { / 1 /x = 0} 
is a maximal ideal of 01. Thus we have a mapping (p of u> into iDl(3i) which 
assigns to each x the maximal ideal (*). We shall show in 41 E that this mapping 
is continuous, and if (p is one-to-one, then cp is a homeomorphism. 
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19. T O P O L O G I Z E D A L G E B R A I C S T R U C T S 

This section contains definitions and theorems relating to general functional 
analysis which are needed at various places throughout the book. Although the rea-
der is not presumed to have made a study of functional analysis a prerequisite 
for studying this book, some acquaintance with basic facts is needed; our development 
rather formally points out the basic ideas and applies the purely topological results 
of earlier sections. Sometimes general results will be applied to the particular case of 
real numbers without any detailed treatment of elementary facts. In the later develop-
ment we shall always try to apply topological results to general functional analysis. 

The reader is possibly familiar with the fact that a topological group is a struct 
<G, <t, u> such that <G, o-) is a group, u is a closure for G and the mappings a : 
: <G, u> x <G, u> <G, m> and {x x - 1 } : <G, u> <G, u> (x_ 1 denotes the 
inverse of x in <G, <t>) are continuous. Similarly, a topological ring is a struct 
<R, a, fx, m> such that <R, a, fx} is a ring, <R, a, u) is a topological group and the 
mapping fx : <R, w> x <i?, u> -»• u> is continuous. The last condition is some-
times replaced by the weaker condition that ¡x: ind (<R, u> x <R, u>) -» <ii, u) be 
continuous. Thus the topological requirements consist of conditions which demand 
that certain mappings be continuous, disregarding the algebraic relations among the 
various compositions involved, and sometimes algebraic properties of single com-
positions (e.g., of being a group structure). Therefore it is natural to begin with a pair 
<y, u> where a is an internal composition on a set G and u is a closure operation 
for G (such a pair will be termed a topologized internal composition), and to study 
the topological requirements for such a pair. Then some results concerning more 
complicated topologized internal structures will follow by combining the results 
concerning individual topologized compositions. A similar development will be car-
ried out for structs containing an external composition. 

An auxiliary study of topologized internal compositions in A is followed by an 
examination of topological groups, rings and fields in B. For the later development, 
the normed groups and rings are of particular interest. An auxiliary study of topolog-
ized external compositions in C is followed by a study of topological modules and 
algebras. Particular attention is given to normed modules and algebras because the 
normed algebras of bounded continuous, uniformly continuous or proximally con-
tinuous functions will be studied in detail in later sections (25 E, F, 41 C, E). 
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Combinations of topological and algebraic requirements imply some topological 
properties of topologized algebraic structs (e.g., every topological group is a topo-
logical space) and their mappings. Therefore continuous homomorphisms will be 
examined in E. 

Subsection F contains some results concerning series in a commutative topo-
logized semi-group which will be needed later. 

A. TOPOLOGIZED INTERNAL COMPOSITIONS 

At first sight it might seem natural to define a continuous internal compotision as 
a triple <<7, u, V) such that a is an internal composition, u is a closure for Do, V is 
a closure for Ecr and the mapping a : <DO\ w) -> (Eo, v) is continuous. Nevertheless 
this definition is too general. Usually, a composition a on a set P and a closure 
operation u for P are given, and we need to know whether the mapping 
a : <P x P, v} -> <P, u> is continuous, where v is the product closure u x u or the 
inductive product closure ind (u x u). More precisely, the continuity of a relative 
to the product closure or relative to the inductive product closure usually must be 
assumed in various theorems. It is to be noted that sometimes there are situations 
in which some other "product" closures are of certain interest, for example the 
sequential product which will be considered in Section 35. Here we restrict ourselves 
to the product closure and the inductive product closure. 

Thus our basic concept will be a pair (o, u) where a is an internal composition 
and u is a closure for DDO-, and we will define the continuity of such a pair in various 
ways. 

19 A.l. Definition. A topologized internal composition is a pair (o, m> such that 
o is an internal composition and u is a closure for DDC. A topologized semi-group 
is a struct <P, o, u) such that (a, u> is a topologized internal composition and <P, <7> 
is a semi-group. A topologized internal composition (a, u> is said to be continuous 
(inductively continuous) if the mapping 

o : (DDo, t/> x <DD( t , «> <DDCR, u> 

(<t : ind « D D O , u> x <DD<r, m>) - <DD<r, u>) 

is continuous. A topologized semi-group <P, o, u> is said to be continuous or 
inductively continuous if (a, u) is continuous or inductively continuous, respectively. 
A composition a on a space <P, u> is said to be continuous or inductively continuous 
if (o, m> has the corresponding property. 

We shall use the term continuous (inductively continuous) internal composition 
instead of continuous (inductively continuous) topologized internal composition, 
and similarly continuous (inductively continuous) semi-group instead of continuous 
(inductively continuous) topologized semi-group. Instead of internal composition 
we shall say composition. 
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For example, a topologized composition <tr, u> is continuous provided that u 
is a discrete or an accrete closure (recall that the product of two discrete closures 
is a discrete closure, and a mapping of a discrete space into any space as well as 
a mapping of any space into an accrete space is continuous). Addition is a con-
tinuous group structure on the space R of reals and multiplication is a continuous 
semi-group structure on the space R of reals (by 18 C.8). 

It is to be noted that there is another term which frequently appears in the literature 
and which is used with two different meanings, namely a topological semi-group 
is usually either a continuous or inductively continuous semi-group such that the 
closure structure is topological. 

19 A.2. Every continuous composition is an inductively continuous composition. — 
The inductive product closure is finer than the product closure. 

Because of the importance of the concepts introduced, we shall describe them 
more directly in the two propositions which follow. 

19 A.3. A composition a on a space <P, u> is inductively continuous if and only 
if the following condition is fulfilled: 

The mappings {y -*• yax} : <P, w) <P, u> and (j> xay} : <P, «> ->• <P, u> 
are continuous for each x in P (that is, the left translations and the right translations 
are continuous). 

Corollary. If a is a continuous composition on a space 0 then the translations 
are continuous. 

19 A.4. Let a be a composition on a space <P, u>. In order that a be conti-
nuous it is necessary and sufficient that for each x and y in P and each neigh-
borhood U of xay there exist a neighborhood V of x and a neighborhood W of y 
such that [ F ] a [W] c U. In order that a be inductively continuous it is neces-
sary and sufficient that for each x and y in P and each neighborhood U of xay 
there exist a neighborhood V of x and a neighborhood W of y so that [F ] ay <= U 
and xa[W] «= U. 

Corollary. If a is continuous and e is the neutral element of a, then for each 
neighborhood U of e there exists a neighborhood V of e such that [ F ] a [ F ] <= U. 

19 A.5. Examples, (a) Let <P, u) be a non-void space, and denote the pro-
duct space <P, m)p by <2, Let us consider the composition a = {</, g} 
-*• g o f ) on Q; thus a is the restriction of the composition o to Q. It is easily seen 
that a is a semi-group structure on Q. Consider the triple (Q, o, v). 

(a) The right translation by g is continuous if and only if g : (P, m) <P, u) 
is a continuous mapping. 

First suppose that g is continuous; we shall prove that the mapping { / -* g of} : 
^ <6. v } <6, is continuous. Let {/„ | a e A} be a net converging to / i n <6, v), 
that is, for each x e P the net {fax\ae A} converges to fx in <P, u>. We must show 
that the net {g o /„} converges to g of in <2, v}, i.e., that {(g 0 fa) x | a e A} con-
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verges to (g o / ) x in <P, u} for each x in P. But (g o fa) x = g(fax) and (g o f ) x = 
= g(fx). Since g is continuous and { f a x } converges to fx, then necessarily {g(fax)} con-
verges to g(fx). 

Conversely, suppose that g : <P, w> -* <P, u> is not continuous. There exists 
a point x of P and a net {xa \ a e A} which converges to x in <P, u> such that the 
net {gxa} does not converge to gx (by 16 A.8). For each a let fa be the constant 
relation —>• xa} and / b e the constant relation {y —>• x}. Clearly the net {/,} con-
verges to {/} in (Q, v). On the other hand, the net {g o fa} does, not converge to 
g of. Indeed, (g ofa) y = gxa and (g o f ) y = gx for each y in P, i.e. g ofa and g of 
are constant relations; but {gxa} does not converge to gx by assumption. 

(P) The left translations are continuous, i.e. for each g e Q the mapping { / - » / ° g} 
of <g, v) into <2, v) is continuous. 

This is almost self-evident. Suppose that a net {/,} converges to / in (Q, v). To 
prove that the net {/„ • g} converges to f o g in (Q, v} it is sufficient to show that 
the net {(/a 0 g) x} converges to ( /o g) x in (P, u> for each x e P. But ( / , 0 g) x = 
= fa{9*)> ( f ° d) x = f(dx) and {fay] converges to f y in <P, u) for each y in P by 
our assumption, which gives the result. 

(b) Let * be a closure space. Since the composite of two continuous mappings 
is a continuous mapping (16 A.3), the composition of mappings o is an internal 
composition on the set C(*, 3?) of continuous mappings of 8? into itself, and hence 
<C(*, &), o> is a semi-group. It follows from (a) that this semi-group endowed 
with the closure of pointwise convergence is an inductively continuous semi-group. 
On the other hand, in general this semi-group is not continuous. This will be proved 
in the exercises. 

19 A.6. If a is an inductively continuous semi-group structure on a space <P, u> 
and an element a of P has an inverse element, then the translations ({x -»• aox} : 
: <P, u> -> <P, «> and {x -> xoa} : <P, u> -* <P, m>) are homeomorphisms. 

Proof. Let a - 1 be the inverse element of a. The mappings {y -»• a~1oy} : <P, u) -*• 
-* <P, m) and {y yoa'1} : <P, u) ->• <P, u) are inverses of the mappings in 
question because ao(a~lox) = (aoa'1) ax = x and (xua - 1) a a = xa(a~1aa) = x 
for each x. Since all four of the mappings considered are continuous (by 19 A.3), 
they are homeomorphisms. 

Corollary. If a is a continuous semi-group structure on a space 0* and an ele-
ment a of 0 possesses an inverse, then the left translation by a as well as the right 
translation by a are homeomorphisms. 

Let a be a composition on a set P and let us consider the relation Q consisting 
of all pairs <a, b} such that b is the inverse of a. If a is a semi-group structure, 
then Q is a single-valued relation (cf. 6 B.10). Now if a is enriched by a closure u, 
it is sometimes important to know whether the mapping Q of the subspace Dg of 
<P, u> into itself is continuous. For convenience we shall introduce the following 
terminology. 
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19A.7. Definition. The inversion of a topologized semi-group structure <<r, 
is the mapping {x -» x - 1 } of the subspace of <DDU, u) consisting of all elements x 
of P possessing an inverse into itself. The inversion of a topologized semi-group 
<P, a, u> is the inversion of <c, u). 

19A.8. If the inversion f of a topologized semi-group structure is continuous, 
then f is a homeomorphism. 

Proof. If b is the inverse of a, then a is the inverse of b, and consequently / = f~l. 
It follows that if / i s continuous, then / i s a homeomorphism. 

For example, the inversion of <R, + > is continuous; in fact the inversion of 
< R, + ) is an isometry of the metric space R. 

The concluding part is devoted to the definitions of the restriction of a topologi-
zed composition and the product of topologized compositions. 

19 A.9. Definition. A restriction of a topologized composition u} is a topo-
logized internal composition <g, v) such that g is a restriction of a and v is a relativ-
ization of u. The definitions of a restriction of a topologized semi-group structure 
or a group structure are evident. A sub-semi-group or a subgroup of a topologized 
semi-group or group <P, a, u) is a sub-semi-group or subgroup <Q, g) of <P, <r> 
enriched by the relativization v of u to Q. 

19 A.10. Theorem. Restrictions of a continuous or inductively continuous com-
position are continuous or inductively continuous respectively. If the inversion 
of a topologized semi-group structure <cr, u> is continuous, then the inversion of 
each restriction of <cr, u) is continuous. — Evident. 

19 A.ll. Definition. Let {<cra, «„) | a e A} be a family of topologized internal 
compositions. The compositional product, or simply product, of {<ffa, wa>} is the 
compositional product a of {t7a} (6 E.6) enriched by the product closure u, that is, 
<DD<7, u> = n{<DDO-A, ua> | a e A} and {xa} o {ya} = {xaoaya}. The product of 
a family {<Pa, oa, ua> | a e A} where each <<Ta, ua> is a composition on Pa enriched 
by a closure is defined to be the triple <P, o, u} where <c, u) is the product 
of {<aa, ufl>} and P = DDct. 

19 A.12. Theorem. Let <tr, u> be the compositional product of a family {<ffa, «„>} 
of topologized compositions. If all <<ra, ua> are continuous or inductively continuous 
then so is <tr, u). If each <ra is a semi-group structure and the inversion of each 
<cra, Ma> is continuous, then so is the inversion of (a, u). 

Corollary. The product of a family of continuous or inductively continuous 
semi-groups (groups) is a continuous or inductively continuous semi-group (group, 
respectively). 

Proof. All statements follow from the fact that the product of any family of 
continuous mappings is a continuous mapping (17 C.13). The inversion of <tr, u> is 
the product of the family {/„} where each fa is the inversion of <ca, ua>, and any 
translation g of (cr, u> is the product of a family {ga} where each ga is an appropriate 
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translation of <aa, ua> (e.g. if g is the left translation by {xa} then ga is the left trans-
lation by xa). Thus we have proved the statements concerning the inversion and 
the inductive continuity of <<7, w). For the proof of the statement concerning 
continuity of <cr, m> we shall need some auxiliary mappings. For brevity write Pa = 
= DD<RA) P = DDCT; thus P = Il{Pa}. Let / be the product of the family 
[<ya : <Pa, wa) x <Pa, na> -» <P, a) } ; thus / is continuous. Consider the mapping 
h of <P, u> x <P, u> into Il{<Pa, ua> x <Pa, ua>} which assigns to each <{xa}, {ya}> 
the point {<xa, ya>}. By 17 C.19 the mapping h is a homeomorphism. Clearly a : 
: <P, u> x <P, w> -y (P, u) = f o h. The proof is complete. 

19 A.13. Example. Let * be a closure space and let C(*, be the set of all 
continuous mappings of * into itself endowed with the restriction of the composition 
of mappings as a semi-group structure and with the closure of pointwise convergence. 
By 19 A.5 (b), C(*, SP) is an inductively continuous semi-group. Consider the subset H 
of C(SP, 0>) consisting of all homeomorphisms of * onto itself. Clearly H endowed 
with the restriction of compositions of mappings as a semi-group structure and with 
the closure of pointwise convergence is a sub-semi-group of C(*, Since C(*, 3P) 
is inductively continuous, H is inductively continuous as well. On the other hand H 
is a group (because the inverse h~l of a homeomorphism h is the inverse of the 
element h of H). Thus H is an inductively continuous group. It will be shown in the 
exercises that neither H nor the inversion of H need be continuous. 

B. TOPOLOGICAL GROUPS, RINGS AND FIELDS 

In the foregoing subsection we introduced the concepts of an inductively conti-
nuous group, a continuous group, an inductively continuous group with continuous 
inversion and a continuous group with continuous inversion. The latter is particul-
arly important and will be studied in this section under the current name topo-
logical group. It will be shown here that the underlying space of a topological group 
is a topological space; moreover, in Section 24, we will see that the underlying space 
of a topological group is uniformizable. 

Now let <P, a, p, u> be a ring <P, a, fi} enriched by a closure operation u (simply a 
topologized ring). It may be shown on examples that all of the following cases are 
possible: each of the compositions <tr, a) and </j, m>, independently of each other, may 
be continuous or inductively continuous, need not be inductively continuous, and 
the inversion may but need not be continuous. One of all these possibilities, namely 
that <P, (7, u} is a topological group and (¡i, u> is continuous is currently studied 
under the term topological ring. 

19 B.l. Definition. A group structure iron a set G and a closure u for the set G 
are said to be compatible if <a, u> is a continuous composition with a continuous 
inversion, that is, if the following two conditions are fulfilled: 
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(g 1) The mapping a : (<G, m> x <G, w>) -> <G, u> is continuous. 
(g2) The mapping (x -» x - 1 } : <G, u> -> <G, u> is continuous. 
If a group structure CT on G and a closure u for G are compatible, then a is said to 

be an admissible group structure for the space <G, u> and u is said to be an admis-
sible closure for the group <G, a}. A topological group is a triple <G, cr, u> such 
that <G, cr) is a group and u is an admissible closure for the group <G, tr). 

As a trivial example notice that the discrete and the accrete closures for a set G 
are admissible for any group <G, <r>. 

In what follows the notation will be as abbreviated as possible. The group com-
position will usually be written multiplicatively, that is, it will be denoted by . . If we 
say that ^ is a topological group, then the group structure of $ will be denoted by. 
and the closure structure will be indicated, as usual, by u. 

Sometimes it is convenient to replace the conditions (g 1) and (g 2) by a single 
condition. 

19 B.2. A closure u for G is admissible for a group (G,.} if and only if the fol-
lowing condition is fulfilled: 

(g) the mapping (<x, y} x . y-1} of the product <G, u> x <G, u> into <G, u> 
is continuous. 

Proof . I. First let us suppose (g 1) and (g 2). The mapping/ = {<x, y} -> <x._y-1)} 
of <G, u> x <G, u) onto itself is continuous as the product of two continuous map-
pings {x -* x} and {y -> y - 1 } the latter being continuous by (g2). The mapping 
under question is continuous as the composition of / and {<x, z> -»• x . z} : 
<G, u) x <G, m> ->• <G, u) the latter being continuous by (g 1). — II. Conversely, 
suppose (g). Let 1 be the neutral element of the group G. Since clearly {x -> <1, x) | 
| x e G} : <G, m> -* <G, «> x <G, u> is continuous and {<l,x> -»• 1 . x _ 1 = x - 1 } is 
continuous by (g), their composition {x -* x - 1 } is continuous, yielding (g 2). Finally, 
the mapping in (g 1) is continuous as the composite of two continuous mappings, 
namely (<x, -> <x, y - 1 ) } and {<x, z) -> x . z - 1 }, the former being continuous 
as the product of two continuous mappings and the latter by (g). 

19B.3. If IS is a topological group, then the mappings {x x - 1 } : <§ <& and 
{x -> a . x . b} : 'S 'S, where a and b belong to <8, are homeomorphisms. 

Proof . Since in a group every element has an inverse, the statement follows from 
19 A.8 and 19A.6. 

Corollary. Let'S be a topological group and a and b be elements of'S. A subset U 
of G is a neighborhood of x if and only if a .U . b is a neighborhood of a . x . b 
(notice the cases of a = 1 or b = 1). A subset U of & is a neighborhood, of a point x 
if and only if U~l is a neighborhood of x - 1 (notice the special case of x = 1). 

19B.4. Every topological group is a topological space, more precisely, the 
underlying closure space of a topological group is topological. 
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Proof. Let ^ be a topological group. According to 15 A.2 it is sufficient to show 
that for each neighborhood U of a point x of ^ there exists a neighborhood F of x 
such that U is a neighborhood of each point of F. By virtue of the foregoing pro-
position it is sufficient to prove this for x = 1. Since the group structure is continuous 
at <1,1>, given a neighborhood U of 1, we can choose a neighborhood Fof 1 so that 
V. V c U. It follows from the corollary of the preceding proposition that U is 
a neighborhood of each point of V. Indeed, y . V is a neighborhood of y for each 
y e by the corollary, and clearly y .V a V. V provided that y e V. 

Remark. In Section 24 we will see that the closure structures of topological 
groups possess further important properties (e.g. they are uniformizable). 

19B.5. Examples, (a) According to 18 C.8 the natural closure for the reals is 
admissible for the additive group <R, +> of real numbers. In what follows the letter 
R will also be used to denote the additive group of reals, endowed with the order 
closure, (b) According to 18 C.8 and 18 ex. 10 the relativization of the natural clo-
sure for R to R — (0) is admissible for the multiplicative group R — (0) of the reals. 

Sometimes it is convenient to define an admissible closure for a group by neigh-
borhood systems at points. According to the corollary of 19 B. 3 it is sufficient to 
define the neighborhood system Hi at the neutral element, and the neighborhood 
system at x is then x . \Hl\- If Hi is a filter in exp such that 1 e U for each U 
in Hi, then x . \Hl\ is a filter such that x e Ffor each Fin x . [Hi], By Theorem 14 B.10 
there exists exactly one closure for the set such that x . \Hl\ is the neighborhood 
system at x. But this closure need not be compatible with the group structure of <&. 
Now we give necessary and sufficient conditions on Hi for this closure to be admis-
sible.-

19B.6. Theorem. Let 'S be a group. A filter Hi on & is a neighborhood system 
at the neutral element 1 with respect to an admissible closure for the group IS 
if and only if the following conditions are fulfilled: 

(gn l) for each U in Hi there exists a V in Hi with V. V <=• U; 
(gn 2) if U e Hi then U'1 eHl; 
(gn 3) 1 belongs to each U in Hi; 
(gn 4) for each x in & and U in Hi, (x .U . x - 1 ) e Hi. 
Proof . First let U be the neighborhood system at 1 with respect to an admissible 

closure u for the group Conditions (gn 1) and (gn 2) follow readily from (g 1) 
and (g 2). respectively. The third condition is obviously fulfilled, for a neighborhood 
of a point x contains x. Finally, the last condition is an immediate consequence of 
19 B.3, because {y -»• x . y . x - 1 } is a homeomorphism of u> onto itself which 
carries 1 into 1 and Finto x . F . x _ 1 . 

Conversely, let Hi be a filter on 'S satisfying all the conditions (gn i). By 14 B.10 
there exists a closure u for 'S such that x . [Hi] is the neighborhood system at x for 
each x in 'S. It will be shown that u is admissible for the group <8. We shall prove (g), 
i.e. that {<x, -> x . y - 1 } is continuous. Let x0, y0 e ^ and let U = x0 . y^ 1 . Fbe 
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a neighborhood of x0 . y0 thus Ve Hi. We want to find a neighborhood W of 1 
such that x e x0 . W, y e y0 . W implies x . y~l elJ. If x = x0 . u, y = y0 . v, then 

(*) (*o • yo'T1 • (x • j7"1) = yo • " • • yol-
By (gn 1), (gn 2) and (gn 4) we can find a neighborhood Wof 1 such that y0 . W • 

. W~l . yg 1 c V(prove!). From (*) it follows at once that Wpossesses the required 
properties. 

Sometimes we shall define an admissible closure for a group by a local base at the 
neutral element. The corresponding theorem, which is an immediate consequence 
of the preceding result, is as follows. 

19 B.7. Let @ be a group. A base V of a filter on '¡S is a local base at the neutral 
element with respect to an admissible closure for the group <S if and only if the 
following four conditions are fulfilled: 

(gnb l) for each V in "f there exists a U in "T with U . U <= V; 
(gnb 2) for each V in V there exists a U in with L/ - 1 t= V; 
(gnb 3) each Ve "V contains the neutral element of ^ ; 
(gnb 4) for each V in "V and x in 'S there exists a U in "V with U c x . V. x'1. 
Remark. A neighborhood V of the neutral element 1 of a topological group ^ 

is said to be symmetric if V = V'1. If V is any neighborhood of 1, then V. V~l, 
V~x n V, V~x u Fare symmetric neighborhoods of 1. It is easy to see that the col-
lection of all symmetric neighborhoods of the neutral element 1 is a local base at 1. 
If n is a positive integer, then the collection of all sets of the form V, where F is 
a neighborhood of 1, is also a local base at 1 (V is defined by induction: F p + 1 = 
= V . V). 

Remark. If '¡S is a commutative group, then the postulates (gn 4) of 19 B.6 and 
(gnb 4) of 19 B.7 are automatically fulfilled. On the other hand, if'S is not commutat-
ive, then the first three conditions may be fulfilled but not the fourth. For example, 
if X is a subgroup of a group'S and if Hi is the collection of all subsets of ̂  containing 
X, then Hi satisfies the conditions (gn /), i = 1, 2, 3 and (gn 4) is satisfied if and 
only if X is an invariant subgroup of Recall that by Definition 8 D.7 (and Remark 
8 D.8) a subgroup of a group (S is invariant if (and only if) x . y . x - 1 e X for 
each x in ^ and y in X. An inner automorphism of 0 is defined to be either a relation 
of the form gx = {y -* x . y . x - 1 | y e with x in IS, or a mapping Qx : & -* <S. 
It is easily seen that a subgroup X of'S is invariant if and only if <= for 
each inner automorphism Q of 

19 B.8. Definition. If <G,., u> is a topological group, <H, *) is a subgroup of <G,.) 
and v is the relativization of u to H, then by 19 A.10 <H, *, v) is a topological group 
which will be called a subgroup of the topological group <G, ., u). 

19B.9. Theorem. If H is a subgroup of a topological group then H is also 
a subgroup of G. If H is an invariant subgroup, then H is also an invariant sub-
group. 



19. TOPOLOGIZED A L G E B R A I C STRUCTS 333 

Proof. To prove the first statement we must show that x, ye H implies x. y~l eH. 
If x, y e H, then clearly <x, y> e H x H which implies, according to the continuity 
of the mapping {<x, y> ->• x. y~1}, that x. y~l eH. Now let H be an invariant sub-
group of <S. Thus / [ # ] <= H for each inner automorphism / of'S. Since every inner 
automorphism / is continuous by 19 B.3, we have / [ # ] <= H for each inner auto-
morphism / of y. But this means that H is an invariant subgroup. 

19B.10. A subgroup H of a topological group ^ is closed in 'S if and only if 
Ur\H = UnH=t 0 for some open subset U of <S. 

Proof. The "only if" part is obvious. Conversely, suppose that U n H = 
= U n H 4= 0 for some open subset U of Let x be any point of H. We have to 
prove xeH. First let us choose a point y in U n H and a neighborhood F of the 
neutral element 1 so that y . V <=. U. Since x e H, it follows that the set (F. x) n H 
is non-void, and consequently we can choose a point z in it. Now clearly we have 
z . x _ 1 e Fand hence y . z . x" 1 e y . V c U. Since H is a group and y, z, x - 1 e H, 
the element y . z . x - 1 must belong to H. As a consequence, y.z.x~leUriH 
and by our hypothesis, y . z . x"1 eU n H, in particular y . z . x - 1 e H. Since y 
and z also belong to H, x must belong to H, which concludes the proof. 

19 B. l l . A subgroup of a topological group is open if and only if its interior 
is non-void. Every open subgroup is closed. 

Proof. If a subgroup H of a topological group ^ is a neighborhood of a point x, 
then H is a neighborhood of each of its points, i.e. H is open, because / = 
= {z ->• y . z . x - 1 } is a homeomorphism of 'S onto ^ (by 19 B.3) which carries x 
in y, and if moreover y eH, then f\H\ = H. The converse implication is obvious. 
The second statement is a straightforward consequence of 19B.10 (put U = H). 

19 B.12. Definition (and proposition). If {<Ga, cr0, ua>} is a family of topological 
groups, then by 19 A.12 <n{Ga}, TL{oa}, n{u0}> is a topological group; this topo-
logical group is termed the product of the family {<Ga, oa, ua>}. 

19 B.13. Examples, (a) If m =t= 0 is any cardinal then Rm, considered as a product 
of the additive topological group R, is a topological group, (b) If m 4= 0, then (R — (0))m, 
considered as a product of the multiplicative group R — (0), is a topological group, 
(c) Let 2 be the discrete group consisting of two points 0 and 1 such that 0 is the 
neutral element (in consequence, 1 + 1 = 0 if -I- denotes the group composition). 
For any m #= 0, 2m is a topological group. 

If \fSa | a e A} is a non-void family of commutative topological groups such that 
= ^ for each a in A, then in addition to the product group we can define 

another closure which is admissible for the underlying abstract group GA, the so 
called closure of uniform convergence. 

19 B.14. Definition (and proposition). Let us consider a commutative topological 
group 'S = <G, • , u> and a non-void set P. Let °ll be the neighborhood system at the 
neutral element of'S and let V be the collection of all subsets V of Gp such that 
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V => UF for some U in °U. It is easily seen that "f fulfils conditions (gn i), i = 1, 2, 3 ,4 
of 19 B.6 (relative to <G, ->p), and consequently, there exists exactly one closure v 
admissible for the group <G, ->p such that "f is the neighborhood system at the 
neutral element of <G, ->p. This closure will be called the closure of uniform con-
vergence for and the topological group « G , -)p , v) will be denoted by unif <gv. 

19 B.15. For any commutative topological group IS and any non-void set P, the 
closure structure of is coarser than that of unif (S?\ stated in other words, the 
closure of pointwise convergence is coarser than the closure of uniform convergence. 
If P is finite, then & = unif <Sf (show, for instance, that each neighborhood of an 
element x in is a neighborhood of x in unif and, if P is finite, then each neigh-
borhood of an x in unif is a neighborhood of x in 

Corollary. For any positive integer n the groups R" and unif R" coincide. 

19B.16. Theorem. Suppose that 'S = <G, • , u> is a commutative group and P 
is a non-void set. If w is any closure for P, then the set H of all elements f of Gp 

such that f: <P, w> -» <G, «> is a continuous mapping, is a closed subset of unif 
In addition, H is a stable subset of <G, •>p and hence H is a closed subgroup of 
unif 10F. 

Before giving the proof it may be in place to restate the result for groups of 
mappings. 

19 B.17. Suppose that ^ = <G, •, u) is a group and * is a non-void closure 
space. Let us consider the relation v on G|a>l which assigns to each / the mapping 
/ : SP -* y. Clearly v is one-to-one and ranges on F(*, c§). - Thus we can define 
a group structure on F(*, in such a manner that v : <G, -> F(*, <$) is an iso-
morphism. The set F(*, <S) with this group structure will be called the group of 
mappings of SP into Next, we can endow the group F(*, with a closure 
operation so that v : -> F(*, becomes a homeomorphism. Clearly this closure 
is admissible for the group F(*, This topological group will be called the group 
of mappings of SP into '¡S endowed with the closure of pointwise convergence. 
Finally, we can endow the group F(SP, with a closure operation so that the map-
ping v : unif i ^ 1 -*• F(*, becomes a homeomorphism. This closure is admis-
sible for F(*, and the resulting topological group, denoted by unif F(*, <S) 
will be called the group of mappings of SP into 'S endowed with the closure of uni-
form convergence. Now we are prepared to give the required restatement of Theorem 
19 B.16. 

19 B.16a. Theorem. Let IS be a topological group and let * be a non-void closure 
space. The set C(* , of all continuous mappings of iP into IS is a closed subset 
of the topological group unif F(*, ( = the group of mappings of SP into 
endowed with the closure of uniform convergence); in addition, C(*, is stable, 
and hence C{SP, 'S) is a closed subgroup of unif F(*, 

According to 15 B.4 the fact that C(*, <&) is closed in unif F(*, is equivalent 
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to the following: if a net N converges to / i n unif F(0>, 1§) and if N ranges in <&), 
then / e &); stated in other words, if a net N of continuous mappings converges 
to a mapping / in unif F{0>, then / is continuous. Sometimes it is convenient to 
have the following currently employed convention: 

19B.18. Convention. Let 0 be a struct and ^ be a topological group. It is 
said that a net N in converges to f pointwise or uniformly accordingly as N 
converges to / i n the group <$) endowed with the closure of pointwise converg-
ence or uniform convergence. 

Now the main result of 19 B.16a can be restated as follows: 

19 B.16b. If a net of continuous mappings of a space 3P into a topological group H 
converges to a mapping f uniformly, then f is a continuous mapping. Roughly 
speaking, a uniform limit of continuous mappings is a continuous mapping. 

Proof of Theorem 19B.16. I. To prove that H is closed it is sufficient to 
show that the complement of H is open. The composition in unif i ^ 1 will also be 
denoted by •. Let / be any element of the complement of H. There exists a point x 
of P such that / : P G is not continuous at x. As a consequence, there exists 
a neighborhood U of fx such that (f\W~\ — E7) =t= 0 for each neighborhood W of x. 
Let us choose a symmetric neighborhood F of the neutral element of 'S so that fx . 
• \ 7 ] • lV~\ • M <= u - 11 w i l 1 b e s h o w n t h a t t h e neighborhood / . [Fp] (of / in 
unif is contained in the complement of H which will establish that H is closed. 
Moreover, we shall prove that no ^ : P <$ with g in / . [Fp] is continuous at x. 
Suppose that g e f . [Fp] and g : P -*• is continuous at x. There exists a neigh-
borhood W of x such that g\W] c: gx. [F]. Since g e f . [Fp] and Fis symmetric 
we have f\W~\ <= \j{gy. [ F ] | y e W} = [g[Wj] . [ F ] . But g[W] <= gx . [ F ] and 
hence f\W~\ <= gx . [F] . [F]. Finally, since g e / [ F p ] and hence gxefx. [F], 
we obtain 

f[W] <= fx . [F] . [F] • \_v~\ <= u 
which contradicts our hypothesis (/[W] — U) 4= 0 for each neighborhood W of x. — 
II. H is stable. Suppose / , g e H, k is the inverse for g in and h = f.k. We 
must show that he H, i.e. that h is continuous. Let x be any point of 0> and U be 
any neighborhood of hx in eS. We must find a neighborhood Wof x so that h\W~\ a U. 
By the remark following 19 B.7 we can find a symmetric neighborhood F of the neutral 
element in ^ so that fx . [F] . kx . [F] <= U. Since / : 0 <3 and g : 0 -> <3 are 
continuous and the sets fx . [F] and [F] . gx are neighborhoods of fx and gx 
respectively, there exists a neighborhood Wof x such that f\W~\ <= fx . Fand g\W] cz 
<= [F] . gx. Since ([F] . gx)~l= kx . [ F _ 1 ] = kx. [F] we obtain h[W]cz[f[Wj\ . 
• lkiwJl c fx • lv] • kx • c u> w h i c h completes the proof. 

Now we proceed to topological rings and fields. 

19 B.19. Definition. A topological ring is a quadruple SR. = (R, o, n, u> such 
that (R, a, fi} is a ring (called the underlying ring), (R, a, u> is a topological group 
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(called the underlying additive topological group) and <p, u> is a continuous inter-
nal composition. A topological field is a topological ring = <F, o, p, u) such that 
(F, o, p) is a field (called the underlying field) and the multiplicative group of 
<F, o, p} endowed with the relativization of u is a topological group (called the 
multiplicative topological group of F).lf (R, a, p,u} is a topological ring (field), 
then the ring (field) structure <o, p} and the closure u are said to be compatible, 
u is said to be admissible for the ring (field) <R, o, p) and the ring (field) structure 
(a, p} is said to be admissible for the space \R, u) . 

Stated more directly, <R, a, p, u> is a topological ring if and only if <R, o, p> 
is a ring, both topologized compositions <<7, u) and <p, u) are continuous and the 
inversion of u> is continuous; <F, o, p, u> is a topological field if and only if 
<F, o, p) is a field, both topologized compositions <«r, u> and <p, m) are continuous 
and the inversion of <<r, u) as well as the inversion of <p, u> are continuous. 

Convent ion. If a is an m-tuple (at,..., am) but not an n-tuple, n > m > 1, then 
<a; by stands for <a1,„,, am, b); if a is not a pair then <a; b) = <a, by. Finally, 
<Xj,..., xp; y} stands for ((xL,..., xp>; as defined above. — Thus e.g. if ^ = 
= <G, cr) and a is not a pair, then u> = <G, o, uy; if * = <R, r>, r = <cr, py 
and p is not a pair, then <*; «> = <R, o, p, uy. 

19B.20. Examples, (a) If * = <R, o, py is a ring (field) and u is either the 
discrete closure for R or the accrete closure for R, then <*; u) is a topological ring 
(field). — (b) The field R of reals endowed with the usual closure (= order closure) 
is a topological field (by 19 B.5). In what follows the letter R will also stand for this 
topological field. 

19 B.21. (a) If @ = (R,o, p, uy is a topological ring (field) and = 
= <#!, ou pxy is a subring (subfield) of then (Sft^vy is a topological ring 
(field) where v is the relativization of u to Rt. — 19 A.10. 

(b) / / {*„} is a non-void family of topological rings, where = (Ra, oa, pa, uay, 
then m = <n{*„}, ncomp{afl}, ncomp{/za}, n{«a}> 

is a topological ring called the product ring and denoted by Il{*a}. — 19 A.12 
19 B.22. Remark. If {<*a; ua> | a e A) is a family of topological rings such that 

<*a; ua> = <*; w> for each a in A, then the product Il{<*a; ua>} is usually denoted 
by <*; uyA. For example, R^ is a topological ring (if A =(= 0). 

19 B.23. The underlying closure space of a topological ring (field) is topological. 
- 19 B.4. 

The proof of the fact that R is a topological field was based upon the existence 
of the absolute value {x -» |x|} on R (see 18 C.8). Now we shall prove that it is pos-
sible to introduce an admissible closure for a group, ring or field by means of a func-
tion satisfying certain conditions corresponding to properties of the absolute value 
used in proving that R is a topological field. The main result is contained in the fol-
lowing lemma. 



19. TOPOLOGIZED A L G E B R A I C STRUCTS 337 

19 B.24. Lemma. Suppose that <R, + , •> is a ring and cp is a function on R 
satisfying the following three conditions: 

(l) <p0 = 0; (2) <p( — x) = <px for each xeR; and 
(3) <p(x + y) g cpx + cpy for each x and y in R. 

Then g = {<x, y> -» <p(x — y) | <x, y) e R x R] is a pseudometric for R and the 
closure u induced by g is admissible for the group <R, +). I f , moreover, 

(4) <p(x . j>) g q>(x) . <p(y) for each x and y in R, 
then u is admissible for the ring <R, +, •>. / / ( 4 ) is replaced by the following 
stronger condition 

(5) <p(x . y) = (<px). (cpy) for each x and y in R, 
then the inversion of <•, u> is continuous and consequently, if (R, +, •) is a field, 
then <R, + , •, u> is a topological field. 

Proof. I. The function g is a pseudometric. From (1), (2) and (3) we obtain at 
once that 2cpx = (<px) + (cpx) ^ cp(x — x) = (p0 = 0 and hence <px ^ 0 for each 
x e R which shows that (p is a non-negative function. It follows that g is also non-
negative. The symmetry of g follows from (2), and the triangle inequality is obtained 
from (3) as follows: 

g(x, y> = cp(x - y) è <p{x - z) + <p(z - y) = g(x, z) + g(z, y). 

II. The proof of the remaining statements preceeds similarly to that of the cor-
responding statements for R in 18 C.8, 18 ex. 10, and is therefore left to the reader. 

Corollary. The field C of complex numbers endowed with the usual closure is 
a topological field. 

Proof. Let (p(x + iy) = x2 -I- y2). Then <p = {x -> <px} fulfils conditions (1), 
(2), (3) and (5), and g induces the usual closure for C. 

19B.25. Definition. A norm for a group <i?, +> is a function cp on (R, +) 
satisfying conditions (l), (2) and (3) of 19 B.24. Next, a norm for a ring (R, +, .y 
is a function <p on (R, + , . ) satisfying conditions (l) to (4) of 19 B.24. Finally, a norm 
for a field <i?, +, •) is a function <p on <i?, + , •> satisfying conditions (l), (2), (3) 
and (5) of 19 B.24. A normed group, ring or field is a struct where 3% is a group, 
ring or field and cp is a norm for If (M; <p> is a normed group, ring or field, then 
the pseudometric g = « x , -* <p(x — y)} is said to be induced by cp, and the 
closure induced by g will be said to be induced by <p or to be the normed closure 
for (0t\ cp}. 

Lemma 19 B.24 can be now restated as follows: 

19B.26. Theorem. If <p> is a normed group, ring or field, then the normed 
closure is admissible for Si. 

19B.27. The normed group (ring) of mappings of a struct & = <P, £> 
in to a normed g roup (ring) cp}. Let 0 = <P, £> be a non-void struct, P 
being a set, and let (J%\ <p> be a normed group or ring. The underlying set of 3k is 

22 — Topological Spaces 
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denoted by R and the addition by +. Let us consider the set F of all mappings f of 
F into <*; (p> (that is, all f e F(*, <*; <p})) such that 

i¡/f = sup {(pfx | xeP} 

exists. Let i/z be the relation {/-* \ j / f \ f e F } . Then 
(a) F is a stable subset of the group (ring) F(*, * ) of mappings of 3P into 

i.e. F is a group (ring) under the algebraic structure of F(*, *) . 
(P) The function F, R> is a norm for the group (ring) F. 
(y) The underlying topological group of F is a subgroup of the group 

unif F(*, y) where & is the underlying topological group of <*; m> and where u 
is the normed closure for <*; <p>. 

Proof . Addition (and multiplication) of the group (or ring) F ( F , * ) as well 
as of the group (ring) * will be denoted by + (and •, respectively). 

I. It is self-evident that if then (~f)eF and 1 p ( - f ) = \j/f, QeF and 
î O = 0. 

II. Now prove that if figeF, then ( / + ^ e - ^ a n d ip(f + g) <> ij/f + \j/g. 
If x e P then <p((f + g) x) = cp(fx + gx) ^ (pfx + cpgx ̂  i¡/f + \j/g. It follows 
that i¡/(f + g) exists and is less than or equal to ij/f + \j/g. 

III. Now let * be a ring and f , g eF. The same argument as in II shows that 
i j / ( f . g) exists and is less than or equal to i j / f . i¡/g. 

IV. Statements (a) and (p) follow from I, II and III. 
V. Statement (y) is an immediate consequence of the corresponding definitions. 

19 B.28. Theorem. Let C*(F, R) be the ring of all bounded continuous functions 
on a closure space F. Then 

II • II = { / - sup {|/x| | x € | / 6 C*(*, R)} 
is a norm for C*(F, R). In what follows, the symbol C*(F, R) will be used to denote 
the normed ring <C*(F, R); || • ||>. 

Proof. 19B.27. 

C. T O P O L O G I Z E D E X T E R N A L C O M P O S I T I O N S 

Let q be an external composition on a struct * = <P, n) over a struct si = <A, a). 
By definition, this is to mean here that q is a single-valued relation with domain 
\si\ = A such that f?[(a)] is a single-valued relation on | * | ( = P) ranging in [*| 
for each a in A. Thus \si\ = Dg and | * | = DEg. Instead of g[a] x we shall write 
aQX. Often we consider the struct <P,7t, g,a> whose underlying class is P and whose 
structure is the triple (ji, g, a). It is to be noted that the structs * and si are uniquely 
determined by <7t, q, a), namely F = <DEg, %) and si = <Dg, a). For example, 
a module over a ring si is a struct <P, n, g, a ) satisfying certain conditions connecting 
7i, g and a. Here we will be concerned with the case where tz and a are closure struc-
tures. 
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Now we shall define the continuity of an external composition g on a space <P, u} 
over a closure space <A, u). The definition will require certain mappings to be 
continuous. We can construct the following mappings: 

{<a, x> ->• agx} : A x P P, 
{x agx} : P -> P , a e A 

and 
{a -» agx} : A-> P , x e P . 

If we want to speak about continuity we must endow the domain carriers and the 
range carriers with a closure operation. All the mappings in question have a common 
range carrier, namely P, and undoubtedly the only candidate for the closure structure 
for P is the given closure u. The domains of the last two mappings are P and A, and 
the only candidates for the corresponding closure structures are the given closure ope-
rations, u for P and v for A. It remains to topologize the domain A x P of the first 
mapping. Naturally, the closure structure for A x P must be an important closure 
operation constructed from the given closures v for A and u for P, e.g. the product 
closure or the inductive product closure. It turns out that the product closure as well 
as the inductive product closure yield continuities which are often required. 

19 C.l. Definition. We shall say that an external composition g on a closure 
space (SP, w> over a closure space u> is continuous (inductively continuous) 
on (jP, u> over (si, u) if the mapping 

{ < a , x> agx} : (si, d > x (0>, u > -> (0>, «> 

({<a, x> agx} : ind ((si, v> x (<?, u>) u>) 
is continuous. 

Notice that we require continuity of mappings whose graphs are not g but a closely 
related relation {<a, x) —> agx}. This relation, called the external multiplication 
associated with g, occurs very frequently in topological investigations of external 
compositions and therefore it will be convenient to adopt the following definition. 

19 C.2. If g is any external composition then any mapping / , whose graph is the 
external multiplication a associated with g, is also termed an external multiplication. 
If the structures of D*/ and E */ are clearly given by the context then we shall simply 
speak about the properties of a instead of / . 

It is worth noticing that the external multiplication associated with g entirely 
determines g, namely g = {<a, <x, agx» | a e si, x e 0*}. Now Definition 19 C.1 
can be stated as follows: An external composition g on a space (J?, u> over a space 

v} is continuous (inductively continuous) if the external multiplication associated 
with g is continuous under the product closure v x u (inductive product closure 
ind (v x u)) and u. If the closures u and v are clear from the context then we shall 
say simply that the external multiplication is continuous (inductively continuous). 

The following two statements follow immediately from Definition 19 C.1 and the 
description of continuous mappings on inductive products. 

22' 
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19 C.3. Theorem. An external composition q on a space «> over a space 
v> is inductively continuous if and only if all the following mappings are 

continuous: 
{x -» aex} : u> u> , aesi, 
{a -»• agx} : t>> -> w> , x e * . 

19 C.4. Every continuous external composition is inductively continuous; more 
precisely, if g is a continuous external composition on * over'S, then g is an inductively 
continuous composition on * over 

It is to be remarked that the continuity and the inductive continuity of an in-
ternal composition can be reduced to the corresponding continuity of a certain external 
composition. Namely, let a be an internal composition on a closure space «> 
and let us consider the relation 

g = {x (y, xoy> \ (x, y> e x 

Clearly g is an external composition on u) over u) and the external multi-
plication associated with g coincides with o. It follows that a is a continuous (induct-
ively continuous) internal composition on u> if and only if g is a continuous 
(inductively continuous) external composition on u) over w>. 

19 C.5. Remarks. Let g be an external composition on a set P over a set A. 
(a) If u is a closure for P and v is the discrete closure for A, then g is a continuous 
external composition on <P, u> over (A, v) if and only if all the mappings {x -* agx} : 
: <P, u> -» <P, m>, a e A, are continuous. Indeed, in this case the product <A, u> x 
x <P, w> coincides with the sum 2){<P, «> | a e A} and the statement follows from 
17 B.4. Thus the case where there is given a closure u for P such that all the mappings 
{x agx) : <P, m> -> <P, u), a e i , are continuous is reduced to continuous ex-
ternal compositions by endowing A with the discrete closure, (b) If u is the accrete 
closure for P and v is any closure for A, then g is a continuous external composition 
on <P, u) over (A, v). This is evident because every mapping into an accrete space 
is continuous. Thus given a closure v for A we can choose a closure u for P so that g 
becomes a continuous external composition on <P, u> over <A, u>. (c) Let u be a clo-
sure for P and v be a closure for A such that all the mappings {a -* agx} : <A, v} -*• 
-»• <P, u>, x e P are continuous. The mappings {x -»• agx} : <P, u) -> <P, u> need 
not be continuous as will be seen in 19 C.6. Therefore this case does not reduce to the 
notion of an inductively continuous or a continuous external composition. 

19 C.6. Example. Let J ' be a set of mappings of a closure space 3P = <P, u> 
into itself and let us consider the relation 

q = £ { g r / | / e J t } 
Clearly g is an external composition on <P, w> over Jt and fgx = fx for each / 
in J( and x in P. Thus / = {x -*• fgx} : <P, u) <P, u) for each fin Jt. Let us 
consider a closure v for Jt. 



19. TOPOLOGIZED A L G E B R A I C STRUCTS 341 

(a) All the mappings { / - * f x ] : (JI, u> <P, «), x e P are continuous if and 
only if the closure v is finer than the closure of pointwise convergence. 

Recall that the closure w of pointwise convergence for Ji is the closure such that 
the mapping { / g r / } : (Ji, w> -»• (P, u)'> is an embedding. Thus a net {/,} in 

w) converges to / in (Ji, w> if and only if the net {fax} converges to fx in 
<P, w> for each x in P. Now the statement is obvious. 

(b) The external composition g on <P, u> over (Ji, v) is inductively continuous 
if and only if Ji <= C(<P, u>, <P, u>) (i.e. each / e Ji is continuous) and v is finer 
than the closure of pointwise convergence. — This follows from 19 C.3. 

(c) The external composition g is continuous on (P, u> over (Ji, v} if and only 
if the following condition is fulfilled: if a net {/„ | a e A} converges to / i n (Ji, v) 
and a net {xa\a e 4} converges to x in (P, u> then faxa converges to fx in (P, u>. 
This is precisely the description of continuity of the mapping {</, x> -> fx) : 
((Ji, v> x (P, u>) (P, u> by means of convergent nets (see 16 A.8 and 17 C.9). 

(d) If the closure u is compatible with a commutative group structure + for P 
and (Ji, v) is a subspace of the underlying space of the group of continuous mappings 
of (P, w> into the topological group (P, + , u) endowed with the closure of uniform 
convergence, then g is a continuous external composition on (P, u> over (Ji, v). 

For the proof we may assume that (Ji, v) coincides with the underlying space 
of the group unif C((P, u), (P, + ,u>) which, for brevity, will be denoted by 
@ = (Ji, + , v>. Suppose that {/„} converges to / in { x j converges to x in 
<P, w> and W is a neighborhood of fx. Let "T be the neighborhood system at the 
neutral element 0 of P and for each Fin "V let 

V* = E { / | / e ® , E / c F}. 

By definition the set "f* of all V*, Fe "V is a local base at the neutral element in 
Let us choose a symmetric Fin V so that fx + [F] + [F] c: W. Since/is continuous 
we can choose a neighborhood U of x so that /[L/] <= fx + [F]. Let us consider the 
neighborhood / + [F*] o f / . Clearly if g e / + [F*], then 

g[U-\ <= [ / [ [ / ] ] + [F] c fx + [F] + [F] c W. 
ThUS ge(f+ [V*])og[U-\ cz W. 

Now since {/„} converges to / and {xa} converges to x we can choose a residual set A0 

of indexes so that fa 6 ( / + [F*]) and xaeU for each index a in A0, and consequently, 
by the above implication,/axa e IF for each a in A0 which proves that the net {/axa} 
converges to fx. (It should be noted that one may eliminate the use of nets in the 
proof and obtain a more direct proof.) 

(e) If v is the closure of pointwise convergence for Ji c= C((P, u>, (P «)), 
then g is inductively continuous on (P, u) over (Ji, f)> but g need not be continuous. 
For example, let <P, w> be the unit interval [ 0, 1 ] of real numbers endowed with 
the order closure (i.e. [ 0,1 ] is a subspace of R), and let us choose a sequence {/,} 
of continuous mappings of [0, 1] into itself so that fnx„ = 1, where x„ = 1 j(n + 1) 
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and /„x = 0 for |x — x„\ > (4n + 4) - 2 . Such a sequence obviously exists. Next, 
evidently the sequence {x„} converges to 0, {/„} pointwise converges to the constant 
mapping {x ->• 0} (for each x, at most one fnx is different from 0), but /„x„ = 1 
for each n, and hence the sequence {fnx„} converges to 1. By (c) g is not continuous. 

Let us recall that we have defined a continuous internal composition for a closure 
space <P, u> as an internal composition for <P, u> such that the mapping 
a : <P, u) x <P, «> -> <P, «> is continuous, and a continuous internal composition 
for a set P as a pair <ct, u> such that a is a continuous composition for <P, m>. 
In the case of an external composition g the situation is more complicated because 
the continuity depends on two closures, one for Dg and one for DEg. 

19 C.7. Definition. A topologized external composition is a triple <u, g, v} 
where g is an external composition, say on P over A, and u is a closure for P and v 
is a closure for A; we shall say that <u, g, v) is continuous (inductively continuous) 
if g is a continuous (inductively continuous) external composition on <P, w> 
over <A, v}. If g is a continuous (inductively continuous) external composition 
on <P, k) over <A, u>, then we shall say that u> is a continuous (inductively 
continuous) external composition on <P, w>, and that <u, is a continuous (in-
ductively continuous) external composition over (A, v>. 

Remark . One can define the external multiplication associated with a given 
topologized external composition <u,g,v> to be the mapping of v) x <DEg, u> 
into <DEg, u> whose graph is the external multiplication associated with g. Then 
<u, g, t)> is continuous or inductively continuous if and only if the corresponding 
multiplication is continuous or inductively continuous. 

The concept of a topologized external composition requires no comment. The pair 
v) is very appropriate if v is fixed and we examine various u. For example, there 

is given a module Lover the topological field of reals and we examine various closures 
making La topological linear space (19 D.2); here the pair u> is fixed. The pair 
<u, g} occurs frequently in another situation. There is given a closure space <P, u> 
and a subset Jt of F«P, u>, <P, u>) and we examine various closures v for Jt such 
that, e.g., the external composition g = £ { g r / | / e J i \ (considered in 19C.6) 
is continuous; here the pair <u, g) is fixed. 

In conclusion we shall introduce the definitions of the restriction of a topologized 
external composition and of the product of topologized external compositions. 

19 C.8. Definition. The restriction of a topologized external composition <u, g, v) 
is a topologized external composition (u1; gt, vt) such that is a restriction of g, 
is a relativization of u and vt is a relativization of v. 

19 C.9. Theorem. The restriction of a continuous (inductively continuous) external 
composition is continuous (inductively continuous). — Immediate consequence 
of earlier results (Sections 16, 17). 

The product of a family {<«,,, gb, vb~)\be B} of topologized external compositions will 
be defined only in the case that all the vb coincide and hence all the domains coincide. 
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19 C.10. Definition. The product of a non-void family {<u6, gb, v} \ b e B} of 
topologized external compositions, denoted by n{<«,„ gb, «>}, is defined as the 
topological external composition <u, q, v> where g is the product n{g6} (see 8 A. 15) 
of the family {g,,} and u is the product closure operation !!{«,,}. Thus 

n{<u6, g„, v)} = <n{u6}, n{gb), v> . 

It is to be noted that the symbols EE occurring in the equality all have different 
meanings. 

19 C. l l . Theorem. The product of continuous (inductively continuous) external 
compositions is a continuous (inductively continuous) external composition. 

Proof. Let {u,g,v} be the product of a non-void family {<wfc, gb, v} | b e B} 
of topologized external compositions; let each gb be an external composition on 
P„ over A, and let g be on P over A, i.e. P = n{P6}. Finally put 0> = <P, u>, 3?b = 
= <P6, uby and si = <A, v}. Thus * is the product of the family {Fb} of closure 
spaces. — I. First suppose that each (ub, gb, v} is a continuous external composition, 
i.e. that the mapping 

fb = {<a, y> -» ag„y} : si x &b -» 0>b 

is continuous for each b in B. We must show that the mapping 

/ = « a , x> agx} : si x * * 

is continuous. By 17 C.10 it suffices to show that the mapping pr6 o / : si x * ->• 2Pb 

is continuous for each b in B. But clearly (pr6 o / ) <a, x ) = fb(a, pr6 x) for each 
<a, x) e A x P and hence 

((pr„ o f ) : si x & 3Pb) = fb 0 ((J : si - si) x (pr„ : * 0>b)) . 

But the right side of the equality is a composite of two continuous mappings, 
fb being continuous by our assumption and the product mapping continuous 
(17 C.13) because the identity mapping J : si -» si as well as the projection prj, : 

(17 C.6) is continuous. — II. Now suppose that each <ub, gb, u> is an 
inductively continuous external composition, that is, by 19 C.3, the mapping 
{a -+ agby} : si 0>b is continuous for each b in B and y in Pb, and the mapping 
{y -> agby} is continuous for each b in B and a in A. To prove that 
the composition <u, g, u> is inductively continuous, by 19 C.3 it suffices to show 
that the mapping {a -+ agx} : si -* 8P is continuous for each a in A, and the map-
ping {x -> agx} : * -» * is continuous for each x in P. But, given an x e P, the 
mapping {a -> agx} : si -* * is the reduced product of the family of continuous 
mappings {{a ->• agb pr6 x} : si and therefore it is continuous by 17 C.13, 
and given an a e A, the mapping {x agx} : * -*• 0> is the product of the family 
{{_y agby} : SPb ->• 8Pb} of continuous mappings and therefore it is continuous by 
17C.13. 

19 C.12. Convent ion. The product of a family {<«, g, u> | b e B} is denoted 
by' <«, e, v>*• 
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D. T O P O L O G I C A L M O D U L E S AND ALGEBRAS 

The purpose of this subsection is to introduce the concepts of a topological module 
and a topological algebra over a topological ring or field. Particular attention turns 
to normed algebras of bounded functions which will be discussed in Sections 25 
and 41. We point out that we do not intend to build a general theory of topological 
algebraic structs. Nevertheless a general introductory remark may be in place. 

First, let a topologized internal algebraic struct be a struct <P, a; u> such that P 
is a set, u is a closure for P and a is a multiplet <ax,..., a„> such that each a,is an in-
ternal composition on P; <a1?..., a„, u) is called a topologized internal structure 
on P. Now let <P, a; «> be a topologized internal struct, g be an external composition 
on P over a set A and finally, let (p; v) be a topologized internal structure for A. 
It is natural to form the struct <P, a; u; (g, P; u>> and to term it a topologized alge-
braic struct (with only one external composition) over the topologized algebraic 
struct <Dg, p, v). Now we can speak about the continuity or the inductive continuity 
of the internal compositions (ah u) (recall that a = <a l 5 . . . , a„>) and (/¿¡, v) (where 
p = (Pu. ..,PZ}), about the continuity of the inversion of <a ¡, u) or (ph v}) and finally, 
about the Continuity or inductive continuity of the topologized external composition 
<m, g, u>. Besides these topological requirements some algebraic conditions are 
usually involved. We restrict our attention to two important cases, namely to topo-
logical modules and topological algebras over a topological ring or a topological 
field. 

19 D.l. Definition. A topological module over a topological ring 3k = 
= <R, a', p.', v) (<£, o', u'y is the underlying ring of the topological ring 3k) is 
a multiplet if = <L, o, u, g, o, p'} such that <L, a, g, a', p") is a module over 
(R, a', p'y (called the underlying module over the underlying ring of 31), <L, a, u} 
is a topological group (called the underlying topological group) and <u, g, u) is 
continuous. A topological algebra over a topological ring 31 = <R, a', p, v) is 
a multiplet if = <L, a, p, u, g, o', p, v> such that <L, o, u, g, o', p, v) is a topo-
logical module over 3t (called the underlying topological module over 31), 
<L, a, p, g, o', p'y is an algebra over <R, a', p'y (called the underlying algebra of 
if over the underlying ring of 3i) and <L, a, p, u> is a topological ring (called the 
underlying topological ring of i f ) . 

19 D.2. A topological module if over a topological fields? is usually called a topo-
logical linear space, and if 3& is the topological field of reals or complex numbers, 
then if is called a real topological linear space or a complex topological linear] space. 

19 D.3. Convention. In what follows, unless the contrary is explicitly stated, 
the external multiplication will be denoted by •, and the compositions, currently 
called addition or multiplication, will usually be denoted by + or •, respectively. 
Thus, if if is a module over a ring 3k then there is the addition of if (addition of 
vectors), the addition of 3k (addition of scalars), the multiplication of 3k and the mul-
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tiplication associated with the external composition (multiplication of scalars and 
vectors). If if is an algebra then there is yet another multiplication, namely the 
multiplication of the ring if (vector multiplication). 

It may be in place to list all the topological conditions required of a topological 
linear space if over a topological ring * (the underlying closure space of if is denoted 
by i f ' and the underlying closure space of * is denoted by * ' ) . All the following 
mappings are to be continuous: 

• \3t' x 31' -+3P , + \3t' x 31' -+3t', {r -> -r} \3t' -»• 3t' 
+ : i f ' x se' -» se', {x -* - x } : se' -> i f , 
• :<r x if -> se'. 

For a topological algebra, there is yet another requirement: 

• : se' x se' i f ' is continuous. 

19 D.4. Examples. (a) If <L, a, g, /?> is a module (algebra) over a ring <J?, /?> and u 
and v are either accrete closures for L and il or discrete closures for L and i?, then 
<L, a, m, g, p, u) is a topological module (algebra) over the topological ring (R, P, v). 
(b) If <L, a, g, /?> is a module (algebra) over a ring <i?, j3> and if v is any admissible 
closure for the ring (R, /?> and u is the accrete closure for L, then <L, a, u, g, P, v} 
is a topological module (algebra) over the topological ring <i?, P, v) . (c) Let * = 
= <R, + , • , « ) be a topological ring and let g = {x -» x . | x e R, y e R.}. 
Then g is an external composition on R over R, SC1 = <R, + , u, g, + , •, u) is 
a topological module over the topological ring (R, + , •, u> and i f 2 = + > ' . u> 
g, + , ' • , u) is a topological algebra over the topological ring If we say that we 
consider a topological ring 3t as a topological module or a topological algebra over 
itself it is to be understood that we consider the topological module Sey or the topo-
logical algebra i f 2 over 31. 

Further examples can be obtained by two basic operations, of taking subspaces or 
forming products, which will now be introduced. 

19 D.5. Definition. A topological submodule of a topological module Se over 
a topological ring * is a topological module Se' over * such that the underlying 
topological group of S£' is a subgroup of the underlying topological group of Se 
and the external composition of Se' is a restriction of the external composition of i f . 
A topological subalgebra of a topological algebra is defined in a similar way (it 
is sufficient to replace the expressions "module" and "group" by "algebra" and 
"ring"). 

Of course we must show that a topological submodule is actually a topological 
module. This follows, however, from the fact that the restriction of a continuous 
external composition is a continuous external composition (19 C.9), and the fact 
that a topological subgroup (subring) of a topological group (ring) is a topological 
group (ring). 
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If 3k is a topological ring, module or algebra, and if X c \Sk\ is stable under the 
corresponding structure, then the closure of X is stable. 

19 D.6. Remark. By definition 19 D.5 a topological submodule of an 3$-module 
is an ^-module. It is easily seen that, more generally, the notion of a topological sub-
module can also be introduced by restricting the scalars. Indeed, if if is a topological 
module over a topological ring 3k and if 3k' is a topological subring of .52, then we 
can construct a topological module i f ' over 01' by requiring the underlying topo-
logical group of i f ' to coincide with that of if and the external composition of i f ' 
to be a restriction of the external composition of if to an external composition over 
Sk' \ we refer to i f ' as the topological module obtained from if by restricting the scalars 
to 3k'. Now, given a topological submodule i f ' of a topological module if over a topo-
logical r i n g a n d given a topological subring^' o f ^ , we can consider the topological 
module i f " over 0' obtained from i f ' by restricting the scalars to 3k', and the topo-
logical ̂ '-module i f " is the above mentioned submodule of if in a generalized sense. 

19 D.7. Theorem. Let 3$ be a topological ring and let { i f a | a e A} be a non-void 
family of topological 32-modules (3%-algebras). Then the struct i f = <L, a; u, g, ¡3; u> 
is a topological 0-module (3l-algebra) where <L, a; m> is the product of the family 
{&a \ a e A}, each being the underlying topological group (ring) of if„, g 
is the product of {ga | a e A}, eachgabeing the external composition of if„, and <ft, 
is the topological ring structure of 3k. 

19 D.8. Definition. The topological ^-module (^-algebra) if from 19D.7 will 
be termed the product of the family { i f a | a e A) of topological 31-modules 
(0-algebras) and will be denoted by I l{if a | a e A}. As usual, the product of 
the family {if | a e A) is denoted by i f 4 . 

Proof of 19 D.7. By definition 19 D.1 it is sufficient to show that <L, a, m> is 
a topological group (ring) and this has already been proved (19 B.8, 19 B.21)); and 
that <u, g, v} is a continuous external composition and this was proved in 19 C.11. 

19 D.9. Remark. Let if be the product of a family {if a \ a e A} of topological 
^-modules. Then the underlying closure space of if is the product of underlying clo-
sure space of the i f a , the underlying topological group of if is the product of under-
lying topological groups of the i f a , the external composition of if is the product of the 
external compositions of the i f a and, finally, i f is over the same ring as each i f a , na-
mely over M. It is to be noted that we can define the product of a family of topological 
modules {ifa}, each i f a being a topological module over^a , as a topological module 
over the product topological ring n{0a}; nevertheles this definition is not appro-
priate because the product II {^2a} need not be a field even if all 0 a are fields. Modules 
over fields are of principal importance, and in fact very little is known about topo-
logical modules over topological rings. 

19 D.10. Examples, (a) Let us consider the field R of reals as a topological 
algebra over R (see example 19 D.4 (c)), and let A be a non-void set. By 19 D.8 and 



19. TOPOLOGIZED A L G E B R A I C STRUCTS 347 

19 D.7 we obtain a topological algebra R^ over R. Unless otherwise stated, if R4 

is considered as a topological algebra or a module it is to be understood that R"1 

is the R-algebra or R-module described above, (b) Let if be a topological 2k-
module and let Sf be any struct with a non-void underlying set. The mapping 
{/-»• gr / } of the set F(SP, i f ) (of all mappings of £P into i f ) into the ^-module 
if l^l is bijective and therefore we can endow the set F(£P, i f ) with the structure of 
a topological *-module so that the mapping mentioned above becomes an isomor-
phism (we hope that the meaning of the word isomorphism is clear here although 
the definition will not be given until the next subsection). If F(SP, i f ) is considered 
as a topological ^-module then it is to be understood that we mean the topological 
*-module just defined. We leave to the reader the simple task of defining the topo-
logical *-algebra F(SP, i f ) where if is a given topological ^-algebra, (c) In part-
icular, given a closure space F(*, R) is a topological algebra and C(*, R) can 
be considered as a topological subalgebra of F(*, R). 

19 D.ll. If if is the product of a family {if0} of topological modules or algebras, 
and if Xa <= |if f l | is stable under the structure of i f a , then the closure of n{A"0} is 
stable. 

In conclusion we shall introduce the concept of a normed module or algebra over 
a normed ring. 

19 D.12. Definition. A norm for a module (algebra) i f = <L, a; g, ft; <p} over 
a normed ring 8ft, = <R, /?; q>> (<i?, /?> is the underlying ring o f * and cp is the norm) 
is a norm ip for the underlying group (ring) <L, a) of if satisfying the following 
condition: 

x e L, r 6 R => *p(rgx) = (pr . ipx . 

A normed module (algebra) over a normed ring 8ft. or simply a normed 8&-module 
(^-algebra) is a struct <L, a; g, /?; <p> such that ^ is a norm for the module 
(algebra) <L, a; g, P; (p) over the normed ring 01. We shall say a real or complex 
normed module (algebra) instead of normed R-modul or normed C-algebra, where R 
is the normed field of reals and C is the normed field of complex numbers. The norm 
ip will usually be denoted by || • | . 

19 D.13. Theorem. Let i f = <L, a; || • ||, g, /?; <p> be a normed module (algebra) 
over a normed ring * = <R, ¡3; <p). By 19 B.26 the norm | • || induces a closure 
operation u admissible for the group (ring) <L, a>, and (p induces an admissible 
closure operation v for the ring <R, /?>. The topologized external composition 
<u, g, u> is continuous and hence <L, a; u, g, ¡}; is a topological module (algebra) 
over (R, /}; v). 

Convent ion. A normed *-module (*-algebra) will be considered as a topological 
module (algebra) with the closure structures just introduced. 

Proof . Let + denote addition in <L, a> as well as in <R, /?>. The closure u is 
induced by the pseudometric {<x, y> \\x - _y]|} and the closure v is induced by 
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the pseudometric {<r, s) -»• <p(r — s)}. Now, continuity is implied by the following 
inequality which holds for each r, se R and x, y eL: 

fl^x - g <pr\x - y\\ + cp(r - s) \\y\\ . 

19 D.14. Normed modules (algebras) of bounded mappings into 
a given normed module (algebra) over a normed ring. Let SP be a normed 
module (algebra) over a normed ring 3k and let SP be any non-void struct. For each 
mapping / of SP into SP put 

« / | | = S U P { | / X | | | X E ^ | } , 

and let F * ( S P , i f ) denote the set of all / such that | | / | is finite. Clearly f e V*(SP, i f ) 
if and only if E{x -> ||/x|| | x e \SP\\ is a bounded subset of R, or equivalently, E/is 
a bounded subset of the pseudometric space <|if| , {<x, y) -»• ||x — We shall 
say that such / a r e bounded; thus F * ( S P , i f ) is the set of all bounded mappings of SP 
into i f . For each / and g in F(SP, i f ) and r in 3k let / + g = {x (fx + gx)} : 
: SP se (if if is an algebra, let, in addition, f.g = {x fx . gx) : SP i f ) and 
r . f = {x r . fx} : SP ->• i f . Now F( S P , i f ) endowed with the addition {</, g> 

f + g} (and multiplication {</, g} —>• / . g}) and the external composition cor-
responding to the external multiplication {<r, / ) r . / } over 8k is a module (algebra) 
over and the mapping { / -> g r / } : F (SP, i f ) -»• i f J5 '1 is an isomorphism, where i f t 

is the underlying algebraic module of i f (i.e. i f t is obtained by omitting norms). 
If / , g e F*(£P, SP) and r e® then clearly 

I I /+ 9\ ^ ll/ll + Ik||,! (II / .g[ i ll/ll. Ikll), ||r , / | | -= |r| . 11/11, ||/| | = I I - / I I , 
and consequently F*(SP, i f ) is stable under the module structure (algebra structure) 
of SP). In what follows F*(SP, S£) will be considered as a module (algebra) 
under the relativization of the module structure (algebra structure) of F(SP, S£). 
The formulae mentioned above show that { / | |/ | | | / e F*(SP, i f)} is a norm for 
the module F*(SP, S£) over the normed ring 3k. In what follows, F*(SP, i f ) will 
denote this normed module (algebra) over 0 and we shall refer to F*(SP, i f ) as to 
the normed module (algebra) of all bounded mappings of the struct SP into the 
normed module (algebra) SC. 

19 D.15. Theorem. The closure of the normed module F*(SP, SP) of bounded 
mappings of a non-void struct SP into a normed module SP over 3i is the closure of 
uniform convergence, more precisely, if & is the underlying topological group of 
the topological module associated with SP, then the mapping 

(*) {/-» / : SP : F*(SP, SP) -» unif F(SP, 9) 

is a topological embedding. In addition, the range of(*) is closed in unif F(SP, &). 
Proof. If r > 0 and U is the closed r-sphere about the zero of 01, then | |/ | | g r 

if and only if fx e U for each x, and therefore the mapping (*) is an embedding and 
if g is not bounded then no h such that \\h — g|| g r is bounded. 
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We are interested in the case where j£? is the normed topological field R of reals 
and * = R as well. For this case we shall need the following theorem which is the 
analytic background of the famous Stone-Weierstrass theorem. 

19 D.16. Theorem. Let if be a struct and A a closed subalgebra of F*(lP, R) 
containing all constant functions. If f e A, then | / | = {x -» |/x|} : SP -* R also 
belongs to A and consequently, if f , g e A, then max (/, g) = {x -> max (fx, gx)} : 
iP -> R and min (/, g) = {x min (fx, gx)} : SP -* R also belong to A. Thus A 
is lattice-stable in <F*(SP, R), where ^ is the product-order. — For proof 
see ex. 6. 

E. C O N T I N U O U S H O M O M O R P H I S M S 

It turns out that closures admissible for algebraic structs possess rather special 
properties, e.g. a closure admissible for a group is topological and we shall see 
later that then it is necessarily uniformizable. Similarly, if / is a mapping of a 
topologized algebraic struct into another one and if / possesses some algebraic 
properties (e.g. / is a homomorphism) and some topological properties (e.g. / is 
continuous at a point), then / possesses some further topological or algebraic pro-
perties. There are many profound results which under some weaker algebraic and 
topological assumptions assert that a closure or a mapping has very striking topo-
logical or algebraic properties. Here we shall prove two very simple results with 
which the reader is surely familiar. The main purpose is to introduce an appropriate 
terminology. 

19E.1. Theorem. Let <8 = <G, o, u> and = (H, p, v} be topologized groups 
and let fbea homomorphism of <G, c> into <H, p>. If both <§ and are inductively 
continuous and f : <G, u> -> <H, v) is continuous at a point, then f: <G, « ) -* 
-» <H, v) is continuous. 

Proof . Suppose t ha t / i s continuous at a point x and let y be any point of G. We 
must show that / is continuous at y. It is sufficient to find continuous mappings h 
of <G, u) into itself and k of <H, u> into itself such that / = k o / o h and hy = x. 
Since the topologized groups in question are inductively continuous we can take the 
mappings 

h = {z -> xozoy'1} , k = {w -> ( /x)" 1 pwp(fy)} . 

Indeed, clearly x = hy, kfhz = kf(xozoy~l) = k(fxpfzpfy~x) = fz and h and k 
are continuous because of the inductive continuity of (a, u> and (p, v). 

It is evident that the preceding theorem may be applied to continuous groups, to-
pological groups and also to richer structs as for instance topological rings, modules 
and algebras. 

19 E.2. Theorem. Let f be a homomorphism of the underlying module of 
a normed real module £C into the underlying moduleXl of a normed real module JT. 
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The following conditions are equivalent: 

(a) / : £C -* JT is continuous; 
(b) / : JS? -» X is continuous at a point of S£\ 
(c) / : i f -* J f is continuous at the zero of i f ; 
(d) the image of a sphere about the zero of i f is bounded in X; 
(e) f\SP-*Jf is Lipschitz continuous, i.e. ||/x||jr = r||JC||^ for some r. 

Proof. Conditions (a), (b) and (c) are equivalent by 19 E.1. Clearly (c) implies (d) 
and (e) implies (c). It remains to show that (d) implies (e). Suppose that the image 
of a sphere S about the zero of i f , say with radius r > 0, is bounded in Jf", say 
¡.All*- ^ s for each x e S. It is easily seen that j|_/3c|j^ s . r-1||z||_y for each x. 

In Section 8 we defined the concept of a homomorphism of an algebraic struct 
into an algebraic struct of the same type. In the preceding two theorems we were 
concerned with a mapping of an algebraic struct endowed with further structures, 
in the former case with closure operations and with norms in the latter case. This 
situation occurs frequently and therefore we shall introduce further terminology. 

19E.3. Convent ion. Consider a mapping / of a topologized algebraic struct 
<P, a; u> into another one (Q, /J; v). If is a property of mappings of closure spaces 
and if the transposed mapping / : <P, u) -> <Q, v} has property then we shall 
say that / h a s the property E.g., / i s continuous means that / : <P, u> -» <2, u) 
is continuous. If ip is a property of mappings of algebraic structs and if the transposed 
mapping/: <P, a ) <Q, /?> has the property B̂, then we shall say that the mapping/ 
has the property E.g., / is a homomorphism means that / : <P, a) -> (Q, /?> 
is a homomorphism. 

For example, the result of theorem 19 E.1 can be stated as follows: if a homo-
morphism of an inductively continuous group is continuous at a point, then / is 
continuous. 

In accordance with 19 E.3, if we say that a mapping / is an embedding, then it is 
to be understood that / : <P, «> (Q, v) is an embedding and also / : <P, a) 
-> {Q, /?> is an embedding. Indeed, to be an embedding is defined for mappings of 
closure spaces as well as for mappings of algebraic structs. If we want to say that 
/ : <P, u) -> (Q, v) is an embedding, then we must say that / is an embedding of 
closure spaces, or simply a topological embedding. Similarly, if we want to say that 
/ : <P, a) -» ( Q , [I} is an embedding then we must say that / is an embedding 
of algebraic structs, or simply an algebraic embedding. 

19 E.4. Examples, (a) Consider the group X of all mappings of a topological 
group ^ into a topological commutative group X. The set L of all homomorphisms 
of ^ into X is a subgroup of X, and the set Lc of all continuous f s L is also 
a subgroup of X. Relative to the closure of uniform convergence, Lc is closed in 
L, but neither Lc nor L need be closed (e.g. consider an accrete X); on the other 
hand, if the neutral element of Jf is closed, then both Land Lc are necessarily closed. 
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(b) Let i?! and JS?2 be normed linear spaces and X the submodule of i?2) 
consisting of all continuous linear mappings. If 

Vf = sup {\\fx\\£C2\ 1} 

for all / in X, then <p is a norm for X. If i?x = i f 2 then cp(g 0 / ) g <pg . cpf for 
all f and g, and hence <p is a norm for the corresponding algebra. 

F. S E R I E S 

Without doubt the reader is familiar with the definition and basic properties of 
sums of series of real numbers and related concepts. For the sake of completeness 
and also as an example of application of earlier results we shall introduce the con-
cept of a sum of a family in a topologized commutative semi-group. 

It should be remarked that all the results will be needed for real numbers only. 
Let & = <G, <r> be a commutative semi-group. For each non-void finite family 

{xa | a e A) ranging in % there is defined the so-called composite of {xa} in denoted 
by o{xa}, to be the element (... ((x„0ffxai) oxai)...) ax„n of G where {«¡} is any finite 
one-to-one sequence ranging on A. If is endowed with a closure operation then 
we can define composites of infinite families. 

19 F.l. Definition. Let 9 = <G, a, u> be a topologized commutative semi-group 
and let (xa | a e A) be a non-void family ranging in <3. Let si be the collection of all 
non-void finite subsets of A. Clearly (si, c ) is a directed set and hence N = 
= <{<j{xa | a e F} | F e s / j , c ) is a net in Any limit point of N in <G, w> is 
called a composite of the family {xa \ a e A) in the topologized semi-group ^ and 
denoted by <Tu{xa}. If x is a composite of {xa}, then we shall sometimes say that {xa} 
composes to x. If {xa} has at least one composite in ^ then we shall say that 
{xa} is composable in <3. If is written additively, then we shall speak about a 
sum instead of a composite and we shall say summable instead of composable. 

Often we shall need the following direct description of composites: An x e G is 
a composite of a family (xa | a e A) in a topologized commutative semi-group 'S = 
= <G, <7, u> if and only if for each neighborhood U of x there exists a finite non-
void subset A0 of A such that the composite of {xa | a e F} in <G, a} lies in U 
for each finite F => A0, F <= A. 

If u is an accrete closure then N converges to each point of G and therefore each 
point of G is a composite of {xa} in <3. If {xa} is a finite family then the composite 
ff{xa} in <G, <r> is a composite in <G, a, u) for each u. 

19 F.2. Let be a topologized commutative semi-group, {xa | a e A) be a family 
in 9 and q be a permuting relation for A (i.e. q is a one-to-one relation on A ranging 
on A). Then a point x is a composite of {xa} in & if and only if x is a composite 
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of {xea | a e A} in '8. Roughly speaking, the operation of forming composites is 
commutative. — Evident. 

19 F.3. Let {xa \ a e A} and {ya | a e A} be families ranging in a continuous 
commutative semi-group <S. If x is a composite o/{x a} in 'S and y is a composite of 
{ya} in <8, then xoy is a composite of {xaoya} in <8. 

Proof. The net {o{xa \ a e F}} converges to x, the net {o{ya \ a e F}} converges 
to y and we must show that the net {o{xaoya \ a e F}} converges to xoy. This is 
evident because (ff{xa | a e F}) o({ya \ a e F}) = o{xaoya | a e F} for each F and <8 
is continuous. 

19 F.4. Let {xa | a e A} be a family ranging in a continuous commutative semi-
group '8, B1 n B2 = 0, u B2 = A, 4= 0 4= B2. If yi is a composite of {xa | a e 
e Bx}, and y2 is a composite of {xa | a e B2} then y-[Oy2 is a composite of {xa | a e A}. 

Proof. Let U be a neighborhood of yloy2. Since is continuous we can choose 
a neighborhood Vt of yh i = 1, 2, such that [ F j ff^] <= U. Let B\, i = 1, 2, be 
a non-void finite subset of Bt such that <x{xa | a e F} e Vt for each finite subset F of B, 
containing B\. If A' = B[ u B'2, then cr{xa | a e F} e U for each finite subset F of A 
containing A' which shows that yioy2 is a composite of {xa | a e A} in 'S. 

Remark. By induction the result of 19 A.4 can be proved for every finite de-
composition of A. 

19 F.5. Let 'S = <G, o, u> be a topological commutative group and {xa | a e A\ 
be a composable family in <&. For each neighborhood U of the neutral element 
e of there exists a finite subset A' of A such that o{xa \ a e F} 6 U for each non-
void finite subset F of A — A'. 

Proof. Let x be a composite of {xa | a s A} in IS. Choose a symmetric neighbor-
hood V of the neutral element such that [F] a [F] c: U and then a non-void finite 
subset A' of A such that o{xa \ a e F} e x ff[F] for each finite subset F of A containing 
A'. If F is a non-void finite subset of A — A', then <r{xa | a e (A' u F)} e xff[F] 
and o{xa | a e A'} e xc[F] and therefore the element o{xa | a e F}, which is the dif-
ference in IS of these two elements, belongs to [F] o [F] cz U. 

19 F.6. Corollary. If {xa | a e A} is composable in a topological commutative 
group IS, then each neighborhood of the neutral element contains all xa except 
for a finite number. 

19F.7. Corollary. If {xa} is a composable family in a topological commutative 
group IS with a countable local character, then all the xa lie in the closure of the 
neutral element, except for a countable number of indices. 

Proof. Notice that the closure of the neutral element is the intersection of neigh-
borhoods of the neutral element. 

19 F.8. Let f be a continuous homomorphism of a commutative topological 
semi-group (Sl into another one 'S^.-If x is a composite o/{xa} in ^ then fx is a com-
posite of {/xa} in 'S2. 
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Proof. If {xa} is finite then the algebraic composite of {/xa} in is the image 
under / of the algebraic composite of {xa} in ^ ( / is a homomorphism). If x is 
a limit point of a net N, then fx is a limit point offoN. 

A family in a commutative topological group may have many composites, e.g. 
if the closure structure is an accrete closure then each point is a composite of each 
non-void family. 

19 F.9. If e is the neutral element of a topological commutative group 'S = 
= <G, a, m> and E is the closure of (e), then the set E is a closed subgroup of 
<&, the closure of a point x is xo[E\, and if x is a composite of a family {xa} 
then xcr[£] is the set of all composites of {xa}. 

Proof. E is closed because u is topological, and E is an invariant subgroup because 
(e) has these properties (19 B.9). The set xcr[£] is the closure of (x) because 
{y ->• x . y} : & -*• & is a homeomorphism which carries e into x and E onto x c j [ £ ] . 

To prove the last statement we shall prove that if x is a limit point of a net N, then 
a point y is a limit point of N if and only if y e xc[£]. The set of all limit points 
of a net in a topological space is closed and hence each point of x<r[£] is a limit 
point of N. If y $ xc t [£] then G — x<7[£] is a neighborhood of y and hence there 
exists a neighborhood U of e such that yoU is contained in G — xct[£], Choose 
a symmetric neighborhood F of e such that [F] <j[F] <= U. It is easily seen that 
(xo-[Fj) n (ycr[F]) = 0. The net N is eventually in xcr[F] and hence N is not even-
tually in y<r[F]. 

Remark. We have proved that if x 4 "(y), then x and y have disjoint neighbor-
hoods in 

19F.10. Corollary. If the neutral element of a topological commutative group 
<3 is closed then any family in H has at most one composite. 

Remark. Each point of R is closed and therefore 19 F.10 applies to the additive 
group R as well as the multiplicative group R — (0). 

19 F. l l . Definition. Let ^ be a commutative topological group and let Sf be any 
struct. We shall say that a family {/a} of mappings of if into 'S composes to /point-
wise or uniformly if / is a composite of {/a} in the topological group F o r 
unif respectively. If {/„} composes to / pointwise or uniformly then / 
is termed a pointwise or uniform composite of {/,}. The support of a mapping / 
of a closure space SP into a topological group <& is the set of all x e | y [ such that fx 
is distinct from the neutral element of the smallest closed set containing the sup-
port of / is termed the closed support of f . A family {/,} of mappings of a closure 
space y into 9 is said to be locally finite if {support fa} is a locally finite family, where 
support /„ denotes the support of fa. The definitions just stated are carried over to 
mappings into a topological ring, field, module or algebra M by replacing by the 
underlying topological group e.g. if R is the field of reals then {/„} composes point-

23 — Topological Spaces 
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wise to / if and only if {ga} composes pointwise to g where ga or g is /„ or /regarded 
as a mapping into the additive topological group of reals. 

The following result is simple but very important. 

19F.12. Theorem. Let {.fa} be a family of mappings of a closure space into 
a commutative topological group Then 

(a) Any uniform composite of {/„} is a pointwise composite. 
(b) If {/,} is finite then any pointwise composite is a uniform composite. 
(c) If all fa are continuous then any uniform composite of {/„} is continuous. 
(d) If {/„} is a locally finite family then f has a pointwise composite, and i f , 

in addition, all {/„} are continuous, then any composite of {/J is continuous. 
Proof . Statement (a) follows from the fact that the closure structure of unif F(*, 'S) 

is finer than the closure structure of F(*, Statement (b) follows from the fact 
that the closures of a singleton in unif F(*, <&), and F(*, coincide (cf. 17 ex. 2). 
Statement (c) follows from Theorem 19 B.16 which states that the set of all continuous 
mappings of * into ^ is a closed sub-group of unif F(*, 'S). We shall prove (d). 
If {/,} is locally finite and x e \3P\, then the set Ax of all a such that fax + e is finite 
and therefore the algebraic composite fx or {fax | a e is a composite of [fax] 
in 'S. The mapping / = {x fx} : * -» ^ is a pointwise composite of {/,}. (Notice 
that we have only used the fact that the supports form a point-finite family.) Suppose 
that / is a pointwise composite of {/„}, and all fa are continuous. We shall prove 
that / is continuous by showing that any point x of * has a neighborhood U such 
that the domain-restriction of / to the subspace U of * is continuous. Given any x, 
choose a neighborhood 17 of x a such that B = E{a | the support of fa inter-
sects U} is finite, and let g = / : U -» 'S, ga = fa : U -> Evidently g is a point-
wise composite of {ga}. It is clear that g is a pointwise composite of {ga \ a e B). 
The set B is finite, and hence g is a uniform composite of [ga \ a e B}. Since each 
ga is continuous, g is continuous by (c). The proof is complete. 
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2 0 . S E P A R A T I O N A N D C O N N E C T E D N E S S 

In the first subsection two important relations for the set of all subsets of a closure 
space will be introduced and examined, namely the relations 7 ) | ( X n 
u (X n F) = 0} and E{<X, Y> | U n V = 0 for some neighborhoods U of X and 
F of Y}. Both relations will occur frequently in the next chapter. Here the importance 
of the first relation might be guessed from Theorem 20 A.9 and its corollary, Theorem 
20 A.10. Furthermore, the concept of the boundary of a set in a space is introduced. 
Subsection B, which is closely related to subsection A, is concerned with defining 
and developing the properties of connected spaces. 

A. SEPARATION AND SEMI-SEPARATION 

20 A.l. Definition. Let P be a closure space. Two subsets and X2 of P are 
said to be semi-separated if there exist neighborhoods Ut of Xt and JJ2 of X2 such 
that C7± n X2 = 0 = U2 n Two subsets Xt andX2 of P are said to be separated 
if there exist neighborhoods Ux of Xx and U2 of X2 such that Ut n U2 = 0. 

From the definition we immediately obtain the following properties for the rela-
tion "to be separated" and "to be semi-separated". 

20 A.2. Let P be a closure space. Both relations for exp P E{<X, Y> | X and Y are 
semi-separated} and E{<X, Y) | X and Y are separated} are symmetric. If X1 and X2 
are semi-separated (separated) in P and Y( <= Xh i = 1, 2, then Yt and Y2 are also 
semi-separated (separated). Any two separated sets are semi-separated and any 
two semi-separated sets are disjoint. 

Of course, for discrete spaces the relation {X and Y are separated}, {X and Y are 
semi-separated} and {X and Y are disjoint} coincide. In an accrete space no two 
non-void sets are semi-separated. If P is an infinite topological space such that only 
all finite sets and P are closed, then no two non-void sets are separated, and two sets 
are semi-separated if and only if they are disjoint and finite. The following self-evi-
dent proposition will often be needed. 

20A.3. Let P be a space. Two closed subsets are semi-separated if and only if 
they are disjoint, and two open subsets are separated if and only if they are dis-
joint. 

23* 
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It is to be noted that two disjoint closed sets need not be separated (see the example 
preceding 20 A.3). The class of all topological spaces in which every two disjoint 
closed sets are separated is very important but rather small as will be seen in Section 
29. Nevertheless, it contains all pseudometrizable spaces as stated in the next 
proposition. 

20A.4. Example. In a pseudometrizable space every two semi-separated sets, 
and hence every two disjoint closed sets, are separated. 

Proof. Let Xx and X2 be non-void semi-separated subsets of a pseudometriz-
able space P. Choose a pseudometric d inducing the closure of P and consider the 
sets Uy and U2 defined as follows, where i 4= j: 

Ui = E{x | x e P, dist (x, Xf) < dist (x, X,-)} . 

The sets Ut are obviously disjoint. If x e Xf, then dist (x, X,-) = 0 and dist (x, Xj) > 0, 
where i 4= j, because Xe n Xj = 0 by our assumption and consequently, x e Ut. 
Thus Ui zd Xj. Finally, both sets i/( are open because the functions 

/ , = {x (dist (x, X;) - dist (x, X,-))} 
are continuous (by 18 A.12) and C7; is the inverse image under ft of an open subset 
of R, e.g. of the open interval ] <-, 0 [. 

20 A.5. In order that two subsets Xx and X2 of a closure space P be separa-
ted it is necessary and sufficient that there exist a neighborhood of Xt such 
that Ui n X 2 = 0. 

Proof. If l / j and U2 are disjoint neighborhoods of Xx and X2 then n X2 c 
<=P — [ / 2 n X 2 = 0. Conversely, if Ux is a neighborhood of X t such that t7t n 
n X2 = 0, then U2 = P — Ut is clearly a neighborhood of X2 and Ut n U2 = 0. 

20 A.6. Each of the following conditions is necessary and sufficient for two 
subsets X t and X2 of a given closure space P to be semi-separated: 

(a) (Xx n X2) u (X t n X2) = 0 
(b) Xt n X 2 = 0 and both X t and X2 are relatively closed in Xx u X 2 

(c) X t n X 2 = 0 and both Xy and X2 are relatively open in Xi u X 2 . 

Proof. It will be shown that (a) is necessary, (c) is sufficient, (a) implies (b) and (b) 
implies (c). Let X t and X2 be semi-separated and [7f be neighborhoods of Xf such 
that Ut n Xj = 0 for i #= j. If i + j then evidently X ; n Xj a P -Ujn Xj = 0, which 
establishes (a). Assume (a) and consider the subspace Q = Xx u X2 of P. We have 
X? = X; n Q = Xi which means that both Xt are closed in Q. Obviously (b) im-
plies (c). Finally suppose (c) and let Q stand for the subspace X t u X2 of P. Since 
Xh i = 1, 2, is open in Q, Xt is a neighborhood of itself in Q and by 17 A.9 there 
exists a neighborhood U{ of Xf in P such that Ut n Q = X(. Obviously Xx n U2 = 
= 0 = X2 n Ul which, by definition, means that Xi and X2 are semi-separated 
in P. 
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Remark. From the foregoing theorem if follows that two sets semi-separated 
in a subspace of a space P, are also semi-separated in P. The analogous result 
for the relation {X Y | X and Y are separated} is not true. For example, if P is an 
infinite topological space such that only all finite sets and P are closed, then no two 
points are separated in P and every finite subspace of P is discrete. 

20 A.7. Theorem. Let X and Y be the unions of the families {Xa \ a e A] and 
{Fj | be B} of subsets of a closure space P. I f both families are closure-preserving 
(for instance, finite) and Xa and Yb are semi-separated for each a in A and b in B, 
then X and Y are also semi-separated. I f both families are finite and Xa and Yb 

are separated for each a in A and b in B, then X and Y are also separated. 

Proof. If both famihes {Xa} and { Y6} are closure-preserving, then Y. = U{^fl} 
and Y = U{Ffl}- It follows that (Xa n Yb) u (Xa n F , ) = D for each a and b, so that 
(X n Y) u (X u Y) c nYb)\aeA,beB}<u U { * a n Y„ \ a e A, b e B) = 0. 
By 20 A.6 we have the first statement. Now suppose that {Za} and {Yt} are finite 
and for each a in A and b in B the sets Xa and Yb are separated. By 20 A.5 a family 
{Uab | a e A, b e B} can be chosen such that Uab is a neighborhood of Xa and Uab r> 
n Yb = 0. Put Va = f){Uab | beB} and V= \j{Va \ a e A}. Since B is finite, each 
F0 is necessarily a neighborhood of Xa. Thus F is a neighborhood of X and {Fa} 
being finite, F = U{F,}- Finally, F n Y = (U{Fa}) n (U{n}) c U{Fa n Y b \ a e A , 
b e B} = 0 which implies that X and Yare separated (again by 20 A.5). 

Remark. Apparently the assumption that the {ATfl} and { Y6} are closure-preserving 
is essential ((x) and (y) are separated for each y in R — (x) but x and R — (x) are not 
semi-separated). In the second statement the assumption of finiteness cannot be 
replaced by the weaker assumption that {Z„} and {Yb} are locally finite. 

20 A.8. Let fbe a continuous mapping of a closure space P into another space Q. 
I f X and Y are semi-separated or separated in Q, then / - 1 [ J £ ] a n d / - 1 [ Y ] possess 
the corresponding property in P. 

Proof. If f~l\X\ n / _ 1 [ Y ] 4= 0, then also X n Y 4= 0 by the continuity o f / 
which establishes (by 20 A.6) the assertion concerning semi-separated sets. If U 
and Fare disjoint neighborhoods of X and Yin Q, then f~1 [[/] and f~1 [ F ] are disjoint 
neighborhoods o f / - 1 [ Z ] a n d / - 1 [ Y ] in P which establishes the second statement. 

Let 9C be a collection of subsets of a set P and let u be a closure operation for P. 
It is sometimes important to know under what condition the subspaces X of <P, u>, 
X e3C, entirely determine the closure u or, more precisely, under what conditions 
is the following statement true: if v is a closure for P such that the relativizations of v 
and u to each X in 3C coincide, then v = u. For the case of a collection consisting 
of two elements the question is answered by the following theorem. 

20 A.9. Theorem. Let <P, u> be a closure space, Xt and X2 be subsets of P, and ul 

be the relativization of u to Xit i = 1,2. In order that 

(*) uX = u^X n Z j ) u u2(X n X2) 
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for each X <=. P it is necessary and sufficient that the sets P — Xt and P — X2 be 
semi-separated in <P, u>. 

Proof. Remember that ut(X n Xf) = X ; n u(X n Xf) and therefore we always 
have uX => (ui(X n Xt) u u2(X n X2)). — I. First suppose that (*) is true for each 
X <= P. For X = P - X t we obtain u(P - Xx) = u2((P - X t) n X2) <= X2 

and hence (P - X2) n u(P - X j = 0. Similarly (P - Xj) n u(P - X2) = 0. -
II. Now suppose that the sets P — X t and P — X2 are semi-separated in <P, u> and 
X <= P. We have uX = u((P - X t ) n X) u u ^ n X2 n X) u m((P - X2) nX). 
But u(P - X t ) n (P - X2) = 0, hence m((P - Xx) n X) = X2 n u((P - X t) n 
n X) = w2((P - Xi) n X) and similarly w((P - X2) n X) = Ul((P - X2) n X). 
Next, we obviously always have w(X1 n X2 n X) = u^Xi n X2 n X) u 
u u2(X t n X2 n X). As a consequence, uX = u2((P — Xx) n X) u u2(Xx n X2 n X) u 
vj t<i((P — X2) n X) u u^Xi n X2 n X) = m2(X2 n X) u u^Xi n X) (because 
(P - Xj) c X2 and (P - X2) c X j . 

20 A.10. Theorem. Le( f be a mapping of a closure space <P,u) into another 
one Q and let X j and X 2 be subsets of P such that the sets P — Xt and P —X2 

are semi-separated. If the domain-restriction of f to each subspace X{of P is con-
tinuous then f is continuous. 

Proof. By 20 A.9, for eachX <= P , / [uX] is contained in the set/[m,(X n X/)] u 
u / [ k 2 ( X n X 2 ) ] which is contained in the set f[X n X t ] G u / [ X n X 2 ] e = f[X]Q 

by the continuity of the restrictions. 
20 A.11. Definition. The boundary of a subset X of a closure space P is defined 

to be the set bd X = X n P - X. 
According to 14 B.6 the boundary of a set can be described as follows: 
20 A.12. A point xeP belongs to the boundary of a subset X of a space P if and 

only if each neighborhood of x intersects both X and P — X. 
20 A.13. Let X be a subset of a closure space P. Then bd X = bd (P — X), 

X = X u bdX and intX = X - bdX. 
Proof. The first formula is self-evident and the last two are clearly equivalent. 

It will be shown that X = X u bd X. The inclusion X => X u bd X is obvious, and to 
prove the converse inclusion it is sufficient to show that X — X <=. bd X. We have 
X - X c z X n ( P - X ) c X n P - X = bd X. 

Corollary. Let P be a closure space. A subset X of P is closed if and only if 
bd X c X, and X is open if and only if bd X n X = 0, i.e. bd X = X — X. In 
particular, X cz P is simultaneously open and closed if and only if bd X = 0. 

According to 20 A.13 the closure operation of a closure space is completely determ-
ined by the boundary operation {X ->• bd X}; indeed X = X u bd X. It follows that 
every topological property can be described in terms of the boundary operation. 
For example we shall prove the following characterization of a topological closure 
space. 
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20 A.M. A closure space P is topological if and only if the boundary of each 
subset of P is closed. 

Proof. If P is topological, then the boundary of X <= P is closed as the inter-
section of two closed sets, namely X and P — X. Conversely, if X <= P and bd X 
is closed, then X = l u b d l = X u bdX = X u bdX = X and hence X = X. 

20 A.15. If X is a subset of a closure space P, then the sets intJf = X — bd Z 
and int (P - A") = P - X = (P - X) - bd (P - X) are semi-separated. 

Proof. It will be shown that (int X n i n t ( P - X ) ) u (intX n int (P - X)) = 0. 
According to the symmetry it is sufficient to show that int X n int (P — X) = 0, 
but this is obvious because int X <= X and int (P — X) = P — X. 

Further properties of the boundary operation can be found in the exercises. 
Now we shall turn to connected sets and spaces. 

B. CONNECTEDNESS 

20 B.l. Definition. A subset X of a closure space 0> is said to be connected in SP 
if X is not the union of two non-void semi-separated subsets of that is, X = Xt u 
yj X2, (X u X2) u (-X\ n X2) = 0 implies that Xt = 0 or X2 = 0. A space * is 
said to be connected if the underlying set of SP is connected in SP. 

Every accrete space is connected, and a non-void discrete space is connected if 
and .only if its underlying set is a singleton. 

20 B.2. Theorem. A closure space SP is connected if and only if 3P is not the union 
of two disjoint non-void open subsets, that is, SP contains no proper non-void subset 
simultaneously open and closed. A subset X of a closure space SP is connected 
if and only if the subspace X of SP is connected. — A straightforward consequence 
of the definitions. 

As an example we shall describe all connected subsets of a boundedly order-com-
plete ordered space. A pair of consecutive elements of a monotone ordered set is 
defined to be a pair <x, y) such that x < y and the order-open interval ] x, y [ 
is empty, that is, y immediately follows x. 

20B.3. Theorem. Let <P, u ) be an ordered space (thus ^ is monotone). 
Then the following statements hold: 

(a) If X is a connected subset of <P, u) then X contains each interval [ x, y ] 
with x and y in X, i.e. X is an interval-like subset of <P, if X #= 0. 

(b) The space <P, u> is connected if and only if the ordered set <P, ^ ) is bound-
edly order-complete and there exists no pair of consecutive elements in <P, 

(c) If <P, u> is connected, then X <= P is a connected subset of <P, u) if and only 
ifX is an interval in <P, 
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Proof. I. Statement (a) is almost evident. Indeed, if xeX, yeX and z e 
6 ( I x ' y 1 — -̂ 0» ^ ^ t ' l e non-void and disjoint sets Ui = X n ] <-, z [ and U2 = 
= X n ] z, [ cover X, and they are open in X because they are intersections of X 
with open sets in <P, u>, namely with the sets ] «-, z [ and ] z, [; thus X is not 
connected (20 B.2). — II. Now we shall prove that <P, u) is not connected whenever 
<P, g ) is not boundedly order-complete or there exists a pair of consecutive ele-
ments in <P, u). If <x, y> is a pair of consecutive elements, then (] <-, y [, ] x, -*• [) 
is an open disjoint cover of <P, u> consisting of non-void sets and hence <P, u> 
is not connected (by 20 B.2). Assuming that <P, is not boundedly order-com-
plete, let us choose a bounded non-void subset X of <P, g ) such that the least 
upper bound of X does not exist; now let us consider the setZj of all y in P such that 
y < x for some x in X, and the set X2 of all upper bounds of X. Clearly {Xu X2) 
is a disjoint cover of P and both sets Xt and X2 are non-void. To prove that the space 
<P, u> is not connected it remains to show that both sets XL and X2 are open (20 B.2). 
The set Xt is open because it is the union of all open intervals [ <-, x [, x e X. The 
set X2 is the union of all intervals ] y, -> ], y eX2; indeed, if z e X2, then z is not 
the least element of X2 because sup X does not exist, and hence z e ] y, -*• ] for some 
y e X2. — III. Assuming that <P, g > is boundedly order-complete and there exists 
no pair of consecutive elements, we shall prove that <P, u> is connected. By 20 B.2 
it is sufficient to show that no non-void open proper subset U of <P, g , m> is closed. 
Since <P, g > is boundedly order-complete, the open set U is the union of a disjoint 
collection "V of non-void order-open intervals. If Veir and z e (uV — V), then 
z e (uU — U); in fact, clearly z e uU and, if z e U, then z e Vy for some Vx in "V 
and hence VL + V and n V =1= 0; this contradicts the fact that "T is disjoint. 
Thus it is enough to show that uV - V 4= 0 for some Fin V. Let Fe • f . Since U 4= P, 
also F 4= P, and hence either V = [ <-, x [ or F = ] x, ] or F = ] x, y [. 
Clearly F 4= 0- It follows from our assumption on the non-existence of consecutive 
elements that x e u F in all three cases. E.g. if F = [<-, x [ and x $ V, then 
] y, x [ n F = 0 for some y, y < x (remember that F 4= 0), and hence x> is 
a pair of consecutive elements. The proof of (b) is complete. — IV. Statement (c) is 
an immediate consequence of statements (a) and (b) and the trivial fact that each 
interval in a boundedly order-complete ordered set is boundedly order-complete. 

Corollary a. A subset of the space R. of reals is connected if and only if X is 
an interval in R. In particular, the space R is connected. 

Corollary b. Suppose that the closure structure of a connected space 8P is induced 
by orders and -<2- Then a subset X of \0>\ is an interval in -<i> if and only 
ifX is an interval in <2} (20 B.3 (c)). Moreover, if X is an interval in -<i> 
with end points x and y then X is an interval in (\0\,-<.2) with the same end points. 
Stated in other words, in a connected ordered space the concepts of an interval 
and its end points do not depend on the order, i.e., in a connected ordered space 
an interval and its end points are topological concepts. 
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If <P, u, g ) is an ordered space, then(P, u, g -1> is an ordered space.In general, 
there are many other orders such that <P, u, -<> is an ordered space; e.g. each mono-
tone order for a finite set induces the discrete closure. On the other hand, if u is 
connected then there are only two orders. 

Corollary c. If <P, u, is a connected ordered space and an order -< induces 
u, then either -< = ^ or -< = 

Proof. Suppose that g and -< induce a connected closure u for a set P. If P is void 
or a singleton, then clearly iS = «<. In the other case let x and y be any two distinct 
points of P such that x ^ y. It is sufficient to prove that if x -< y, then ^ = -<. But 
this follows without difficulty from Corollary b. 

The following restatement of the definition of connected sets will often be con-
venient in proofs of results which follow. 

20B.4. A subset C of a closure space is connected if and only if the following 
condition is fulfilled: if C is contained in the union of two semi-separated sets X1 

and X2, then C c X^ or C c X2. 

Proof. If C is not connected then there exist semi-separated sets X1 and X2 such 
that X t u X2 = C and X1 4= 0 4= X2. Clearly C is contained neither in X± nor in X2. 
Conversely, suppose C is connected. If C c u X2 and if the sets X1 and X2 are 
semi-separated, then the sets C n,Xi and C r\X2 are also semi-separated, and con-
sequently C n Xt = 0 or C n X2 = 0, that is, either C <= X2 or C <= 

20 B.5. Theorem. If {Xa \ a e A] is a family of connected non-void subsets 
of a closure space * and ifX is a connected subset of * such that the sets X and Xa 

are not semi-separated for any a e A, then the set Y = X u \ a e A\ is 
connected. 

Proof. Let and Y2 be two semi-separated subsets o f * such that Y <= Yt u Y2. 
It is to be shown that 7 c y t or 7 c y2. Since X c y t u Y2, X is connected and 
the sets Yx and Y2 are semi-separated, the set X is contained in Y1 or in Y2, say in Y±. 
Again from 20 B.4 we find that eachZ„ is contained in and hence 7 c Yj. Indeed, 
the set Xa being connected, it is contained in Yx or Y2; but it is not contained in Y2 

because X c: Yt, the sets Yx and Y2 are semi-separated and the sets X and Xa are 
not semi-separated. 

Corollary. Let * be a closure space. Then the closure of each connected subset 
of * is connected, and the union of a family {X,} of connected subsets of * is 
connected provided the intersection of {Xa} is non-void. 

Proof. Notice that the sets (x) and X are semi-separated for n o x e X and apply 
the theorem to the set X and the family {(x) | x e X}. The second statement is obtained 
by application of the theorem to the set (x) and the family {Xa} where x is a point of 
the intersection of {Xa}. 

Now we are prepared to introduce the notion of a component of a space. 
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20 B.6. Definition. A component of a closure space * is a connected subset X of * 
with the following property: If X <z C c * and C is connected, then C = X. Thus 
components are maximal connected subsets. The component of a point x in a space * 
is the component of * containing x. 

The definition of the component of a point in a space requires proof of the fact 
that every point is contained in exactly one component of the space. But this is 
obvious, and for convenience will be stated in the following theorem. First we recall 
Definition 12 A.1 of the decomposition of a struct <Af, O as a disjoint cover of X 
whose elements or members are non-void provided that X 4= 0, and 0 if X = 0. 

20 B.7. Theorem. Let 0 be a closure space. Each component of 0 is closed, 
and distinct components of 0 are disjoint and hence semi-separated. Every non-
void connected subset of 0 is contained in exactly one component of 0. The col-
lection of all components of a non-void 0 is a decomposition of 0. If 0 = 0, then 
0 is the unique component of 0. 

Proof. Each component is closed because the closure of a connected set is a con-
nected set by the Corollary of 20 B.5. Two distinct components are disjoint because 
the union of two connected sets is connected provided their intersection is non-void 
by the Corollary of 20 B.5. Since disjoint closed sets are semi-separated, distinct com-
ponents are necessarily semi-separated. If AT is a non-void connected subset of 0 
then the union of all connected sets intersecting X is the component of 0 (by 20 B.5) 
which obviously contains X; the uniqueness is clear. The last statement follows from 
the fact that every singleton is connected. 

20 B.8. Definition. A space 0 is said to be connected between its points x and y 
if each simultaneously open and closed subset of 0 containing x contains y as well. 
The quasi-component of a point x e 0 in 0 is the set of all y e 0 such that 0 is 
connected between x and y; stated in other words, the quasi-component of x is the 
intersection of all simultaneously closed and open subsets of 0 containing x. A quasi-
component of a space 0 is a quasi-component of some point of 0 or 0 if \0\ = 0. 

20 B.9. Theorem. Let 0 be a closure space. The relation E{<x, y> | the space 0 
is connected between x and y} is an equivalence on 0. The equivalence classes are 
the quasi-components if 0 4= 0. Each component is contained in a unique quasi-com-
ponent, and consequently each quasi-component is the union of all components con-
tained in it. A quasi-component is a component if and only if it is connected. The 
quasi-components of 0 are closed and distinct quasi-components are separated. 
A space 0* is connected if and only if 0 is the only quasi-component of 0. 

Proof. Let <9 be the collection of all simultaneously closed and open subsets o f * . 
It is easy to see that 0 is additive and multiplicative, i.e. closed under finite unions 
and finite intersections. Let g be the relation under question, i.e. <x, y) eg if and only 
if * is connected between x and y. Obviously q is reflexive, i.e. <x, x> e q for each 
x e If <x, y} $ g, x e 0, y e 0, then there exists an O in 0 such that xeO, 
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y e (0 — 0). But (0 — 0) e <B and hence (y, x> $ g which estabhshes the sym-
metry of P x P — g, and hence of g. Only transitivity remains to be proved. Let 
<x, y} e q and <_y, x> e g; it is to be shown that <x, z) eg. If O e 6 and xe O, then 
y e O because <x, e g, and hence z e 0 because (y, z> e g. Thus each 0 e(9 
containing x also contains z, so that <x, z> e g. If O e <S and C is connected, 
then C c O o r C c P - O because of 20 B.4. It follows that C x C <= g for each 
connected subset of 0. Hence each quasi-component is the union of all components 
contained in it. If a quasi-component X is a component, then X is connected because 
each component is connected. Conversely, if a quasi-component X is connected, 
then X is contained in the component of any of its points; on the other hand, it con-
tains the component of all its points. It follows that X is a component. The quasi-
components are closed as intersections of closed sets. Let Xx and X2 be two distinct 
quasi-components. There exists an 0 in <9 such that Xx c O, X2<=. (P — 0). Now 0 
and 0—0 are disjoint neighborhoods of Xx and X2. The last statement is almost 
self-evident. 

A quasi-component need not be connected, in other words, a quasi-component 
need not be a component and a component need not be a quasi-component. A very 
simple example will be given. Let us define a closure operation u for P = N u (xx) u 
u (x2), where x t 4= x2 and xx, x2 ^ N, so that the subspaces N and (x t) u (x2) are 
discrete, N is open and xf belongs to the closure of a subset of N if and only if 
N1 is infinite. It is easy to see that every one-point set is a component and every one-
point set (n) with n in N is a quasi-component. On the other hand, neither (x t) nor 
(x2) are quasi-components. Indeed, if 0 is a simultaneously open and closed set 
containing xt, then 0 n N is infinite because O is open and x2e 0 because 0 is 
closed and x2 e u(0 n N). In 20 ex. 6 we give an example of a subspace of R x R 
in which these concepts do not coincide. 

Nevertheless in some extensive classes of spaces the concepts of a component and 
of a quasi-component do coincide. Here we shall state only the following trivial 
result, the proof of which is left to the reader. 

20 B.10. If a component X of a space 0 is open, then X is a quasi-component. 
Corollary. If a space 0 possesses a finite number of components, then each com-

ponent is open and hence each component is a quasi-component. 
The concluding part of the section is devoted to an investigation of connected 

spaces and the class of all connected spaces. 

20 B. l l . Let C be a connected subset of a connected space 0. If \0\ — C = 
= Xi u X2 and the sets Xi and X2 are semi-separated, then the sets CuX, and 
C u X2 are connected. In other words, if X is simultaneously closed and open in 
\0\ - C, then C uX is connected. 

Proof. Let us suppose that C u Xt = u Y2 where and Y2 are non-void 
semi-separated sets. Since C is connected, C must be contained either in Yx or in Y2 

(by 20 B.4). Without loss of generality we may assume C c Y^ It follows that Y2 <= Xu 
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and consequently the sets Y2 and X2 are semi-separated. Thus the pairs of sets Yu Y2 

and X2, Y2 are semi-separated. By 20 A.7 the sets Yx u X2 and Y2 are also semi-
separated. Since (y t u X2) \jY2 = | * | and * is connected, we have Y2 = 0 or Yt u 
u X2 = 0. But this contradicts our assumption that Yy 4= 0 4= Y2. 

Corollary a. I f Y1 and Y2 are closed subsets of a space 2L such that the sets 
Yy u Y2 and Yt n Y2 are connected, then the sets Yy and Y2 are both connected. 

Proof . Consider the subspace P = Yt u Y2 of 2L and the sets Xx = Yt — Y2, 
X2 = Y2 — Yu C = Yt n Y2. By our assumption the space P is connected, C is 
a connected subset of P, C n Xt = 0 and C yj Xy u X2 = P. Since Yt are closed 
in SL, the sets Yt are closed in P as well. It follows that the sets Xt and X2 are semi-
separated. According to the theorem the sets Yt = Xx u C and Y2 = X2 u C are 
connected. 

Corollary b. Let C be a connected subset of a connected space *. I f K is a com-
ponent of |*| — C, then |*| — K is a connected set. 

Proof . If Xt u X2 = |*[ — K and the sets Xt and X2 are semi-separated, then 
Xi n C = 0 for some i = 1, 2, because C is connected; on the other hand, 
K u Xt is connected by 20 B.11. Since K is a component of | * | — C and the set 
K u Xi <= | * | — C is connected, K kj Xt = K, that is Xt = 0, which establishes 
the connectedness of | * | — K. 

20 B.12. Theorem. I f °U is an open cover of a connected space * then each two 
points x and y of * can be joined by a finite chain in Hi, i.e. for each x and y in * 
there exists a finite sequence {[/, | i ^ n} in Hi such that x e U0, yeU„ and U^y n 
n C7; 4= 0 for each i = 1,..., n (such a finite sequence is called a chain from x 
to j>). (Compare with ex. 10 (d)). 

Proof. If |* | = 0 then the assertion is trivial. In the remaining case fix a point x 
in * and let us consider the set X of all y e * which can be joined to x by a finite 
chain in Hi. We must show that X = |* | . Since * is connected and X is non-void, 
it will be sufficient to show that X is simultaneously open and closed in * . If y e X 
then there exists a finite chain {[/ ( | i g n} from x to y. Now clearly {U0,..., [/„} 
is a chain in Hi, joining x to each point of Un. It follows that U„ <= X. Since y was 
arbitrarily chosen in X, X is a union of open sets and hence X is open. Now let y eX. 
It is to be proved that y e X. Choose TJ e Hi such that yeU. Since y e X and U 
is a neighborhood of y, we can choose a point z in X n U. By the definition of X 
there exists a chain {f/ ; | i ^ «} from x to z,and clearly {U0,..., Un, U} is a chain 
from x to y. It follows that y e X which concludes the proof. 

Corollary. I f G is a connected topological group and U is a neighborhood of the 
neutral element, then U{t /" | n e N} = G, where U1 = U and Un+1 = [ l / n ] . [[/]. 

Proof . We may assume that U is open. Consider the open cover Hi = 
= {[£/] . x | x e G}. By induction it is easy to show that U" is the set of all y e G 
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which can be joined to the neutral element by a chain in of a length at most n 
(of course, the length of a chain {[/i | i g n) is defined as n). 

Remark. The Corollary can be proved directly. Obviously H = U{C7" | n e N} 
is an open subset of G. It is easy to see that H is a group. But an open subgroup of 
a group is closed by 19 B.12. Since G is connected, G = H. 

The sum SP of a family {&a} of connected closure spaces is not connected provided 
at least two spaces from the family are non-void. Indeed, the subspace (a) x SPa 

of 0 is both open and closed in 0 for each index a. 

20 B.13. The class of all connected spaces is closed under surjective continuous 
mappings; that is, i f / i s a continuous mapping of a space SP onto a space 2 and if ^ 
is connected, then 2. is connected. 

Corollary. If f : 0 -*• 2 is a continuous mapping and X c is connected, then 
f\X] is connected. 

Proof. Let / b e a continuous mapping of SP onto 2. If 2 is not connected then SP 
is not connected. Indeed, if \2\ = Yx u Yz and Yt and Y2 are semi-separated, then 
the sets Xt = / _ 1 [ Y i ] and X2 = / _ 1 [ Y 2 ] are also semi-separated by 20 A.8 and 
Xi u X2 = \0\. Since / is surjective, if Yt 4= 0 4= Y2, then also Xt 4= 0 4= X2. 

If / : 0 -> 2 is a surjective continuous mapping and 2 is connected, then SP need 
not be connected even if / is one-to-one. In fact, every space is the image under 
a one-to-one continuous mapping of a discrete space, and a discrete space is con-
nected if and only if it has at most one point. On the other hand 

20 B.14. A closure space 0 is connected if and only if its topological modification 
is connected. 

Proof. If 0 is connected, then is connected by the foregoing result because 
the identity mapping of SP onto x2P is continuous. If 3P is not connected, then there 
exists a non-void proper subset X of & which is simultaneously closed and open 
in 3P. The set X possesses the same properties in x2P and hence xSP is not connected. 

20 B.15. The product 0 of a family {0a\ a e A} of connected closure spaces is 
a connected space. 

Proof . I. If A = (a, p), \SP\ 4= 0 and ye&a, then, SP is the union of a family 
{Yx | x e SP^ of connected sets Yx = E{w | w e pr„ w = x} each of which meets 
the connected set E{w | pr^ w = y}. By 20 B.5 SP is connected. 

II. By induction one can deduce from I that the theorem is true for every finite A. 
III. Now let A be an arbitrary set. The empty space is connected and therefore we 

may assume that 0 + 0. Choose a point x = {xa} in SP. Let C be the component 
of x. We shall prove that C = \3P\. For each finite subset F of A let 

P(F) = E{y = {ya} | ya 6 a e (A — F) => ya = xa} . 

Clearly P(F) is homeomorphic with the product space H{0a \ a e F}. According 
to the second part of the proof, P(F) is connected. Thus the union Q of all P(F) where 
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F runs over finite subsets of A, is contained in C. The proof will be complete if we 
show that Q = because components are closed. But this is obvious (see also 
22 A.7). 

20 B.16. Corollary. For each cardinal K the product spaces RN 'and JK are con-
nected, where I is an interval in R. 

Proof. According to 20 B.3 the spaces R and/ are connected. The assertion follows 
from the preceding result. 

The following more general result will be needed later. 

20 B.17. Let 0 be the product of a family {*„ | a e A} of closure spaces. Each 
component C of 0 is of the form II{Ca | a e A} where Ca is a component of 3P„for 
each a in A. 

Proof. Let C be a component of 0 and let Ca = pr„ [C] for each a e A. The sets 
Ca are connected as images under continuous mappings of a connected set C. For 
each a e Awe consider the component C'a of P containing Ca. The set C' = II {C'a \ a e 
e A} is connected by 20 B.15. But C is a component and C <= C'. Thus C = C' and C 
is the product of components of coordinate spaces. 
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21 . L O C A L I Z A T I O N O F P R O P E R T I E S 

We now intend to explain various possibilities for the localization of the properties 
of sets in a closure space. 

First (subsection A) we give all definitions and some illustrative examples, and ex-
plain some logical difficulties connected with the idea of the localization of an ar-
bitrary property. Then, a non-trivial and rather important case is considered, namely 
the localization of connectedness. Further important cases will be treated in the fol-
lowing section. It is to be noted that no general theorems about localization are proved; 
various general results, however, arc stated in the cxcrcises. As a matter of fact, it 
seems that no non-trivial theorem on localization (in arbitrary spaces) is known; 
on the other hand, there are many profound results concerning localization of special 
properties in special cases, mainly in paracompact spaces (30 E). 

A. LOCALIZATION 

Given a property ^ of sets in a closure space P, we want to define what is meant 
by the statement that a set X locally possesses the property in question at a point x 
of the space P. The following possibilities arise naturally: 

(a) there exists a neighborhood U of x such that the set U n X has the property ^ 
in the space P; 

(b) U n X has the property ^ in P for each neighborhood U of x; 
(c) there exist arbitrarily small neighborhoods U of x such that U n X possesses 

the property ^ in the space P. 
More intuitively, condition (a) requires that there exists a set (in P) which is "large" 

relative to x (that is, which is a neighborhood of x) and intersects X in a set with 
property Condition (c) requires the existence of large (relative to x) but also 
arbitrarily small sets intersecting X in a set with property Finally, (b) requires 
that each large set intersects X in a set with property 

Conditions (a), (b), (c) occur, explicitly or merely implicitly, in many theorems and 
definitions and, in fact, they have already occurred in our exposition. For instance, 
if P is a space, x e P, X <= P, then x ^ X if and only if there exists a neighborhood U 
of x such that X n U = 0 (condition (a)), x e X if and only if U n X =f= 0 for each 
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neighborhood of x (condition (b)), x e X if and only if there exist arbitrarily small 
neighborhoods U of x such that U n X #= 0 (condition (c)). It turns out that condition 
(b) is usually too strong and often leads to uninteresting properties; on the other 
hand, if it leads to an interesting property, then it coincides with condition (c). 
Therefore we restrict our attention to conditions (a) and (c). 

Apparently, we can now define e.g. the "feeble localization" as follows: "If ^ 
is a property of sets in a space (that is, if5)) is a logical relation between sets and closure 
spaces or, in other words, if sp is a property of pairs <X, SP}, X being a set and SP 
a space with X cz |^>|), if SP is a space, X <= \SP\, x e \SP\, and there exists a neighbor-
hood U of x in SP such that U n X possesses property *)) in then we shall say that 
X locally posesses property at x in 0". This statement may be surely considered 
as a correct definition. However, its logical character is not in line with the approach 
adopted in this book where we avoid considering properties of properties or opera-
tions with properties (and even, as far as possible, statements referring to "every 
property"). For this reason, we formulate definitions of localization for arbitrary 
relations (between sets and spaces) and consider the usual expressions, such as in-
dicated above, as conventional substitutes, more intuitive and more adapted for 
"practical" use. 

21 A.l. Definition. Let a be a relation for the class of all sets and the class of all 
closure spaces such that <X, SP~y e a implies that X is a subset of the underlying set 
\&\ of 0>\ we shall say that X is an a-set in SP if <X, 0>}ea. 

Let 0 be a closure space, X <= x e \SP\. If there exists a neighborhood U of x 
in SP such that U n X is an a-set in SP (i.e. such that <CJ r\X, SP~y e a), then we shall 
say thatXis feebly locally an a-set at x in SP. If there exist arbitrarily small neighbor-
hoods U of x in 0 such that U n X is an a-set in SP (i.e. if for any neighborhood V 
of x in SP there exists a neighborhood (7 of x in SP such that U cr V, < U n X, SPy e a), 
then we shall say that X is locally an a-set at x in SP. 

Thus, X is locally an a-set at x in 0 if and only if there exists a local base "U at x 
in 0 such that U n X is an a-set in 3P for each U e%. Obviously 

21 A.2. I f X is locally an a.-set at x in then X is feebly locally an a-set at x 
in 

21 A.3. Convention. Consider a property *)) of sets in closure spaces, i.e. a log-
ical relation between sets and closure spaces. Let a be a relation such that <X, 3P~} e a 
if and only if X possesses property ^ in SP\ suppose that (X, 3P~y e a implies X cz 10>\. 
I f X is locally (feebly locally) an a-set at x in SP, then we shall also say that X locally 
(feebly locally) possesses property ty at x in 

It turns out that the above convention leads to the current terminology. For 
example, if a consists of all pairs <X, SP~y such that 0 is a closure space and X is 
a closed set in then the expression "X is locally closed at x in SP" means the same 
as "X is locally an a-set at x in SP". 



21. LOCALIZATION OF PROPERTIES 369 

21 A.4. Examples, (a) Let a consist of all pairs <X, 0} such that 0 is a closure 
space and X is a non-void subset of Thus X is an a-set in a space 0 if and only 
if X is a non-void subset of A subset X of a space dP is feebly locally an a-set 
at a point x e in i.e. X is feebly locally non-void at x in if and only if X 4= 0. 
Indeed, if X 4= 0 then is a neighborhood of x intersecting X in a non-void set, 
and conversely if U n X 4= 0 for some set U, then clearly X 4= 0 as well. Ori the other 
hand, X is locally non-void at x in * if and only if x belongs to the closure of X in 
Indeed, by definition, X is locally non-void at x in * if and only if x e and there 
exists a local base Hi at x in * such that U n X 4= 0 for each U e Hl\ the statement 
now follows from 14 B.6. This example shows that the converse of 21 A.2 is not true. 
Nevertheless the converse is true for relations a of a certain important kind. 

(b) A relation a whose domain is a class of sets will be called hereditary if 
<X, e a and Y c X imply <F, e a. It is evident that the converse of 21 A.2 
holds for hereditary a. It is to be noted that the notion of a hereditary relation cor-
responds to the currently utilized concept of a hereditary property. A property 
of sets in a space is often said to be hereditary if each subset of a set possessing ^ 
in a space 0 possesses $ in In this book, we avoid considering "properties of pro-
perties"; nevertheless, we shall use the above expression for convenience; thus when 
we speak of a hereditary property, we shall mean that the corresponding relation 
a is hereditary. 

(c) Lét a consist of all pairs <0, such that 0> is a closure space. Thus X is an 
a-set in a space 0 if and only if X = 0. Evidently the following three statements are 
equivalent, where 0 is a space, x e X c X is feebly locally empty at x in 3P\ 
X is locally empty at x in x does not belong to the closure of X in 0>. 

Lét a be a relation as in 21 A.1, 0 be a space and X be a subset of \SP\. Let X9 

be the set of all points x such that X is locally (feebly locally) an a-set at x in 
There are two important cases, namely X c Xv and Xv = 

21 A.5. Definition. Let a be a relation for classes of all sets and for all closure spaces 
such that <X, e a implies X <= We shall say that a set X is locally an cc-set 
in a closure space 0 if X is locally an a-set at each point x e in SP. We shall say that 
a set X is relatively locally an a-set in a closure space 0 if X is locally an a-set at 
each point x e X in The corresponding definitions for feeble localization are ob-
tained by replacing "locally" by "feebly locally". 

Notice that for any a, the empty set is relatively locally an a-set in every closure 
space. 

21 A.6. If X is (relatively) locally an a-set in a space then X is (relatively) 
feebly locally an a-set in If X is (feebly) locally an a-set in then X is relatively 
(feebly) locally an a-set in 3P. — Obvious. 

21 A.7. Convent ion. Consider a property ip of sets in closure spaces. Let a 
be a relation such that <X, e a if and only if X possesses property 93 in suppose 
that <X, 0>}ea implies X c= \SP\. If X is locally (relatively locally, feebly locally, 

24 — Topological Spaces 
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relatively feebly locally) an a-set in * , then we shall also say that X locally (relatively 
locally, etc ) possesses property in *. 

21 A.8. Examples, (a) For the property "to be empty in * " the correspond-
ing a is equal to (0) x C. If * is a space, then the empty set is the only one which is 
locally (feebly locally, relatively feebly locally, relatively locally) an a-set in * . 

(b) The property "to be non-void". Every subset of a space * is relatively locally 
non-void in * . On the other hand, X is locally non-void in * if and only if the closure 
of X is |*| (such sets are said to be dense in * and will be studied in 22 A). Every 
subset of a space * is relatively feebly locally non-void in * , but a subset A" of * is 
feebly locally non-void in * if and only if X + 0. 

(c) The property "to be closed in * " . Every closed subset of a space * is feebly 
locally closed in * , and hence, relatively feebly locally closed in Conversely, if X 
is feebly locally closed in * , then X is closed in * . Indeed, if x e X and if U is a neigh-
borhood of x such that the set U n X is closed, then xeU n X because U is a neigh-
borhood of x, and hence xeUnX = Ur\X, in particular, xeX. On the other 
hand, a relatively feebly locally closed set need not be closed, e.g. the set AT of all n~l, 
n = 1, 2, ... is relatively feebly locally closed in the space R of reals but X is not closed 
in R because 0 e X — X. Locally closed and relatively locally closed sets will be con-
sidered in Section 27. 

(d) The property "to be open". It is easily seen that the following three statements 
are equivalent, where * is a space: X is relatively feebly locally open in * ; X is feebly 
locally open in * ; and X is open in * . We shall prove that X is relatively locally open 
in * if and only if X is open in * and the subspace X of * is topological. First sup-
pose that X is open in * and the subspace X of * is topological. Let U be any neigh-
borhood of x g X in * . Clearly U n X is a neighborhood of x in * and hence in X, 
and X being topological, the interior V of U n X in X is open in X; X being 
open in * , Fis open in 2?. Thus Kis a neighborhood of x contained in a given neigh-
borhood U such that Kn X = U is open in * ; by definition, X is relatively locally 
open. Conversely, suppose that X is relatively locally open in * and x is a point of A\ 
If U is a neighborhood of x, then, by our assumption, there exists a neighborhood V 
of x contained in U such that Vn X is open in * ; but x e Vn X and hence Vn X 
is an open set in * containing x and contained in X. It follows that X is open in * 
and the subspace X of * is topological. It remains to describe locally open sets and 
this will be performed in the exercises. 

21 A.9. Definition. Let a be a relation for the class of all sets and the class of all 
closure spaces such that (X, * > e <x implies X A closure space * is said 
to be locally an a-set at x, feebly locally an a-set at x, locally an a-set or feebly 
locally an a-set is the underlying set \2P\ o f * has the corresponding property in * . 

21 A.10. Convention. If is a property of sets in a closure space, then we shall 
say that a space * locally possesses at x, feebly locally possesses at x, locally 
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possesses feebly locally possesses if the underlying set of \0\ of 0 has the cor-
responding property in 0 (see conventions 21 A.3 and 21 A.7). 

Notice that a space 0 is locally empty if and only if \0\ = 0, and every space is 
locally non-void. Next, a space 0 is locally a singleton (= is locally one-point) 
if and only if 0 is discrete. Finally, every space is feebly locally open and feebly locally 
closed. Locally closed spaces will be considered in Section 27, and locally open spaces 
are described in the following theorem. 

21 A . l l . Theorem. A space 0 is topological if and only if 0 is locally open. — 
A particular case of Example 21 A.8 (d). 

In the next subsection a non-trivial example of the localization of connectedness 
will be exhibited, and in Section 22 further non-trivial properties will be localized 
(locally non-meager spaces). In closing we shall introduce a terminology which is 
sometimes utilized in the literature. 

21 A.12. Let 0 be a space and let SC be a collection of subsets of 0. Put a = SC x 
x (\0\). We shall say that X locally belongs at xtoSC in 0 if X is locally an a-set at x 
in 0. The following expressions are treated in a similar way: X (relatively) locally be-
longs to 9C in 0, feebly locally belongs to SC at x in 0 and X (relatively) feebly, 
locally belongs to SC. Let 9CX (¿Clr) be the collection of all subsets of 0 which locally 
(relatively locally) belong to SC in 0, and let SC 2 (W2r) be the collection of all subsets 
of 0 which feebly locally (relatively feebly locally) belong to SC. The collection SC 
is said to be locally (relatively locally, feebly locally, relatively feebly locally) 
determined in 0 if SC = SC^^SE = SClr, SC = SC2, SC = SE2r). For example, by Example 
21 A.8 (c) and (d), the collection of closed subsets of a space 0 is feebly locally 
determined in 0 but not relatively feebly locally determined in 0, and the collection 
of all open subsets of a space 0 is feebly locally as well as relatively feebly locally 
determined in 0. 

B. LOCALLY C O N N E C T E D SPACES 

In accordance with preceding definitions, a subset X of a closure space 0 is locally 
connected at a point x if every neighborhood of x contains a neighborhood V of x 
such that V n X is connected, and a space 0 is locally connected at x e 0 if every 
neighborhood of x contains a connected neighborhood of x, that is, if connected 
neighborhoods of x form a local base at x; stated in other words, x possesses arbitrarily 
small connected neighborhoods. A subset X of a space 0 is feebly locally connected 
at x e 0 if there exists a neighborhood V of x such that F n Z is connected, and a 
space 0 is feebly locally connected at x e 0 if there exists a connected neighborhood 
of x. A subset X of 0 is locally connected if every neighborhood of each point x 
of 0 contains a neighborhood U of x such that U n X is connected, and a space 0* 
is locally connected if each point of 0 possesses arbitrarily small connected neigh-
borhoods. A subset X of a space is relatively locally connected if the subspace X 

24* 
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of 0 is locally connected. Similarly, a subset X of 8? is feebly locally connected if 
every point of 0 possesses a neighborhood U such that U n X is connected, and 
a space & is feebly locally connected if every point of 0 possesses at least one connected 
neighborhood. Finally, a subset X of * is relatively feebly locally connected if the 
subspace X of 0 is feebly locally connected. 

21 B.l. Examples. A) (a) Every connected ordered space is locally connected. 
Indeed, by 20 B.3 every interval in an ordered connected space is connected; since 
open intervals form a base for the ordered space, the statement follows. In particular, 
the space R of reals is locally connected. On the other hand, a locally connected or-
dered space need not be connected. Obviously, the union X of any finite family of 
order-closed connected intervals of an ordered space is a relatively locally connected 
subset of the space, and hence a locally connected subspace which need not be con-
nected. On the other hand X is induced by an order, i.e. X is an ordered space (because 
the intervals were assumed order-closed). 

(b) It is easily seen that a connected space need not be locally connected. The 
following example is typical. Let X be a subspace of R x R, the underlying set 
of which is (R x 0)) u U {(x) x R| x is a rational number}. The space X is con-
nected as the union of connected sets each of which intersects a connected subset of 
R x R. On the other hand, X is locally connected in precisely those points which 
have zero second coordinate (as may be proved directly). 

B) Let X be the subset of the space R of reals (which is locally connected by A(a)) 
consisting of all points 1/n, n = 1, 2, . . . Then: 

(a) X is relatively locally connected in R because X is a discrete subspace of R 
and every discrete space is locally connected (a one-point set is always connected). 

(b) X is not locally connected at the point 0. Indeed, if U is any neighborhood of 0, 
then U n X is an infinite discrete subspace of R. 

(c) X = (0) u X, both X and (0) are relatively locally connected but X is not 
relatively locally connected; moreover, X is not relatively feebly locally connected. 
It follows that the closure of a relatively locally connected set need not be relatively 
locally connected, and the union of two relatively locally connected sets need not be 
relatively locally connected. 

C) Let X = ] - 1 , 0 [ u ] 0,1 [ be a subset of R. Clearly X is not locally con-
nected (not even feebly locally connected) at 0. On the other hand, each of the intervals 
is obviously a locally connected subset of 3?. Thus the (disjoint) union of two locally 
connected subsets need not be locally connected. 

Any subset X of a space 0 is locally connected at each point x e {3P — X) because 
each neighborhood U of x contains a neighborhood V such that V n X is empty 
and hence connected, since V can be taken as the neighborhood U n (* — X). 

21 B.2. Every closed relatively (feebly) locally connected subset of a space 0 
is (feebly) locally connected. 

The proposition need not be true if the set is not closed (see 21 B.1, B (a) and (b)). 
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A closed subset of a locally connected space need not be relatively locally connected 
(see 21 B.1, B (b), X is closed), in other words, a closed subspace of a locally connected 
space need not be locally connected. On the other hand, open subsets of locally con-
nected spaces obviously are relatively locally connected. 

21 B.3. Theorem. If a subset X of a topological space 8? is (feebly) locally con-
nected, then the closure of X is also (feebly) locally connected. 

Proof. Since X is closed, it is sufficient to prove that X is locally connected at 
each point x e X (see 21 B.2). Suppose U is a neighborhood of a point x e X such 
that U n X is connected. Consider the set V = (U n U n X) u (U — X). First, 
it is easy to see that F n Z i s a connected set. Indeed, Vn X = UnUnXnX= 
=UnUnX=Un Xv, that is, Vn X is the closure of a connected set in U, 
namely of U n X. On the other hand, Fis a neighborhood of x. Here the assumption 

is topological" is essential. Choose an open neighborhood Woix such that Wa U. 
By 14B.26 we have WnX = Wn WnX <= V nX n U and hence W c V. We 
have proved that each neighborhood U of a point x e X contains a neighborhood V 
of x such that V n X is connected. Both statements of the theorem follow. 

Remark. The assumption is topological" cannot be omitted from 21 B.3 
(see 21 ex. 2). 

21 B.4. The union of a locally finite family of closed locally connected (feebly 
locally connected) subsets of a space 0 is a locally connected (feebly locally con-
nected) subset of 8P. 

Proof . Let X be the union of a locally finite family | a e A) of closed locally 
connected subsets of a space 8P. Let x be any point of 8P\ then there exists a neigh-
borhood U of x and a finite subset Ax of A such that a e (A — Ax) implies U n Xa = 0 
and x e D{Xfl | a e Ax}. Let Fbe a neighborhood of x. For each a e Ax there exists 
a neighborhood Wa of x such that Wa <= Vn U and Wa n Xa is connected. Put 
W' = \j{Wa n Xa | a e Ax), W = W' u ((U n V) - X). First, W is a neighborhood 
of x because it contains a neighborhood Ci{Wa | a e Ax} of x. Clearly W n X = W' 
and finally, W' is connected as the union of connected sets Wa n Xa containing a com-
mon point, namely x. Thus W is a neighborhood of x contained in a given neighbor-
hood V of x and W n X is connected. The proof for feebly locally connectedness is 
left to the reader. 

Now we proceed to an investigation of properties of locally connected and feebly 
locally connected spaces. We begin with a description of feebly locally connected 
spaces. 

21 B.5. Theorem. Each of the following two conditions is necessary and sufficient 
for a closure space 8? to be feebly locally connected: 

(a) The components of 8? are open. 
(b) The space 0 is homeomorphic with the sum of a family of connected spaces. 
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Proof . It will be shown that (a) is necessary, (a) implies (b) and (b) is sufficient. 
Let x be a point of a component C of a feebly locally connected space 2P. There 
exists a connected neighborhood Fof x. Since both F and C are connected and F n 
n C =t= 0, the set F u C is connected and consequently F u C = C, i.e. F c C. 
Thus x is an interior point of C. It follows that (a) is necessary. Let each component C 
of a space 2P be open and let be the collection of all components of The sum 
of the family {C | C e of subspaces of SP is clearly homeomorphic with Finally, 
if 3P is the sum of a family {Pa} of connected spaces, then ia[P0] is a connected neigh-
borhood of each of its points for all a, where ia is the canonical embedding of Pa 

into Since U{*a[P0]} = * is feebly locally connected. 

Corollary a. The components and quasi-components of a feebly locally connected 
(in particular, of a locally connected) space coincide. 

Indeed, by 20 B.10 every open component is a quasi-component (use the condition 
(a))-

Corollary b. If a space 0 possesses only a finite number of components, then 0 
is feebly locally connected; indeed, each component is open as the complement 
of a finite union of closed sets, namely the union of the remaining components. 

Obviously, the open subsets of a locally connected space are relatively locally connec-
ted; stated in other words, open subspaces of locally connected spaces are locally con-
nected. According to Theorem 21 B.5, the components of an open subspace U of 
a locally connected space are necessarily open in U and hence in the space, because 
U is open. If the space is topological, then this property characterizes local connec-
tedness as is stated in the following theorem. 

21 B.6. Theorem. The components of open subspaces of a locally connected space 0 
are open in SP. A topological space 0> is locally connected if and only if the com-
ponents of open subspaces of 0 are open. 

Proof. The first statement, and hence the necessity in the second statement, has 
been already proved. Conversely, suppose that the components of open sets are open. 
If U is a neighborhood of a point x of 2?, then we can choose an open neighborhood F 
of x contained in U. Now the component of the point x in Fis open, by our assump-
tion, and consequently it is a neighborhood of x, which is connected and contained 
in U. 

If C #= 0 is a connected subset of a subset X of a space 0 such that bd C n X = 0, 
then C is simultaneously relatively open and closed in X, and consequently C con-
tains a quasi-component of X. On the other hand, C being connected, C is contained 
in a component of X. But each component is contained in a quasi-component and 
consequently C is simultaneously a component and a quasi-component of X. If C 
is a component of a subspace X of a space 2P, then X n b d C need not be empty 
because X n bd C = 0 if and only if C is simultaneously open and closed in X. 
Nevertheless, if X is an open subspace of a locally connected space, then each com-
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ponent of X is open in 0 and closed in X and hence bd C n X = 0. We have thus 
proved the following proposition. 

21 B.7. Let C # 0 fee a connected subset of a subsetX of a space 0. If X n bd C = 0, 
then C is a component ofX. If 0 is locally connected, X is open in 0 and C is a com-
ponent of X, then X n bd C = 0. 

21 B.8. Theorem. Let C be a component or a quasi-component of a subset X 
of a locally connected space P. Then bd C c bdX. 

Proof. Let us suppose that there exists a point x in bd C — bd X. Since bd C c 
<= C <= X, clearly xeX. By our assumption x$ bd X = X n P — X, and hence 
x e (P — P — X) = int X because xeX. The space being locally connected, there 
exists a connected neighborhood U of x contained in the neighborhood X of x. Since 
x e bd C <= C and U is a neighborhood of x, the set U n C is non-void. Thus x e bd C, 
U is a connected neighborhood of x, U <=. X, and U n C #= 0. If C is a component, 
then U u C is a connected set as the union of two non-disjoint connected sets, and 
hence U u C c C, i.e. XJ <=• C which implies that x is an interior point of C; this 
contradicts x e bd C. If C is a quasi-component, then the component of X contai-
ning U intersects C and hence it is contained in C. It follows that U c C which 
implies x e int C, and this contradicts x e bd C. 

The concluding part is devoted to an examination of the classes of all locally con-
nected and of all feebly locally connected spaces. 

Every discrete space and also every accrete space is locally connected. Since every 
space is the image under a one-to-one continuous mapping of a discrete space and 
every space admits a one-to-one continuous mapping onto an accrete space, the 
images and the inverse images under one-to-one continuous mappings of locally 
connected spaces need not be locally connected. Invariance under certain special types 
of mappings will be proved later. The following simple result will be verified here. 

21 B.9. If a closure space 0 is locally connected or feebly locally connected, 
then the topological modification of 0* possesses the corresponding property. 

Proof. It has already been shown that if X c 0 is open or connected in 0, then X 
possesses the corresponding property in the topological modification %0 of 0. 
Now if 0 is locally connected, x e x0 and U is a neighborhood of x in x0, then there 
exists an open neighborhood Vof x with V <=. U. By 21 B.6 the component C of Fin 0 
containing x is open. It follows that C is open and connected in x0 and x e C c U. 
Thus the arbitrarily chosen point x of x0 possesses arbitrarily small connected 
neighborhoods. If 0 is feebly locally connected and C is a component of 0, then 
C is open in 0 (by 21 B.5) and hence C is open in x0. Since C is connected in 0, C 
is connected in x0 (the mapping J : 0 -» x0 is continuous). On the other hand C 
is closed in 0 and thus in xP. Consequently, C is a component of x0. Thus each com-
ponent of x0 is open and consequently the space x0 is feebly locally connected 
by 21 B.5. 



376 III. TOPOLOGICAL SPACES 

21 B.10. The sum of any family of locally connected (feebly locally connected) 
spaces is a locally connected (feebly locally connected) space. — Evident. 

21 B . l l . Theorem. A non-void topological product 0 of a family {0a | a e A) 
of closure spaces is locally connected if and only if each coordinate space 0a 

is locally connected and there exists a finite subset A0 of A such that all 0a, a e A — 
— A0, are connected. 

Proof . First suppose that the conditions are fulfilled, xe0 and U is a neighbor-
hood of x. Choose a canonical neighborhood F of x so that K c [/. Thus V = 
= D{7C71[^b] | a e Ax] where Fa is a neighborhood of xa = pr„x in 0 and Ax is 
a finite subset of A. Since each 0a, a e A, is a locally connected space, we can choose 
a family {Wa | a e A0 u such that Wa is a connected neighborhood of xa for each 
aeA0uA! and JVa <= Va if aeAt. Clearly W = E{j> | y e 0, aeAgvA!^ 
=> pr„ y e Wa} is a neighborhood of x in 0 which is contained in F and hence in U. 
On the other hand W is a connected subset of 0 as the product of connected sets 
(20 B.15); indeed, W = n{Xa | a e A] where Xa = Wa for a a e (A0 u AJ and Xa = 
= \0a\ otherwise. The sets Wa were chosen connected and each 0a, a e A — A0 was 
assumed to be connected. 

Conversely, let 0 be locally connected, a e A, xa e 0a and Ua a neighborhood of 
xa in 0a. Choose a point x of 0 so that pra x = xa, and a connected neighborhood Fof 
x contained in the neighborhood E{y | y e 0, pra y e Uaj of x in 0. The set pra [F] 
is obviously a connected neighborhood of xa and pra [F] c U. It follows that each 0a 

is locally connected. 
To prove that each 0a except for finite number of a's in A is connected, by 21 B.6 

it is sufficient to prove that if an infinite number of 0a are not connected, then there 
exists a component C of 0 which is not open in 0. But this follows from the fact 
that each component of the product is the product of components of coordinate 
spaces (20 B.17). Indeed, if there exists an infinite A0 <=. A such that no 0a, a e A0, 
is connected, then we can choose a component C = Il{Ca | a e A\ of 0 so that 
Ca 4= 0a for each a e A0. It is obvious that C contains no non-void canonical neigh-
borhood. 

Corollary a. Each product space Rx is locally connected; in particular R", n e N, 
is always locally connected. More generally, the topological product of any family 
of connected ordered spaces is a locally connected space. 

Corollary b. The spaces and 2*° are not locally connected. 
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2 2 . D E S C R I P T I V E P R O P E R T I E S O F S E T S 

In subsection A dense sets (i.e. locally non-void) and nowhere dense sets having 
dense closures of their complements are introduced and their properties studied. 
The most profound result is Theorem 22 A.10 which asserts that the density charac-
ter (i.e. the smallest cardinal of a dense set) of a cube [ 0, 1 ]expK, X K0, is at 
most X. Given a space <P, u>, the relation g = {X ^ Y \ X <= Y <= P, Y c UX} 
entirely determines u; in fact, uX is the union of the fibre of q over X. 
Thus every topological concept can be described by means of g; e.g. <P, m> is topo-
logical if and only if q is transitive, X is dense in <P, u> if and only if X e g_ 1[P]. 

In a certain sense the nowhere dense sets are very small. Countable unions of 
nowhere dense sets, called meager sets, often appear as small sets, e.g. the set of all 
continuous functions / on [ 0, 1 J which have a derivative in some point is meager in 
the space C* = C*([ 0, 1 ], R) (ex. 8); on the other hand this fact can be used to 
prove that there exists a continuous function which has a derivative in no point; 
it is sufficient to show that C* is not meager. Another example: if / i s a lower or an 
upper semi-continuous function on a space 2P, then the set of all points at which / 
is not continuous is meager. Meager sets and non-meager sets (the sets which are 
not meager) are studied in subsection B. The importance of non-meager spaces is 
seen from Theorems 22 B.3, 22 B.4 and 22 B.6 which state that the non-meager 
spaces SP are characterized among all topological spaces by either of the following 
two conditions: 

(a) if a collection ¡F of lower semi-continuous functions on 2P is bounded from 
above at each point, then F is bounded from above on a non-void open subset of F . 

(b) each lower (upper) semi-continuous function on 2P is continuous at some point. 
The main result is Theorem 22 B.11, which states that a feebly locally meager set 

is meager, and its consequence, the Decomposition Theorem 22B.12, which gives 
a description of points at which a given space is locally non-meager. 

In the last subsection the so-called Baire sets and Baire measurable mappings 
will be introduced and studied. A Baire set is the symmetric difference of an open 
set and a meager set; thus Baire sets are "almost" open sets. It turns out that the col-
lection of all Baire sets of a topological space is closed under countable unions, 
countable products and complementation, and hence, contains all Borel sets, i.e. the 
elements of the smallest collection which contains all open sets and is closed under 
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countable unions and complementation. Recall that a mapping into a topological 
space is continuous if (an only if) the inverse images of open sets are open. A mapping 
of topological spaces is said to be Baire (Borel) measurable if the inverse image of each 
open set is a Baire set (a Borel set). Let us mention Theorem 22 C.14 which states 
that a Baire measurable mapping of a topological space into a topological space with 
a countable open base is continuous on some subspace with meager complement.' 
Theorem 22 C.17 is the starting point of many applications in function theory. 

A great deal of the results of this section apply only to topological spaces. It is to be 
noted that the results of subsections B and C will not be needed in what follows, 
except in the exercises. 

A. D E N S E AND NOWHERE DENSE SETS 

22 A.l. Definition. Let 0 be a closure space. A subset X of 0 is said to be dense 
in a subset Y of 0 if X <= Y and X r> Y. A subset X of 0 is said to be dense in 0 
if X is dense in the underlying set of 0, that is, if X = \0\. The density character 
of a space 0 is the least cardinal X such that there exists a dense set in 0 of cardinal K. 

Since a subset AT of a space 0 is locally non-void at a point x e 0 if and only if 
x e X , the definition can be restated as follows. 

22 A.2. A subset X of a space 0 is dense in 0 if and only if'X is locally non-void. 
A subset X of a space 0 is dense in Y <=. 0 if and only ifXcz Y and X is locally 
non-void at each point of Y. 

It is to be noted that a subset X is dense in a subset Y if and only if X is dense in 
the subspace Y. 

22 A.3. IfU is an open subset of a space 0, then for any subset X of 0 the set 
X n 1/ is dense inX nU. In particular, ifX is dense in 0 and U is open in 0, then 
X r\U is dense in U. 

Proof. The first statement is an immediate consequence of the formula U n X = 
= U n X r\U which obtains (by 14 B.20) for each X and each open U. 

Remark. The relation E{<A', Y>| X is dense in 7} completely determines the 
closure structure of the space. Indeed, the closure of X is the union of all sets in 
which X is dense. 

22 A.4. A closure space 0 is topological if and only if the relation E{<Z, Y> |AT 
is dense in Y} for exp \0\ is transitive, that is, X dense in Y and Y dense in Z imply 
X is dense in Z. 

Proof. If the relation is transitive, then X = X for each X <=• 0 because X is dense 
in X, X is dense in X and the transitivity implies that X is dense in X, that is, X <= X. 
Conversely, if 0 is topological and X <= Y <= Z, Y <= X and Z c Y, then X = X => Z, 
which establishes transitivity. 
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Corollary a. If 0 is a topological space and X, Y are subsets of 0 such that X 
is dense in Y and Yis dense in 0, then X is dense in 0. — Obvious. 

Corollary b. If 0 is a topological space, X and U are dense subsets of 0 and U 
is open, then X nU is a dense subset of 0. 

Proof. By 22 A.3 the set X n U is dense in U and, U being dense, X n U is dense 
because of transitivity (Corollary (a) of 22 A.4). 

Since the intersection of two open subsets is an open subset, the following very 
simple but useful result follows by induction from Corollary (b). 

22 A.5. Theorem. The intersection of a finite number of open dense subsets 
of a topological space 0 is a dense subset of 0*. 

22 A.6. If [0aj is a family of closure spaces and {Xa} is a family such that each 
Xa is dense in 0a, then the set is dense in the sum space 2{0a}, and the product 
set n{ATa} is dense in the product space n{0a}. If f is a continuous mapping of 
a space 0 onto another one 2 and if X is dense in 0then f\X\ is dense in SL. 

Proof. The first statement is a consequence of the fact that the closure of is 
X{Xa} (by 17 B.1) and the closure of n{Xa} is n { X } (by 17 C.2). The second state-
ment is obvious. 

The assertion concerning products can be strenghtened as follows. (It is to be 
noted that the fact to be proved was declared to be obvious in the proof of 20 B.15.) 

22 A.7. Let 0 be the product of a family {0a \ a e A) and let {Xa} be a family 
such that Xa is dense in 0 for each a in A. Let y = {ya} e n{X a} and let X be the 
set of all x = {xa} e 0 such that xa e Xa for each a e A and xa # ya for a finite 
number of a e A only. Then X is dense in 0. 

Proof. Let z = {za} be any point of 0. It will be shown that z eX.lt is sufficient 
to show that every canonical neighborhood V= Di7 1*"1^] I a E °f z inter-
sects X, where na = pra : 0 -» 0a. Since each Xa is dense in 0a and each Va is a neigh-
borhood of za, we can choose x'a in Va n Xa for each a in At. Let xa = xa if a e Al 
and xa = ya otherwise. Since Ay is a finite set, x belongs to X. Obviously x belongs 
to V and hence x e Vn X, which shows that V n X # 0. 

Corollary. The density character of the product space is less than or equal to 
the sum of the density characters provided the density characters of the coordi-
nate spaces are infinite. 

Obviously the density character of a space is always less than or equal to the cardinal 
of the underlying set. If a topological space 0 possesses an open base SS of cardinal m, 
then the density character of 0 is at most m, because if [xB \ B e 01} is any family such 
that xgeB for each B in 8$, then the set of all xB, Be is dense in 0 by 22 A.2. 
It follows that the density character of a topological space is less than or equal to the 
total character. If a space 0> is pseudometrizable with an infinite density character, 
then the total character and the density character coincide. Indeed, if an infinite 
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set X is dense in 0 and d is a pseudometric inducing the closure of then the col-
lection of all open r-spheres about x, x e X, r being a positive rational number, is 
obviously an open base of the same cardinal as X. 

In general, the density character is less than the total character (see example 
22 A.9 (d)). More will be proved in the exercises and in the following chapters. The 
facts which will be needed in the sequel are listed in the following proposition. 

22 A.8. I f 0 is a topological space, then the total character is equal to or greater 
than the density character. The density character of a space is less than or equal 
to the cardinal of the underlying set. For infinite metrizable spaces the total 
character and the density character coincide (an infinite metrizable space has an 
infinite density character). 

22A.9. Examples, (a) The space R of reals has a countably infinite character. 
Indeed, the set Q of rational numbers is countable and dense in R. On the other hand, 
each finite subset of R is a closed proper subset of R, and hence no finite subset is 
dense in R. 

(b) The density character of a subspace of a pseudometrizable space is less than 
or equal to the density character of the space. Indeed, this is true for total characters 
which coincide with density characters if the density character of the space is 
If the density character is finite, then the statement is evident. In particular, each 
subspace of R has a countable density character (not necessarily infinite). 

(c) Each subspace of R" or [ 0, 1 ]" has a countable density character provided 
that n ^ K0. Apply Corollary 22 A.7 and example (b) above. 

(d) Let us define a new closure operation u for the set R of all real numbers so that 
uX = X if X consists of irrational numbers and uX = X if X consists of rational 
numbers. Clearly Q is dense in <R, u>; thus <R, u> has a countably infinite density 
character. On the other hand the subspace R — Q is discrete, and consequently 
the density character of R — Q is equal to the cardinal of R — Q, that is, exp X0. 
Next, <R, u> is topological and the total character of <R, w> is exp K0 (each (x) u Q 
is open). 

The first part, devoted to dense sets, concludes with the following useful and 
interesting result which will be used in the sequel and which gives a more precise 
estimate of the density character of a cube. 

22 A.10. Theorem. Let m and n be infinite cardinals and m ^ exp n. Then the 
density character of the cube [ 0, 1 ] m is at most n . 

Proof. It is sufficient to show that if n is an infinite cardinal, then the cube 
[ 0,1 ]" p n contains a dense subset of cardinal n. Let N be a set of cardinal n and let 
2P = [ 0, 1 ]expAr. For brevity call a point x of SP rational if each coordinate xx 
of x is a rational number. For each finite subset F of N let <PF be the set of all rational 
points of 0> such that Xt e exp N, X2 e exp N, Xt n F = X2 n F imply xXi = xXz. 
It follows that each member of <PF is completely determined by its coordinates xx, 
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X <= F But exp F is finite and the xx are elements of a countable set Q n [ 0, 1 ]. 
It follows that each <PF, F <= N, F finite, is countable. The union $ of all <PF, F <= N, 
F finite, has the cardinal K0 . n, i.e. n because n is infinite. It will be shown that <P 
is dense in 0. It will suffice to show that each canonical open subset of 0 intersects <P. 
Actually, 0 is a topological space and hence the canonical open subsets of 0 form an 
open base for 0. Let V be any non-void canonical open set, that is, there exist 
distinct elements XL, ...,Xk of exp N, and Fis the set of all x e 0 such that xXl e t / ; 

for each i where l/ ; are appropriate open subsets of [ 0, 1 ]. For each i,j = 1, . . . , k, 
i #= j, choose nu e - Xj) if (Xt — Xj) 4= 0, and consider the set F of all these ntj. 
If i 4= j, then Xt 4= Xj by our assumption, and clearly F n l ^ F n Xj by construc-
tion. Choose rational numbers r ; in [/¡, i = 1, . . . , k; this is possible because the set 
of all rationals of [ 0, 1 ] is obviously dense in [ 0, 1 ] and Ut 4= 0. Now define an 
x e <P as follows: xx = rt if X n F = n F and xx = 0 if X n F 4= Xt n F for 
each i = 1, . . . , k. The point x is well defined because F n Xt 4= F n Xj for i 4= j. 
Finally, by definition of x, x belongs to <PF c <P and also to V. It follows that Vn <P 4= 
+ 0 which completes the proof. 

Remark. The proof of the foregoing theorem can be used to obtain more general 
results. See ex. 1. 

22 A.ll. Definition. A subset X of a closure space 0 is said to be nowhere dense 
if the set \0\ — X is dense, that is, if int X = 0. A subset X of 0 is said to be nowhere 
dense in a subset Y of 0 if X is nowhere dense in the subspace Yof 0. 

It is easy to verify that X is nowhere dense in Y if and only if X c Y <=. Y — X. 

22 A.12. A subset X of a space 0 is nowhere dense if and only if the closure of X 
is contained in its boundary, i.e., X c bdAT. 

Proof. From the formula bd X = X n 0 - X it follows that bd X => X if and 
only if 0 -X => X. Since obviously \0\ - X => \0\ - X, we have \0 — X = 
if and only if \0\ - X => X, which means that bd X 3 X if and only if \0\ - X = 
= \0\; this is precisely the statement. 

Corollary. A closed subset X of a space is nowhere dense if and only if X = 
= bd X. (Remember that always bd X c X.) 

22 A.13. If X is nowhere dense in a space 0 and U is open in 0, then X r\U 
is nowhere dense in U. 

Proof. According to 22 A.3, if \0\ — X is dense and U is open, then the set 
- X) n U = U — (U n X) is dense in U, and consequently, the larger set U — 

— (U n X n XJ) is also dense in U, which means that X n U is nowhere dense in U. 
In the following propositions 22 A.14—22 A.18 the assumption that the space is 

topological cannot be omitted; the corresponding examples are given in 22 A.19. 
22 A.14. Theorem. Let 0 be a topological space. Each of the following conditions 

is necessary and sufficient for a subset X of 0 to be nowhere dense: 
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(a) The closure of X contains no non-void open subset; 
(b) The closure ofX is nowhere dense; 
(c) Every non-void open subset U of 0 contains a non-void open subset V of 0 

such that Vn X = 0. 

Proof . Since in any topological space the interior of a set X is the largest open set 
contained in X, (a) is equivalent to the assertion int X = 0. Thus condition (a) 
is both necessary and sufficient. Since 0 is a T-space, we have X = X and hence 
int X = int X which shows that (b) is both necessary and sufficient. Condition (b) 
is sufficient in any space, because the property "to be nowhere dense" is hereditary. 
If X is not nowhere dense, then int X is a non-void open subset of 0 every non-void 
open subset of which meets X. Thus (c) is a sufficient condition. If X is nowhere 
dense and U is an open non-void subset of 0*, then V = U n {\0>\ — AT) is dense in 
U since \3P\ — X is dense. In particular, V + 0. Clearly Vn X = 0. Thus (c) is a ne-
cessary condition. 

22 A.15. Let 0 be a topological space and I c 7 c j0j. I f X is nowhere dense 
in Y, then X is nowhere dense in 0. 

Proof. Assuming that X is not nowhere dense in 0, i.e. U = int X # 0, we shall 
prove that X is not nowhere dense in Y. Clearly the set U n Y is open in Y and is 
contained in the closure of X in Y, i.e. in X n Y. Thus it is sufficient to show that 
U n Y is non-void. The set U n Y is non-void because U n Y => U n X = U, and 
the set U n Y is dense in U n F by 22 A.3 because U is open; consequently, U n Y 
is non-void. 

22 A.16. Let 0 be a topological space and X 0>. Suppose that for each x 
in X there exists a neighborhood U of x such that U n X is nowhere dense. Then 
the set X is nowhere dense. In other words, if X c: 0 is relatively feebly locally 
nowhere dense, then X is nowhere dense. 

Proof. Suppose X is not nowhere dense. Hence V= in tX 4= 0. Choose a point 
x in Vn X and a neighborhood U of x such that U n X is nowhere dense. Since 0 
is a topological space, we can choose an open neighborhood W of x with W a 
c(U n V). Since is open, we have (by 14 B.20) Wn Wn X = (W n X) => Wn 
n V = W, that is, W cz Wn X ci U n X; this contradicts the fact that U n X is 
nowhere dense. 

22 A.17. Theorem. Let 0 be a topological space. The union X of a locally finite 
family {Xa | a e A} of nowhere dense sets is a nowhere dense set. 

Proof. First suppose that A is finite. Since the intersection of a finite number of 
open dense sets is a dense set, we have that 

M - WQ = M - = n { M - xa) 
is dense, and consequently U{^a} ' s nowhere dense. The general case follows im-
mediately from 22 A.16. Indeed, the union of a locally finite family of nowhere dense 



22. DESCRIPTIVE PROPERTIES OF SETS 383 

sets {Xa} is feebly locally, and hence relatively feebly locally ( nowhere dense by the 
first part of the proof. 

22 A.18 Let 0 be a topological space. If a subset X of 0 is either open or closed, 
then the boundary of X is a nowhere dense set. 

22 A.19 Example. Let P be a set such that, for some element x of P, P — (x) = 
= (N x N) u N; we shall assume that N n (N x N) = 0. Let us define a closure 
operation u for P such that N x N is an open discrete subspace, N is a discrete sub-
space, (x) is closed, x e uX — X if and only if X n N is infinite, and n e uX — X 
for n e N if and only if X n ((n) x N) is infinite. It can be proved that 

(a) The subspace (N x N) u N of <P, u> is topological, (x) u N is a neighborhood 
of x which contains no non-void open set. Thus <P, u> is not topological. 

(b) The set N x N is not dense but every non-void open set intersects N x N. 
(c) N x N is dense in P — (x) = (N x N) u N, P — (x) is open dense, N x N 

is open, but (N x N) n (P — (x)) = N x N is not dense. 
(d) Let N = Nt u N2, NlnN2 = 0, JV; infinite. Then G; = (N x N) u iV; 

are dense open subsets, but Gx n G2 = N x N is not dense. Thus the intersection 
of two open dense sets need not be dense. The sets P — G( are closed nowhere dense 
sets and their union is not nowhere dense. 

(e) The set N is nowhere dense in P — (x) but not in P (int uN = (x) + 0). 
(f) The set N is not nowhere dense in P but uN contains no non-void open set, 

and every non-void open set contains a non-void open set disjoint with N. 
(g) The set N is the boundary of the open set N x N; on the other hand N is not 

nowhere dense. 

B. M E A G E R -AND N O N - M E A G E R SETS 

22 B.l. Definition. A subset X of a space 0 is said to be meager (or of the first 
category) in a subset Y of 2P, if X is the union of a countable number of nowhere 
dense subsets in Y. A subset X is non-meager (or of the second category) in a subset Y, 
if X cz Y and X is not meager in Y. A subset X will be called residual in 
a subset 7, i f l c Yand Y— X is meager in Y. A subset X is meager, non-meager 
or residual in the space 0 if X has the corresponding property in the underlying 
set of A space 0 is meager or non-meager if the underlying set' has the corresp-
onding property. 

For example, every non-void discrete or non-void accrete space is non-meager 
because such a space contains no non-void nowhere dense set. Next, every space 
possessing only a finite number of accumulation points is non-meager because it 
contains only a finite number of nowhere dense sets. On the other hand, the space Q 
of all rational numbers is meager, because each one-point set (x), x e Q, is nowhere 
dense in Q ((x) = (x) and x 6 Q — (x)) and Q is countable. As a less trivial example 



384 III. TOPOLOGICAL SPACES 

we shall prove that the space R of reals in non-meager. A similar argument yields 
the Baire theorem asserting that every complete pseudometric space is non-meager. 
Complete pseudometric spaces will not be considered until Chapter 7 and even there 
in a more general situation; in ex. 6 the notion of a complete pseudometric will be 
introduced, and a proof of the Baire theorem will be given. 

22 B.2. Every non-void boundedly order-complete ordered space is non-meager. 
In particular, the space R of reals is non-meager. 

Proof. Let the closure of a space 0 be induced by a boundedly order-complete 
monotone order g . Suppose the contrary, that SP is meager. Let {A"„} be a sequence 
of nowhere dense subsets of 0> which have union Since the space 8? is topological, 
according to 22 A.14 we can construct, by induction, a decreasing sequence {/„} of 
bounded open intervals such that I„ cz P — Xn for each n. Indeed, if a finite sequence 
{/„ | n g k} possesses the required properties then there exists a non-void open in-
terval J = ] x, y [ in 0 such that J cz Ik n (P - Xk+1) by 22 A.14 (c). Of course, 
the end points x and y may belong to Xk+i. It is easy to find a non-void open interval 
Ik+1 cz J such that (Ik+1 n i l + 1 ) = 0. Now if {/„} is such an infinite sequence, 
then n{/„} + 0 because, for example, the least upper bound of left end points of the 
intervals Ik belongs to this intersection. On the other hand, obviously 

n{/„} = n { M - x n } = \»\ - u{*„} = 0 • 

This contradiction establishes the result. 
Clearly a space 0 is non-meager if and only if each residual subset of 8? is non-void. 

The following theorem shows that a "point-bounded" from above collection of lower 
semi-continuous functions on a non-meager space is bounded from above on a non-
void open set. Various applications can be found in the concluding part of the sec-
tion and in the exercises. 

22 B.3. Theorem. Let 0 be a non-meager topological space. Let <P be a collection 
of lower semi-continuous functions on 0 such that 

(1) x e P, f e <P imply fx g gx, 
where g is a given function on Then there exists an open non-void subset U of 0 
and a real number M such that 

(2) xeU, f e & implies fx g M. 
Proof . For each n in N let us consider the set 
(3) C„ = E{x\xe0>,fe$^>fx g n} . 

According to (l), the union of all C„, n e N, is \8P\. Moreover, the sets C„ are closed, 
because each C„ is the intersection of all sets C„(/) = E{x | / x g n}, / e <£, and each 
C„(/) is closed, because / is lower semi-continuous. Since P is not meager, at least 
one of the sets C„, n e N, say Ck, is not nowhere dense. Thus U = int Ck is a non-
void open set. According to (3), assertion (2) holds with M = k. 

In the converse direction we shall prove the following result. 



22. DESCRIPTIVE PROPERTIES OF SETS 385 

22B.4. If 0 is a meager topological space, then there exists a lower semi-con-
tinuous function f on 2? which is not bounded from above on any non-void open subset 
of 0, i.e., ifUis a non-void open subset of 0, then the set/[[/] has noupper bound. 

Proof. If 0 is meager, then there exists a sequence Xn of nowhere dense subsets 
of 0 such that U{X>} = Since 0 is a topological space, the sets Xn and F„ = 
= | fc is «} a r e also nowhere dense (by 22A.14 and 22A.17). Clearly 
Ui^n} = ! 4 

Let us consider the function / o n 0 which assigns to each x e \0\ the least integer n 
with xeF„ , i.e. fx = inf {« | x e F„}. The function / is lower semi-continuous, 
because for every real c we h a v e / _ 1 [ ] «-, c ] ] = F„ where n fulfils the inequalities 
n ^ c < n + 1, and F„ is closed. If U is a non-void open subset of 0 and n e N, 
then F„ n U is nowhere dense in U (by 22 A.13), in particular U — F„ # 0 which 
shows that n is not an upper bound of /[£/]. Thus no natural number is an upper 
bound of /[L7] and consequently / [£/] has no upper bound. The proof is complete. 

Observe also that the function / of 22 B.4 is continuous at no point. If 0 is non-
meager then each semi-continuous function is continuous at one point at least. This 
follows from the following simple result. 

22 B.5. Let f be a semi-continuous function on a topological space 0. The set 
D = E{x | / is not continuous at x} is meager in 0. 

Proof. Suppose that / is lower semi-continuous and Ur = E{x | fx > r}. It is 
easy to show that D <= (j{[/r

 — Ur | r e Q}. The sets Ur are open and hence the sets 
Ur — Ur are nowhere dense (22 A.18). If / is upper semi-continuous then —/is 
lower semi-continuous, and/ is continuous at a point x if and only if —/is continuous 
at x. Thus the statement for upper semi-continuous functions follows from that for 
lower semi-continuous functions. 

According to the remark following 22 B.4 we obtain the following character-
ization of non-meager spaces. 

22B.6. Theorem. A topological space 0 is non-meager if and only if the fol-
lowing condition is fulfilled: each semi-continuous function on 0* is continuous at 
some point. 

Now we proceed to the investigation of meager and non-meager sets. First we shall 
prove some almost immediate consequences of the preceding results concerning now-
here dense sets. 

22 B.7. Let 0 be a topological space. The union of a countable number of meager 
subsets of Y is a meager set in Y. If X c. Y <= Z and Y is a meager subset in Z, 
then X is also meager in Z. If X is meager in the space 0, then X n U is meager 
in U for every open subset U of 0. 

Proof. The first assertion is an immediate consequence of the fact that a countable 
union of countable unions is a countable union. The property "to be meager in Z" 
is hereditary, since the property "to be nowhere dense" is hereditary. Finally, the last 
assertion is a corollary of the corresponding result 22 A.13 about nowhere dense sets. 

25—Topological Spaces 
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22B.8. Let 0 be a topological space,X <= Y<= \3P\. If X is meager in Y, then X 
is meager in (From 22 A.15). 

22 B.9. Definition. A family {Xa \ a e A) of subsets of a space SP is said to be 
o-locally finite if there exists a sequence {A„} so that A = \J{A„ | n e N} and all 
families {Xa | a e A„}, n e N , are locally finite. 

Now we can prove, for topological spaces, the following generalization of the first 
assertion of 22 B.7. 

22 B.10. Theorem. Let 0 be a topological space. The union X of a o-locally 
finite family {Xa \ae A) of meager subsets of 0 is a meager subset of SP. 

Proof. By definition there exists a sequence {An} such that U{-̂ n} = A and every 
family {Xa \ a e A„}, n e N, is locally finite. For each a in A there exists a sequence 
{X(a, k) | ke N} of nowhere dense sets such that k) | fceN} = Xa. Clearly 
{X(a, k) | a e An) is a locally finite family of uowhere dense ¡sets. According to 
22 A.17 the sets Y(n, k) = (j{X(a, k) | a e A„} are nowhere dense. Obviously X = 
= fc) | « e N, /c e N}. Since the set N x N is countable, X is a meager set. 

Now we proceed to a more difficult part of the section. The following two theorems 
are fundamental for further results. 

22 B . l l . Theorem. Let X be a subset of a topological space If every point 
ofX possesses a neighborhood U such that U n X is meager in then X is meager 
in SP. In other words, every relatively feebly locally meager set is meager. 

Proof. Let % be the collection of all open subsets U of 0 such that U n X is 
meager; by the "maximality principle" there exists a maximal disjoint subcollection 
V of "U. Let Fbe the union of V. First we shall prove that X c V.lfxeX then there 
exists a neighborhood U of x such that U n X is meager. If moreover x $ V, then 
XJl = (\8P\ — V) n int U is a non-void open set (for 0 is a topological space) and U1 n 
n X is meager since the property "to be meager" is hereditary. But this contradicts 
the maximality of "V and proves X c= V. Since X <=. V we have X c ((X n V) u 
u (F— F)). The set V — F is nowhere dense (by 22 A.18). As a consequence, to 
prove X is meager, it is sufficient to show X n F is meager. The family {W\ We y] 
is locally finite in the subspace F of 0 (for W is a neighborhood of each of its points 
meeting only one member of {W}). Since the sets W n X are meager in SP and F 
is open, they are meager in F as well (22 B.7). According to 22 B.10 F n X = 
= X | We r} is meager in Fand by 22 B.8 in 0>. 

22 B.12. Decomposition theorem. Let X be a subset of a topological space ¿P. 
Let Yi be the set of all points x e 0 in which X is feebly locally meager, and let Y2 

be the set of all points xe 3?, in which the set X is locally non-meager. Put Xt = 
= X nYit (i = 1, 2). Then Y1 n Y2 = 0, YlvY2 = \SP\, Xi is meager, X2 and Yz 

are relatively locally non-meager and Y2 = X2 n int Y2. 
Proof. Obviously, Y2 = \3P\ - Yt and Yt is the union of the collection % of all 

open subsets U of 0 for which the set U n X is meager. In particular, Yl is open, 
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Y2 is closed. Clearly, the set Xt = Yj n X is relatively feebly locally meager. Accord-
ing to the preceding Theorem 22 B.11 the set Xx is meager. The remaining two state-
ments follow from the following assertion: 

(*) if F is open and F n Y2 4= 0, then F n X2 is non-meager, in particular, 
V n X2 * 0 and F n int Y2 4= 0. 

Indeed, the first statement implies that X2 is locally non-meager at each point 
of Y2, and hence both sets X2 and Y2 are relatively locally non-meager (remember 
that X2 <=• Y2). The formula Y2 = X2 n int Y2 is derived as follows. First notice 
that (*) implies that Y2 <= X2 and F2 cz int Y2. Since Y2 is closed and X2 a Y2 we 
obtain that Y2 = X2 and Y2 = int Y2. Thus both sets X2 and int Y2 are dense 
in Y2, and hence this intersection is dense in Y2 (by 22 A.3 because int Y2 is open), 
i.e. Y2 = X2r\ int Y2. 

It remains to prove statement (*). Suppose that Fis open and Kn Y2 4= 0- Since V 
is a neighborhood of a point of Y2, the set V n X is non-meager, and hence the set 
VnX2 is non-meager because VnX2 = ( F n X ) — Xt and Xt is meager. The 
first statement of (*) is proved. Since Y2 contains X2, the first statement implies that 
the set V n Y2 is non-meager. It follows that F n Y2 is non-meager in F, in particular, 
F n Y2 is not nowhere dense in Y2. Next, Y2 is closed, hence F n Y2 is closed in F, 
and hence the interior Fi of F n Y2 in F is non-void. The set V1 is open in an open 
set, namely in F, and hence Vl is open in 0. Thus 0 4= V\ <= int (Vn Y2) cz Vr\ 
n int Y2. The proof is complete. 

For convenience, the following corollary of the foregoing Decomposition theorem 
will be formulated as a theorem. Let us recall that a regular closed set in a space 0 
is a closed set X of the form X = int X. 

22 B.13. Theorem. I f 0 is a topological space and Q is the set of all points in 
which the space 0 is locally non-meager, then Q is a regular closed subset of 0 , 
Q is relatively locally non-meager in 0 and the subspace Q of 0 is locally non-
meager. In particular, if a topological space 0 is non-meager, then some subspace 
(some open subspace, some closed subspace, some regular closed subspace) of 0 
is locally non-meager. 

Remark. We know that a subspace Q of a space 0 is locally connected if and only 
if the set Q is relatively locally connected in 0. This follows from the fact that X <=. Q 
is connected in Q if and only if X is connected in 0. It may be in place to point out 
that analogous equivalences for meager and non-meager sets and spaces are not 
true. Of course, a subspace Q of a topological space 0 is always non-meager or 
locally non-meager provided that the underlying set of Q is non-meager or relatively 
locally non-meager in 0. But if a subspace Q of a space 0 is non-meager or locally 
non-meager, then Q may be nowhere dense in 0; e.g. a one-point space is non-meager 
and locally non-meager but a subset (x) of a space 0 is nowhere dense in 0 provided 
that (x) is closed and x e \0\ — (x). 

25* 
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22B.14. Locally non-meager spaces are sometimes called Baire spaces (e. g. by 
N. Bourbaki). Properties of the class of all locally non-meager topological spaces 
will be discussed in the exercises. 

C. BAIRE SETS 

The definition of Baire sets and various characterizations of Baire sets are fol-
lowed by examination of the collection of all Baire sets of a topological space. In the 
second part we shall be concerned with Baire measurable mappings. The concluding 
part is concerned with some properties of Baire sets in a topological group. Many 
concepts related to our object are introduced and studied in the exercises. Recall that 
the symmetric difference of two sets X and Y, denoted by X -=- Y, is defined to be the 
set (X — 7) u (7 - X), which can also be written as (X u Y) - (X n Y). 

22 C.l. Definition. We shall say that a subset X of a closure space 0 has the 
property of Baire, or simply, is a Baire set, if the following equivalent conditions are 
fulfilled: 

(a) X is the symmetric difference of an open set and a meager set, i.e. X = U -j- Y 
for some open set U and some meager set Y. 

(b) X = (U — Yx) u Y2 for some open set U and some meager sets Yx and Y2. 
(c) The set X h- U is meager for some open set U. 
It is to be noted that Baire sets are often called almost open (and the term Baire 

set is often used for the elements of the smallest u-algebra containing exact open sets, 
see 28 ex. 2). 

For example, each meager set X is a Baire set because 0 -5- X = X is meager, and 
each open set U is a Baire set because U -=- U = 0 is meager. 

We must show that conditions (a), (b) and (c) of 22 C.1 are actually equivalent, 
and this follows from the following elementary lemma. 

22 C.2. Lemma. Let & be a collection of sets and let Jt be an additive and here-
ditary collection of sets. The following conditions on a set X are equivalent: 

(a) X = 0 -i- Y for some 0 in & and some Y in Jt. 
(b) X = (O - Yi) u Y2 for some 0 e 0 and some Yf e Jt. 
(c) X -r 0 e Jt for some 0 in 0. 
Proof. If X = O Y, O e 0, Ye Jt, then X = (0 - Y) u (Y - O) is a decom-

position satisfying (b), and hence (a) implies (b). If X = (0 — Yj) u Y2 with 0 e&, 
Yf e Jt, then Y = (Yt - Y2) u (Y2 - 0) e Jt and X = 0 h- Y, which shows that 
(b) implies (a); also 0 -i- X = (0 - X) u (X - O) e Y^ u Y2 and hence 0 X eJt 
which proves (b) implies (c). Finally, if X -h 0 e Jt then (X - 0) e Jt, (O - X) e Jt 
and hence X = ( 0 — ( 0 — X)) u (X — O) is a decomposition of X satisfying (b). 

In a topological space, conditions (a) —(c) of 22 C.1 are equivalent to conditions 
obtained by replacing "open" by "closed". 
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22 C.3. Each of the following conditions is necessary and sufficient for a subset X 
of a topological space 0 to be a Baire set: 

(a) X is the symmetric difference of a closed set and a meager set. 
(b) X = (C — Yj) u Yz for some closed set C and some meager sets Yt and Y2. 
(c) C -5- X is meager for some closed set C. 

Proof. By Lemma 22 C.2 conditions (a) —(c) are equivalent in any space. Now 
let 0 be a topological space. Remember that the boundary of a closed or open set 
is nowhere dense. Now, if X = (U — Yj) u Y2 with U open and Yf meager, then X = 
= (U — (Yx u bd [/)) u Y2 with U closed and Y1 u bd U, Y2 meager (remember 
that bd U = U - U). If X = (C - Yt) u Y2 with C closed and Y, meager, then X = 
= (int C - Y,) u ( Y2 u (bd C - Yx) where int C is open and Y1; Y2 u (bd C - Y/) 
are meager. The proof is complete. 

It follows from 22 C.3 that each closed set in a topological space is a Baire set. 
Now we proceed to some less trivial characterizations of Baire sets. For brevity we 
shall introduce further notation. 

22 C.4. Remark. Given a subset X of a space 0, the symbol X* denotes the set 
of all points of 0 at which X is locally non-meager, and X° denotes the interior of X*. 

If 0 is a topological space then X* is a regular closed set and X — X* is meager 
(by 22B.12). 

22 C.5. Theorem. Each of the following conditions (a) —(f) is necessary and suf-
ficient for a subset X of a topological space 0* to be a Baire set: 

(a) The set X* n (|0\ - X)* is nowhere dense. 
(b) The set X* — X is meager. 
(c) The set X* -s- X is meager. 
(d) The set X° n (|*| - X)° is empty. 
(e) The set X° — X is meager. 
( f ) The set X° -r- X is meager. 

Proof. I. Since X* is closed and X° is open, each of the conditions (b), (c), (e) 
and (f) is sufficient. Next, conditions (a) and (d) are equivalent because X° is open 
and dense in X* (remember that the boundary of an open set is nowhere dense). 
Conditions (b) and (e) are equivalent because X* = X° u bd X° and bd X° is nowhere 
dense and so certainly meager. Similarly one finds that conditions (c) and (f) are 
equivalent. It remains to show that (a) is necessary, (a) implies (b) and (b) implies (c). 
The implication (b) => (c) is almost self-evident because X* v I = (X* — X) u 
u (X — X*) and X — X* is always meager by 22 B.12. — II. Assuming that X = 
= (U — Yt) u Y2 where U is open and Yj are meager, we shall prove (a). Notice 
that P — X = ((P — U) — Y2) u (Yj — X) (we write P = |*|). It follows that X* = 
= U* and (P - X)* = (P - U)*. For each Z we have Z* c: Z and therefore 
U* <= U and (P - U)* <= P - U. Thus X* n (P - X)* c: bd U. Finally, U is 
open, hence bd U is nowhere dense and therefore X* n (P — X)* is nowhere dense. 
— III. Assuming (a) we shall prove (b). We have 



390 III. TOPOLOGICAL SPACES 

X* - X = X* n(P - X) =(X* n(P - X)* n (P - X)) u 
u (X* n ((P - X) - (P - X)*)) 

where X* n (P — AT)* is nowhere dense by (a) and (P - X) — (P - X) * is meager 
because Z — Z* is meager for any Z. Thus X* — X is meager. The proof is com-
plete. 

We now proceed to an examination of the collection of all Baire sets of a topo-
logical space. 

22 C.6. The collection of all Baire sets of a topological space 0 is closed under 
complementation, countable unions and countable intersections. Each closed set, 
each open set and each meager set is a Baire set. 

Proof. Evidently each closed set, each open set and also each meager set is a Baire 
set. The complement \0>\ — X of a Baire set X is a Baire set by the preceding theorem 
because condition (a) is invariant under complementation, that is, if X fulfils (a) 
then \2?\ — X also fulfils (a). Next let X„ be a sequence of Baire sets. There exists 
a sequence {[/„} of open sets such that X„ -h Un is meager for each n. Obviously 

U { t / „ } - u w = U { U n . - 5 - x n ] 

and therefore U{-^„} is a Baire set. Finally, f|{^„} = - - X„} and there-
fore the intersection of a sequence of Baire sets is a Baire set. 

Let us consider the ordered set <exp P, c ) of subsets of a set P. Clearly 0 is the least 
element, P is the greatest element and, for any family {ATa}, we have sup {Ar

a} = 
= U{-Xa} and inf {Zfl} = f|{Xi}; consequently, this ordered set is complete. 
A subset si is countably meet-stable if and only if it is countably multiplicative, 
and si is countably join-stable if and only if si is countably additive. Thus the col-
lection of all Baire sets of a closure space is countably lattice-stable. We know that 
the set-theoretical complement of a Baire set is a Baire set. Let us notice that the 
set-theoretical complement of a set X in P coincides with the complement of X in the 
ordered set <exp P, <=>; this is an element Y such that sup (X, Y) is the greatest 
element and inf (A", 7) is the least element. In general lattice complementation is not 
unique; however in our case a complement is unique and coincides with the set-
theoretical complement. A subset of an ordered set is said to be complemented if it 
contains all complements of each of its elements. Thus we can say that the collection 
of all Baire sets of a topological space 0 is complemented in <exp c ). Proposition 
22 C.6 can be restated as follows. 

22 C.7. The collection of all Baire sets of a topological space 0 is a countably 
lattice-stable and complemented subset of <exp <=>, and it contains all open, 
closed and meager sets. 

If a space 0 is meager then each subset is meager and hence each subset is a Baire 
set. There are non-meager spaces such that each subset is a Baire set, e.g. each 
non-void discrete space has these properties. In 22 C.21 a subset of R which is not 
a Baire set will be constructed. By the preceding theorem the collection of all Baire 
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sets of a topological space * is a complemented countably lattice-stable subcollection 
of <exp |*|, <= ) containing all open sets. We shall prove in the exercises that the 
smallest complemented countably lattice-stable subset of <exp R, c > containing 
all closed sets is strictly smaller than the collection of all Baire sets of R. 

22 C.8. Definition. If * is a closure space and if * is the smallest complemented 
countably lattice-stable subcollection of exp |* | containing all open sets, then the 
elements of 38 are called the Borel sets of * . 

Of course the indicated subcollection exists; in fact, if Y is any subset of a count-
ably complete complemented ordered set <X, g } then there exists the smallest 
complemented countably lattice-stable subset Z of X such that Y c Z; Z is the inter-
section of all complemented countably lattice-stable sets containing Y. 

22 C.9. In a topological space each Borel set is a Baire set. — 22 C.8. 
On the other hand a Baire set need not be a Borel set; in the exercises we shall 

show that there exists a Baire set in R which is not a Borel set. A countable union 
of closed sets is a Borel set which need not be closed, and a countable intersection 
of open sets is a Borel set which need not be open. These two kinds of Borel sets are 
very important and therefore we shall introduce the following terminology. 

22 C.10. Definition. A subset AT of a space * is said to be an Fff (a G5) if X is the 
union (the intersection) of a countable number of closed (open) sets. 

22 C.ll. Examples, (a) In a topological space each meager set is contained in 
a meager F„. In fact, if X = with X„ nowhere dense, then U{-̂ n} is a meager Fff 

containing X. 
(b) We know that the intersection of two open dense sets in a topological space 

is dense. In general the intersection of two dense sets need not be dense, e.g. both Q 
and R — Q are dense in R but 0 is not dense. It is easy to show that the intersection 
of a countable number of dense G,, in a locally non-meager space is dense (see ex. 5). 

22 C.12. Definition. A mapping / of a space * into a space 2 is said to be Borel 
measurable (Baire measurable) if is a Borel set (Baire set) in * for each 
open set U in 2. 

22 C.13. Theorem. Each continuous mapping is Borel measurable as well as 
Baire measurable, and each Borel measurable mapping of a topological space 
is Baire measurable. A mapping f of a topological space * into a topological 
space 2 is Baire measurable provided that there exists a subspaceffl of * such thai 
|*| — |*| is meager and the domain-restriction g of f to * is continuous. 

Proof. The first statements are evident. Let * be a subspace of * such that the 
set X = |* | — |*[ is meager and the domain-restriction g- of / to * is continuous. 
Consider an open subset U of 2. The set is open in * because g is continuous 
and there exists an open subset V of * such that C/] = |* | n V (because * is 
topological). Now clearly / _ 1 [ t 7 ] = g'^U] u (X n / _ 1 [ t / ] ) = (V - (X n 7)) u 
u (X n / " ' [ K ] ) which shows that f~l[U~\ is a Baire set in * . 
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The converse of the last statement of 22 C.13 is not true in general. However, the 
following important result holds. 

22 C.14. Theorem. Let f be a Baire measurable mapping of a topological 
space 0 into a topological space .2 with a countable total character. Then there 
exists a subspace3l of 3k such that the set \3k\ — ¡3lj is meager in 3k and the domain-
restriction of f to 3k is continuous. 

Proof. Let J1 be a countable open base for H. For each B in & let UB be an open 
subset of 0 such that the set XB = UB -h- / _ 1 [ B ] is meager in 3k. Consider 
the subspace 31 of & such that \&\ - \3&\ is the union of {XB | B e 3$). We shall prove 
that the domain-restriction g of / to 3k is continuous. It is sufficient to show that 

is open in 3ft for each B in 38, and this follows from the following equality: 
g~1 [B] = UB n \3k\. 

22 C.15. Remark. Each lower or upper semi-continuous function is a Borel 
measurable mapping. Therefore 22 C.14 applies to semi-continuous functions on 
a topological space 3ft. 

Notice that we have proved in 22 B.5 somewhat more for semi-continuous functions, 
namely that 3k can be so chosen that / is continuous at each point of3k relative to Sk\ 
this is essentially more than the continuity of g. A similar result for Borel measur-
able mappings is not true: e.g. consider the characteristic function / of Q in R; 
clearly the function / is continuous at no point but / is Baire measurable and R is 
non-meager. 

We proceed to the examination of some properties of Baire sets in topological groups 
and modules. We shall need an important property of Baire sets in any topological 
space. If X is a Baire set in a topological space P, then X° n (P — X)° = 0 = 
= (X n (P - X))° and hence X° n 7° = (X n Y)° for Y = P - X. Now we shall 
prove that the last equality holds for any Baire sets X and Y. 

22 C.16. If X and Y are Baire sets in a topological space, then (X n 7)° = 
= I ° n y°. 

Proof. Evidently (X" n Y)° c X° n Y° without any assumption on X, Y. To prove 
the converse inclusion it will suffice to show that the set X n 7 is locally non-meager 
at each point ofX° n 7°. Indeed, this implies thatX° n 7° c (X n 7)*, andX° n 7° 
being open, we obtain f n f c int (X n 7)* = (X n 7)°. Let U be any open 
neighborhood of any point x ofX° n 7°; the set V = U n X° n 7° is a neighborhood 
of x, and we shall prove that V n X n 7 is non-meager. We have V n X n 7 = 
= V — ((V — X ) u ( F — 7)), where the set V is non-meager because V is a non-
void open subset of a relatively locally non-meager set, namely X° n 7°, and the 
sets V - X and V — 7 are meager because V - X <= X* - X, V - Y <= Y* - Y, 
and the sets X* — X, 7* — 7 are meager since the sets X and 7 are Baire sets (see 
22 C.5). The proof is complete. 
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Remark. It follows from 22 C.16 that the intersection of two locally non-meager 
Baire sets is a locally non-meager set, in particular, a dense set. If fact, if X* = P, 
Y* = P, then X° = P, Y° = P, and hence (by 22 C.16) (X n Y)° = P. I t is easily 
seen that the intersection of any countable collection of locally non-meager Baire 
sets is a locally non-meager set. It is sufficient to notice that any locally non-meager 
Baire set of a space P is of the form P — X where X is meager, and in a locally non-
meager space any set of this form is a locally non-meager Baire set. Thus the conclu-
sion of 22 C.16 is rather weak for locally non-meager sets. On the other hand, 22 C.16 
is not true for countable intersections; e.g. if X„ = ] — 1/n, 1/n [, then X° = X„ and 
hence n^C = (0); however = (0) and (0)° = 0. 

22 C.17. Theorem. If X is a non-meager Baire set of a topological group 
<G,.,u) then the set X . X~l ( = E{x . y_1 \ x eX, y e X}) is a neighborhood 
of the unit element. 

The main result needed, is 22 C.16. For convenience the proof will be preceded by 
the following proposition with a self-evident proof. 

22 C.18. If f is a homeomorphism of a space & onto itself, then for each subset X 
of 0 we have f[X*] = (/[X])*, f[X°] = in particular, X is meager or 
relatively locally non-meager if and only if f\X~\ has the corresponding property. 

Proof of 22 C.17. It is sufficient to show that X° . (AT0)"1 <= X . X~\In fact, X° 
is non-void because X is non-meager and hence X°. (XQ)~1 contains the unit (if 
x eX°, then x . x~l eX° . (X0) -1); on the other hand X° is open and so certainly 
X°. (JT)-1 is open. The inclusion X° . (X0)'1 c X . X'1 follows from 22 C.16 and 
22 C.18 by a simple calculation. First notice that x e Y. Y ~1 if and only if x . Y n Y 4= 
4= 0 (x e Y. Y _ 1 is equivalent to x = yt. y2

 1 for some and y2 in Y, and x . 7 n 
n Y =(= 0 is equivalent to x . y2 = yi for some y± and y2 in Y). Now suppose xeX°. 
. (.X°)_1, hence x . X° n X° * 0. By 22 C.18 x . X° = (x . X)° because {y x . y} 
is a homeomorphism. Thus 0 4= x . X° n X° = (x . X)° n X°; by 22 C.16 the latter 
set is (x . X n X)°, and therefore x . X n X 4= 0 which means that x e X . X~1. 

22 C.19. Corollary. If X is a subgroup of a topological group 'S and if X is 
a non-meager Baire set of (S, then X is open in <S, and by 19 B.11, X being an open 
subgroup, X is also closed. It follows that a connected topological group contains 
no proper non-meager subgroup which is a Baire set. — Notice that X is an open 
subgroup if any only if AT is a neighborhood of the neutral element and apply 22 C.17. 

It is to be noted that theorem 22 C.17 applies-to topological linear spaces. Since 
every topological linear space over R or C is connected, we obtain from 22 C.19: 

22 C.20. Corollary. If X is a subspace of a topological linear space ££ over R 
or C, and ifX is a non-meager Baire set in HC, then X = i f . 

The following example shows that there exists a subgroup of the additive group R 
of reals which is not a Baire subset of R. 
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22 C.21. Example. Let us consider the space R of reals as a linear space over Q 
and let B be a base of R over Q, that is, each real number is a linear combination 
Erjhj of elements bt of B with rational coefficients r i ; and B is a linearly independent 
collection over Q, that is S>;6( = 0 with rf in Q and different bt in B implies rt = 0 
for each i. Let us choose a sequence {£>„} in B such that bn #= bm if n + m, and for 
each n e N let us consider the linear space J2?„ which spans B1 u (b0) u ... u (b„), 
where B1 is the set of all b e B with b + bn for n e N. Clearly {jz?„} is an increasing 
sequence of linear subspaces of R (over Q) and \j{£f„} = R. Since R is non-meager 
(by 22 B.2), some if„ is non-meager. If this non-meager £t?„ were a Baire set, the» 
by 22 C.19 necessarily <£n = R because R is connected by 20 B.2. But <£n 4= R by 
construction. 
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