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CHAPTER IV 

UNIFORM AND PROXIMITY SPACES 

(Sections 23-25) 

We have defined the concept of a uniformly continuous mapping of a semi-pseudo-
metric space into another one. In Section 23 we shall examine the most general kind 
of spaces which enables one to define the concept of a uniformly continuous mapping, 
namely semi-uniform spaces. Section 24 concerns a particular kind of semi-uniform 
spaces, the uniform spaces, which are related to semi-uniform spaces similarly as 
pseudometrics are to semi-pseudometrics. In Section 25 the properties of semi-uni-
form spaces will be developed and the so-called proximity spaces will be introduced 
and studied. Particular attention is given to the Stone-Weierstrass theorem for proxi-
mity spaces, and to uniformly continuous extensions of bounded uniformly 
continuous pseudometrics and functions. The results obtained will be applied later 
to closure spaces. 
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2 3 . S E M I - U N I F O R M S P A C E S 

In this section, which is the first of three closely related sections, we shall be con-
cerned with defining and developing the basic properties of semi-uniform spaces 
and uniformly continuous mappings. The next section investigates properties of 
a particularly important class of semi-uniform spaces, the so-called uniform spaces. 
The closing section of this chapter is concerned with developing the theory of the 
so-called proximally coarse semi-uniformities and the related concept of a proximity. 
In all three sections results concerning semi-pseudometrics, proved in 18 A—18 C, 
are assumed to be known. 

Here we begin with the definition of a semi-uniformity and with the description 
of a semi-uniformity in terms of uniformly continuous semi-pseudometrics. This 
will help the reader to understand the extent of the generalization which is obtained 
by introducing the concept of a semi-uniformity instead of a collection of semi-
pseudometrics uniformly equivalent to each other. In the second subsection we 
shall examine the relations between semi-uniformities and the induced closures. The 
third subsection, devoted to a discussion of the concept of a uniformly continuous 
mapping, is followed by an exposition of the basic constructions of new semi-uniform 
spaces from given ones, namely subspaces, sums and products; here the exposition 
parallels Section 17 dealing with the same constructions for closure spaces. 

A. SEMI-UNIFORMITIES AND UNIFORM COLLECTIONS 
OF SEMI-PSEUDOMETRICS 

It should be noted that the identity relation on a class P, denoted by JP, and the 
diagonal of P x P, denoted by AP, are different names and symbols for the same 
entity, namely for the class of all pairs <x, x> such that x e P. 

A relation for a set P is a subset of P x P. In this section we shall deal with rela-
tions for a set P containing the diagonal of P x P. By 12 A.2 these relations are 
termed vicinities of the diagonal of P x P or vicinities on P. Given a struct we 
want to speak about those properties of vicinities on which depend on the struc-
ture of 8P. To this end the following definition is introduced. 
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23 A.l. Definition. If & is a struct then a vicinity on SP is defined to be a vicinity 
on \3P\. We shall say that "Fis a vicinity of the diagonal ofá® x á9" meaning that F 
is a vicinity on i.e. a vicinity of the diagonal of \SP\ x It should be remarked 
that the sentence in quotes must be treated as an indecomposable expression (whether 
or not SP x 0 had been defined). 

23 A.2. Suppose that u is a closure operation for a set P. If [Ux | x 6 P} is a family 
such that Ux is a neighborhood of x in <P, u>, then the set 

U = £{[/* | x e P} = E{<x, | x e P, y e Ux} 

is a vicinity of the diagonal on P and I/[x] = Ux for each x in P. Let /JU be the collection 
of all such U. Obviously is a filter on P x P consisting of vicinities of the diagonal 
of P x P and, for each x in P, the collection \°U\ [x] (of all subsets of P of the form U [x], 
U e 11) is the neighborhood system at x in <P, u). Conversely, if is a filter on 
P x P consisting of vicinities of the diagonal, then the collection \fll\ [x] is a filter 
on P the intersection of which contains x for each x in P; by 14 B.10 there exists 
a unique closure operation u for P such that \fU\ [x] is a local base at x in <P, u) 
for each x in P. This closure operation will be called the closure induced by 
We have proved that every closure operation for P is induced by a filter on P x P 
consisting of vicinities of the diagonal, and conversely, every such filter induces 
a closure operation. It is to be observed that closures induced by different filters 
may coincide; for example, let be the collection of all vicinities of the diagonal 
of P x P and let be a subset of ^ consisting of all U e such that t/[x] = P 
for all x in P excepting a finite number of x's. Obviously both filters induce the dis-
crete closure for P but °Uy =t= if P is infinite. It follows that such filters define 
a more restrictive structure for P than a closure operation. Now let d be a semi-
pseudometric for a set P and let us consider the collection of all vicinities of the 
diagonal of ? x P containing a set of the form E{<x, _y> | d(x, y} < r>}, > 0. 
Clearly aUi is a filter on P x P consisting of vicinities, and the closure induced 
by aUi coincides with the closure induced by d. The filter aUi has a significant property: 
it has a base consisting of symmetric vicinities, that is of vicinities U such that 
U = t / - 1 ; in fact, the vicinities of the form E{<x, y> | d<x, < r}, r > 0, are 
symmetric and form a base for Next it is apparent that two semi-pseudometrics di 
and d2 are uniformly equivalent (in the sense of Definition 18 B.14) if and only if 
aUil = Thus the notion of a uniformly continuous mapping of a semi-pseudo-
metric space into another one depends only on the corresponding filters. This 
section is devoted to an investigation of "symmetric" filters on P x P, consisting of 
vicinities of the diagonal of P x P, and called semi-uniformities. As it stands, 
the concept of a semi-uniformity is a generalization of the concept of a semi-
pseudometric; this enables one to define the notion of a uniformly continuous 
mapping in a most general situation. 

23 A.3. Definition. A semi-uniformity for a set P is a filter K on P x P satisfying 
the following two conditions: 
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(u 1) each element of Hi contains the diagonal of P x P, i.e. f)Hl => AP; 
(u 2) if U e Hi, then C7"1 contains an element of Hi. 
Since Hi is a filter, condition (u 2) may be replaced by the following formally 

stronger condition: 
(u2') if UeHl, then IT1 e«f. 

A semi-uniform space is a struct <P, Hi) such that P is a set afid Hi is a semi-uni-
formity for P. 

A base for a semi-uniformity Hi is a subcollection "f of Hi such that each ele-
ment of Hi contains an element of "f; stated in other words, a base for a semi-uni-
formity Hi is a filter base for the filter Hi. A sub-base for a semi-uniformity Hi is 
a subcollection if of Hi such that the collection of all finite intersections of elements 
of if is a base for Hl\ stated in other words, a sub-base for a semi-uniformity Hi is 
a filter sub-base for the filter Hi. 

If Hi is a semi-uniformity for a set P then [Hi] [x] = E{t/[x] | U e Hi) is a filter 
on P and x e t/[x] for each x in P. By 14 B.10 there exists a unique closure u for P 
such that [Hi] [x] is a local base at x in <P, m> for each x in P. This closure is defined 
to be the closure induced by Hi. 

23A.4. Theorem. Conditions (u 1) and (u2) are necessary and sufficient for 
a filter base on P x P to be a base for a semi-uniformity for P. Conditions (u 1) 
and (u2) are sufficient (but not necessary) for a filter sub-base on P x P to be 
a sub-base for a semi-uniformity for P. — The proof is straightforward and may 
be left to the reader. 

Corollary. If {Hla} is a non-void family of semi-uniformities for a set P, then 
the union of {Hfaj is a sub-base for a semi-uniformity for the set P. 

23 A.5. A collection if of sets is a sub-base for a semi-uniformity for a set P 
if and only if if + 0, each element of if is a vicinity of the diagonal of P x P, 
and ifWeif then W~x contains a finite intersection of elements o f i f . 

Proof. Let us consider the collection "f consisting of all finite intersections of 
elements of i f . If if is a sub-base for a semi-uniformity, then "f is a base and there-
fore, by 23 A.4, if Vs "f then V <= V'1 for some V in ~f\ it follows that for each 
U in if the set J7_1 contains a finite intersection of elements of i f ; evidently if 4= 0 
and each element of if contains the diagonal. Conversely, assuming that if 4= 0, 
f)W r> AP, and if U e if then U~1 contains a finite intersection of its elements, one 
can show without difficulty that "f is a filter base satisfying conditions (u 1) and (u 2); 
now by 23 A.4 "f is a base for a semi-uniformity and finally, by definition, if is 
a sub-base for a semi-uniformity. 

23A.6. Remarks, (a) A semi-uniformity Hi is a semi-uniformity for exactly 
one set P, namely P = DU = EU for any U in Hi. Thus the relation {<P, Hi> ->• 
-»• Hi | <P, Hi) semi-uniform space} is one-to-one and ranges on the class of all semi-
uniformities. 



23. S E M I - U N I F O R M S P A C E S 399 

(b) The collection of all symmetric elements of a given semi-uniformity Hi is a base 
for HI; actually, if U e Hi, then U~1 e Hi by (u 2') and thus (17 n U ~ e Hi. But U n U ~1 

is symmetric and is contained in U. 
(c) Suppose that Hi is a semi-uniformity for a set P and u is the closure induced 

by Hi. If "V is a base (a sub-base) for Hi, then [ f ] [x] is a local base (a local sub-base) 
at x in <P, u> for each x in P. It follows that if Hi has a base of cardinal m, then the 
local character of <P, u) is at most m. 

23A.7. Examples, (a) The collection Hi of all subsets of P x P containing 
the diagonal is clearly a semi-uniformity for the set P. The collection consisting of 
only one element, namely the diagonal of P x P, is a base for Hi. Clearly Hi is the 
largest semi-uniformity for P, that is, if V is a semi-uniformity for P, then ~f <=. Hi. 
Evidently, Hi induces the discrete closure. Let Hly be the collection of all subsets 
U c P x P of the form * X,}, where { X j is a finite cover of P. Obviously Hlx 
is a filter base and fulfils conditions (u 1), (u2). Thus Hl± is a base for some semi-
uniformity "V for P. Clearly "K induces the discrete closure operation for P. If P 
is infinite, then the diagonal of P x P does not belong to V and hence "f ^ Hi. 
Thus, if P is infinite, then Hi and if are distinct semi-uniformities inducing the same 
closure operation. The smallest semi-uniformity for P consists of exactly one element, 
namely P x P; the induced closure is accrete and (P x P) is the only semi-uniformity 
for P inducing the accrete closure for P. 

(b) If d is a semi-pseudometric for a set P, then the collection of all sets of the 
form Ur = E{<j, x> | d(y, x> < r}, r > 0, is a filter base on P x P satisfying con-
ditions (u 1) and (u 2)) ((u 1) follows from y> = 0 and (u 2) from the symmetry 
of d). By. 23 A.4 this collection is a base for a semi-uniformity Hi which will be said 
to be induced by d. The semi-pseudometric d induces a closure for P. It is almost 
self-evident that these closures coincide; indeed, given an x in P, {l/P[x] | r > 0} 
is a local base at x with respect to the closure induced by the semi-uniformity 
(23 A. 6 (c)) and the same family is a local base at x with respect to the semi-pseudo-
metric closure because i/r[x] is the open r-sphere about x. 

(c) Two semi-pseudometrics are uniformly equivalent (in the sense of definition 
18 B.14) if and only if they induce the same semi-uniformity. 

(d) The metric {<x, y} -» |x — _y|} of the metric space R of reals induces a semi-
uniformity by (b). Unless the contrary is explicitly stated, if R is considered as a semi-
uniform space it is to be understood that the semi-uniformity is that just described. 

23 A.8. Theorem. A semi-uniformity Hi is semi-pseudometrizable (i.e. induced 
by a semi-pseudometric) if and only if it has a countable base. 

Proof. I. If Hi is induced by a semi-pseudometric d, and M is a set of positive 
reals the infimum of which is zero, then evidently the collection of all E{<x, _y> | 
| d(x, < r}, re M, is a base for Hi. Since M can be taken countable, the "only if" 
part follows. — II. Conversely, let {[/„ | n e N} be a base for Hi. Without loss of genera-
lity we may and shall assume that U0 = P x P and U„ = U'1 => Un + 1 for each n. 
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Putting d(x, y) = 2~" if and only if <x, y} e U„ — Un+l and d(x, y} = 0 
otherwise (i.e. if <x, y} e fl{^n})> we obtain a semi-pseudometric d for P which 
induces 1l. 

23 A.9. Definition. A semi-pseudometric d for a semi-uniform space <P, H} 
is said to be uniformly continuous if the semi-uniformity induced by d is contained 
in 1l, i.e. E{<x, y> | d(x, y> < r} e 11 for each positive real r. A uniform collection 
of semi-pseudometrics is the collection of all uniformly continuous pseudometrics 
for a semi-uniform space. 

23 A.10. Theorem. A collection Ji of semi-pseudometrics is a uniform collection 
of semi-pseudometrics if and only if Ji is non-void, all elements of Ji are semi-
pseudometrics for the same set, say P, and the following two conditions are ful-
filled: 

(a) di e Ji, d2e Ji imply di + d2e Ji\ 
(b) if d is a semi-pseudometric for P and if for each r > 0 there exists a d' in Ji 

and an s > 0 such that d'(x, y} < s implies d(x, y) < r, then d e Ji. 
Proof. First suppose that Ji is the collection of all uniformly continuous semi-

pseudometrics for a semi-uniform space <P, 11>. Clearly, {<x, y} -* 0 | <x, y~) e 
e P x P} £ Ji and hence Ji + 0. Evidently every de Ji is a semi-pseudometric 
for P and hence all the d e Ji are for the same set. If dlt d2 e Ji, d = + d2, 
r is a positive real and 0 < s < 2 - 1 . r , then 

E{<x, | d(x, y> < r}) = (E{<x, | d^x, y> < s} n 
n E « x , | d2(x, y} <s})e1i, 

which shows that d is a uniformly continuous semi-pseudometric for <P, 1i}, i.e. 
d e Ji. Condition (b) is an immediate consequence of the definition of uniformly 
continuous semi-pseudometrics. The second part of the proof is an immediate 
consequence of the proposition which follows. 

23 A.ll. Let Ji he a non-void collection of semi-pseudometrics for a set P and 
let "V be the set of all sets of the form E{<x, | d(x, y) < r], d £ Ji, r > 0. Then 
"V is a sub-base for a semi-uniformity and if Ji fulfils condition (a) of 23 A.10, 
then y is a base for a semi-uniformity. If y is a base for a semi-uniformity 1l 
and Ji fulfils condition (b) of 23 A.10, then Ji is the set of all uniformly continuous 
semi-pseudometrics for <P, 11). 

Proof. Every element of y is a symmetric vicinity of the diagonal of P x P and 
therefore, by 23 A.4 y is a sub-base for a semi-uniformity. Now suppose that 
dy + d2 e Ji whenever du d2 e Ji\ it will be shown that y is a filter base. If 
Vu V2 £ y, Vi = E{<x, y) | di(x, y) < rt}, i = 1, 2, where rf; e Ji and r{ >0, 
then Vx n V2 contains the vicinity E{<x, y) | (dt + d2) <x, y) < ?•}, where r = 
= min (rl5 r2). Finally, if y is a base for a semi-uniformity 11 and if d is a uniformly 
continuous pseudometric for <P, 1l) then clearly d fulfils the assumptions of con-
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dition (b) of 23 A.10; thus if M fulfils (b), then every uniformly continuous semi-
pseudometric for <P, Hi} belongs to Ji. 

23 A.12. Definition. If M is a non-void collection of semi-pseudometrics for 
a set P, then by 23 A.11 the set of all E{<x, y> | d<x, y} < r}, deJl, r > 0 is 
a sub-:base for a semi-uniformity which is defined to be the semi-uniformity gener-
ated by Jl. 

23 A.13. Theorem. If a semi-uniformity Hi is generated by a non-void collection 
J( of semi-pseudometrics for a set P, then U e Hi if and only ifU c P x P and there 
exists a finite sequence | i ^ n} in J( and a positive real r such that t <x, y) | 
| i g n} < r implies <x, y ) e U. 

Proof. The set Jl ^ of all finite sums of semi-pseudometrics from J( contains 
with each d^ and d2 their sum dt + d2. Now the statement follows from 23 A.11. 

Let Hi be a semi-uniformity for a set P, Jl be the set of all uniformly continuous 
semi-pseudometrics for <P, Hi> and let "V be the semi-uniformity induced by Ji. 
Obviously is contained in Hi. Now we shall prove that Hi = "V. 

23 A.14. If Hi is a semi-uniformity for a set P, then Hi is generated by the set Jl 
of all uniformly continuous semi-pseudometrics for <P, Hi) which assume only two 
values, 0 and 1. 

Proof. If U is a symmetric element of Hi and if d(x, y) = 0 for <x, y} eU and 
d(x, y} = 1 otherwise, then clearly d = {<x, y) -» d(x, y> | <x, e P x P} 
is a uniformly continuous semi-pseudometric for <P, Hi}. 

As a corollary we obtain the following result which shows that a semi-uniform 
space if . uniquely determined by the collection of all uniformly continuous semi-
pseudometrics, and that a semi-uniformity Hi is the smallest semi-uniformity contain-
ing every semi-uniformity induced by a uniformly continuous semi-pseudometric 
for <P, HI}. 

23 A.15. Theorem. If <P, Hi) is a semi-uniform space then U eHl if and only 
if U c P x P and there exists a uniformly continuous semi-pseudometric d for 
<P, 0>y such that d <x, < 1 implies <x, y> e U. 

B. SEMI-UNIFORM CLOSURE OPERATIONS 

By definition 23 A.3, if Hi is a semi-uniformity for a set P and u is the closure 
induced by Hi, then \Hl\ [x] is the neighborhood system at x in <P, u> for each 
x e P. This subsection is concerned with various descriptions of the closure induced 
by a semi-uniformity. 

23 B .l. Definition.' A continuous semi-uniformity for a space <P, u> is a semi-
uniformity for P such that the closure induced by Hi is coarser than u. A closure 
operation u will be called semi-uniformizable if u is induced by a semi-uniformity. 

26—Topological Spaces 
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Recall that if P is a closure space then a semi-neighborhood of the diagonal of the 
product space P x P is a neighborhood of the diagonal in ind (P x P), i.e., a subset U 
of P x P such that l/[x] n U~ *[x] is a neighborhood of x in P for each x e P. 

23 B.2. If 11 is a continuous semi-uniformity for a closure space <P, w> then 
each element of 1l is a semi-neighborhood of the diagonal in <P, u) x <P, u>. 
The set of all semi-neighborhoods of the diagonal of <P, u> x <P, u> is a continuous 
semi-uniformity for <P, u>. 

Proof. Let v be the closure induced by 1l. If U e 1l, then L/[x] is a neighborhood 
of x in <P, v) for each x in P, and v being coarser than u, U[x] is also a neighbor-
hood of x in <P, u>. Since U-1 belongs to 11, l / - 1 [x] is also a neighborhood of x 
in <P, m>. Thus 17 is a semi-neighborhood of the diagonal of <P, «> x <P, «>. 
Now let if be the set of all semi-neighborhoods of the diagonal of <P, «> x <P, w>. 
Since tŜ  is the neighborhood system of the diagonal in ind (<P, u) x <P, w>), 
if is a filter consisting of vicinities of the diagonal, and clearly U eif implies l / _ 1 e 
e i f ; thus if is a semi-uniformity which is, evidently, continuous. 

Corollary. Let <P, u> be a closure space and let H be the set of all semi-neigh-
borhoods of the diagonal of <P, u> x <P, «>. T/ien 11 is the largest continuous 
semi-uniformity for <P, u> and i/ic closure induced by 11 is the finest semi-uni-
formizable closure coarser than u. Finally, d is a continuous semi-pseudometric 
for <P, u> if and only if d is a uniformly continuous semi-pseudometric for <P, H~y. 

23B.3. Theorem. In order that a closure operation u for a set P be semi-uni-
formizable it is necessary and sufficient that x e u(y) imply y e u(x), i.e. if x 
belongs to the closure of a one-point set (_y), then y belongs to the closure of (x). 

Proof. I. Suppose that u is induced by a semi-uniformity 11 and let *f be the set 
of all symmetric elements of 11. Since f is a base for 11 (23 A.6 (b)), x e uX if and 
only if F[x] n X =)= 0 for each V in "f. Now, if x e u(y), then y e F[x] for each V 
in "f, and each Ve "f being symmetric, we obtain x e V\y\ for each Fin "f, which 
means that y e w(x). — II. Conversely assume the condition and consider the largest 
continuous semi-uniformity 1l for <P, u>. We shall prove that 11 induces u. It is 
sufficient to show that, for each x e P and each neighborhood W of x, there exists 
a U in 11 such that L/[x] t= W. Choose a family {Vy \ y e P} such that Vy is a neigh-
borhood of y in <P, u> for each y, Vx c W, and if y $ u(x) then x e (P — Vy). Put 
F = E{Fj, | y e P}, U = F u F - 1 . Obviously U is a semi-neighborhood of the dia-
gonal and hence U e1l.lt will be shown that t/[x] = Vx (<= W) and hence that U 
is the required element of 11. Clearly t/[x] Vx. If y e (C/[x] — Fx), then y e F~'[x] 
(because F[x] = Fx) and hence x e F[y] = Vy, thus by construction y e u(x) and 
by our condition x e u(y); hence y e Vx because Vx is a neighborhood of x. But 
this contradicts our assumption y $ Vx. 

Before proceeding on we shall prove an important characterization of semi-
neighborhoods of the diagonal. 
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23 B.4. Theorem. Let P be a closure space. In order that a symmetric subset U 
of P x P be a semi-neighborhood of the diagonal ofPxP it is necessary and 
sufficient that X c for each subset X of P. 

Proof. I. First suppose that U is a semi-neighborhood of the diagonal and let 
X <= P. If x e X, then l/[x] n X =j= 0, so that y e L/[x] for some y in X; U being 
symmetric, we obtain x e l/[.y]. Thus X cz TJ\X~\. — II. Now suppose thatX <= C/[Z] 
for each X <= P. Since U is symmetric, to show that U is a semi-neighborhood of the 
diagonal it is sufficient to prove that t/[x] is a neighborhood of x in P for each 
x e P. But by our condition P - U[x] <=. U[P - t/[x]] = P - (x) and hence 
L/[x] is indeed a neighborhood of x. 

Suppose that a closure u for a set P is induced by a semi-pseudometric d and let 
U, = E{<x, y) | d(x, y> < r} for r > 0. For each X <= P the set l/r[X] is the open 
r-sphere about the set X in <P, d) and therefore uX cz i/r[Ai]. Furthermore uX = • 
= n { t / f M | r > 0} since uX is the set of all x e P which have zero distance from X.. 
Now we shall prove that the same formula is true for every semi-uniformity induc-
ing the closure u. 

23 B.5. Theorem. Suppose that a closure u for a set P is induced by a semi-
uniformity and "f~ is a base of Hi. Then 

uX = nM*] \Ue®} = nM*] | Uer} 
for each X <= P. 

Proof. Each element of Hi is a semi-neighborhood of the diagonal of <P, u> x 
x <P, u> (by 23 B.2) and therefore, by 23 B.4, uX cz t/[X] for each symmetric 
U in ^ and hence each U in Hi; this establishes the inclusion c . If x e ( P — uX), 
then F[x] n X = 0 for some V in "V; selecting any element V1 of "f contained in 
Vn V~1 we obtain x Ki[X] which establishes the inverse inclusion and comple-
tes the proof. 

The theorem just proved gives a direct description of semi-uniform closures. 
Now we shall prove an interesting and perhaps a little surprising description of the 
product u x u where u is a semi-uniform closure. 

23 B.6. Theorem. Suppose that a closure operation u for a set P is induced 
by a semi-uniformity Hi and <P x P, u x u) is the product space <P, u> x <P, w>. 
Then 

(u x u)X = n{t/ o X o U | U e Hi} 

for each subset X of P x P. 
The proof is based upon the following lemma which will often be used in the' 

sequel. 

23 B.7. Lemma. If U and X are relations for a set P, then 
(*) UoXoU = x U[y] | <x, y} e X), 

26* 
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and ifU is symmetric (i.e. U = U 1), then 

(**) UoXoU = UM*] ^ U[y] | <x, y} e X} . 
Proof. Formula (*•) follows immediately from (*). To prove (*) it is sufficient 

to observe that the left side of (*) is the set of all pairs <z, f) such that <z, x> e U 
and (y, t} eU for some <x, e X, i.e. the set E{<z, f> | z e t/ _ 1[x], t e U[y~\ for 
some <x, y) in A"} which is, evidently, the set on the right side of (*). 

Proof of 23 B.6. Let "V be the collection of all symmetric elements of Hi. Thus "V 
is a base of Hi and ] [x] is a local base at x in <P, u> for each xeP. As a con-
sequence, the collection consisting of all sets K[x] x V\y~\, Ve "V, is a local base at 
<x, j>> in <P x P, u x u). Since the relations V are symmetric we have <z, f> e 
e K[x] x V\y] if and only if <x, e F[z] x V[t]. But <z, i> e (u x u)X if and 
only if X n (V[z\ x K[i]) =)= 0 for each V in tT, i.e. for each F in there exists 
a pair <x, y) in X such that <z, i> e K[x] x V[y~\. By virtue of formula (**) of 
23 B.7 we obtain <z, i> s (« x u)X if and only if <z, i> e V„ X o V for each Ve 
Theorem 23 B.6 follows. 

In concluding we shall describe semi-uniform closures in terms of uniformly 
continuous semi-pseudometrics. 

23B.8. Theorem. Suppose that a closure u for a set P is induced by a semi-
uniformity Hi and Hi is generated by a collection M of semi-pseudometrics. Finally, 
let Ji^ be the set of all finite sums of semi-pseudometrics from M. Then 

(a) xeuX if and only if the distance from x to X is zero in <P, d> for eachd 
in J(j. 

(b) A subset U of P is a neighborhood ofxeP in <P, u> if and only if U contains 
an open r-sphere about x in <P, d) for some d in Jl 

(c) A net {xa} converges to x in <P, w> if and only if the net [d(xa, x>} converges 
to zero in R for each d in Ji. 

Proof. Statements (a) and (b) are evident (see 23 A.12 and 23 A.13). State-
ment (c), with M replaced by Jlx, is also evident (e.g. one can use (b)). It remains to 
notice that if the net {d(xa, x>} converges to zero in R for each d in M, then this net 
converges to zero for each d in J( 

Remark. In (a) and (b) one cannot replace M x by Jl. 

C. U N I F O R M L Y C O N T I N U O U S M A P P I N G S 

By Definition 18B.14 a mapping / of a semi-pseudometric space < P i n t o 
another one <P2, d2) is said to be uniformly continuous if for each r > 0 there 
exists an s > 0 such that d^x, y} < s implies d2(fx,fy> < r, stated in other words, 
if Hli is the semi-uniformity induced by dit then for each U2 in Hi2 there exists a Ut 

in Hi x such that <x, y> e U^ implies </x, fy> e U2, i.e., that (gr f x gr f)\U <= 
<= U2 holds. 
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23 C.l. Definition. A mapping / of a semi-uniform space <P, 1/} into a semi-
uniform space (Q, is said to be uniformly continuous if for each Fin "f; there 
exists a U in 1l such that <x, y) e U implies < f x , fy> e F A semi-uniformity It is 
said to be uniformly finer than a semi-uniformity V, and is said to be uniformly 
coarser than 1l, if they are for the same set, say P, and the identity mapping of 
<P, 11s) onto <P, "V} is uniformly continuous. Finally a uniform homeomorphism 
is a one-to-one mapping of a semi-uniform space <P, 11} onto a semi-uniform space 
(Q,yy such that both/and f~l are uniformly continuous. 

Thus a mapping/: < P L 5 I / T ) < P 2 , d 2 y for semi-pseudometric spaces is uniformly 
continuous (in the sense of Definition 18B.14) if and only if / : <P1? 1L{) -*• 
-* <P2 ,1l2y is uniformly continuous, where <^,is the semi-uniformity induced by d t . 

Before proceeding we shall prove various characterizations of uniform continuity 
which will usually be employed without any reference. 

23 C.2. Theorem. Suppose that f is a mapping of a semi-uniform space <P, H\> 
into a semi-uniform space <Q, V>> ,s a base for 11 and V is a sub-base for V. 
Each of the following conditions is equivalent to the uniform continuity of f: 

(a) for each V in V there exists a U inli such that ( g r / x g r / ) [17] <= V; 
(b) (gr f x gr / ) _ 1 \V~\ e 1i for each V in "T; 
(c) (gr/ x g r / ) - 1 [F] e 11 for each V in t"; 
(d) for each V in V there exists a U in 1l' such that ( g r / x g r / ) [L/] c F, i.e. 

/[C7[x]] e F[/x] for each x in P. 

Proof. For brevity let h stand for the relation g r / x gr/. Thus Dh = P x P, 
Eh c Q x Q and h(x, y) = </x,/y). — I. Since the implication (<x, y} eU => 
=> < fx, f y } e F) is equivalent to /i[(7] c V, conditions (a) is merely a restatement of 
the definition. - II. Since 1l is a filter onPxP and /i[[/] c Fif and only if h~l[V]=> 
=> U (because Dh = P x P), condition (b) is equivalent to condition (a). — III. 
Obviously (b) implies (c). If (c) is fulfilled and Fis an element of V, then there exists 
a finite family {Ff | i g n} in -f" such that n{^>} c V\ by (c) h'^V^j e 1l for each i, 
hence n ^ - 1 ^ ; ] } e ^ is a filter) and finally /j"'[F] belongs to 11 because His 
a filter on PxP and h'^U] => = ~ IV. Clearly (a) imp-
lies (d), for if /i[C] c Ffor some U e 11, then we can choose a U' in 1l' with U' <= U; 
clearly /i[C/'] <= V). Assuming (d), if F is any element of V, we can choose finite 
families {F ;} in ir' and { l / J in H' such that 6 Fand h[Ul] <= Fffor each i; 
clearly U = e ^ and h[U] <= F, which establishes (d) => (a). 

23 C.3. Theorem. A semi-uniformity "V is uniformly coarser than a semi-uni-
formity 11 if and only if f <= H. 

23 C.4. Theorem. The composite of two uniformly continuous mappings is 
a uniformly continuous mapping; more precisely, if f : <P, IIs) -* <Q, 'Vs) and 
g : <Q, y y -* (R, i v y are uniformly continuous mappings, then gof: <P, 1 i y 
-* <R, #*) is also a uniformly continuous mapping. 
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Proof. Put h = g a f . If WeW, then V = (gr g x gr g)~l [W~]eV because 
g is uniformly continuous, and U = (gr/ x gr f)~l [F] e Hi because / is uniformly 
continuous. But clearly U = (gr h x gr h)~l [W~\, which establishes that h is uni-
formly continuous. 

23 C.5. Theorem. The identity mapping of a semi-uniform space onto itself 
is a uniform homeomorphism. If f is a uniform homeomorphism then f~x is also 
a uniform homeomorphism. If f and g are uniform homeomorphisms and E*/ = 
= D*g, then g of is also a uniform homeomorphism. It follows that the relation 
E{<P, Q) | there exists a uniform homeomorphism of P onto Q} is an equivalence 
on the class of all semi-uniform spaces. 

Proof. The first two statements are obvious, and to prove the third one it is suf-
ficient to observe that ( j » / ) " 1 = f~1 o 1 and to apply 23 C.4 to both g of and 
rlog~l. 

Recall that if we say that a semi-pseudometric space <P, d) has a property for 
closure spaces it is to be understood that the induced closure space <P, u> has this 
property, and if a mapping /for semi-pseudometric spaces has a property defined for 
closure spaces it is to be understood that / transposed (7 B.6) to a mapping for closure 
spaces has this property. 

23 C.6. Conventions. If we say that a semi-uniform space <P, Hiy has a pro-
perty defined for closure spaces it is to be understood that the induced closure space 
has this property, e.g. a semi-uniform space <P, Hiy is discrete means that the induced 
closure space is discrete. Similarly, a semi-uniformity Hi is finer than a semi-uniformity 
"K means that the closure induced by Hi is finer than the closure induced by "V. If / 
is a mapping of a semi-uniform space <PX, Hi xy into a semi-uniform space <P2, Hi2>, 
then the mapping / : <PX, u^y —» ^P2, m2X where u( is the closure induced by Hi¡, 
is termed /transposed to a mapping for closure spaces, and if we say that a mapping f 
for semi-uniform spaces has a property defined for mappings for closure spaces, 
it is to be understood that / transposed to a mapping for closure spaces has this 
property; e.g. / : <PX, Hlxy <P2, Hi2> is continuous means that / : <P1; mx) 

m2> is continuous. Finally, if we say that a semi-pseudometric space has 
a property defined for semi-uniform spaces it is to be understood that the induced 
semi-uniform space has this property, and a similar convention is used for mappings. 

23 C.7. Theorem. Every uniformly continuous mapping is continuous and every 
uniform homeomorphism is a homeomorphism. 

Corollary. If a semi-uniformity Hi is uniformly finer than a semi-uniformity 
then Hi is finer than 

Proof. It is sufficient to show that every uniformly continuous mapping is con-
tinuous. Suppose that / : <P, Hiy (Q, is uniformly continuous; we have to 
show that the mapping / : (P, uy -+ <P, t>) is continuous, where u and v are the in-
duced closures. By the uniform continuity of / , [ / = ( / x [F] e Hi for each V 
in y , but clearly C/[x] = for each x in P. Since the sets of the form 
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fx], Ve V, form a neighborhood system at x in <P, v>, and the sets C/[x], U e Hi, 
form a neighborhood system at x in <P, u> (we only need that L/[x] are neighbor-
hoods), / is continuous by 16 A.4. 

If Hi and "f are distinct semi-uniformities inducing the same closure u for 
a set P, then the identity mapping J : <P, Hi} -» <P, "T) is a homeomorphism 
but either J : <P, -> <P, tT> or its inverse J: <P, iT> <P, Hi> is not uniformly 
continuous. Thus a homeomorphism need not be uniformly continuous. 

23 C.8. Suppose that f is a continuous mapping of a closure space <P, i<> into 
a closure space <Q, v), Hi is the largest (= uniformly finest) continuous semi-
uniformity for <P, u) and ~f is a continuous semi-uniformity for <Q, Vs). Then 
f : <P, Hi) -*' (Q, "V") is uniformly continuous. 

Proof. If Ve^f, then V is a semi-neighborhood of the diagonal of (Q, v) x 
x (Q, v) by 23 B.2, and /being continuous, ( / x / ) ~ 1 [17] is a semi-neighborhood 
of the diagonal in <P, u) x <P, u); hence, by 23 B.2, U belongs to Hi. 

23 C.9. It is often rather difficult to decide whether or not two semi-uniform 
spaces are uniform homeomorphs of each other. A uniform property is a pro-
perty is a property ^ such that if P possesses then each uniform homeomorph 
of P also possesses To show that two semi-uniform spaces are not uniformly 
homemorphic it is sufficient to find a uniform property which is possessed by one 
space but not by the other. For example, a semi-uniformity for a set P is said to be 
uniformly discrete if it contains the diagonal of P x P. Clearly "to be uniformly 
discrete" is a uniform property. Thus a uniformly discrete semi-uniform space is 
uniformly homeomorphic to no semi-uniform space which is not uniformly discrete. 
Next, it has already been shown (23 A.2) that a discrete semi-uniformity for an infinite 
set need not be uniformly discrete. Thus there exist two discrete semi-uniformities 
for an infinite set P which are not uniformly homeomorphic. A less trivial example 
may be in place. A semi-uniformity Hi for a set P is said to be totally bounded if for 
each U in Hi there exists a finite subset X of P such that U\X\ = P. Obviously "to 
be totally bounded" is a uniform property. It may be shown that R is not totally 
bounded but every bounded subset of R endowed with the metric semi-uniformity 
is totally bounded ( 2 5 B .16 ) . Thus, for example, R and ] —1, 1 [ are not uniformly 
homeomorphic but they are homeomorphic (e.g. {x x . (1 + |x|)_1 | x 6 R} : R -* 
-*'] 1, 1 [ is a homeomorphism). 

The following theorem describes uniform continuity in terms of uniformly con-
tinuous functions. The simple proof is left to the reader. 

23 C.10. Theorem. Suppose that f is a mapping of a semi-uniform space Hi 
into another one <P2, Hi2>, J(i is the set of all uniformly continuous semi-pseudo-
metrics for <P,-, Hl-^y and Hl2 is generated by a collection Jt'2 of pseudometrics. Then 
each of the following two conditions is equivalent to the uniform continuity o f f : 

(a) if d e M%, then d o (gr / x gr / ) 6 Jl^; 
(b) if d e Jt'2, then d o ( g r / x g r / ) 6 Jt 
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23 C . ll . Definition. The class of all semi-uniformities ordered by the relation 
is uniformly finer than "f) will be denoted by U. Given a set P, the ordered subset 

U consisting of all semi-uniformities for P will be denoted by U(P). The set of all 
uniformly continuous mappings of a semi-uniform space P into another one Q will 
be denoted by U(P, Q). Occasionally we will use the letter U to denote the class of 
all semi-uniform spaces. 

Remarks, (a) It may be in place to recall that C denotes the class of all closure 
operations ordered by the relation {u is finer than v}, and C(P, Q), where P and Q 
are closure spaces, denotes the set of all continuous mappings of P into Q. In ac-
cordance with earlier conventions, the symbol C(P, Q) is also meaningful if P and Q 
are semi-uniform spaces or semi-pseudometric spaces; e.g. if <P, Hy is a semi-
uniform space and <Q, d) is a semi-pseudometric space then C(<P, <Q, d>) is 
the set of all continuous mappings of <P, 8Py into (Q, d}; if u is the closure induced 
by and v is the closure induced bydthen E {< / , / : <P, u> -> <Q, u>> | / e C « P , <%}, 
<Q, d})} is a one-to-one relation ranging on C(<P, u), <P, u>). Similarly, U(<P,, dt}, 
<P2, d2y) is meaningful if dt are semi-pseudometrics; it denotes the set of all uni-
formly continuous mappings of <Pt, dt} into <P2, d2). If is the semi-uniformity 
induced by dh then 

e { < / , / : < p „ <P2, <%2yy | / e u « p l 5 <*,>, <p2 , d2y)} 

is a one-to-one relation ranging on U« P l 5 <P2, ^2>). 
(b) Theorem 23 C.4 can be restated as follows: the composition of mappings is 

a strongly associative partial composition on the class of all uniformly continuous 
mappings. 

D. S U B S P A C E S , S U M S A N D P R O D U C T S 

Much of the introduction to Section 17 concerning the constructions for closure 
spaces may serve as a motivation for the definitions given below; it is only necessary 
to replace the expressions closure space, closure operation, continuous mapping 
and "coarser than" by the corresponding expressions for semi-uniform spaces, 
that is, semi-uniform space, semi-uniformity, uniformly continuous mapping and 
"uniformly coarser than". 

23 D.l. Definition. If <P, is a semi-uniform space and Q <= P, then the col-
lection \1f\ n (Q x Q) (consisting of U n (Q x Q), U e ll) is obviously a semi-
uniformity for Q which is called the relativization of "U to Q; the corresponding 
semi-uniform space is said to be a subspace of <P, tfiy. A class of semi-uniform spaces 
is said to be hereditary if, with each space it contains all subspaces of 2P. 

As in the case of closure spaces a subspace of a space is uniquely determined by the 
underlying set. 

23 D.2. Suppose that <Q,iry is a subspace of a semi-uniform space (P,1/y. 
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Then 
(a) The closure induced by V is a relativization of the closure induced by Hi; 
(b) TV is the unique uniformly coarsest ( = smallest) semi-uniformity for Q which 

renders the identity mapping of Q into <P, Hi) uniformly continuous (compare 
with 17 A.2). 

(c) If R c Q, then <R, tT> is a subspace of <Q, tT> if and only if <R, lT> is 
a subspace of <P, Hi). 

The proof is straightforward and therefore left to the reader. 
In connection with statement (a) we shall prove the following result: 

23 D.3. If <g, y> is a subspace of a semi-uniformizable closure space <P, «> 
and if a semi-uniformity "V induces v, then "V is a relativization of a semi-uniform-
ity inducing u. 

Proof. Let Hlx be the largest continuous semi-uniformity for <P, u> (see 23 B. 2) 
and put Hi = \f"\ u [ ^ J ( = the collection of all Ut, Kef", 6 HiIt is 
easily seen that Hi has the required properties. 

In accordance with the general description of the restriction of a mapping we intro-
duce the following definition (compare with definition 17 A.12 of the restriction of 
mappings for closure spaces). 

23 D.4. Definition. The restriction of a mapping f for semi-uniform spaces is 
a mapping / : 0 -* 2. such that 0> is a subspace of D*/ and 2. is a subspace of E*/. 

Remark. As in the case of closure spaces, the concept of a subspace was defined 
in such a manner that 23 D. 6 hold. A restriction of a mapping / for semi-uniform 
spaces is a mapping g for semi-uniform spaces such that the graph of g is a restriction 
of the graph of /, D*g is a subspace of D*/ and E*g is a subspace of E*/; if D*g = 
= D*f then g is a range-restriction, and if E*g = E*/ then g is a domain-restriction. 
In accordance with the general rule 7 B. 5, the extension of a mapping g for semi-
uniform spaces is any mapping / such that g is a restriction of / . A uniform em-
bedding is a mapping f for semi-uniform spaces such that the range-restriction / : 
D*/ E/ is a uniform homeomorphism (where Ef is considered as a space). 

23 D.5. Every restriction of a uniformly continuous mapping is a uniformly 
continuous mapping. — Obvious. 

23 D.6. A mapping f of a semi-uniform space P into a semi-uniform space Q 
is uniformly continuous if and only if the range-restriction of f to a mapping of P 
onto the subspace Ef of Q is uniformly continuous. 

Proof. "Only if" follows from 23 D.5 and "if" is obvious. 

23 D.7. If g is a restriction of a mapping ffor semi-uniform spaces and g x and 
are the transposes of f and g to mappings for closure spaces, then gx is a restriction 
of fy. — Obvious. 



410 IV. U N I F O R M A N D P R O X I M I T Y S P A C E S 

Remark. Sometimes we shall need the following immediate consequence of the 
definitions: An injective mapping of a semi-uniform space <P, 11s) into a semi-uniform 
space <Q, "f~y is a uniform embedding if and only if / i s uniformly continuous and 
there exists a sub-base %' for 11 such that for each U in 11' there exists a Fin f 
with ( / x /) '[[/]=> Vn (E/ x E/). 

Now we proceed to sums of semi-uniform spaces. 

23 D.8. Definition. The sum of a family {<Pa, \ a e A} of semi-uniform 
spaces, denoted by £{<Pa, 1t„y}, is the semi-uniform space <P, IIs) where P = £{Pa} 
and 11, called the sum semi-uniformity, is the collection of all subsets of P x P con-
taining a set of the form 

(*) U{(injfl x inja) [t/a] \aeA} 
where Ua e 1la for each a in A. 

Of course we must show that 11 is actually a semi-uniformity, that is, that the 
relations of the form (*) form a base of a semi-uniformity. By virtue of 23 A.4 it 
is sufficient to show that each relation (*) is a vicinity, that is, contains the diagonal, 
and \J~l is of the form (*) whenever U is of that form. But this is almost self-evident. 

23 D.9. Theorem. Let <P, <%} be the sum of a family {<Pa, 1/a} \ a e A} of semi-
uniform spaces. Then 

(a) If ua is the closure induced by 11 a for each a, then the sum closure E{ua} 
is induced by H. 

(b) The mappings inja : <Pa, 1ta} -» <P, 11s) are uniform embeddings (which will 
be called the canonical embeddings). 

(c) 11 is the uniformly finest semi-uniformity for P such that all the mappings 
inja : <Pa, <Way <P, 11} are uniformly continuous. 

(d) A mapping f of <P, 11s) into a semi-uniform space <Q, "Vs) is uniformly 
continuous if and only if all the mappings f o inja : <Pa, 11a> -» <Q, are uni-
formly continuous. 

Proof. Denote by Pa the set inja [Pa] = (a) xP a and let 1l'a be the relativization 
of 11 to Pa. If {[/„} is a family such that Ua e 11 a for each a and if U is the cor-
responding set (*), then U n (Pa x Pa) = (inja x inja) [C/a]. It follows that inja : 
: <Pa, 1ia} -» <Pa, 11'^) is a uniform homeomorphism for each a (which proves (b)) 
and (j{Pa x P'a} belongs to 11. Since {P'a} is a disjoint family, we find that each set P'a 

is simultaneously open and closed in the space <P, 1/}. It follows that the closure 
induced by 11 coincides with the sum closure £{«„}. 

Statement (c) is almost evident; indeed, if "V is a semi-uniformity for P such that 
all mappings inja: <Pa, H^) <P, "Vs) are uniformly continuous, then necessarily Y 
contains each set of the form (*), but the sets of the form (*) form a base for K 
and hence 1l c. V. It remains to prove (d). If / is uniformly continuous then each 
mapping in question is uniformly continuous as the composite of two uniformly 
continuous mappings. Conversely suppose that each composite in question is uni-
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formly continuous and let V be an element of "f. Since each composite is uniformly 
continuous we can choose a family {Ua} such that Uae Hta and 

( / o inja x f0 inja) [17J c V 

for each a. If U is the set (*) corresponding to {[/„}, then clearly ( / x / ) [C/] <= V; 
this establishes the uniform continuity of / . 

Now we shall turn to products. 
23 D.10. Definition. The product of a family {<Pa, Hla) | a e A) of semi-uniform 

spaces, denoted by Il{<Pa, Hi \ a e A] is defined to be the semi-uniform space 
<P, Hi) where P is the product of the family {Pa} of the underlying sets, and Hi, called 
the product semi-uniformity, is the collection of all subsets of P x P containing 
a set of the form 

(*) E{<x, j>> | <x, e P x P, a e F => <pra x, pra j>> 6 Ua) 
where F is a finite subset of A and Ua e Hla for each a. Sets of the form (*) are then 
called the canonical elements of the product semi-uniformity. 

It must be shown that the collection of all canonical elements of Hi is a base for 
a semi-uniformity. It is sufficient to show that the collection of all sets of the form (*) 
with F one-point form a sub-base for a semi-uniformity; but this follows from the 
Corollary of 23 A.4. The main properties of products are summarized in the following. 

23 D. l l . Theorem. Let <P, Hi) be the product of a family {<Pa, ^ a > | a e A} 
of semi-uniform spaces. Then 

(a) The product closure is induced by Hi, more precisely, if ua is induced by 
Hia for each a, then the product closure n{ua} is induced by Hi. 

(b) Each mapping pra : <P, Hi) -»• <Pa, Hia> is uniformly continuous (and called 
the projection of <P, Hi) into <Pa, Hla)). 

(c) Hi is the uniformly coarsest (= smallest) semi-uniformity such that all the 
mappings pr„ : <P, Hi) -* <P0, Hla) are uniformly continuous. 

(d) A mapping f of a semi-uniform space <Q, into <P, Hi) is uniformly 
continuous if and only if all the mappings pr a o/ : (Q, V ) -* <Pa, Hia>, aeA, are 
uniformly continuous. 

(e) Fix an a in A. If the projection pr̂  : <P, Hi)-* <P„, Hla} is surjective (in parti-
cular, if P 4= 0y), then a mapping h of <P„ Hi„> into a semi-uniform space <R, ~W"} 
is uniformly continuous if and only if the composite h o pra : <P, Hi) -* <R, 
is uniformly continuous. 

Proof. I. Statement (a) will follow from the following observation: If Ua is any 
subset of Pa x Pa and x is any point of P then the set 

(**) | y e P, Pra y e Ua[pra x]} 
coincides with the set 

(*•*) (E«x, | <x, y> e P x P, <pra x, pra 6 C7a}) [x] . 
Indeed, given x e P, the sets (**) with a in A and Ua in Hla form a local sub-base 
at x in <P, Il{ua}> (because \HlJ [pra x] is a neighborhood system at pra x in 
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<Pa, ua>) and the sets (***) with a in A and Ua in °Ua form a local sub-base at x in 
<P, u} (because the sets E{<x, y} | <x, y} e P x P, <pra x, pra y} e <^a} form a sub-
base for 11). 

II. Let fa be the projection of <P, 11} into <Pa, Ha}\ we have (/a x / a ) - 1 [[/a] = 
= E{<x, y> | <x, j/> e P x P, <pra x, pra e U.} e ^ for each Ua in 11 a, and 
this means that each fa is uniformly continuous and establishes statement (b). If 1l' 
is any semi-uniformity such that all mappings pra : <P, 11'} -> <Pa, Ha}, a e A, are 
uniformly continuous, then necessarily every set 

E{<x, y> | <x, y> e P x P, <pra x, pra y> e Ua} 
with a in A and Ua in 1la belongs to 1l'\ but these sets form a sub-base for 1l and hence 
11 <= 1l'\ this shows that 11' is uniformly finer than 11 and establishes statement (c). 

III. The proof of (d): if / i s uniformly continuous, then each mapping in question 
is uniformly continuous as the composite of two uniformly continuous mappings 
(the projections are uniformly continuous by (b)). Conversely, suppose that all 
the mappings in question are uniformly continuous. Let H, be the sub-base for 1i 
consisting of all the sets 

U'a = E{<X, I <x, e P x P, <pra x, pra 6 Ua), asA,Uae1ia. 

By 23 C.2 it is sufficient to show that ( / x / ) - 1 [t/a] e Y for each a in A and Ua 

in 1la. But this is almost self-evident as ( / x / ) _ 1 [U'a] = (pra of x pra o / ) _ 1 [C7a] 
and pra 0 / is a uniformly continuous mapping of <Q, V } into <Pa, 

IV. It remains to prove (e): If h is uniformly continuous then the mapping h o pr̂  
of <P, 11) into <R, i f } is uniformly continuous as the composite of two uniformly 
continuous mappings (by 23 C.4), namely of the projection of <P, 11} into <P„, 11 
and h. Conversely, suppose that k = h o pra : <P, 11} -* <R, i f } is uniformly 
continuous and the projection/a into <Pa, <%x} is surjective. Clearly (k x fc)-1 [PF] = 
— (fa x /a) - 1 [_(h x h)'1 [W]] for each W in i f . Now the proof will be accom-
plished if we show that Ux <= Pa x Pa, ( f a x / a ) - 1 [Ua] e 11 implies Ux e 1lx provided 
that fa is surjective. But this is evident. 

23 D.12. If {Pa} and {Qa} are families of semi-uniform spaces such that Qa is 
a subspace of Pafor each a, then the product of {Qa} is a subspace of the product 
of{Pa}. - Evident. 

23 D.13. Definition. The product of a family {/a} of mappings for semi-uniform 
spaces, denoted by II{/,}, is defined to be the mapping of n{D*/a} into Il{E*/a} 
which assigns to each point {xa} the point {/a xa}; thus 

n{/ a } = <nreI{gr/a}, n{D*/a}, n{E*/ a }>. 

The reduced product of a family {/,} of mappings for semi-uniform spaces is defined 
if and only if all fa have a common domain carrier, say P, in which case the reduced 
product is that mapping of P into Il{E*/a} which assigns to each x e P the point {/ax}; 
thus the graph of the reduced product is the relational reduced product of the graphs. 
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It is to be noted that if/is the product (reduced product) of a family {/„} of map-
pings for semi-uniform spaces and if ga is fa transposed to a mapping for closure 
spaces and g is / transposed to a mapping for closure spaces, then g is the product 
(reduced product) of By 17 C.13 the product (reduced product) of conti-
nuous mappings is a continuous mapping. The same is true for mappings for semi-
uniform spaces. 

23 D.14. Theorem. The reduced product f of a family [ f a | a e A} of mappings 
for semi-uniform spaces is uniformly continuous if and only if all the mappings 
fa are uniformly continuous. 

Proof. Since clearly /„ = <pra o gr f D*/a, E*/a> for each a in A, the result 
follows form 23 D.11 (d). 

23 D.15. Theorem. Let f be the product of a family [ f a \ a e A) of mappings for 
semi-uniform spaces. If all the fa are uniformly continuous, then f is also uniformly 
continuous. Conversely, if Qf 4= 0 and f is uniformly continuous, then all the fa 

are uniformly continuous. 
Proof. I. For each a in A let ga denote the mapping fa o (pr„ : D*/ D*/,). 

Evidently / i s the reduced product of the family {ga \ a e A}. According to the pre-
ceding theorem the mapping / is uniformly continuous if and only if all the map-
pings gtt are uniformly continuous. — II. Now if all the fa are uniformly continuous, 
then all the ga are uniformly continuous as composites of uniformly continuous 
mappings, and finally / is continuous by I. — III. Now let/be uniformly continuous. 
By I all the ga are uniformly continuous. If in addition D/ 4= 0, then the mappings 
pra : D*/ -» D*fa are surjective and the uniform continuity of fa follows from the 
uniform continuity of ga by 23 D.11 (e). 

23 D.16. Theorem. Let f be the product of a family of mappings {/,}. If each fa 

is a uniform homeomorphism or a uniform embedding then f has the same pro-
perty. Conversely, if Qf 4= 0 and f is a uniform homeomorphism or a uniform 
embedding then each fa has the same property. 

Proof. Applying 23 D.15 to both /and / - 1 we obtain the statement concerning 
uniform homeomorphisms. Statements concerning uniform embeddings follow 
immediately from the corresponding statements for uniform homeomorphisms and 
23 D.6. 

Remark. In this connection, one may show that the operation of forming products 
is commutative in a certain sense, namely if {Pa | a e A} is a family of semi-uniform 
spaces and q> is a bijective mapping of A, then n{Pa} and n{P,,a} are uniform ho-
meomorphs of each other. 

23 D.17. Definition. In agreement with the notation for the products of closure 
spaces, we shall denote the product n{P | a e A} of semi-uniform spaces by PA. 

It is apparent from 23 D.16 that PA and QB are uniformly homeomorphic 
provided that P and Q are uniformly homeomorphic and A and B are equipollent. 
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The next theorem implies that every semi-uniform space can be uniformly embedded 
into the product of semi-pseudometrizable semi-uniform spaces. 

23 D.18. Theorem. Suppose that \Hla \ a e A} is a non-void family of semi-
uniformities for a set P and Hi is the smallest semi-uniformity containing all the Hla 

(thus is a sub-base for Hi by the corollary to 23 A.4). For each a in A let fa 

be the identity mapping of <P, Hi) onto <P, Hla). The reduced product f of 
[ f a | a e A) is an embedding (of <P, Hi) into II{<P, Hla) \ a e 4}) . 

Corollary. Suppose that a semi-uniformity Hi for a set P is generated by 
a collection Jl of semi-pseudometrics. For each din Ji let Hld be the semi-uniformity 
induced by d and fd be the identity mapping of <P, Hi) onto <P, Hld). Then the 
reduced product of the family [fd \ de Jl) is an embedding. 

In particular, every semi-uniform space admits an embedding into the product 
of a family of semi-pseudometrizable semi-uniform spaces (use 23 A.15). 

Proof of 23 D.18. Obviously the mapping f is injective, and by 23 D.14 / is uni-
formly continuous because each fa is uniformly continuous. It remains to find a sub-
base Hi' for Hi so that each set [ / x / ] [i/], U e Hi', contains a set of the form Vn 
n (E/ x E f ) for some element V of the semi-uniformity of E*/. Let Hi', = (j{Hla); 
if U e Hi', then U e Hia for some a and clearly we can take 

V = E{<x, y> | <x, y)ePA x PA, <pra x, pr„ y> e 17} 

(indeed, ( / x / ) [ l / ] = F n (Ef x E/)). 
Recall that, by 18 A.17, a pseudometric d for a closure space <P, u> is continuous 

(i.e. the closure induced by d is coarser than u) if and only if the function d : <P, u) x 
x <P, »> R is continuous. The final theorem asserts a similar result for uniform 
continuity. 

23 D.19. Theorem. In order that a pseudometric d for a semi-uniform space 
<P, Hi) be uniformly continuous it is necessary and sufficient that the function 
d : <P, Hi> x <P, HI) -> R be uniformly continuous. 

Proof. If d:(P,Hl) x <P,Hl)-> R is uniformly continuous, then for each 
r > 0 there exists a U in Hi such that <xl5 x2> e U, (yt, y2) e U implies |d(x t , x2) — 
~ d(yu < r; in particular, if ^ = y2, then y2) e U and d(yu y2) = 0,. 
and hence <x1; x2) e U implies d(xu x2) < r which proves that d is a uniformly 
continuous semi-pseudometric for <P, Hi). Notice that the triangle inequality was 
not used. Conversely, suppose that d is a uniformly continuous pseudometric. We 
must show that for each r > 0 there exist a U in Hi and a V in Hi so that (x^ yY) e U, 

^2) e V implies ¡¿(xj, x2) — d(yu y2)\ < r. Choose a positive s such that 
2s ^ r and a U in Hi such that (zl, z2) e U implies d(zu z2) < s. Now, if <xx, yi) e 
e U and <x2, y2) e U, then (by 18 A.11) 

\d<xu y2) - d(yu y2)\ ^ d(xu j^) + d(x2, y2) < 2s ^ r 

which establishes the uniform continuity of the function d on <P, Hi) x <P, Hi). 
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2 4 . U N I F O R M S P A C E S 

Each semi-pseudometric d for a set P induces a semi-uniformity °U\ the collection 
of all Ur = E{<x, y> | d(x, y) < r}, r > 0, is a base for 11. If d is a pseudometric, 
that is, if it fulfils the triangle inequality, then 

(u 3) for each U in 11 there exists a Fin 11 such that Vo V<= U . 

Indeed,, if U s H, then Ur c U for some r > 0 and we may put F = Us where s 
is any positive real less than 2 _ 1 . r; in fact, by the triangle inequality, Us o Us <= l/2j. 
In this section the semi-uniformities °U satisfying (u 3), the so-called uniformities, 
will be studied. Roughly speaking, uniformities are related to semi-uniformities as 
pseudometrics to semi-pseudometrics. Pseudometrics play the same part in the 
theory of uniformities as semi-pseudometrics do in the theory of semi-uniformities, 
e.g. every semi-uniformity is generated by the collection of all uniformly continuous 
semi-pseudometrics and every uniformity is generated by the collection of all uni-
formly continuous pseudometrics. A semi-uniformity has a countable base if and only 
if it is semi-pseudometrizable, and a uniformity has a countable base if and only 
if it is pseudometrizable, i.e. induced by a pseudometric. We shall see that axiom 
(u 3) has topological consequences. Without doubt, uniformizable closures, i.e. the 
closures induced by a uniformity, form the most important class of closure opera-
tions. We know that semi-uniform spaces enable one to define uniformly continuous 
mappings in the most general situation; however, uniformly continuous mappings 
of uniform spaces have further important extension properties which are often 
included in the intuitive content of a uniformly continuous mapping. 

In subsection A we shall prove some topological conclusions of axiom (u 3), we 
shall clarify the role of pseudometrics in the theory of uniform spaces (as indicated 
above) and prove that the class of all uniform spaces is completely productive, here-
ditary and closed under formation of sums. 

If 1l is a semi-uniformity then there exists a (unique) largest uniformity contained 
in 11 which is said to be the uniform modification of 11. Uniform modifications 
are introduced and studied in subsection B. 

If ^ is a topological group and 1l is a local base at the unit element, then the 
collection of all UL = E{<x, y> | x _ 1 . y e U}, U 6 K, is a base for a uniformity 
called the left uniformity of and the collection of all UR = E{<x, y} | x . y - 1 e [/}, 
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U e Hi, is a base for a uniformity* called the right uniformity of 'S. The union* u if 
is a sub-base for the so-called two-sided uniformity of <S. These uniformities are 
called the group uniformities of 'S. It turns out that all the three group uniformities 
induce the closure structure of CS. Properties of group uniformities are examined 
in subsection C. 

In 19 B.17 we introduced the closure of uniform convergence for the set F(y, IS) 
of all mappings of a struct £f into a commutative topological group <§ and we 
proved that a uniform limit of continuous mappings is a continuous mapping. In 
subsection D we shall endow the set F (Sf , * ) of mappings of a struct Sf into a uni-
form space * with a uniformity such that, if Sf is a closure space, then C(£f, * ) is 
closed in F(y, *) , i.e. the uniform limit of continuous mappings is continuous, and 
if £f is a uniform space, then * ) is closed in F(F, *) , i.e. the uniform limit 
of uniformly continuous mappings is uniformly continuous. We shall show that the 
result of 19 B.17 mentioned above is a corollary of results of subsection D. 

The concluding subsection E is concerned with the description of uniformities 
by means of uniform collections of covers. We shall introduce the important con-
cepts of a uniform cover of a uniform space and a uniformizable cover of a closure 
space (this latter is often termed a normal cover). 

A. UNIFORMITIES AND PSEUDOMETRICS 

24 A.l. Definition. A uniformity for a set P is a semi-uniformity Hi for P satis-
fying condition (u 3) above. A uniform space is a semi-uniform space <P, Hi) 
such that Hi is a uniformity. Recall that a closure operation induced by a semi-uni-
formity is said to be semi-uniformizable. Naturally, a closure operation induced 
by a uniformity will be called uniformizable, and a set endowed with a uniformiz-
able closure operation will be called a uniformizable space. 

Uniformizable spaces will be studied rather extensively in Section 28. Nevertheless, 
to clarify the force of condition (u 3), in the proposition which follows we shall 
prove several properties of uniformizable closures. It is to be noted that all of these 
properties also follow immediately from the description of a uniformity in terms of 
uniformly continuous pseudometrics (24 A.9), the proof of which depends essentially 
upon the pseudometrization lemma (18B.10) where the proof is rather technical; 
as a result, the proofs of simple topological consequences of condition (u 3), stated 
in the next proposition, may not be clear. Therefore we prefer to give a direct proof. 
Let us recall that a semi-uniformizable space need not be topological, and the ele-
ments of a semi-uniformity are semi-neighborhoods of the diagonal (relative to the 
product of the induced closures) and need not be neighborhoods. 

24 A.2. Let Hi be a uniformity for a set P and let u be the closure induced by Hi. 
Then 

(a) <P, u> is a topological space (thus every uniformizable space is topological); 
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(b) The collection of all closed (in <P, u) x <P, u>) elements of Hi is a base 
for Hi; 

(c) The collection of all open (in <P, u> x <P, m>) elements of Hi is a base 
for Hi, in particular every element of Hi is a neighborhood of the diagonal. 

Proof, (a) First let us recall that (by 23 B.5) we have uX = f)[Hl] [X] 
( = D{^|X1 \ UsHl}) for each X c P. Fix a Y <= P and a U e Hi. It must be shown 
that uuY c U[Y~]. Choose Fin Hi so that Fo F <= U. We have uY <= F[Y] and hence 
U U Y C u F [ Y ] ; but m F [ Y ] <= F [ F [ Y ] ] = F o F [ Y ] c L / [ Y ] . 

(b) Since <P, u) is a topological space, <P, u) x <P, u) is also topological, 
and consequently to prove (b) it is sufficient to show that each element U of Hi con-
tains the closure of an element Fof Hi. But if Fe °ll is chosen symmetric and such 
that Fo Fo Fez U, then the closure of Fis contained in F 0 Fo F(by 23 B.6) and 
hence in U. 

(c) Since <P, u) x <P, u> is topological, to prove (c) it is sufficient to show that 
the interior of any element U of Hi belongs to Hi. Choose a symmetric element Fof Hi 
such that Fo Fo V <=. U. It will be shown that F c: int U. By lemma 23 B.7 we have 

Fo F o F = U i ^ H x V[y] | <x, y} e V} . 

It follows that Fo Fo V, and hence U, is a neighborhood in <P, u> x <P, u) of 
each point <x, of V. 

Corollary. Every uniformizable space is locally closed, i.e., every neighborhood 
of any point x of a uniformizable space contains a closed neighborhood. 

The next proposition gives a necessary and sufficient condition for a semi-uni-
formity induced by a semi-pseudometric to be a uniformity. As a consequence, using 
the rather profound theorem (18 B.16), we obtain a pseudometrization theorem for 
semi-uniform spaces. 

24 A.3. A semi-pseudometric d induces a uniformity if and only if for each 
positive real r there exists a positive real s such that d(x, y~) < s, d(y, z) < s 
imply d(x, z> < r. In particular, a semi-uniformity induced by a pseudometric 
is a uniformity. 

Proof. Let d be a semi-pseudometric for a set P, and let Hi be the semi-uniformity 
induced by d. — I. First suppose that Hi is a uniformity. Given an r > 0, we can choose 
a U in Hi such that <x, y} e U o U implies d(x, y) < r, and an s > 0 such that 
d(x, y} < s implies <x, y> e U. Now if d(x, y} < s and d(y, z) < s, then <x, z) eU 
and hence d(x, z) < r, which shows that the condition is fulfilled. — II. Now suppose 
that the condition is fulfilled and U is any element of Hi. Choose a positive r such that 
d(x, y} < r implies <x, _y> e U. By the condition we can find a positive s such that 
d(x, y) < s, d(x, y} < s imply d(x, z) < r. Now if F is any element of Hi such 
that <x, y} e V implies d<x, y) < s, then V 0 V <= U; indeed, if <x, z) e V o F, 
then <x, y) e F <y, z) e Vfor some y, and hence d(x, y) < s, d(y, z) < s; this 
implies d(x, z) < r which yields <x, z) e U. 

27—Topological Spaces 
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24 A.4. Pseudometrization theorem. A semi-uniformity 11 is induced by a pseudo-
metric {i.e., is pseudometrizable) if and only if 11 is a uniformity with a countable 
base. 

Proof. It has already been shown (23 A.8) that a semi-uniformity 11 is induced 
by a semi-pseudometric if and only if 1l has a countable base. Combining this with 
24 A.3 we find that 11 is a uniformity with a countable base if and only if 1l is induced 
by a semi-pseudometric d satisfying this condition: for each r > 0 there exists an 
s > 0 such that d(x, y} < s, d(y, z> < s imply d(x, z> < r. By 18 B.16, however, 
this condition is necessary and sufficient for d to be uniformly equivalent to a pseudo-
metric. 

The concepts of a base and a sub-base for a semi-uniformity are useful in situa-
tions such as the following. To define a semi-uniformity for a set P it is sufficient to 
declare an appropriate collection of subsets of P x P to be a sub-base or a base. 
To prove that a filter 1l on P x P is a semi-uniformity for P it is sufficient to show 
that a base or a sub-base for 11 is a base or a sub-base for a semi-uniformity for P. 
Finally, to prove that a mapping/of <P, 11} into <Q, f > is uniformly continuous 
it is sufficient to show that ( / x / ) _ 1 [F] e 1i for each V from a sub-base for "V. 
In the first two cases it is necessary to use a sufficient condition for a collection of sets 
to be a base or a sub-base for a semi-uniformity. 

24 A.5. It has been shown that a filter base H on P x P is a base for a semi-uni-
formity if and only if 11 fulfils conditions (u 1) and (u 2). It is easy to show that 
condition (u 3) is necessary and sufficient for a base H for a semi-uniformity to be 
a base for a uniformity. Thus conditions (u l), (u 2) and (u 3) are necessary and suf-
ficient for a filter base on P x P to be a base for a uniformity. Next, it has been shown 
(23 A.4) that conditions (u 1) and (u 2) are sufficient for a filter sub-base on P x P 
to be a sub-base for a semi-uniformity. It is clear that condition (u 3) is sufficient 
for a sub-base for a semi-uniformity to be a sub-base for a uniformity. Thus con-
ditions (u 1), (u 2) and (u 3) are sufficient for a filter sub-base on P x P to be a sub-
base for a uniformity. In particular, the union of a non-void family of uniformities 
for a set is a sub-base for a uniformity. We shall need a necessary and sufficient 
condition for a filter sub-base on P x P to be a sub-base for a uniformity. 

24 A.6. A collection W of sets is a sub-base for a uniformity if and only if iV 
is a sub-base for a semi-uniformity and for each Win W there exists a finite family 
{Va} in "MP such that VoVcz Wfor V = Dis-

proof. Let "V be the set of all non-void finite intersections of sets from Hf. Clearly 
•W is a sub-base for a uniformity if and only if "f is a base for a uniformity. If "MP 
is a sub-base for a uniformity, then is a base for a uniformity and therefore "V 
fulfils (u 3), in particular, if WeW then Va V c Wfor some Ve Y. Conversely sup-
pose that kF is a sub-base for a semi-uniformity and each We if contains a set Vo V 
for some V in It is to be shown that -f" fulfils (u 3). If U e Y, then U = 
= | a e A) for some finite family in "W", if {Fa} is a family in "V such that Va a 
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o Va<= Wa for each a, then V = f|{X} belongs to "f and F . F c VaoVa<= Wa for 
each a and hence V o V <= = U-

Combining 24 A.6 with 23 A.5 we obtain the following result: 
24 A.7. Theorem. A collection if of sets is a sub-base for a uniformity for a set P 

if and only if if 4= 0, each element of if is a vicinity of the diagonal of P x P 
and for each W in if there exist finite families {Wa} and {W^} in if such that 
Vez W-1 and V „ V <= W where V= f l M and V = 

24 A.8. Theorem. The class of all uniform spaces is hereditary and closed under 
formation of products and sums. 

Proof. If Vo V c U, V' = (Q x Q) u Fand U' = (Q x Q)nU then V 0 V <= 
c U', wliich shows that the relativization of a uniformity is a uniformity. To prove 
that the sum of a family of uniform spaces is a uniform space notice that, in the no-
tation of 23 D.8, if U = U{(inja x inj0) [t/fl], V = U{(inja x inja) [Fa]} and Va 0 F a c 
t= Ua for each a, then Vo V c U; now apply 24 A.5. Finally, to prove invariance 
under products, notice that, in the notation of 23 D.10, the collection consist-
ing of all U'a = {<x, | <pra x, pra y} e Ua] is a uniformity for IIPa whenever 
is a uniformity for Pa, and \j{Hi'a} is a sub-base for the product semi-uniformity "U. 
By 24 A.5 Hi is a uniformity if each Hl'a is a uniformity. 

By 23 A.14 every semi-uniformity is generated (in the sense of 23 A.12) by the 
collection of all uniformly continuous semi-pseudometrics. Now we shall prove 
that a semi-uniformity is a uniformity if and only if it is generated by a collection 
of pseudometrics. Thus semi-uniformities are related to uniformities as semi-pseudo-
metrics to pseudometrics. 

24A.9. Theorem. Let Jl be the collection of all uniformly continuous pseudo-
metrics for a semi-uniform space <P, Hi}. The following conditions are equivalent: 

(a) °U is a uniformity. 
(b) For each U eHl there exists adinJl such that d(x, y~) < 1 implies <x, y} e U. 
(c) Jt generates Hi (in the sense of 23 A.12,). 
(d) A subcollection of Jl generates Hi. 
(e) <P, Hiy admits a uniform embedding into the product of pseudometrizable 

semi-uniform spaces. 
Proof. Obviously (b) => (c) =>(d). The implication (d) => (e) follows from 23 D.18, 

and (e) => (a) follows from Theorem 24 A.3 asserting that a semi-uniformity induced 
by a pseudometric is a uniformity and Theorem 24 A.8 asserting that every subspace 
of a product of uniform spaces is a uniform space. It remains to show that (a) implies 
(b). Assuming that Hi is a uniformity and U is an element of Hi, we can choose a se-
quence {[/„} of symmetric elements of Hi such that U0 <=• U and Un+1 o Un + 1 c U„ 
for each n. By 24 A.5 the collection of all Un is a base for a uniformity f c Hi which 
is pseudometrizable by 24 A.4. Let ď be any pseudometric inducing "f. Since U e "f, 
there exists a positive real r such that d\x, y} < r implies <x, j>> e U. Put d = 
= r - 1 . ď. 

27' 
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Combining 24 A.9 and 23 C.10 we obtain at once: 
24 A.10. Theorem. A mapping f of a semi-uniform space <P, 11s) into a uniform 

space <Q, "Vs) is uniformly continuous if and only if d o (gr / x g r / ) ( = {<x, y) -» 
-»d(fx,fy)}) is a uniformly continuous pseudometric for <P, 11s) for each uniformly 
continuous pseudometric d for <Q, "Vs). 

Remark. Notice that Theorem 24 A.2 is a corollary of Theorem 24 A.9 (b). 
24 A. l l . A semi-uniform space 2P is uniform if and only if 3? admits an embed-

ding into a product of pseudometrizable uniform spaces. 

B. UNIFORM MODIFICATION 

Let 11 be a semi-uniformity for a set P. Now consider the set U consisting of all 
uniformities contained in 11. The set M is non-void because (P x P) is a uniformity 
contained in 11. By 24 A.5 the union of U is a sub-base for a uniformity 1l' which is 
necessarily contained in 11, and hence 1l' e U. Thus 1t' is the largest (i.e. uniformly 
finest) uniformity contained in 11 (i.e. uniformly coarser than 11). 

24 B.l. Definition. The largest uniformity 1l' contained in a given semi-uniformity 
11 will be called the uniform modification of 1l, and the elements of 1l' will be called 
uniform elements of 1l\ the space <P, 1l') will be called the uniform modification 
of<P.V>. 

24 B.2. Theorem. The uniform modification of a semi-uniformity of <P, 11s) 
always exists. An element U of a semi-uniformity 1l is uniform if and only if there 
exists a sequence {{/„} in 11 such that U0 U and Un + 1 o Un + 1 c: TJnfor each n. 

Proof. The existence of uniform modifications has been already proved. If U 
is a uniform element of a semi-uniformity 1l, then U belongs to the uniform modifica-
ation 1l' of 1l and hence the required sequence {[/„} can be found in 11' ci 11. Con-
versely, if such a sequence {[/„} exists and V„ = U„ n U~l, then clearly V„ = V'1 

and Vn+l a V„+l c V„ (if we first show that U~+\ 0 U~+\ c U'1 for each n) and 
V0 c: U. By virtue of 24 A.S the collection of all V„ is a base for a uniformity "V. 
Clearly V a 11 and hence "V e 1l'. Since U e V we obtain U e 11', which shows that 
U is a uniform element of H. 

24 B.3. Lemma. Let f be a uniformly continuous mapping of a semi-uniform 
space <P, IIs) into another one <Q, "Vs). If V is a uniform element of "V, then 
( / x f)~l [K]*) is a uniform element of 1l. 

Proof. If Fis a uniform element of "V, then (by 24 B.2) there exists a sequence 
{V„} in "V such that V0 <= Fand F„+1o F„ + 1 c F„ for each n.Put U = ( f x f)~l [F] 
and U„ = (f x f)~ '[Fn] for each n. Since /is uniformly continuous, the set U as well 

*) Recall that we may write g instead of gr^(cf. 7 B.3) 
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as the sets U„ belong to Hi. It is easily seen that U0 <= U and Un+1 o Un+i <= U„ for 
each n. By 24 B.2 U is a uniform element of Hi. 

24B.4. Theorem. Suppose that Hi' is the uniform modification of a semi-uni-
formity Hi for a set P. Then a mapping f of <P, Hi} into a uniform space (Q,"f} 
is uniformly continuous if and only if the mapping f : <P,Hl'} -* (Q, "f} is 
uniformly continuous. 

Proof. If / : <P, Hi'} -»• <g, "T> is uniformly continuous, then / : <P, Hi> 
(Q> is uniformly continuous because Hi' <= Hi. Conversely suppose that / : 

<P, Hi} <g, V} is uniformly continuous, i.e. ( / x / ) _ 1 [F] e Hi for each F 
in " f . However, each element F of "f is a uniform element of "f and consequently 
each ( / x f)~ l [F], Fe " f , is a uniform element of Hi (by 24 B.3) and hence belongs 
to Hi'; this shows that the mapping / : <P, Hi'} -»• <Q, " f } is uniformly conti-
nuous. 

Corollary. If f is a uniformly continuous mapping of a semi-uniform space 
<P, Hl^y into another one <P2, Hl2}, and Hl\ is the uniform modification of Hi;, 
then the mapping f : <P1 ; Hii> -> <P2, Hl'2} is uniformly continuous. 

Proof. If / is uniformly continuous, then clearly / : <Pi, Hl{y -y (P2, Hl'2} is 
uniformly continuous and (by 24 B.4) the mapping / : <P1; Hi'} -* <P2, Hl'2} is 
uniformly continuous. 

It is useful to observe that the property of uniform modification stated in 24 B.4 
is characteristic for uniform modifications; more precisely, the following theorem 
is true. 

24 B.5. Theorem. The uniform modification W of a semi-uniformity Hi for a set P 
is the unique uniformity for P such that a mapping f of <P, Hi} into a uniform space 
<Q, "f} is uniformly continuous if and only if the mapping f : <P, i f } -* (Q, V} 
is uniformly continuous. 

Proof. By 24 B.4 the uniform modification of Hi fulfils the condition. To prove 
uniqueness, suppose that uniformities W1 and if 2 fulfil the condition (with if 
replaced by if i and i f 2 respectively). Since J : <P, i f { } <P, if^} is uniformly 
continuous, by the condition for i f i the mapping J : <P, Hi} -y <P, i f x } must be 
uniformly continuous, and by the condition for if 2 the mapping J : <P, i f 2 } 
-y <P, if !> must be uniformly continuous, i.e., if 2~=> if The same is true with 
ifY and i f 2 interchanged, i.e., <= i f 2 . Thus i f x = i f 2 . 

Remark. Recall that the topological modification tu of a closure operation u 
for a set P is the finest topological closure coarser than u. By 16 B.5 a subset U of P 
is a neighborhood of a point x in <P, xu} if and only if there exists a sequence {U„} 
of subsets of P such that Un c U for each n, x e U0 and Un+1 is a neighborhood of 
U„ for each n. Compare this result with 24 B.2. Theorem 24 B.5 corresponds to 
Theorem 16 B.4, which asserts that the topological modification of a closure opera-
tion u is the unique topological closure for the same set as u, say P, such that a mapping 
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/ of <P, u> into a topological space 2. is continuous if and only if the mapping 
/ : <P, r«> .2 is continuous. 

Now we shall describe the uniform modification of a semi-uniformity by means 
of uniformly continuous pseudometrics. 

24 B.6. Theorem. The uniform modification 1l' of a semi-uniformity °U for 
a set P is generated by the collection Ji of all uniformly continuous pseudometrics 
for <P, iiy.-

Proof. Let Ji' be the collection of all uniformly continuous pseudometrics for 
<P, H'). Since 11' is a uniformity, according to 24 A.9 it is generated by the col-
lection Jt'. Hence it is sufficient to show that Ji' = Ji. But this follows from 24 B.4 
and the fact that a semi-uniformity induced by a pseudometric is a uniformity 
(24 A.3); in fact, if 1ld is the semi-uniformity induced by a pseudometric d, then 
by 24 B.4 J : <P, <%} <P, 1id} is uniformly continuous if and only if J : <P, 1l"y 
-» <P, Hdy is uniformly continuous. 

By 23 A.9 a uniform collection of semi-pseudometrics is the collection of all uniformly 
continuous semi-pseudometrics for a semi-uniform space. We have seen that a semi-
uniform space is completely determined by its uniform collection of semi-pseudo-
metrics and a uniform space is uniquely determined by the collection of all uniformly 
continuous pseudometrics (24 A.9). In 23 A.10 a uniform collection of semi-pseudo-
metrics is described without any reference to semi-uniform spaces. Now we shall 
describe the collection of all uniformly continuous pseudometrics for a uniform 
space without any reference to uniform spaces. First we shall introduce some ter-
minology. 

24 B.7. Definition. A uniform collection of pseudometrics is the collection of all 
uniformly continuous pseudometrics for a uniform space. 

24 B.8. Theorem. A collection Ji is a uniform collection of pseudometrics if 
and only if Ji is non-void, all the elements of Jt are pseudometrics for the same set, 
say P, and the following two conditions are fulfilled: 

(a) if JI and d2 e Jt, then dx + d2e Jt . 
(b) if d is a pseudometric for P and if for each positive real r there exists a d' 

in Jt and an s > 0 such that d\x, y> < s implies d(x, y) < r, then de Jt. 
Proof. First suppose that Jt is the collection of all uniformly continuous pseudo-

metrics for a uniform space <P, H">. Clearly, {<x, y> -» 0 | <x, y> e P x P} e Ji 
and hence Ji # 0. If du d2, e Ji, then by 23 A.10, dt + d2 is a uniformly continuous 
semi-pseudometric for <P, H}; but dt + d2 is a pseudometric and hence dt + d2 

belongs to Jt. Finally, it follows from 23 A.10 that condition (b) is fulfilled. The 
second part of the proof is an immediate consequence of the proposition which 
follows. 

24 B.9. Let Jt be a non-void collection of pseudometrics for a set P and let "V 
be the collection of all the sets of the form E{<x, y} | d(x, y) < r}, d e Ji, r > 0. 
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Then "V is a sub-base for a uniformity 1l for P and if Ji fulfils condition (a.) of 
24B.8, then is a base for H. If "V is a base for H and Ji fulfils condition (b) 
of 24 B.8, then Ji is the set of all uniformly continuous pseudometrics for <P, IIs). 

Proof. By 23 A.11 the set "V is a sub-base for the semi-uniformity 11 generat-
ed by Ji, and, each deJi being a pseudometric, H is a uniformity by 24 A.9. The 
remaining statements follow from the corresponding statements of 23A.11. 

24 B.10. It may be appropriate to point out that the relation {11 -> Jim \ ll is 
a uniformity}, where Jtm is the set of all uniformly continuous pseudometrics for 
the uniform space <P, 11s) (P is uniquely determined by 1l) is a one-to-one relation 
ranging on the class of all uniform collections of pseudometrics, and 1l cz "V if and 
only if Jicn <=• J i y 

Now we shall turn to the topological conclusions of the results of this subsection. 

24 B. 11. Theorem. Suppose that <P,u) is a closure space. There exists a uni-
formly finest continuous uniformity 11 for the space <P, u>. The uniformity 11 
is the uniform modification of the uniformly finest semi-uniformity "V for <P, u). 
The closure u is uniformizable if and only ifu is induced by 1l. The closure induced 
by 11 is the finest uniformizable closure coarser than u. 

Proof. By 23 B.2 there exists the uniformly finest continuous semi-uniformity Y 
for <P, u). Obviously the uniform modification 11 of "V is the uniformly finest 
continuous uniformity for <P, u>, and the closure induced by 11 is the finest uni-
formizable closure coarser than u; in particular, u is uniformizable if and only if 1l 
induces u. 

24 B.12. Theorem. Suppose that 11 is the uniformly finest continuous uniformity 
for a closure space <P, u>. The set of all uniformly continuous pseudometrics 
for <P, 11s) coincides with the set of all continuous pseudometrics for <P, uStated 
in other words, the uniformly finest uniformity for a closure space <P, u> is gener-
ated by the collection of all continuous pseudometrics for <P, u). — Obvious. 

24 B.13. Definition. The uniformizable modification of a closure operation u 
is the finest uniformizable closure coarse than u. If <P, «> is a closure space, then 
a uniformizable neighborhood of the diagonal of <P, u> x <P, u> is defined to be 
an element of the uniformly finest continuous uniformity for <P, w>. 

Thus the uniformly finest uniformity for a closure space <P, u) consists of all 
uniformizable neighborhoods of the diagonal of <P, u> x <P, w>. Now we shall 
give two descriptions of uniformizable neighborhoods of the diagonal. 

24 B.14. Theorem. Let <P, u> be a closure space. Each of the following two 
conditions is necessary and sufficient for a subset U of P x P to be a uniformizable 
neighborhood of the diagonal of <P, u> x <P, m>: 

(a) there exists a continuous pseudometric d for <P, u) such that d(x, y} < 1 
implies <x, y) e U; 



424 IV. U N I F O R M A N D P R O X I M I T Y S P A C E S 

(b) there exists a sequence {t/„} of semi-neighborhoods of the diagonal of 
<P, w> x <P, u> such that U0 c U and Un+1 o Un+1 c Unfor each n. 

Proof. Condition (a) is necessary and sufficient by 24B.12. The necessity of (b) 
follows from the fact that every element of a continuous semi-uniformity for <P, u> 
is a semi-neighborhood of the diagonal of <P, u) x <P, m> (23 B.2). Finally, assume 
(b), put V„ = U„ n U'1 and consider the sequence {V„}. Clearly, V0 <= U, V„ = V~l 

and Vn+1 o Vn+i c: V„ for each n. Obviously the collection of all V„ is a base for 
a uniformity "V for P and each element of "f is a semi-neighborhood of the diagonal 
of <P, u> x <P, m>, and consequently f is a continuous uniformity for <P, u) (by 
23 B.2). Since U e "f, U is a uniformizable neighborhood of the diagonal of <P, »> x 
x <P, M>. 

24 B.15. Theorem. Lei u be a closure operation for a set P. The uniformizable 
modification of u is the unique uniformizable closure for P such that a mapping 
f of <P, u> into a uniformizable space <Q, v) is continuous if and only if the 
mapping f : <P, w> -> <<2, v) is continuous. 

Proof. I. For uniqueness, assume that uniformizable closures wt and w2 fulfil 
the condition. Since J = <P, h^) -> <P, wx> is continuous, with the condition applied 
to Wj, we find that J : <P, u> <P, Wj) is continuous; with the condition appUed 
to w2, we find that J : <P, w2> <P, Wj) is continuous. Thus W! is coarser than 
w2. The same argument may be applied with wt and w2 interchanged, and hence w2 

is coarser than this proves w1 = w2. — II. Now let w be the uniformizable modi-
fication of u and let / be a mapping of <P, u> into a uniformizable space <Q, v}. 
If / : <P, w) (Q, v) is continuous then f is continuous because w is coarser 
than u. Next, suppose that / i s continuous and let be the largest continuous semi-
uniformity for <P, u>. Let iV be the uniform modification of Hi and "V be a uniformity 
inducing the closure operation v. Since f is continuous, by 23 C.8 the mapping 
f : <P, Hiy <Q, "fy is uniformly continuous, and by 24 B.4 the mapping / : 
<P, "Wy -*• (Q, "f y is uniformly continuous; hence its transpose to / : <P, w> 
-v (Q,v} is continuous (by 23 C.7). 

It may be appropriate to point out the crucial step in the second part of the proof 
of the preceding theorem. 

24B.16. Let f be a continuous mapping of a closure space (P, u> into a closure 
space <Q, v). If is a continuous uniformity for <Q, v> and is the uniformly 
finest (i.e. largest) continuous uniformity for <P, then the mapping f : <P,W) -> 

!S uniformly continuous. — (23 C.8, 24 B.4). 
Corollary a. Let f be a mapping of a uniformizable closure space ( P l t into 

a uniformizable closure space <P2, u2> and Hi; be the largest continuous uniformity 
for <P{, uty, i = 1, 2. Then f is continuous if and only if f : (P1, Hl^y -* <P2, % 2 } 
is uniformly continuous. 

Corollary b. If f is a continuous mapping of a closure space <P, m> into a closure 
space (Q, u> and V is a uniformizable neighborhood of the diagonal of <Q, x 
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x <Q, u>, then (f x / ) 1 [F ] is a uniformizable neighborhood of the diagonal of 
<P, «> x <P, u>. 

It is to be noted that every uniformizable neighborhood of the diagonal is actually 
a neighborhood of the diagonal. The converse does not hold, see ex. 4. 

C. GROUP UNIFORMITIES 

Throughout this subsection, unless the contrary is explicitly stated, 'S = <G, •, u> 
will be a topological group and G will be the neighborhood system at the unit element 
denoted by 1, in (ê. The definitions, conventions and results of Section 19, in particu-
lar those of 19 B, are assumed. For each U in 0 put 

(1) UR = E « x , | <x, e G x G,x.y~leU}, 
UL = E{<x, | <x, y) e G x G, x" 1 . y e U} 

A simple calculation yields the following formulae (where V and U are elements of &)'. 
(2) URnVR = (Un V)R, ULnVL = (Un V)L . 
(3) Aa c: UR n UL (where AG is the diagonal of G x G). 
(4) U = U~l =>UR = UR\UL = Ull . 
(5) UR o VR cz ([t/] . UlOVlCZ ( [ [ / ] . 

24 C.l. Definition. It follows from 24 A.5 and formulae (2) —(5) that the collection 
Hr(<%l) of all UR(UL), Ue&,is abasefor a uniformity 01 (if); this uniformity will be 
called the right (left) uniformity of Again by 24 A.5 the collection 0 u if is 
a sub-base for a uniformity; this uniformity will be called the two-sided uniformity 
of <3. 

24 C.2. The collection n [WL] (consisting of all UR n VL, U e <9, Ve<9) 
is a base for the two-sided uniformity of tS. If 'S is commutative then all three 
uniformities of 'S coincide. — Obvious. 

Remark. If 0 = if, then 'S need not be commutative (see ex. 17). 

24 C.3. Remark. Let IS' = <G, *, u> where * = {<x, y} y . x \ <x, y} e G x 
x G}. Then evidently is a topological group and the right (left) uniformity of & 
coincides with the left (right) uniformity of Next, a right translation {x x . a} 
of & coincides with the left translation {x -»• a * x} of Using these facts we can 
derive from each proposition about left (right) uniformities a proposition about 
right (left) uniformities. 

24 C.4. All three uniformities of a topological group induce the closure structure 
of <3. 

Proof. First let us notice that 
(6) UL[x] = x . [[/], t/fi[x] = [LT1] . x 

for each U in (B and x in According to 19 B. 3 the collections E{x . [17] \ U e§} and 
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E{[[7] . x | U e &} form local bases at x in 'S, and by 23 A.3 the collection 
E { [ / l [ x ] | U e 0} (E{C7„ |y] | UeHl}) is a local base at x in the space <G, i ? > 

(<G, *>). Now it follows from (6) that i? as well as * induces the closure structure 
of H. Since i? u * is a sub-base for the two-sided uniformity of <8 and both i? and * 
induce the closure structure of 'S, we find that the two-sided uniformity of 'S also 
induces the closure structure of <S. 

24C.5. Theorem. The mapping {x x - 1 } : <\<&\,*> JSf> is a uniform 
homeomorphism. 

Proof. Let g = {x x _ 1 | x e G}. It is sufficient to prove that (g x g) [ t / s] = 
= UL for each U in 0. If <x, y) e XJR, then x . y-1 e U and hence x . y_1 = (i?x)_1 . 
. gy e U, which means that (gx, gy) e UL and consequently (g x g) [UR] cz UL. 
Similarly (g x g) [ [ / J <= UR. Since g o g = Jc we obtain (g x g) = UL. 

Corollary. 7 / Hi is the two-sided uniformity for 'S, then the mapping {x x - 1 } : 
Hi} <\&\, Hi} is a uniform homeomorphism. (Use 23 C.2). 

24 C.6. Theorem.) Let f be a homomorphism of a topological group into 
a topological group <32 and let if,-, and Hi i be respectively the left uniformity, 
the right uniformity and the two-sided uniformity of The following conditions 
are equivalent: 

(a) f is continuous, 
(b) / : i? !> -» <|^2|> " uniformly continuous, 
(c) / : * i > -* ts uniformly continuous, 
(d) / : Hlxy <|^2|, " uniformly continuous. 
Proof. We shall prove that (a) => (b); (b) o (c), (c) => (d) and (d) => (a). The last 

implication is obvious (the two-sided uniformity of a group induces the closure 
structure of the group). Also the implication (b), (c) => (d) is evident because*,- u i?f 

is a sub-base for Hi¡. The equivalence of (b) and (c) follows immediately from 24 C.5. 
It remains to show that (a) => (b). Let be the neighborhood system at the unit 
element of i = 1,2, and suppose that 0 2 is an element of <S2\ it is required 
to find an element Ox of (5X such that ( / x / ) [(Oi)J <= (02)l- Choose Oi so that 
f\Pi\ c ^ (x> y^ t^1 1 x~l- y^Oi a nd hence ( /x ) - 1 . ( f y ) = 
= / ( x - 1 . j>) e / [O x ] <= 02 which implies that < f x , f y > e (02)L . 

Remark. In the proof of the implication (a) => (b) we only needed the continuity 
of / a t the unit element of Thus we obtained a new proof of the fact that a homo-
morphism is continuous provided that it is continuous at the unit element. 

Now we turn to an examination of translations. 

24 C.7. Theorem. If V = 0t, = <£ or V = Hi, then the mapping 

is a uniform homeomorphism for each a, b e Roughly speaking, the translations 
are uniform homeomorphisms with respect to each of the group uniformities. 
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Proof. The inverse of a translation is a translation and hence it will suffice to show 
that the translations are uniformly continuous. This will be proved for "V = 01. 
In the case Y = if the proof is similar. Finally, the case Y = °U follows readily 
from the cases Y = 0. and Y = if. Let U be any element of G and let us choose 
a F in 0 such that a .V. a~l <=. U. If <x, y} e VR, i.e. x . y'1 e V, then (a ,x .b) . 
. (a . y . = a . x . y~l. a - 1 e a . V. a - 1 c U, and hence <a . x . b, a . y . b} e 
eUR. 

Notice that ( f b x fb) [C/R] = UR for each right translation fb = {x->-x. b}. 
We have proved that the inclusion cz is true for each right translation. Since the inverse 
of fb is the right translation fb-i we obtain the equality. Similarly ( / x / ) [l/L] = UL 

for each left translation / . On the other hand the last equality need not be true if / 
is a right translation. 

Recall that a semi-pseudometric d for a group <G, .> is called right (left) in-
variant if d o (f x / ) = d for each right (left) translation / of <G,.). 

24 C.8. Definition. A semi-uniformity 11 for a group <G, .> is said to be right 
(left) invariant if there exists a base "V for such that ( / x / ) [F] = F for each 
Ve-f and each right (left) translation / of <G,.). 

It is to be noted that in 24 C.8 it is sufficient to assume that "V is a sub-base for 11. 
The main results are summarized in the following theorem. 

24 C.9. Theorem. The right (left) uniformity of a topological group is 
right (left) invariant. The set of all right (left) invariant pseudometrics for 
which are uniformly continuous with respect to the right (left) uniformity of % 
generates the right (left) uniformity of (S. If is of a countable local character 
then the right (left) uniformity of'S is induced by a right (left) invariant pseudo-
metric. 

Corollary. If is of a countable local character then 'S permits a pseudo-
metrization by a right invariant as well as a left invariant pseudometric. 

Theorem 24 C.9 is a particular case of more general results concerning F-in-
variant uniformities which will now be studied. (The first statement, which is elemen-
tary, has been already proved.) 

24 C.10. Let P be a set and F be a collection of one-to-one relations such that 
Df = E/ = P for each/in F. A semi-.pseudometric d for P is said to be F-invariant 
if d o ( / x / ) = d for each / in F, and a semi-uniformity 1l for P is said to be F-
invariant if there exists a base "T for 11 such that ( / x / ) [F] = Ffor each Fin "V. 

Remarks, (a) If F is the set of all right (left) translations of a group <G, .> then 
a semi-pseudometric d for G is F-invariant if and only if d is a right (left) invariant 
semi-pseudometric for <G,.). A similar result is true for semi-uniformities. 

(b) A semi-pseudometric d is F-invariant if and only if the mapping / : <P, d} -*• 
-*• <P, d} is distance-preserving for each / in F. 

(c) In definition 24 C.10 it is sufficient to assume that Y is a sub-base for H. 
Indeed, if ( / x / ) [Ff] = Vh i = 1, 2, then ( / x / ) [F t n F2] = V, n V2. 
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24 C.l l . Theorem. Let P be a set, F be a collection of one-to-one relations such 
that D/ = E/ = Pfor eachf in F, and let Hi be an F-.invariant uniformity for P. The 
collection of all F-invariant uniformly continuous pseudometrics for (JP, Hi} 
generates the uniformity Hi. If Hi has a countable base then Hi can be pseudo-
metrized by an F-invariant pseudometric. 

Proof. I. First let Hi be an F-invariant semi-uniformity with a countable base. 
Clearly there exists a decreasing sequence {U„} of symmetric elements of Hi such that 
the set of all U„ is a base for Hi, U0 = P x P and ( / x / ) [[/„] = U„ for each n e N 
and feF. Setting d(x, y> = 2"" if <x, y} e i/„ + 1 - U„ and d(x, y> = 0 if <x, y>e 
e f){Un} we obtain a semi-pseudometric inducing Hi and it is easily seen that d is 
F-invariant. Now if, in addition, Hi is a uniformity, then d is uniformly equivalent 
with a pseudometric D (by 24 A.4) which can be chosen F-invariant according to 
18 B.16; this proves the second statement. — II. The first statement is an immediate 
consequence of the second statement and the fact that the union of all F-invariant 
uniformities with a countable base contained in Hi is a sub-base (even a base) for Hi. 

24 C.12. The closure structure of a topological group H is induced by a uniform-
ity invariant under both right and left translations if and only if the collection 
of all U e <9 fixed under the inner automorphisms of t? is a local base at the unit 
element. 

Proof. I. First suppose that the closure structure of ^ is induced by a uniformity 
' f invariant under both left and right translations. Thus the collection if of all 
the sets We "f such that <x, y) e W implies <ax, ay) e W, <xb, yb) e W for each 
a and b in ^ (in particular, <x, y} e ^implies <axa_1, aya~1} e W for each a in A) 
is a base for "f. Now if 0 = W[l], We i f , then clearly y e 0 implies aya~l e O 
(because a . 1 . a - 1 = 1). 

II. Now let &l be the collection of all sets O e(9 such that / [O] = O for each 
inner automorphism / = {x -»• axa'1} of'S, and suppose that <Sy is a base for the filter 
<9. We shall assume that the right uniformity * of eS, which is always invariant under 
right translations, is also invariant under left translations. Clearly the collection if 
of all the sets UR, U e 01, is a base for Fix UR in i f . First we shall show that UR 

is invariant under inner automorphisms. If <x, y} e UR and a e then x . y~l e 
eUe§1 and hence axy~1a~ieU; but axa~l . (aya_i) = axy~1a~1 e U and 
consequently <axa - 1 , aya'1} e UR. Now let be we shall show that 
<x, y}eUR^> (bx, by> e UR. Suppose <x, y} e UR. Since ( / x / ) [£/*] = UR for 
each inner automorphism /, we obtain (bxb~l, byb~1} e UR and since UR = 
= ( / x / ) [l/fl] for each right translation / , we obtain (bxb~1b, byb~1b} e UR 

and hence <bx, by} e UR, which concludes the proof. 
The multiplication {<x, -» x . need not be a uniformly continuous mapping, 

more precisely, the mapping {<x, j>> x . j>} : x \<&\, "f x f > 
need not be uniformly continuous if "f is a left uniformity, right uniformity or 
two-sided uniformity of 'S. On the other hand, if ^ is commutative, then all three 
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uniformities of & coincide and the multiplication is uniformly continuous. More 
precisely, 

24 C.13. Theorem. If is a commutative topological group, then the mapping 

{<x, y} -> x . y} : (\<S\ x \<&\, 1l x K} <\<g\, <%> 

where H is the uniformity of is uniformly continuous. 
Proof. Fix a neighborhood U of the unit element and choose a neighborhood F 

of the unit element such that [F] . [F] c U. Now if xx . yj"1 e F, x2 . y2 1 e F 
then ( x ^ ) . (y1y2)~l = (^i • yi)~l • ( x z • ') G • c U which establishes 
the uniform continuity of the mapping in question. 

Corollary. The addition of R is uniformly continuous. 

D. UNIFORM PRODUCT 

The purpose of this subsection is to prove that, roughly speaking, the limit of 
a uniformly convergent net of continuous (uniformly continuous) mappings into 
a uniform space is a continuous (uniformly continuous) mapping. This result was 
proved for mappings into a commutative topological group in 19 B.16a. We begin 
with a remark concerned with the box-product of semi-uniform spaces. 

24 D.l. The box-product. Let <P, be the product of a family {<Pa, | a e 
e A} of semi-uniform spaces. By definition the collection of all the sets of the form 

(*) E{<x, y} | <x, y} e P x P, a e F => <pra x, pra y> 6 Ua} , 
where F is a finite subset of A and Ua e 11 a, is a base for H. The elements of 11 are 
relations for P, i.e., subsets of P x P, and the elements of each Ha are relations 
for Pa. Notice that the set (*) can be written in the form 

(**) nrei{Va\aeA} 
where Fa = Ua if a e F and Fa = Pa x Pa otherwise (thus always Fa 6 1/a). 

Here the symbol IIrcl denotes the relational product introduced in 5 C.2. If 
<P, u> is the product of a family {<Pa, wa> | a e A} of closure spaces, tjien the cano-
nical neighborhoods of a point x e P in <P, u> are sets of the form 

(***) II{Fa \ ae A] 

where each Fa is a neighborhood of pra x in <Pa, ua> and Fa = Pa except for a finite 
number of a's. In 17 ex. 2 we introduced the box-product <P, w> of {<Pa, «„>} 
by requiring that, for each x in P, the collection of all sets (***), where Va is a neigh-
borhood of pra x in <Pa, wa> for each a, be a local base at x in <P, w>. Similarly, 
we can define the box-product <P, iVy of a family {<Pa, of semi-uniform 
spaces by requiring that the collection of all the sets (**), where Fa e 1la for each a, 
be a base for It turns out that the box-product of semi-uniform spaces is not too 
important and therefore we leave the discussion of its properties to the exercises. 
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The box-product is mentioned here because the box-product semi-uniformity 
is the largest semi-uniformity having a base consisting of sets of the form (**); it is 
to be noted that the product semi-uniformity is the smallest semi-uniformity having 
a base consisting of sets of the form (**) and such that all the projections are uni-
formly continuous. 

Now we turn to the subject proper of this subsection. Recall that, by 23 D.17, the 
product of a family {0 | a e A} of semi-uniform spaces is denoted by 0A. The product 
of a family {18 \ aeA} of topological groups is denoted by <8A, and the uniform 
product of [IS | a e A} is denoted by unif <3A. Now we shall introduce the product 
unif 0 A for semi-uniform spaces. 

24 D.2. Definition. Suppose that A is a set and 0 = <P, Hi} is a semi-uniform 
space. The uniform product of the family {0 \ a e A}, denoted by unif 0A, is the 
semi-uniform space <PA, "Vy where "V is the semi-uniformity having as its base the 
collection of all sets of the form !!„,{[/ | aeA} = E{<x, y} | <x, y} e PA x PA, 
a e A => <pra x, pia y) e 17} where U e Hi. 

Of course we must show that the collection in question is indeed a base for a semi-
uniformity. Before doing this we shall introduce an abbreviated notation. The product 
II {X | aeA] can be written as XA, and similarly the relational product IIrel{[7 | a e A\ 
can be written as Urel A, which will be abbreviated, if no confusion is likely to result, 
to UA. Next, in accordance with the general rule, the collection consisting of all 
U™lA, U e Hi, can be denoted by [HlJelA, or simply by [Hl]A. To prove that \Hl\A is 
a base for a semi-uniformity it is sufficient to notice that 

(1UA n VA) = (U n V)A => JpA and ( U A y i = (C/_1)A 

for each U and Fin Hi. Next, it is clear that (U o V)A = UA o VA for each U and F 
and consequently, if 0 is a uniform space then unif SPA is also a uniform space. 
Finally, if Hi' is a base for Hi, then clearly [Hl']A is a base for y ; in particular, if Hi 
has a countable base then "f also has a countable base. As a consequence if 0 is 
pseudometrizable, then unif 2PA is also pseudometrizable. Thus we have proved 

24 D.3. If 0* is a uniform space then unif 0A is a uniform space for each set A. 
If 0 is pseudometrizable, then 0A is also pseudometrizable. 

24 D.4. Example. Let <P, d} be a semi-pseudometric space and A a non-void 
set. Consider the relation 

D = {<x, y> sup {d<pra x, pra y~> \ a e A} \ <x, y> e PA x PA} . 

If d is not bounded, then D<x, y> may be oo for some <x, y>, but if d is bounded, then 
(a) D is a semi-pseudometric for PA; 
(b) the semi-uniformity induced by D is the uniform structure of the uniform 

product unif <P, Hl}A, where Hi is the semi-uniformity induced by d; 
(c) if is a pseudometric, then D is a pseudometric; and 
(d) if d is a semi-metric, then D is also a semi-metric. 
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In 19 B.14 we introduced the uniform product unif where 9 is a commutative 
group and A is a set. If ^ is a commutative group, then the left, the right and the 
two-sided uniformities coincide and we usually speak about the uniformity of ^. 

24 D.5. Theorem. Suppose that is a commutative topological group and A 
is a set. Then the uniformity of the group unif coincides with the uniform 
structure of unif "ttyA where "U is the uniformity of the group 

Remark. If for each commutative group X the symbol cr(^f) denotes the uniform 
space of Jf, that is, the uniform space (¡Jfj, H) where °U is the uniformity of 
then Theorem 24 D.5 can be stated as follows: For each commutative topological 
group ^ and each set A, 

unif (cr(&))A = o-(unif &A). 

Proof. Let ^ = <G, •, u) and let 0 be the neighborhood system at the unit in (S. 
By definition 19 B.14 the collection [0]/1 (consisting of all 0A, 0 e <P) is a local base 
at the unit in unif &A. Next, the collection of all the sets of the form 

(*) E{<x, y> | <x, y) e GA x GA, x . y'1 e 0A} (in unif 9A) 
where O e 0, is a base for the uniform structure of unif &A, and the collection of all 
the sets of the form 

(**) E{<x, y> | <x, y) e GA x GA, (pra x) . (pra y)~x eO for each a e A} , 
where O e 0, is a base for the uniform structure of unif <G, H}A. Clearly, x . 1 

(in unif &A) = {(pra x) . (pra (in <&) | a e A}, and consequently, the sets (*) 
and (**) coincide. The proof is complete. 

In 19 B.17, given a commutative group ^ and a comprisable struct SP we intro-
duced the topological group F(SP, 9) of mappings of SP into 9 by requiring the map-
ping 

{/-»• gr / } : unif 9) unif ^ 
to be a topological group-isomorphism. 

24 D.6. Definition. If SP is a comprisable struct and SP is a semi-uniform space, 
then the symbol unif F(SP, 0) will denote the set F(SP, SP) endowed with a semi-
uniformity such that the mapping 

{ / - * gf / } : unif F(SP, 0>) unif 
is a uniform homeomorphism. 

Thus a symbol of the form unif F(£P, SP) has two meanings: if 0 is a semi-uni-
form space, then unif F(SP, SP) is a certain semi-uniform space and if SP is a topo-
logical group, then unif F(SP, SP) is a certain topological group; in addition, if SP 
is a topological ring, then unif F(SP, SP) denotes a certain topological ring. Never-
theless, in all cases a certain semi-uniformity of unif F(SP, SP) is uniquely determined, 
in the former case the uniformity of (perhaps better the uniform structure of) the 
uniform space unif F(SP, 0) and in the latter case the uniformity of the topological 
group unif F(SP, 0>). 
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Now we proceed to the formulation of the main results: 
24 D.7. Theorem. Let <P, Hi) be a uniform space, and A be a set. Then 
(a) If v is a closure operation for the set A and C is the set of all f ePA such that 

the mapping f : <A, v) -» <P, Hi) is continuous, then C is a closed subset of 
unif <P, HI)a. 

(b) If y is a semi-uniformity for A and C is the set of all f e PA such that the 
mapping f: <A, "V) -» <P, Hi) is uniformly continuous, then the set C is closed 
in unif <P, Hl)A. 

Obviously the theorem can be restated as follows: 
24 D.7\ Theorem. Let 0 be a uniform space. If 2 is a closure space then the set 

C(2,0) of all continuous mappings of 2 into 0 is closed in the space unif F ( 2 , 0 ) , 
and if 2 is a semi-uniform space then the set U(2, 0) of all uniformly continuous 
mappings of 2 into 0 is closed in the space unif F(2, 0). 

Remark. According to 24 D.5, Theorem 24 D.7 is a generalization of a similar 
theorem (19B.17) for topological groups, more precisely, combining 24 D.5 and 
24 D.7 we obtain 19 B.17. 

Proof of 24 D.7 (a). It is sufficient to show that the complement of C is open 
in the space unif <P, Hl)A. Given an/in PA — C we must find a neighborhood G of f 
in the space <P, Hl)A such that no mapping g : <A, u) -»• <P, Hi) ,geG, is con-
tinuous. There exists a point a e A such that / : <A, u) <P, H() is not continuous 
at a. It follows that there exists a U in Hi such that / " 1 [L/[/a]] is not a neighborhood 
of a in <A, u>. Choose a symmetric element Wof Hi such that Wo Wo W c U. We 
shall prove that no mapping g : <A, u> <P, °Wy with g in G = WA[(/)] is con-
tinuous at the point a. It is sufficient to prove that 

g-'lWlgaJ] <= / " ' [ [ / [ / a ] ] , 

because the set on the right side is not a neighborhood of a in <A, u). Suppose that 
a e i.e., <ga, ga} e W; we must show that (fx,fa}eU. By our as-
sumption </a, g<x) e W, <ga,fa> e W~l = W, and consequently </a, ga) e Wo W; 
finally (fa, fa) e Wo Wo W <= U, which concludes the proof. 

Proof of 24 D.7 (b). We shall prove that the complement of C is open in 
unif <P, HiyA. Given an/in PA — C, we must find a neighborhood G of / such that no 
mapping g : (A, "V) -» <P, Hi), g e G, is uniformly continuous. Since / : (A, "f") -» 
-> <P, Hi) is not uniformly continuous, there exists a U in Hi so that ( / x / ) - 1 [t/] 
does not belong to "f. Choose a symmetric element Win Hi such that Wo Wo W <= U. 
We shall prove that (g x g) belongs to -f" for no g from G = WA\jJ)\\ this 
implies that no mapping g : <A, V) -* <P, Hi), g e G, is uniformly continuous. It 
is sufficient to show that 

(g x [W] <= ( / x / ) " 1 [t/] 

for each g e G. The straightforward verification of this inclusion is left to the reader. 
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24 D.8. A net N of mappings of a given struct SP into a given semi-uniform space 3P 
is said to be uniformly convergent to a mapping / of SP into SP if N converges to 
/in the space unif F(£P, 0). Utilizing this terminology theorem 25 D.7 can be restated 
as follows: the limit of a uniformly convergent net of continuous (uniformly con-
tinuous) mappings into a uniform space is a continuous (uniformly continuous) 
mapping, or simply, the uniform limit of continuous (uniformly continuous) map-
pings into a uniform space is continuous (uniformly continuous); and this is the 
result announced at the beginning of the subsection. 

Remark. It turns out that the assumption that SP = <P, be a uniform space 
is essential in theorem 24 D.7 and 24 D.7' (ex. 9). 

The next theorem shows that the closure operation induced by the uniformity of 
unif <P, depends essentially on H. 

24 D.9. Theorem. Suppose that and are two semi-uniformities for a set P. 
Then the mapping 

(*) J : <P, -> <P, <%2y 
is uniformly continuous (i.e., => H2) if and only if the mapping 

(**) J : unif <P, W y - unif <P, W2)p 

is continuous at the point JP ( = (<x, x> | x e P}). 

Proof. The result follows immediately from the following formula which holds 
for each subset U of P x P: 

^e 'P[(Jp)] = E { / | / 6 P P , / c = t / } 
Corollary. Under the assumption of 24 D.9, the mapping (*) is uniformly con-

tinuous if and only if the mapping (**) is continuous. In particular = if 
and only if(**) is a homeomorphism. 

Remark. Of course, the theorem remains true if the exponents P in (**) are re-
placed by any set whose cardinal is at least the cardinal of P. 

Recall that a net {/„} of mappings of a struct Sf into a closure space & is said 
to be pointwise convergent to a mapping / of Sf into 2? if for each x in Sf the net 
{fax} converges to fx in SP. Thus {/„} converges to / pointwise if and only if {/,} 
converges to / in the set F(SP, SP) endowed with a closure operation such that the 
bijective mapping 

{ / - g r / } ' t : F ( < ^ ) 
i s a homeomorphism. We have seen that the pointwise limit of continuous mappings 
need not be continuous while the uniform limit of continuous mappings is always 
continuous. The theorem which follows is intended to clarify the difference between 
pointwise and uniform convergence. 

24 D.10. Theorem. Let 2 be a closure space, 0 a uniform space and unif C(2,3?) 
the subspace of unif F(2, with the underlying set C(J, 0>) (= the set of 
all continuous mappings of SL into 3P). Finally, let # be the closure space induced 

28—Topological Spaces 
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by unifC(i>, * ) . Then the mapping 

{</, x> -yfx} : <6 x 2 -> 0> 
is continuous. 

CoroUary. If a net {/,} of continuous mappings of a closure space 2 into a uni-
form space 0 converges uniformly to f , then the net { / ,x a } converges to fx in 0 
provided that {x„} converges to x in 2. 

Proof. Write 0> = <P, Fix </, x> e x 2 and let G be a neighborhood of fx 
in We must find a neighborhood Hx of/in # and a neighborhood H2 of x in 2 
so that geHi, y e H2=> gy e G. Choose a U in Hi with t/[/x] <=• G, and then 
a symmetric element Vetfl such that VoVcz U. 

Since / is continuous we can choose a neighborhood H2 of x in 2 so that / [ / / 2 ] cz 
c F[/x]. Finally, put, 

Hi = E{g | g e V, y e \2\ => <Jy, gy> e V} . 

By definition, Hi is a neighborhood of/in c€. Now, if g e Hu then clearly 

9[H2-] c F[/[H 2]] c K [ F [ / x ] ] = (VoV) I f x ] <= C/[/x] <= G 

which shows that H i and H2 have the required properties. 

E. UNIFORM COLLECTIONS OF COVERS 

We shall introduce the concepts of a uniform cover and a semi-uniform cover of 
a semi-uniform space, and the concepts of a uniformizable cover and a semi-uniform-
izable cover of a closure space. In later developments only uniformizable covers 
will play an essential part (Sections 29 and 30). It is to be noted that semi-uniform-
izable covers (mainly of topological spaces) are often important in questions related 
to paracompactness (30 C) and metrization (30 B); however, particular attention will 
not be paid to these questions and semi-uniformizable covers will not be considered. 
For the sake of completeness we shall show that every uniform space is completely 
determined by the collection of all uniform covers. It is to be noted that a uniformity 
for a set P is often defined as a collection of covers of P subject to certain conditions. 
On the other hand, a semi-uniform space is not uniquely determined by the collection 
of all semi-uniform covers. 

By 12 A.1 a cover of a set P is a collection or a family of sets the union of which 
is P. A cover of a struct Sf is defined as a cover of the underlying class of Sf. We 
have considered, e.g., interior covers of a closure space; recall that an interior cover 
of a closure space is a cover 3C of P such that the interiors of elements of 3C or mem-
bers of 9C (according as whether 3C is a family or a collection of sets) cover P. 

24 E . l . Definition. A semi-uniform cover (uniform cover) of a semi-uniform space 
<P, is a cover of P which is refined by some cover {t/[x] | x eP} where U is an ele-
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ment (uniform element) of aU. A semi-uniformizable (uniformizable) cover of a clo-
sure space <P, u> is a cover of P which is a semi-uniform (uniform) cover for some 
semi-uniform space <P, IIs) such that "U is a continuous semi-uniformity for (P, u). 

24E.2. Every uniform cover of a semi-uniform space 0 is a semi-uniform cover 
of 0 and every semi-uniform cover of a uniform space 0 is a uniform cover of 0. 
If 0 is a uniform modification of a semi-uniform space 2, then uniform covers of 
0 and 2 coincide. 

Proof. The first statement is evident and the second follows from the fact that 
the uniform structure of 0 consists of all uniform elements of the uniform structure 
of 2 . 

24 E.3. Every uniformizable cover of a closure space 0 is a semi-uniformizable 
cover of 0 and every semi-uniformizable cover of 0 is an interior cover of 0. 
If "U is the uniformly finest continuous semi-uniformity for a closure space <P, u>, 
then SE is a semi-uniformizable (uniformizable) cover of <P, w> if and only if SE 
is a semi-uniform (uniform) cover of <P, IIs). — Evident. 

24 E.4. Let 0 be a closure space. If SE is an interior cover of 0 then the closure 
of any subset X of 0 is contained in the star of X with respect to SE (see Definition 
12A.6). A cover SE = {Xa | a e A) of 0 is semi-uniformizable if and only if 
there exists a mapping f of \0\ into A such thatXfx is a neighborhood of x for each 
x e \0\ and 

X ^{j{Xfx\xeX} 
for each X <= 0. 

Proof. The first statement is evident. We shall prove the second one. Let U be 
a semi-uniformizable vicinity of the diagonal of 0 x 0*, i.e. U is a neighborhood of the 
diagonal of ind (0 x 0) such that {l/[x] | x e \0\} refines 9C, and let /assign to each 
x e \0\ an index a in A such that U[x] <= Xa. By 23 B.4 we have X c: U[X~\ for 
each X e \0\ and hence X <= U\_X~\ <= \j{Xfx \ x e Jf}. Conversely, given /, put 
V = X{Xfx \xe0}, U = Vn VSince {C/[x] \xs0} refines X, it is enough to 
show that U is semi-uniformizable, or by 23 B.4, that X c t/[X] for each X a 0. 
Clearly X c U{* / ; c | x e Z} = V\X\, and as Xfx is a neighborhood of x, it results 
that X a V~y[X\. 

24E.5. Remarks, (a) An interior cover need not be semi-uniformizable. For 
example, let 0 be the ordered space of countable ordinals and let us consider Si = 
= {X, | x e \0\}, where Xx is the set of all ordinals less than x. Clearly SE is an open 
cover of 0 and hence an interior cover of 0. We shall prove that SE is not semi-
uniformizable. Assuming that SE is semi-uniformizable we can choose a mapping f 
of \0\ into itself such that the formula of 24 E.4 holds for each X <= ¡0\; clearly 
there exists a sequence {x„} in 0 such that x„+1 iXfXn for each n. Clearly {x„} is an 
increasing sequence and therefore {x„} converges to x = sup {x„} (remember that 0* 
contains no countable cofinal sets). Thus x belongs to the closure of the set X of all 

27' 



436 IV. U N I F O R M A N D P R O X I M I T Y S P A C E S 

x„. On the other hand, evidently x $ | x e which contradicts our assumption 
and proves that SC is not semi-uniformizable. 

(6) In ex. 5 we shall show that every interior cover of a pseudometrizable space 
is uniformizable. It should be noted that regular topological spaces with this property 
are termed paracompact and will be studied in 30 C. 

(c) < A semi-uniformizable cover need not be uniformizable (see ex. 4). 
24 E.6. If SC is an interior cover of a closure space 0 then the cover st SC (see 

Definition 12A.6) is semi-uniformizable. 
Proof. If U is the sum of st% (i.e. U = £{st(#", x) | x e |*|}.) then t/[x] = 

= st (SC, x) is a neighborhood of x for each x e \0\ and clearly U is symmetric; thus U 
is a semi-neighborhood of the diagonal in 0 x 0. Since {(7[x] | x g |*|} refines 
stST, the cover st SC is semi-uniformizable. 

Remark. It is to be noted that the set U of the proof is a neighborhood of the 
diagonal of 0 x 0. Indeed, U = x X \ X eSC) if SC is a collection and U = 
= x | a e A} if SC = {Xa \ a e A}. 

Now we proceed to semi-uniform and uniform covers. We begin with a definition. 
24 E.7. Definition. A semi-pseudometric d is said to be subordinated to a cover SC 

if the collection of all open 1-spheres refines 3C. 
24E.8. In order that a cover 9C of a semi-uniform space 8P be semi-uniform 

it is necessary and sufficient that some uniformly continuous semi-pseudometric 
for 0* be subordinated to 9C. — Obvious, see 23 A.15. 

Recall that, by Definition 12 A.2, for each cover 9C the symbol V2C denotes the 
vicinity associated with 9C, i.e. the set (£#") o (Ef2T)_1 which coincides with the set 
U{AT x X\Xe&} i f^ is a collection and U { X x Xa} if % is a family {Xa}; thus 
VST is the vicinity considered in the remark following 24 E.6. We shall use the for-
mula o war = V s t # of 12 A.7. 

24 E.9. Theorem. Each of the following two conditions is necessary and suf-
ficient for a cover 3C of a semi-uniform space 0 to be a uniform cover: 

(a) Some uniformly continuous pseudometric for 0 is subordinated to 3C. 
(b) There exists a sequence {&„} of semi-uniform covers of 0 such that 0 

refines 3C and each is a star-refinement of $Cn (i.e. each st$"n + 1 refines 
see Definition MkM). 

Proof. I. If 3C is a uniform cover then there exists a uniform element U such that 
{[/[x] | x e ¡0j} refines 3C, and by 24 A.9 there exists a uniformly continuous pseudo-
metric d for 0 such that d(x, y} < 1 implies <x, y} e U; clearly d is subordinated 
to SC. — II. If a uniformly continuous pseudometric d for 0 is subordinated to SC and 
3Cn consists of all open 2_n-spheres, then the sequence {2Cn} has the properties of (b) 
and hence (a) implies (b). — III. It remains to show that (b) is sufficient. Assuming 
(b) let Un be the vicinity associated with SC„+1 for each n. It is easily seen that each 
U„ is an element of the semi-uniform structure of 0, {t/0[x] | x e \0\} refines SC and 
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[/n + 1 o C/n+1 c U„ for each n. Thus U0 is a uniform element of the semi-uniform 
structure of * and 9C is a uniform cover. 

Now we shall prove that a uniformity is uniquely determined by uniform covers. 

24 E.10. Theorem. Let 0 = <P, be a semi-uniform space. A vicinity U of the 
diagonal ofP x P is a uniform element of % if and only if there exists a uniform 
cover for 0 such that the vicinity associated with 3C is contained in U. A pseudo-
metric d for 0 is uniformly continuous if and only if the cover of 0 consisting of 
all open r-spheres is a uniform cover of 0 for each positive real r. 

Proof. If U contains the vicinity VSC associated with a uniform cover 9C and V 
is a uniform element of "ll such that {K[x] | x e P} refines 3C, then clearly V[x] c 
<= st (%, x) = ( W ) [x] <= l/[x] for each x e P; hence V <= U so that U is a uni-
form element of "ll. Conversely, let U be a uniform element of and choose a sym-
metric uniform element V of ^ such that Vo V <= U. If % = {F[x] | x e P} then SC 
is a uniform cover of 0 (by definition) and evidently the vicinity associated with 3C 
is contained in U. The proof of the statement concerning pseudometrics is left to the 
reader. 

Combining theorems 24 E.9 and 24 E.10 with 24 E.3 we obtain without difficulty 
the corresponding relations between uniformizable vicinities, uniformizable covers 
and continuous pseudometrics for a closure space. 

24E.11. Theorem. Each of the following two conditions is necessary and suf-
ficient for a cover 3C of a closure space 0 to be uniformizable: 

(a) Some continuous pseudometric for 0 is subordinated to 9C. 
(b) There exists a sequence {!%„} of interior covers of 0 such that 3CQ refines 9C 

and each st 3i„ + l refines 9Cn. 
Proof. If {#"„} is the sequence of (b), then each 3C„ is a semi-uniformizable cover 

by 24 E.6. The result then follows from 24 E.3 and 24 E.9. 

24 E.12. Theorem. Let 0 be a closure space. A vicinity U of the diagonal of 
0 x 0 is a uniformizable neighborhood of the diagonal of 0 x 0 if and only ifU 
contains the vicinity associated with a uniformizable cover of 0. A pseudometric 
for 0 is continuous if and only if the cover consisting of all open r-spheres is uni-
formizable for each positive real r .— 24 E.3, 24 E.10. 

Remark. It is to be noted that a uniformizable cover of a closure space 0 is 
often said to be a normal coyer of 0, and a sequence {#"„} of 24 E.11 (b) is said to be 
a normal sequence of covers of 0. 

24E.13. Definition. The uniform collection of covers associated with a semi-
uniform space 0 is the set of all those uniform covers o f * which are collections. 

Notice that a uniform collection of covers consists of only those which are col-, 
lections; families are excluded, as we want a uniform collection of covers to be a set. 

From 24 E.9 and 24 E.10 we obtain immediately the following result. 
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24E.14. Theorem. The relation which assigns to each uniform space 0 the uni-
form collection of covers associated with 0 is one-to-one. 

Now we shall give a necessary and sufficient condition for a collection of covers 
to be a uniform collection of covers. 

24E.1S. Theorem. A class U of covers of a set P 0 is a uniform collection of 
covers if and only if the following conditions are fulfilled: 

(a) each element ofVL is a collection; 
(b) if a collection 3C of subsets of P is refined by a cover of U, then 3C belongs 

to U; 
(c) if 3C! and 3C2 belong to U, then some f e l l refines both SC-^ and SC2\ 
(d) every 3C e U has a star-refinement in U. 
Proof. Evidently every uniform collection of covers has properties (a) —(d). 

Conversely, assuming (a) —(d) let us consider the set Y consisting of all the vicinities 
associated with covers of U. First we shall show that Y is a base for a uniformity 11. 
Evidently each element of Y is symmetric, and if 3C refines 3C\, i = 1, 2, then VSC is 
contained in both and hence in V ^ n VSC2. If st<& refines 3C, then ( W o V<W) <= 
c: war by 12 A.7. 

It remains to show that U is the uniform collection of covers of <P, 11s). Let f e l l . 
Choose a <& in U such that the star of H refines 3C. Clearly, if V is the vicinity asso-
ciated with <&, then {F[x] \ x e P} refines 3C and therefore 3£ is a uniform cover of 
<P, IIs). Conversely, let a collection f be a uniform cover of <P, 11s). To prove 
3C e U it is sufficient to show that 3C is refined by some f e l l (according to (b)). By 
our assumption there exists a U in 11 such that {i/[x] | x e P} refines 3C, and by the 
definition of 11 we can choose a f in U such that the vicinity associated with H is 
contained in 17. It is easily seen that refines 3C. 

Remark. Let 2B be the set of all covers of a set P which are the collections ordered 
by the relation {!% -»• \ SC is a refinement of 1/}. Then a class U of covers of P has 
the properties (a) —(c) if and only if U is a right filter in 2B. Thus a class of covers 
of a set P is a uniform collection of covers if and only if U is a right filter in 3B satis-
fying condition (d). 

In conclusion for the sake of completeness we shall state two theorems, leaving 
their simple proof to the reader. 

24E.16. Let f be a uniformly continuous mapping of a semi-uniform space 0 
into another one J. If 9£ is a semi-uniform (uniform) cover of 2, then the inverse 
image Hi of 3£ under f is a semi-uniform (uniform) cover of 

24 E.17. Let fbe a continuous mapping of a closure space 0* into another one 2. 
If SC is a semi-uniformizable (uniformizable) cover of 2, then the inverse image 
ofSC under f is a semi-uniformizable (uniformizable) cover of 0. 
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Let H be a semi-uniformity for a set P and let us consider the relation p for exp P 
such that <X, Y> e p if and only if U[X~\ n Y * 0 for each U in "U. We shall write 
X p Y instead of<Z, Y> e p, and X non p Yinstead of <X, Y> e ((exp P x exp P) - p). 
The following assertions will be proved: 

(prox 1) 0 non p P 
(prox 2) p is symmetric, i.e. X pY=> YpX 
(prox 3) X cP, Y c P , X nY*<fr=>XpY 
(prox 4) If Xl e P,X2 <= P then (Xx u l 2 ) f y if and only if p Y or X2 p Y. 
Statement (prox 1) is obvious. If U <= P x P is symmetric, then n Y 4= 0 

if and only if t/[Y] n X 4= 0; since the symmetric elements of ^ form a base for 
the symmetry of p follows. Statement (prox 3) follows from the fact that each element 
of % contains the diagonal of P x P, and hence U\X~\ => X for each X c P and 
[7 e °ll. If P => Z => X and X p Y, then Z p Ybecause U[Z] => for each t/; con-
sequently, if Xt p Y or X2 p Y, then also u X2) p Y. It remains to show that 
Xi non pY, i = 1,2, implies (X! u X2) non p Y. Now, if Xt non p Y, then we can 
choose [/,- in % such that C/f [Zf] n Y 4= 0; U = U1 nU2 belongs to ^ and 
U[X1 u X2] n Y = 0 because 1 7 u Z 2] = L7[Zj u C7[Z2] and C7[Zf] c 
cz [7( [Zf], i = 1, 2, and hence, by definition of p, (Xl u X2) non p Y. 

Next, notice that if u is the closure operation induced by aU, then uX = 
= E{x | (x) pX} for each X <= P. 

Given a set P, a relation for exp P satisfying conditions (prox 1) — (prox 4) will be 
called a proximity relation or a proximity for the set P. 

In a closure space <P, u> we shall say that a point x is proximal to X in <P, u) if 
and only if xeuX; the closure of a set X consists of all points proximal to X. One 
might say that, given a neighborhood U of x, the points of U are [7-proximal to x; 
then x is proximal to X if and only if, for each U, X contains a point [7-proximal to x. 
In a semi-uniform space <P, "Wy we might define two points to be L7-proximal, where 
U g <!U, if <x, y} e U, and two sets X and Y to be [7-proximal if some x e X and y e Y 
are [7-proximal. Finally, we might define two sets to be proximal if they are [7-
proximal for each U in The resulting relation is just the proximity induced by fy. 
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In the rather elementary first subsection the basic concepts related to proximities 
will be introduced (e.g. a proximally continuous mapping, continuous proximity, 
proximally continuous semi-uniformity, relativization of a proximity) and the basic 
properties will be derived. 

In the second subsection the relation between semi-uniformities and proxim-
ities will be studied. It will be shown that every proximity p is induced by a semi-
uniformity % (in the sense described above, i.e., XpYo n Y =1= 0 for each 
U in •?/), and that among all semi-uniformities inducing a given proximity p there 
exists a unique smallest one, which will be termed proximally coarse; if p is induced by 
a uniformity, i.e., if p is uniformizable, then the proximally coarse semi-uniformity 
inducing p is a uniformity. It turns out that the study of proximities is equivalent to 
the study of proximally coarse semi-uniformities. It is to be noted that proximally 
coarse uniformities coincide with totally bounded uniformities, i.e., uniformities such 
that for each element U of the uniformity there exists a finite set such that U[A~\ is 
the whole underlying set of the corresponding space. 

Subsection 25 C is concerned with developing the properties of uniformizable pro-
ximities. It is shown that a uniformizable proximity is uniquely determined by the 
set of all bounded proximally continuous functions. The important concept of the 
uniformizable modification q of a proximity p (for a set P) is introduced; it is shown 
that q is the unique uniformizable proximity for P such that a mapping / of <P, p} 
into a uniformizable proximity space Q is proximally continuous if and only if the 
mapping/ : <P, q) -> Q is proximally continuous. 

In the next two subsections, 25 D and 25 E, the set of all bounded proximally con-
tinuous functions is investigated. The main result of 25 D which asserts that the set 
of all bounded proximally continuous functions on a proximity space 0 is a closed 
sub-lattice-algebra of the topological lattice-algebra unif F*(^,R) of all bounded 
mappings of 0 into R. The subject of 2 5 E is the famous Stone-Weierstrass theorem 
adapted for proximity spaces. 

A. PROXIMITIES AND PROXIMALLY CONTINUOUS MAPPINGS 

25 A.l. Definition. A proximity for a set P is a relation for exp P satisfying the con-
ditions (prox l)-(prox4). A proximity space is a struct <P, p) such that P is a set 
and p is a proximity for P. If <P, p> is a proximity space and X p Y, then X and Y are 
said to be proximal in <P, p) or under p; the relation (exp P x exp P) - pis denoted 
by non p; if X non p Y, then X and Y are said to be distant or non-proximal in 
<P, p>. If is a semi-uniformity for a set P, then 

p = E{<X, Y}\X<=P,YcP,Ue<%=> U[X~\ n Y =f= 0} 

is a proximity for P which is said to be induced by 1l. If p is a proximity for a set P, 
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then the relation 
{ X ^ E { x | ( x ) p X } | * c : P } 

is a closure operation for P which is said to be induced by p. 
25 A.2. Let H be a semi-uniformity for a set P, p the proximity induced by % 

and u the closure induced by p. Then u is induced by 
Proof. By definition x e uX if and only if the sets (x) and X are proximal, which 

means, by the definition of induced proximities, that C7[(x)] n X 4= 0 for each U in 
It follows that, for each x e P, the collection \fU\ [(x)] is a local base at x in <P, m>. 
By the definition of semi-uniform closure the closure u is induced by 

Remarks, (a) A proximity for a set P is a subset of exp P x exp P. — (b) Given 
a proximity p, there exists a unique set P such that p is a proximity for P, namely 
P = UDp. 

We shall often need the following simple proposition: 
25 A.3. Suppose that p is a proximity for a set P. Then 
(a) X c Y c: P, XpZ =>YpZ 
(b) If {Z,-} and { Y;} are finite families in exp P such that (U(X;}) P (U{iy})> then 

Xi p Yj for some J and j. 
Proof. I. Statement (a) follows from (prox 4); X p Z, Y c P imply (X u Y)pZ by 

(prox 4), and X cr Yimplies X = X u Y. — II. By induction it follows from (prox 4) 
that, for each finite family {Zj , ((JjXj) pYimplies Xtp Yfor some i, and by (prox 2) 
(symmetry), Yp((J{Z;}) implies Xtp Yfor some i. Hence if { X j and {Y }̂ are finite 
families such that (U{Zf}) p(U{*}})> then (U{-X",}) p Yj for some j and this implies 
XipYj for some i. 

25 A.4. Examples, (a) Let d be a semi-pseudometric for a set P, °U the semi-
uniformity induced by d and p the proximity induced by "U. It is almost self-evi-
dent that 

p = E{<X, Y> | dist (X, Y) = 0} . 

This proximity will be said to be induced by d. — (b) Let P be the set consisting of all 
positive integers and let us consider the following two semi-pseudometrics dl and d2 
for P: if x 4= y then dy(x, y} = x - 1 + y - 1 and d2(x, y> = 1. Clearly both dy and 
d2 induce the discrete closure for P. On the other hand dx and d2 induce distinct 
proximities. If is the proximity induced by dt, then Xp2YoX <= P, Y a P, 
X n Y 4= 0, but X Y if and only if X c P, Y c P and either X n Y 4= 0 or both 
X and Y are infinite. Let be the uniformity such that the sets of the form 

x X^, { Z j being a finite cover of P, form a base for °U. Clearly aU induces p2. 
On the other hand, p2 is induced by the uniformity induced by d2 which differs 
from Thus distinct uniformities may induce the same proximity. 

It turns out that a proximity may be described by means of proximal neighborhoods 
which will be introduced in the definition which follows. The concept of a proximal 
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neighborhood is an adaptation of the concept of a neighborhood in a closure space 
to proximity spaces. 

25 A.5. A proximal neighborhood of a set X <=. P in a proximity space <P, p) 
is a set 7 c P such that X non p (P — Y), that is, the complement of Yis distant to X 
in <P, p>. 

Let p be a proximity for a set P and let rj be the relation consisting of all pairs 
<X, Y> such that Yis a p-proximal neighborhood of X, i.e., (X, Y} et] if and only 
i f l c P and X non p (P — Y). On the other hand, clearly X non p Y if and only if 
Y c P and (X, P — Y) e r\. Thus a proximity is uniquely determined by the pro-
ximal neighborhoods. It is to be noted that some authors define a proximity as the 
relation tj. One can easily formulate the corresponding conditions (see ex. 8). 

25 A.6. Let <P, p> be a proximity space and let u be the closure induced by p. 
Every subset of P is a proximal neighborhood of the empty set. If X c P is non-void, 
then the collection of all proximal neighborhoods of X is a proper filter on P the 
intersection of which contains X. If Y is a proximal neighborhood of X in <P, p}, 
then Yis a neighborhood of X in <P, u>, but the converse need not be true. On the 
other hand, every neighborhood of a singleton (x) is a proximal neighborhood of (x), 
more precisely, if x 6 P and Yis a neighborhood of (x) in <P, w),then Yis a proximal 
neighborhood of (x) in <P, p>. The symmetry of a proximity implies that Y is a 
proximal neighborhood of X if and only if P — X is a proximal neighborhood of 
P - Y. If p is induced by a semi-uniformity ll and X + 0, then [H] [X] 
(= E{[/[X] | U e Hj) is a base for the filter of all proximal neighborhoods of X in 
<P, p) (moreover, \ftt~\ [X] coincides with this filter). 

The proof is simple and therefore is left to the reader. 
25. A.7. Definition. A mapping / of a proximity space <PX, p t } into a proximity 

space <P2, p2y is said to be proximally continuous if Xp1 Yimplies / [ X ] />2/[Y], 
i.e., if the relation {X - » / [ X ] | X c P j is a "homomorphism relation under p1 and 
p2"• A proximal homeomorphism is a one-to-one mapping of a proximity space 
(Pi> Pi) o n t o a proximity space <P2, p2> such that / as well as its inverse/ -1 is 
proximally continuous. Finally, a proximity pi is said to be proximally finer than 
a proximity p2, and p2 is said to be proximally coarser than pu if pi as well as p2 

is for the same set, say P, and the identity mapping of <P, p{y onto <P, p2} 
is proximally continuous. A proximity space 0 is a proximal homeomorph of a 
proximity space 2 if there exists a proximal homeomorphism of 2 onto 

25 A.8. Theorem. The composite of two proximally continuous mappings is a 
proximally continuous mapping; more precisely, if f and g are proximally con-
tinuous mappings and E */ = D *g, then g of is a proximally continuous mapping. 
The identity mapping of a proximity space onto itself is a proximal homeomorphism, 
if f is a proximal homeomorphism then so is / - 1 , and finally, if f and g are 
proximal homeomorphisms and E*/ = D*g, then g of is also a proximal 
homeomorphism. 
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Corollary. The relation E{<p, q) | p is proximally finer than q} is an order on 
the class of all proximities, and the relation E{<*, 2} | 2 is a proximal homeo-
morph of *} is an equivalence on the class of all proximity spaces. 

Proof. Let / and g be proximally continuous and suppose that the composite 
h = g of exists; then h[Xi] = and if Xt and X2 are proximal in D*/, 
then / [ Z j and f\X2~\ are proximal in E*/( = D*g) by the proximal continuity o f f , 
and finally i] and h[X2] are proximal in E*g = E*h by the proximal continuity 
of g, which establishes the proximal continuity of g of. The proof of the other state-
ments follows the proof of similar results for a closure space or a semi-uniform space. 

The next theorem describes proximal continuity by means of proximal neighbor-
hoods of sets in the same way as continuity is described by neighborhoods of points. 

25 A.9. Theorem. A mapping f of a proximity spaced into a proximity space 2 
is proximally continuous if and only if the following condition is fulfilled: ifYis 
a proximal neighborhood of X in 2, then/_1[Y] is a proximal neighborhood of 

in 9. 
Proof. Write* = < P , p } , 2 = (2 , q}. I. Assuming/to be proximally continuous, 

given a proximal neighborhood YofX in 2 we must prove that/ -*[Y] is a proximal 
neighborhood o f / _ 1 [ X ] in i.e. / - 1 [ X ] non p(P -/-1[Y]). Assuming the con-
trary, we obtain ( / [ Z " 1 ^ ] ] ) q ( / [P - f~ ^Y]]); but / [ / ^ [ X ] ] = (E/) n X and 
f[P - / _ 1 [ Y ] ] = (E/) n (Q - Y), and consequently Xq(Q - Y), which contra-
dicts our assumption that Yis a proximal neighborhood of X in 2. — II. Now suppose 
that the condition is fullfilled and XpY; we have to show that/[X] q/[ Y], Assuming 
the contrary we find that Q — / [ Y ] is a proximal neighborhood off\_X\ in 2, and 
by the condition, f~l[Q - / [ Y ] ] ( = P - / _ 1 [ / [ Y ] ] ) is'a proximal neighborhood 
of / _ 1 [ / M ] , and hence/ _ 1 [ / [Z]] non p / _ 1 [ / [ Y ] ] , which contradicts our as-
sumption Xp Ybecause/~1 [/[AT]] => X a n d / - 1 [ / [ Y ] ] = Y. 

Corollary. A mapping f of a proximity spaced into another one 2 is proximally 
continuous if and only iffor each subset X ofSP and each proximal neighborhood U 
off\X~\ in 2 there exists a proximal neighborhood V of X in * such that / [ V ] U. 

Remark. One might define a mapping/ of a proximity space * into a proximity 
space 2 to be proximally continuous about a subset X 4= 0 of |*| if for each pro-
ximal neighborhood U of / [X] in 2 there exists a proximal neighborhood V of X 
in * such that f\V~\ <= U. Then / is proximally continuous if and only i f f is proximally 
continuous about each non-void subset of Next,/is proximally continuous about 
a singleton (x) if and only if / is continuous at x with respect to the induced closure. 

25 A.10. Let fbe a mapping of a proximity space <PX, pinto a proximity space 
(Pi, Pi>-If Pi is induced by a semi-uniformity and the mapping f : <P l5 ->• 
-»• <P2, is uniformly continuous, then the mapping f : <P1 ; -» <P2, p2> 
is proximally continuous. If ut is the closure induced by and f : <P l5 pi> ->• 

i>2> is proximally continuous, then f : <P1? ut> <P2, m2> is continuous. 
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Proof. I. Suppose that / : -> <P2) 1l2~) is uniformly continuous and 
X Pl Y. If f[X~\ non p 2 /[Y], then U2[f[X~\] n / [ Y ] = 0 for some U2 in <&2, and 
consequently U^X] n Y = 0, where = ( / x / ) _ 1 [i/2]; but [/, e f by the 
uniform continuity of/, and hence X non pt X which contradicts our assumption and 
establishes the proximal continuity of / . — II. Now let / : <P1; <P2, p2> be 
proximally continuous. If x e u1Ar, then (x) X and hence (fx) p2f\X] by the 
proximal continuity, which yields fx e u2f\X\ and establishes the continuity of/. 

Corollary. If f is a Lipschitz continuous mapping of a semi-pseudometric space 
<P1 ; into another one <P2, d2) and if is the proximity induced by dh i = 1, 2, 
then the mapping f : <Pj, p->• <P2, p2> is proximally continuous. 

Propositions 25 A.2, 25 A.4 (a) and 25 A.10 enable us to extend our conventions. 
Let us recall that we have agreed to consider every semi-uniform space <P, IIs) as 
a closure space <P, u> where u is the closure induced by more precisely, if we say 
that <P, 11 s) has a property defined for closure spaces it is to be understood that 
<P, u) has this property. Similar conventions were made for mappings for semi-
uniform spaces; roughly speaking, we agreed to speak about a mapping / for semi-
uniform spaces as about its transpose to a mapping for closure spaces. 

25 A. 11. Definition and convention. The transpose of a mapping f for semi-
uniform spaces to a mapping for proximity spaces is the mapping / : 0 ¡L where 0 
and 3, are the proximity spaces induced by the semi-uniform spaces D*/ and E*/ 
respectively. The transpose of a mapping / for proximity spaces to a mapping 
for closure spaces is the mapping / : 0 -* SL where 0 and 3. are the closure spaces 
induced by D*/ and E*/ respectively. 

If we say that a semi-uniform space (proximity space) has a property defined for 
proximity spaces (closure spaces) it is to be understood that the induced proximity 
space (closure space) has this property. The same conventions are made for mappings, 
i.e., if we say that a mapping / for semi-uniform spaces has a property defined for 
mappings for proximity spaces, e.g. that / is proximally continuous, it is to be under-
stood that the transpose of / to a mapping for proximity spaces has this property, and 
if we say that a mapping / for proximity spaces has a property defined for closure 
spaces, e.g. / is continuous, it is to be understood that the transpose of / to a map-
ping for closure spaces has this property. 

Now proposition 25 A.10 and its corollary can be restated as follows: 
25A.12. Theorem. Every Lipschitz continuous mapping and every uniformly 

continuous mapping is proximally continuous. Every proximally continuous map-
ping is continuous. 

25 A.13. Corollary. Every uniform homeomorphism (uniform embedding) is 
a proximal homeomorphism (proximal embedding). Every uniformly continuous 
pseudometric is a proximally continuous pseudometric. 

We recall that a uniformly continuous mapping for semi-pseudometric spaces 
need not be Lipschitz continuous, a proximally continuous mapping for semi-uniform 
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spaces need not be uniformly continuous (25 A.4) and a continuous mapping for 
proximity spaces need not be proximally continuous (25 A.4). There are two im-
portant theorems asserting that, under certain assumptions, a proximally continuous 
mapping is uniformly continuous. One of these will be proved now while a second 
one, which requires the concept of proximally coarse semi-uniformity, will be given 
in subsection 25 B. 

25 A.M. Theorem. A proximally continuous mapping of a pseudometrizable 
uniform space into a pseudometrizable uniform space is uniformly continuous. 

Proof. Suppose that/ is a proximally continuous but not uniformly continuous 
mapping of a pseudometric space <P', d'} into another one <P, d}; we have to derive 
a contradiction. The mapping / is not uniformly continuous and therefore there 
exists a positive real r and sequences {£„} and {rj„} in P' such that the sequence 
{d'(£„, t]„y} converges to zero but d(f£„,fyn} ^ r for each n. If n; is an unbounded 
sequence in N, then the distance from E{£Bi} to E{»jni} is zero in <P', d'} and con-
sequently, / being proximally continuous, the distance from/[E{^nJ] (= E{/£„,}) 
to /[«%„,}] (= Z{fln.}) in <p, d> is zero. 

Write xn = /£„, y„ = frjn so that 
(a) d(x„, y„y ^ r > 0 for each n in N, and 
(b) the distance from E{x„ j n e M} to E{j>„ | n e M} is zero for each infinite subset 

M of N. 
We shall derive a contradiction. 
I. If the net {d(x„, xm> | <n, m> e N x N} converges to zero where N x N is 

endowed with the product order, then a contradiction is obtained as follows. Choose 
n0 in N such that n ^ n0, m ^ n0 implies d(xn, xm> < \r. The distance from 
E{xfc | k n0} to the set E{yk | k n0} is zero and therefore, by (b), we can choose 
m ^ «o and n ^ n0 such that d<x„, ym> < ir. Now d<xm, ym> ^ d(xm, xn> + 
+ d(xn, ym} < \r + ir = r which contradicts our assumption (a). 

II. If there exists an infinite subset M of N such that the net {d<x„, xm> | in, in) e 
e M x M} converges to zero, then a contradiction is obtained as in I. 

III. If there exists an infinite subset M of N such that the net {d(y„, ym} | <n, m> e 
e M x M} converges to zero, then a contradiction is obtained by applying the argu-
ment of I with x„ and yn interchanged. 

IV. In the remaining case there exists no infinite subset M of N such that the net 
{d(x„, xm> |(n, m ) e M x M} or the net {d(y„, ym> |<n, m ) e M x M} converges 
to zero. Consequently, there exists a positive real s and an infinite subset M of N 
such that (see 18 ex. 11) 

(c) d(x„, xra> ^ s, d(yn, ym> ^ s 
for each neM,meM,n + m. Choose a positive real t such that t ^ and t gr.lt is 
easily seen that there exists an infinite subset L of M such that the distance from x„ 
to E{j>t | k e L} as well as the distance from yn to E{xk | ke L} is less than t for each 
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neL. Indeed, assuming the contrary we can construct an infinite subset K of M such 
that the distance from E{x„ | n e K} to the set E{yn | n eJi} is at least s, which contra-
dicts our assumption (b). Let g be the relation consisting of all <n, m) e L x Lsuch 
that d(x„, ym} < t. We have g[n] =# 0 =f= for each n. It follows from (c) that 
the relations g and Q~l are single-valued. Indeed, if d(x„, yk} < t, d(xm, yk} < t, 
neL, meL, Ice L then d(x„, xm> < d<x„, yky + d(xm, yk) < 2f ^ s which 
contradicts (c) and proves that g'1 is single-valued. The same argument with x and y 
interchanged yields that g is single-valued. Thus g : L-> Lis a bijective mapping. If 
neL, then n e N and hence d(x„, y„} ^ r ^ t (by (a)) which shows that gn 4= n 
for each n. Now it is easily seen that there exists an infinite subset K of L such that 

r\K = 0. (Take a maximal element K of the ordered subset of <exp L, c : ) 
consisting of all H such that H n e[H] = 0 and show that K is infinite.) Evidently 
the distance from E{x„ | n e K} to the set E{y„ | n e K] is at most s, which contra-
dicts our assumption (b). The proof is complete. 

25 A.15. Corollary. Tvvo pseudometrics are uniformly equivalent if and only if 
they are proximally equivalent; stated in other words, if dx and d2 are pseudo-
metrics for a set P, is the uniformity induced by dt and pt is the proximity in-
duced by dh i = 1,2, then = if and only if p1 = p2. 

Proof. Any uniform homeomorphism is a proximal homeomorphism (by 25 A.13) 
and therefore = °U2 implies p1 = p2. It follows immediately from 25 A.14 that 
pt = p2 implies = 112. 

25 A.16. Definition. The class of all proximities ordered by the relation E{<p, q} | p 
is proximally finer than q} will be denoted by P, and, given a set P, the ordered subset 
of P consisting of all proximities for P will be denoted by P(P). The set of all proxi-
mally continuous mappings of a proximity space 0> into another one Q will be de-
noted by P(0>, 2). 

If 2? and HL are semi-uniform spaces, then U(0, 2) denotes the set of all uniformly 
continuous mappings of 2? into 2; in accordance with 25 A.11, the symbol P(2?, 2) 
will denote the set of all proximally continuous mappings of 0 into 2. Similarly, if 
0> and 2 are proximity spaces, then C(0, 2) will denote the set of all continuous 
mappings of & into 2. Our earlier results can now be restated as follows: 

(*) C(0, 2) => P(2P, 2) => U(2P, 2) 

for all semi-uniform spaces 0 and 2; the first inclusion holds for all proximity 
spaces 0 and 2 whereas U(0, 2) is not always defined. Roughly speaking, inclusions 
(*) are true whenever the symbols are defined. Theorem 25 A.14 asserts that 
P[2P, 2) c U(0, 2) for all pseudometric spaces 2? and 2. Earlier, we have intro-
duced the concepts of a continuous semi-uniformity and a continuous semi-pseudo-
metric for a closure space, and of a uniformly continuous semi-pseudometric for a 
semi-uniform space. In a similar way we shall define a continuous proximity for a 
closure space, and a proximally continuous semi-uniformity and a proximally 



25. P R O X I M I T Y S P A C E S 447 

continuous semi-pseudometric for a proximity space. Although the definitions are 
evident we give the precise formulations. 

25 A.17. Definition. A continuous proximity for a closure space <P, u) is a pro-
ximity for P such that the closure induced by p is coarser than u, i.e., the identity 
mapping of <P, m> onto <P, p> is continuous. A proximally continuous semi-
pseudometric (a proximally continuous semi-uniformity) for a proximity space 
<P, p} is a pseudometric (semi-uniformity) £ for P such that the proximity induced 
by <!; is proximally coarser than p, i.e., the identity mapping of <P, p> onto <P, £> is 
proximally continuous. 

It is to be noted that, according to earlier results, if d is a proximally continuous 
semi-pseudometric for a proximity space * and if W is the semi-uniformity induced 
by d, then °U is a proximally continuous semi-uniformity for 3P, and similarly for con-
tinuous semi-pseudometrics, semi-uniformities and proximities for a closure space. 

25 A.18. Examples. Suppose that P is a closure space. 
(a) The relation 

Pl = {<X, 7> | X c P , Y c P , (X n Y) u (X n F) * 0} 

is the proximally finest continuous proximity for P. It is to be noted that two subsets X 
and 7 of P are distant in <|P|, Pi) if and only if they are semi-separated (20 A.1), 
i.e., X non pt Y if and only if X and Y are semi-separated in P. Verification of the 
conditions (prox i) is simple and therefore is omitted (one can use properties of non p1 

proved in 20 A). If p is any continuous proximity for P and A" p1 Y, then X n Y 4= 0 
or X n F 4= 0; but X n Y 4= 0 implies y e X for some y e Y, and p being a continuous 
proximity, we obtain (y) p X and hence Y pX and thus also X pY. Similarly X n ? 
yields X pY. Thus always X p Y whenever X pt Y, which shows that pl is proximally 
finer than p. On the other hand, if x e X then clearly (x) pi X, which means that pt 

is a continuous proximity for the closure space P. 

(b) The relation p2 = {(X, Y}\X pt yor both X and yare infinite} is a continuous 
proximity for P, and if some proximity induces the closure structure of P, then p2 

is the proximally coarsest proximity inducing the closure structure of P. 
(c) The relations p3 = {(X, Y} \ X c P, Y <= P, X and yare not separated in P} 

and p4 = {<X, y> | X n F 4= 0} are continuous proximities. It is to be noted that 
the relation non p3 was studied in 20 A and the relation p4, which will be called the 
Wallman proximity of P, will be studied in Section 29 devoted to normal spaces. 

(d) The relation p5 = E{<AT, Y} | if / is a continuous function on P, then / [ X ] n 
n / [ y ] 4= 0} is a continuous proximity for P, which is called the Cech proximity of P 
and will be studied in Section 28 devoted to uniformizable spaces. 

Now we shall turn to the definition of a subspace of a proximity space and the sum 
of a family of proximity spaces. The product will be studied in Section 38. 
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25 A.19. Definition. If <P, py is a proximity space and Q <= P, then q = 
= p n (exp Q x exp Q) is a proximity for g which will be called the relativization 
of p to Q, and the space <Q, q> will be called a subspace of <P, 

The verification of the fact that q is actually a proximity for Q is left to the reader. 
One can prove that q is the proximally coarsest proximity for Q such that the mapping 
J : <8> <-P> P> is proximally continuous. Now we have the following result: 

25 A.20. Let Q be a subset of a set P. If y is the relativization to Q of a semi-
uniformity W for P, then the proximity induced by y is the relativization of the 
proximity induced by If q is the relativization to Q of a proximity p for P, then 
the closure induced by q is the relativization of that induced by p. — Evident. 

25 A.21. Definition. A restriction of a mapping f for proximity spaces is a map-
ping g = / : * - > 2 where * is a subspace of D*f and J is a subspace of E*/; if 
g/> = D*/, then g is a range-restriction of / , and if SL = E*/, then g is a domain-
restriction. A proximal embedding is a mapping / such that the range-restriction 
off to the subspace E/ of E*/ is a proximal homeomorphism. 

Obviously, if 3, is a subspace of a proximity space then the mapping J : J -» * 
is a proximal embedding, which is said to be the identity embedding of M into 

25 A.22. Theorem. The restriction of a proximally continuous mapping is proxi-
mally continuous. A mapping f for proximity spaces is proximally continuous 
if the range-restriction of f to the subspace Ef ofE*f is proximally continuous. — 
Evident. 

25 A.23. Definition. The sum of a family {<Pa, pa) \ a e A} of proximity spaces, 
denoted by E{<Pa, p„> | a e A), is the proximity space <P, p> where P = £{Pa} and 
X p Y if and only if X e P, 7 c P and Xt pa Ya for some a where X = Z{Xa}, Y = 
= £{7a}. The proximity p is termed the sum of the family {pa} and denoted by 
Mp.}-

The straightforward verification of the fact that p is actually a proximity is left 
to the reader. Next, it is to be observed that the sets inja [Pa] and inj6 [Pb] are distant 
in <P, py for each a 4= b. The basic properties are summarized in the theorem which 
follows. The simple proof is left to the reader as a convenient exercise. 

25 A.24. Theorem. Let <P, p) be the sum of a family {<Pa, p„y \ a e A} of pro-
ximity spaces. Then 

(a) I f f â a } is a family of semi-uniform spaces such that alia induces pafor each a, 
then the sum semi-uniformity induces p. 

(b) If u9 is the closure induced by pa, a e A, then the sum closure £{«„} is induced 
by p. 

(c) The mapping inja : <Pa, pa> -» <P, p) is a proximal embedding for each a 
in A (which will be called the canonical embedding). 

(d) The proximity pis the proximally finest proximity for P such that all mappings 
inja : <Pa, pay -* <P, p y are proximally continuous. 
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(e) A mapping f of <P, p> into a proximity space 2L is proximally continuous 
if and only if the mapping /o inj a : (Pa, P„) 3 is proximally continuous for 
each a in A. 

B. PROXIMALLY COARSE SEMI-UNIFORMITIES 

We shall show that every proximity is induced by a semi-uniformity, and that among 
all uniformities inducing a given proximity there exists a uniformly coarsest ( = small-
est) one which will be called the proximally coarse semi-uniformity of <P, It 
turns out that this semi-uniformity is a uniformity if and only if p is induced by a 
uniformity. 

25 B.l. Definition. A proximity induced by a uniformity will be called uniformiz-
able. 

Uniformizable proximities permit the following simple characterization: 

25 B.2. Theorem. The following condition is necessary and sufficient for a pro-
ximity p for a set P to be uniformizable: 

(prox 5) IfX non pY, then there exist c P and Y1 c: P such thatXi^ n Y1 = 0, 
(P - Z j non pX and (P - Yt) non p Y. 

Evidently, condition (prox 5) can be restated as follows: 
(prox 5') If X non p Y, then there exist proximal neighborhoods X1 of X and Yt 

of Y such that X1nYi= 0. 
Proof. I. Necessity. Suppose that p is induced by a uniformity H and X non p Y. 

By the definition of induced proximities there exists a U in H such that n Y = 0. 
Choose a symmetric element V of 1l so that Fo F c (/ and put Xt = V\X], 
Yt = F[Y]. By definition, Xl and Y1 are proximal neighborhoods of X and Yand 
it remains to show that n Yx = 0. Assuming the contrary we obtain Vo V[X~\ n 
n Y 4= 0 which implies U\X\ n Y 4= 0, and this contradicts our assumption 
U[X] n Y = 0. 

II. To prove the sufficiency we must construct a uniformity inducing p. The con-
struction is not too simple. Three lemmas will be given, concerning the construction 
of the uniformly coarsest semi-uniformity inducing a given proximity p which will 
be proved (in 25 B.6) to be a uniformity if p fulfils the condition (prox 5). Thus suf-
ficiency will follow from 25 B.6. 

If a proximity p for a set P is induced by a semi-uniformity H and i f X p Y , then 
U\X~\ n Y =|= 0 for each U in "U. Therefore, given p, if we want to find a semi-uniformity 
inducing p it is natural to consider the collection 11 of all vicinities U of the diagonal 
of P x P such that n Y * 0 whenever XpY. It is easily seen that UeH,Ucz 
c V <= P x P implies U~l s 11 and Ve 1l. On the other hand, the intersection of 
two elements of 11 need not belong to 11, as will be shown in example 25 B.10, and 
therefore H need not be a semi-uniformity. It turns out that the collection H' of all 
the elements Kof 1l of the form Uf-^i x where { X j is a finite cover of P, pos-

29—Topological Spaces 
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sesses the following two properties: (1) if U e °U and U' e , then U n U' e "ll, and 
(2) if a semi-uniformity "V induces p, then °U' cz -f. It will follow from (l) that is 
a base for a proximally continuous semi-uniformity for <P, p>; it turns out that this 
semi-uniformity induces p, and if p fulfils (prox 5), then this semi-uniformity is 
a uniformity. For convenience we shall introduce some terminology.1! 

25 B.3. Definition. A finite square vicinity of the diagonal of P x P is a vicinity 
of the form x where { X j is a finite cover of P. If <P, p} is a proximity 
space then a proximal vicinity of the diagonal of <P, p> x <P, p>, or a p-proximal 
vicinity of the diagonal of P x P, is a subset U of P x P such that Xp Yimplies 
U[X~\ n 7 * 0. 

Remarks, (a) A subset U of P x P is a symmetric vicinity of the diagonal of 
P x P if and only if U is a union of squares X x X. "If" is obvious and to prove 
"only if" notice that V = U{((*> y) x (x, _y)) | <x, y) e V} provided that V is a sym-
metric vicinity of the diagonal. — (b) Every proximal vicinity U of the diagonal of 
<P, p) x <P, p) is a vicinity of the diagonal of P x P; indeed, if x e P, then 
(x) p (x) (by (prox 3)) and hence t/[(x)] n (x) 4= 0, i.e. <x, x) e U. 

For convenience, the main result, Lemma 25 B.6, will be preceded by two prepar-
atory lemmas which are also important by themselves. 

25 B.4. Let P be a set. Every finite square vicinity of the diagonal of P x P is 
an intersection of a finite family of vicinities of the form (X x X) u (Y x Y). 

Proof. Suppose that U = x X: \ i g n}, n e N, is a vicinity of the diagonal 
of P x P, i.e., {Xj} is a cover of P. Assuming that <x, y}e(PxP) — U let us 
consider the union X of all X; such that x eXh and the union Y of all the remaining 
sets Xt. Since y $X we have <x, y) X x X and since x $ Y we have <x, y> £ 
$ Y x Y. Thus U c ((X x X) u (7 x Y)) c (P x P) - (<x, y>). This concludes 
the proof. 

25 B.5. Suppose that <P, p} is a proximity space. Each of the following two 
conditions is necessary and sufficient for a set V = ((X t x Xj) u (X2 x X2)) 
<=• P x P to be a proximal vicinity of the diagonal: 

(a) (P - Xj) non p (P - X2) (and hence XtvX2= P); 
(b) i f X p Y , then n X) p(Xt n 7) or (X2 n X) p(X2 n 7). 

Proof. First notice that P - Xx = X2 - and P - X2 = - X2 if 
X1kjX2 = P. 

I. Condition (a) is necessary because V[X2—X1] = X2 and X2 n(.X\— X2) = 0. 
II. Condition (b) is sufficient, for (Xt n X) p(X{ n Y) implies Xt n X 4= 0, 

Xi n 7 4= 0, and hence V[X] n Y => V\Xt n X] n (Zf n Y) = X{ n (X ; n y) = 
= Xi n y 4= 0. 

III. It remains to show that (a) implies (b). Assuming (a) suppose X p Y and con-
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sider the following decompositions of X and 7: 
X = ((X, - X2) n X) u ((Xi n X2) n X) u ((X2 - Xt) n X) 

7 = ((X, - X2) n 7) u ((X! n X2) n 7) u ((X2 - Xt) n 7) . 

The sets X and 7 being proximal, by 25 A. 3 at least one of the sets of the decom-
position of X must be proximal to a set from the decomposition of 7. But 
(X2 - Xj) non p (X t - X2) and hence also (X n (X2 - X j ) non p ( 7 n (X^ - X2)), 
( 7 n (X2 — X t)) non p (X n (J^! — X2)). It follows that both of the proximal sets 
in question must be contained in Xt or in X2; this concludes the proof. 

25B.6. Lemma. Suppose that (P, p) is a proximity space, "f is the set of all 
finite square proximal vicinities (of the diagonal of <P, p> x <P, p>) and if is 
the set of all elements of "f of the form (AT x X) u (7 x 7). Obviously "f is a sub-
base for a semi-uniformity H for P. The following assertions hold: 

(a) "f consists of finite intersections of elements of if and hence if is a sub-base 
for H. 

(b) If W eif and U is any proximal vicinity, then W riU is also a proximal 
vicinity. 

(c) "f is multiplicative, hence a base for H. Thus every element of % is a proxim-
al vicinity and hence It is a proximally continuous semi-uniformity for <P, p>. 

(d) H induces p. 
(e) If a semi-uniformity induces p, then 11 <=. 
(f) If p fulfils the condition (prox 5), then is a uniformity. 
Proof. I. Statement (a) follows from 25 B.4 and the definition of a sub-base for 

a semi-uniformity. 
II. To prove (b) let W = (Xj x I j u (X 2 x X2) e i f , and let U be any 

proximal vicinity. Assuming X p 7 we must show that (U n W) [X] n 7 =)= 0. By 
25 B.5 we obtain that (X ; n X) p(X{ n 7) for some i = 1, 2. Since U is a proxi-
mal vicinity we have l/[Xf n X] n (X ; n 7) #= 0. However (17 n W) [X ; n X] = 
= X; n [/[Xi n X], and consequently (U n W) [X] n 7 => (U n W) [X ( n X] o 
n 7 => X,- n C/[X; n X] n 7 * 0. 

III. Statement (c) follows immediately from (a) and (b) (by induction). 
IV. For (d) it remains to show that if X non p 7 then [/[X] n 7 = 0 for some U 

in 11. Put Xt = P - X and Yi = P - 7. It follows from 25 B.5 (a) that U = 
= (X t x X t ) u (7 t x 7j) is a proximal vicinity and hence U e if <= 11. But 
clearly t/[X] = = P - 7. 

V. To prove (e), suppose that a semi-uniformity Hi induces p. To prove that 1i is 
contained in 111 it is sufficient to show that the sub-base if of H is contained in 11 
Let W = (X x X) u (7 x 7) be any element of i f . By 25 B.5 we obtain 
(P — X) non p(P — 7). By our assumption there exists a U in H^ such that 

(*) U[P - X] n (P - 7) = 0. 

29* 
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Without any loss of generality we may and shall assume that U is symmetric, i.e. 
U = U~l. Now the proof will be accomplished if we show that U c W; and this 
inclusion will be derived from (*) as follows. 

It is sufficient to show that ¡7[x] c W[x] for each x in P. It follows from (*) that 
U[P - X] c Y; but clearly W[P - X] = Y and hence U[x] c W[x] for each x 
in P - X. Since U is symmetric, we obtain from (*) that U[P - 7] n (P - X) = 0 
and the same argument as above gives t/[x] c W[x] for each x in P — Y. It re-
mains to consider the case when x 6 P — ((P — X) u (P — Y)) = X n Y. However 
if x 6 (X Pi Y), then W[x] = ( i u Y) = P and therefore U[x] c: P = W\x\. 

VI. We must now prove assertion (f). Suppose that p fulfils condition (prox 5) 
of 25 B.2. According to 24 A.6, to prove that ^ is a uniformity it is sufficient to show 
that for each element W of the sub-base W for "U there exists an element Fof "f such 
that Vo Vc= W. Suppose that W = ((X x X) u (Y x Y)) e iV (see fig. 1). 

Since (P — X) non p (P — Y) there exists a proximal neighborhood Yl of P — X 
and Xt of P - Y such that Xt n Yx = 0. Put V=(Xt x X j u ((X n Y) x 
x (X n Y)) u (Yi x Yi). Now Ve V because Fis the intersection of two elements 
of iT, namely (Zi x X j u (Y x Y) and (Yt x Yt) u (X x X), use 25 B.5 (a). It 
will be shown that Vo V <= W. By 23 B.7 we have Vo V = U ^ M x V[A \xeP}. 
If x e Xu then F[x] c X and hence (F[x] x F[x]) c X x X <= W. If x e P - Xit 
then F[x] t= Y and hence (F[x] x F[x]) <= Y x Y <= W. 

It is to be pointed out that Lemma 25 B.6 accomplishes the proof of Theorem 
25 B.2. If p is a proximity for a set P then by 25 B.6 the set of all finite square 
p-proximal vicinities of the diagonal of P x P is a base for a semi-uniformity % for 
P, which is the smallest semi-uniformity inducing the proximity p. If is any semi-

Fig. 1. 
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uniformity inducing p such that the set V of all finite square vicinities from "U' is 
a base for , then necessarily H <=. <%'; but "V <=. and "V' being a base for 
we obtain ^l' <= % and hence = °ll. Thus we have proved 

25 B.7. Suppose that a semi-uniformity fy induces a proximity p. Then is the 
uniformly coarsest (i.e. smallest) semi-uniformity inducing p if and only if the 
finite square elements of "U form a base for 

25 B.8. Definition. A semi-uniformity °U will be called proximally coarse if finite 
square elements of H form a base for i.e. by 25 B.7, if a semi-uniformity M induces 
the same proximity as then c: (i.e. % is uniformly coarser than 

25 B.9. Theorem. Every proximity is induced by a semi-uniformity. Among all 
the semi-uniformities inducing a given proximity p there exists a unique proximally 
coarse semi-uniformity "ll; the set of all finite square p-proximal vicinities is a base 
for fy and is a uniformity if and only if p is uniformizable. — (25 B.2, 25 B.6 
and 25 B.7). 

25 B.10. We shall construct some discrete proximities for a given infinite set P and 
we shall describe the corresponding proximal vicinities and proximal coarse semi-
uniformities. We shall show that the intersection of two proximal vicinities need not 
be a proximal vicinity and the sum of two proximally continuous pseudometrics 
need not be proximally continuous. 

According to Convention 25 A.11 a proximity p is said to be discrete if the closure 
induced by p is discrete. A proximity p will be called proximally discrete if every 
proximity proximally finer than p coincides with p, i.e. p = E{<J£, Y> | X <= P, 
Y c P, X n Y + 0} for some set P. A proximity space <P, will be called discrete 
or proximally discrete if p is discrete or proximally discrete. In what follows let P 
be an infinite set. 

(a) Let p be the proximally discrete proximity for P. Let d be the pseudometric 
for P which is 1 outside the diagonal of P x P (thus d is a metric). Evidently d 
induces p and the uniformity W induced by d is the uniformly finest uniformity 
for P. Thus Ql is the uniformly finest semi-uniformity inducing p and °tt consists 
of all proximal vicinities, i.e. of all vicinities of the diagonal. By 25 B.9 the finite 
square elements of form a base for the proximally coarse semi-uniformity "V 
of <P, p) which is a uniformity (by 25 B.9) because p is uniformizable. On the 
other hand, <P, is metrizable and hence <P, p> is metrizable, but <P, Y") is not 
pseudometrizable. Indeed, assuming that Y is pseudometrizable we obtain that 
% = "V because any two proximally equivalent pseudometrizable uniformities 
coincide (by 25 A.15); but clearly ¿U 4= • 

(b) Suppose that £ is a free proper filter of sets on P, i.e. each element ofC is 
non-void and f) C = 0- It is easily seen that the relation 

p = E{<X, 7 > | X c P , YcP,XnY*<D or (ZeC=>ZnX + 9 + ZnY)} 

is a discrete proximity for the set P. Next, p is proximally discrete if and only if 
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Z n Y = 0 implies that there exists a Z in C such that either X n Z = 0 or Y n Z = 
= 0. It is almost self-evident that this condition is equivalent with the statement 
that £ is an ultrafilter. Thus p is proximally discrete if and only if£ is an ultra-
filter. Clearly each set J, u (Z x Z), Z e£,is a proximal vicinity. If U = (X x Z) u 
u ( y x y) is a proximal vicinity, then the sets P — X and P — Y are proximally 
distant and hence, being disjoint, there exists a Z in £ such that Z n (P — X) = 
= 0 = Z n (P — y) and hence Z x Z c U. As a consequence, each proximal 

finite square vicinity contains a set of the form Z x Z, Z e (• We have proved that 
a finite square vicinity U of the diagonal of P x P is a proximal vicinity if and 
only if U contains a set of the form Z x Z, Z e Stated in other words, a finite 
square vicinity x is proximal if and only if ( n E{Zj} =f= 0. It is in-
teresting to notice that the proximity p is a relativization of the Wallman proximity q 
of a closure space <Q, v} (that is, q = E{<Z, Y} | vX n vY =f= 0}). Let Q consist of 
all points of P and a single further point x, and let v be the closure for Q such that P 
is an open isolated subset of <Q, v) and [£] u (x) = E{Z u (x) | Z e £} is the neigh-
borhood] system at x. It is easily seen that p is the relativization of the Wallman 
proximity of <<2, v>. 

(c) Let Ci, i = 1,2, be proper filters on P and let be proximities for P defined 
as in (b), i.e. X pcY if and only ifX<=P,YcP and either Z n y #= 0 or Z n Zf 4= 
4= 0 4= 7 n Z ; for each Z(eCf. Let us consider the filter £ on P x P having the 
collection x [£2] = E{Z1 x Z2 | Z( e £,-} for a base, and the proximity p 
defined as in (b), i.e.X pY if and only ifX<=.PxP,Y<=.PxP and either X n Y + 
+ 0 or Z n Z H = 0 4 = Y n Z for each Z in Let and n2 denote the projections 
{<*» x | <x, y ) e P x P} and {<x, y> y \ <x, y> e P x P}. We shall prove 
that the projections n^: <P x P, p> -» <P, p(>, i = 1,2, are proximally continuous. 
Suppose XpY. If X n Y 4= 0, then ^[Z] n n^Y] 4= 0 and hence 7t;[Z] pt n¡[F]. 
Let X n y = 0 and Zf e Since Z = Zy x Z2 belongs to we have Z n Z 4= 
4= 0 4= Z n y and hence 7t,[Z] n 7i,[Z] 4= 0 4= %¡[Z] n 7if[y], / = 1, 2. Howe-
ver, 7t([Z] = Zf and hence 7t([Z] ^¡[y]. 

(d) Under the assumptions of (c) let C; be ultrafilters. Then, by (b), are pro-
ximally discrete, i.e. XptY implies that XnY+O, in particular pt = p2. On the 
other hand, £ need not be an ultrafilter and therefore the proximity p need not be 
proximally discrete. E.g., if Ci 4= C2 a n d C; contains a countable set then £ is not 
an ultrafilter by 12C.13. 

(e) Let p be a proximity for P x P which is not proximally discrete and assume 
that the mappings Jtf: <P x P, p> <P, q> are proximally continuous, where q is the 
proximally discrete proximity for P (such a p exists by (c) and (d)). If d is any 
proximally continuous pseudom;tric for <P, q) (and hence, by (a), if d is any 
pseudomstric for P), then dt = d a (7t; x 7t;), i = 1, 2, are proximally continuous 
pseudom t̂rics because the mapping J : <P x P, p) <P x P, dt} is proximally 
continuous as the composite of two proximally continuous mappings, namely 7t;: 
<P x P, p) -v <P, q> and J : <P, q> -+ <P, d}. In particular, if d is the pseudo-
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metric for P which is 1 outside the diagonal of P x P, then dl and d2 are proximally 
continuous pseudometrics for <P x P, however their sum D = di + d2 is not 
proximally continuous because D((xt, yt), (x2, y2» = d(xt, x2> + d(y y2> ^ 1 
whenever <x1; j^) =t= <x2, y2), and hence D induces the proximally finest proximity 
for P x P, which is, by our assumption, strictly proximally finer than p. Thus the 
sum of two proximally continuous pseudometrics need not be proximally continuous. 
From this fact it follows at once that the intersection of two proximal vicinities 
need not be a proximal vicinity. 

25 B . l l . Definition. A semi-uniformity % for a set P is said to be totally bounded 
if for each U in there exists a finite subset X of P such that t/[X] = P. 

25 B.12. Every proximally coarse semi-uniformity is totally bounded and every 
totally bounded uniformity is proximally coarse. 

Proof. I. Let ^ be a proximally coarse semi-uniformity for a set P and let "V be 
the collection of all finite square elements of eU\ thus Y is a base for °U. If U e 
then F c U for some V = (J{X ; x X;} 6 "V, where {X,} is a finite cover of P; now 
if X is a finite set intersecting each Xu then clearly F[X] = (J{X,} = P and hence 
U[X] = P. 

II. Suppose that is a totally bounded uniformity for a set P and 17 is any element 
of We must find a finite square element Win contained in U. Choose a symmetric 
element Fin ^ such that Fo Fo Fo F <= U and a finite subset X of P with F[X] = P, 
and put 

W= V)[x] x (Vo F>[x] |xeX}. 
Since (Fo F) o (Fo F) <= U, the set Wis contained in U by Lemma 23 B.7. To prove 
that Wefy, we shall show that W => V. Given any y in P choose an x in X with 
y e F[x], We have 

F|>] c F[F[x]] = (Fo F) [x] c W[y]. 

Corollary. A uniformity is proximally coarse if and only if it is totally bounded. 
Remark. A totally bounded semi-uniformity need not be proximally coarse. For 

example, consider an infinite set P, choose a point x in P and let us consider the pro-
ximity p for P such that X p Fif and only i f X n 7 + 0 orX + 0#= Yand x eX u Y. 
If u is the closure induced by p, then u(y) = (x, y) if y e (P — (x)) and m(x) = P. 
Thus P is the only neighborhood of x in <P, u> and consequently, if "U is a con-
tinuous semi-uniformity for P, then l/[x] = P for each U in "U\ this shows that 
every continuous semi-uniformity for <P, u) is totally bounded. Let Û be the lar-
gest continuous semi-uniformity for <P, u>. Clearly thé set U = AP u ((x) x P) u 
u (P x (x)) forms a base for °U and fy induces p. On the other hand <*U is not 
proximally coarse because the set U contains no finite square element of H (P is 
infinite). 

25 B.13. By our convention that every uniform concept applies to semi-pseudo-
metrics, a semi-pseudometric is said to be totally bounded if the induced semi-
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uniformity is totally bounded. It is evident that a semi-pseudometric d for a set P is 
totally bounded if and only if, for each positive real r, there exists a finite subset X of P 
such that the distance from each y e P to X is less than r. 

25 B.14. Theorem. The class of all proximally coarse semi-uniformities is 
hereditary and closed under finite sums and arbitrary products. 

Proof. If Q c : P and U is a finite square vicinity of the diagonal of P x P, then 
(2 x 2) n 1/ is a finite square vicinity of the diagonal of Q x Q and therefore every 
relativization of a proximally coarse semi-uniformity is proximally coarse. If <P, 11s) 
is the sum of a finite family {<Pa, | a e A} of proximally coarse semi-uniformities, 
and Ua e 1la is finite square, then U {(inja x inja) [[/„]} is also finite square; this shows 
that 11 is proximally coarse. Finally, if <P, <^>is the product of a family {<P a ,1ta) j 
and Ua e 1la is finite square, then {<x, y> | <pra x, pra e Ua} is finite square and 
hence finite square elements form a sub-base for H; this shows that 1l is proximally 
coarse. 

25B.15. Theorem. Suppose that there exists a uniformly continuous mapping 
of a semi-uniform space 0 onto another one 2. If 0 is totally bounded, then 2 is 
also totally bounded. If 0 is totally bounded, in particular if 0 is proximally 
coarse, and if 2 is a uniform space, then 2 is proximally coarse. 

Proof. The first statement is an immediate consequence of the corresponding de-
finition and the second one follows from the first and 25 B.12. 

Remark. It is to be noted that there exists a uniformly continuous mapping of 
a proximally coarse uniform space onto a semi-uniform space which is not 
proximally coarse. For example, take an infinite set P, fix a point x in P and con-
sider the proximally coarse uniformity H inducing the proximity p = E{<X, Y) | 
X <=. P, Y a P, X n Y 4= 0} (see 25 B.10). Next, fix a point x in P and consider 
the proximity q = E{<X, Y}\X c P, Y c P, X n Y 4=0 or X 4= 0 4= Y and 
x e (X u y)}. The proximity q is induced by the semi-uniformity Y which consists 
of all V c. P x P containing a set of the form U u ((x) x P) u (P x (x)), U e 11. 
Clearly, J : <P, IIs) <P, Y ) is uniformly continuous but Y is not proximally 
coarse because the proximally coarse semi-uniformity of <P, q} has for a base the 
set of all finite square vicinities x s u ch that x e f) 

25B.16. A subspace Q of the uniform space of reals is proximally coarse if and 
only if Q is contained in a bounded interval in R. 

Proof. I. If Q is contained in no bounded interval, then one can easily construct 
a sequence {x„} in Q such that |x„ — xm| ^ 1 for n + m. Now if {yn} is a sequence 
in Q such that |x„ - y„| < 2 _ 1 , then 1 g - xm\ g |x„ - yn\ + \y„ - ym\ + 
+ \xm ~ ,ym| < 1 + |y„ - ym\ whenever n + m, and hence |j>„ - y„,\ > 0 for n 4= m. 
But this implies that {yn} is a one-to-one sequence. Consequently (see 25 B.13), Q is 
not totally bounded and hence Q is not proximally coarse (by 25 B.12). 

II. Now let Q be contained in a bounded interval J = [—?',»• ]. But, according to 
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Theorem 25 B.14 it is sufficient to show that J is proximally coarse; by 25 B.12 this 
will follow if the interval J is totally bounded. Given a positive s, let S be the set of all 
the points s . n, n e N or - n e N . Clearly S n [ — r, r ] is finite and if x e J, then 
|x — < s for some y in S. The proof is complete. 

By 25 A.10 every uniformly continuous mapping is proximally continuous but 
a proximally continuous mapping for semi-uniform spaces need not be uniformly 
continuous (it is sufficient to take two different proximally equivalent semi-uniform-
ities). On the other hand one has the following 

25 B.17. Theorem. If 0> is a proximally coarse semi-uniform space, then every 
proximally continuous mapping of a semi-uniform space into 8P is uniformly con-
tinuous. 

Proof. Suppose that/is a proximally continuous mapping of a semi-uniform space 
<Pl5 > into a proximally coarse semi-uniform space <P, 6U'y. To prove that / is 
uniformly continuous it is merely necessary to find a sub-base i f for % such that 
(/ x / r 1 [W] e ^ for each Win iV. Of course for HT we take the sub-base for ^ 
described in lemma 25 B.6, i.e. the collection of all sets W of the form W = 
= (X x X) u (Y x Y) such that (P — X) non p (P — 7), where p is the proximity 
induced by Since/ is proximally continuous we obtain (P1 — Xj non p1 (P1 — Yx) 
where X l = / - 1 [ X ] , = / - 1 [ Y ] and p± is the proximity induced by ^ ^ Thus, 
from 25 B.5, Wt = x X^) u (Yj x Y^ is a px-proximal vicinity of the 
diagonal of Pj x Pj, and consequently, by 25 B.6, W^e^U^. But clearly W1 = 
= ( f x f r i m 

Remark. It is to be noted that the property of proximally coarse semi-uniformities 
stated in 25 B.17 is characteristic for proximally coarse semi-uniformities, more pre-
cisely, a semi-uniform space * is proximally coarse if and only if every proximally 
continuous mapping of a semi-uniform space into 8P is uniformly continuous. "Only 
if" is proved in 25 B.17, and to prove "if" we need only take, for a given semi-uni-
formity fy for a set P, the proximally coarse semi-uniformity "V which is proxi-
mally equivalent to and to consider the identity mapping of <P, onto <P, 
which is a proximal homeomorphism but which is not uniformly continuous if 
m #= -r. 

25 B.18. Theorem. Suppose that <P, is the product of a non-void family 
{<Pa, | a e A] of proximally coarse semi-uniform spaces. The proximity p 
induced by °U is the proximally coarsest proximity for P such that all mappings 
pra : <P, p) -> <Pa, are proximally continuous. 

Proof. All the mappings in question are proximally continuous because all the 
mappings pra : <P, —• <Pa, are uniformly continuous and every uniformly 
continuous mapping is proximally continuous. Let q be any proximity for P such 
that all mappings pr„ : <P, q) <P„, are proximally continuous and let "V be 
a semi-uniformity inducing q. Since aUa are proximally coarse, by 25 B.17 all mappings 
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pr„ : <P, Y} -* <Pa, Ha) are uniformly continuous and consequently, by the de-
finition of the product semi-uniformity, Y => but this implies that q is proximally 
finer than p, which completes the proof. 

Remark. One can prove that the last theorem remains true if all the aUa except one 
are proximally coarse (ex. 18). If two semi-uniformities are not proximally coarse, then 
the conclusion need not be true as will be shown by the example which follows. 

25B.19. Example. Let q be the proximally discrete proximity (see 25 B.10) for 
an infinite set P, let Ql be the proximally coarse semi-uniformity of <P, q} and let Y 
be the largest semi-uniformity for P. Clearly Y induces q. We shall prove that 

(a) the product semi-uniformities (indeed, uniformities) % x Y x °tt and 
°U x Y induce the same proximity p for P x P; 

(b) p is not proximally discrete; 
(c) Y x Y induces the proximally discrete proximity for P. 

By 25 B.18 the proximity p, induced by H x is the proximally coarsest proximity 
for P x P such that the projections {<x, y} -> x} : <P x P, p> ->• <P, <%} and 
{<x, y} -*• y} : <P x P, p} -> <P, are proximally continuous. By example 25 B.10 
(d) there exists a proximity for P x P which is not proximally discrete and such that 
the projections onto <P, W) are proximally continuous. Thus (b) is true. Statement (c) 
is almost evident, since the product of two largest semi-uniformities is a largest semi-
uniformity. The proof of (a) follows readily from lemma 25 B.6 (b). 

25 B.20. Theorem. The proximally coarse semi-uniformity Y proximally equi-
valent with a given semi-uniformity % for a set P is the unique semi-uniformity for P 
with the following property: 

A mapping f of <P, into a proximally coarse semi-uniform space 2 is uni-
formly continuous if and only if the mapping f : <P,Y) -> 2 is uniformly con-
tinuous. 

Proof. I. Let / be a uniformly continuous mapping of <P, H} into a proximally 
coarse semi-uniform space <Q, ify and let Y be the proximally coarse semi-
uniformity which is proximally equivalent to "U. The collection if' of all finite 
square elements of if is a base for i f , and the set Y' of all ( / x / ) - 1 [FT], We if' 
consists of finite square elements of On the other hand, the finite square elements 
of form a base for Y and therefore Y' c Y. Since if' is a base for i f , the map-
ping / : (P,Y} <6,1T> is uniformly continuous. Conversely, if / : < P , Y > 
-* i.Q>ify is uniformly continuous, then / : <P, -> <Q, i f ) is uniformly con-
tinuous because °U is uniformly finer than Y. Thus Y fulfils the condition. — 
II. The uniqueness of Y is evident. 

In concluding we shall collect and complete some results concerning functions 
and pseudometrics. The set of all bounded functions of R) will be denoted by 
P*(0, R). 
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25 B.21. Theorem. Let % be a semi-uniformity for a set P, p the proximity 
induced by ¿U, and "V the proximally coarse semi-uniformity inducing p (that is, 
"V is the unique proximally coarse semi-uniformity which is proximally equivalent 
to Then 

(a) A pseudometric d for P is auniformly continuous pseudometric for <P, if 
and only if d is a totally bounded uniformly continuous pseudometric for <P, ¿liy. 

(b) A function f on <P, "fy is uniformly continuous if and only if the function 
f: <P, °Uy R is bounded and uniformly continuous. 

(c) If a function f on <P, is uniformly continuous, then f is proximally con-
tinuous, in symbols, U « P , fyy, R) <= P « P , %y, R). 

(d) A function f on <P, Yy is uniformly continuous if and only if f is a bounded 
proximally continuous function, in symbols, 

u«p, ry, R) = P*«p, ry, R). 

Proof. I. A totally bounded pseudometric is proximally coarse by 25 B.12, and 
therefore, by 25 B.20, a totally bounded pseudometric for P is uniformly continuous 
for <P, "Vy if and only if it is uniformly continuous for <P, °Uy. Thus to prove state-
ment (a) it remains to show that every uniformly continuous pseudometric for a pro-
ximally coarse semi-uniform space is totally bounded, and this follows from 25 B.15. 
— II. If / is a bounded function on P, then the subspace E/ of R is proximally coarse 
(by 25 B.16) and therefore, by 25 B.20, the function / : <P, %y -> R is uniformly con-
tinuous if and only if the function/ : <P, "V) R is uniformly continuous. It remains 
to show that every uniformly continuous function / on a proximally coarse semi-
uniform space is bounded. By 25 B.15 the subspace E/ of E */ is proximally coarse and 
therefore, by 25 B.16, E/ is a bounded subset of R. — III. Statement (c) is a particular 
case of the fact that every uniformly continuous mapping is proximally continuous. — 
IV. Statements (b) and (c) imply the inclusion c in (d). Conversely, if/ : <P, -fy -> R 
is a bounded proximally continuous function, then / is uniformly continuous by 
25 B.17 because E/is a proximally coarse subspace of R. 

25 B.22. Theorem. Let be a uniformity and let p be the proximity induced 
by fy. Every uniformly continuous pseudometric for <P, "liy is a proximally con-
tinuous pseudometric for <P, p>. If every proximally continuous pseudometric for 
<P, py is a uniformly continuous pseudometric for <P, °Uy, then % is the uniformly 

finest (i.e. largest) uniformity inducing p. Finally, if "U is the uniformly finest 
uniformity inducing p, then every proximally continuous pseudometric for <P, p) 
is uniformly continuous for <P, °liy. 

Proof. The first statement is a particular case of the fact that every uniformly 
continuous mapping is proximally continuous. If every proximally continuous 
pseudometric for <P, p> is uniformly continuous for <P, <%y and "W is any proximally 
continuous uniformity for <P, p), then every uniformly continuous pseudometric 
for <P, "Wy is proximally continuous for <P, p>, and hence uniformly continuous 
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for <P, 1iy~, this implies that 11 is uniformly finer than if and establishes the second 
statement. The last statement follows from the following result: 

25 B.23. If di and d2 are proximally continuous pseudometrics for a proximity 
space <P, and dl is totally bounded, then di + d2 is proximally continuous. 

Indeed, if d is any proximally continuous pseudometric for <P, p>, then all totally 
bounded proximally continuous pseudometrics for <P, p> together with d generate 
a proximally continuous uniformity if for <P, p> (by 25 B.23) which evidently in-
duces p, and hence if c 1l. Thus d is a uniformly continuous pseudometric for 
<p, iiy. 

Proof of 25 B.23. Let "f be the proximally coarse semi-uniformity which induces p 
and let i = 1,2, be the uniformity induced by dt. Since Il x is proximally coarse 
and proximally continuous, by 25 B.15 the identity mapping of <P, "fy into <P, 1iy 
is uniformly continuous and hence c - f . By lemma 25 B.6, \f~] n [W2] consists 
of p-proximal vicinities and hence n [%2] consists of p-proximal vicinities. 
Since \1in [1f2] is a base for the uniformity induced by dx + d2, the pseudo-
metric -I- d2 is proximally continuous for <P, p>. 

Remark. Remember that the sum of two proximally continuous pseudometrics 
need not be proximally continuous (25 B.10) and hence a uniformly finest proximally 
continuous uniformity for a given proximity space need not exist. 

25B.24. Let p be a proximity for a set P induced by a pseudometric d and let 1l 
be the uniformity induced by d. Then 1i is the uniformly finest proximity which 
induces p. 

Proof. If D is a proximally continuous pseudometric for <P, p>, then the mapping 
J : (P, d} -» <P, D> is proximally continuous and hence, by 25 A.14, uniformly con-
tinuous. Thus every proximally continuous pseudometric is a uniformly continuous 
pseudometric for <P, <?/>. By the preceding theorem 11 has the property in question. 

25 B.25. Corollary. If d is a totally bounded pseudometric, then the uniformity 11 
induced by d is the unique uniformity inducing the same proximity p as d. 

Proof. Since K is proximally coarse, 11 is the smallest uniformity among all the 
uniformities inducing p. By 25 B.24, It is the largest among these uniformities. 

C. UNIFORMIZABLE PROXIMITIES 

By Definition 25 B.1 a proximity is uniformizable if it is induced by a uniformity, 
and by Theorem 25 B.2 a proximity is uniformizable if and only if it fulfils condition 
(prox 5). Here we shall describe uniformizable proximities by means of proximally 
continuous pseudometrics and functions and we shall introduce the concept of the 
uniformizable modification of a proximity. 

25 C.l . Definition. The uniformizable modification of a proximity pis the proxi-
mally finest uniformizable proximity coarser than p. 
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25 C.2. Theorem. The uniformizable modification q of a proximity p is indu-
ced by the uniform modification of any semi-uniformity inducing p. The proxi-
mally coarse semi-uniformity of the uniformizable modification 2 of a proximity 
space 0> is the uniform modification of the proximally coarse semi-uniformity of0>. 

Proof. Let Y be the uniform modification of the proximally coarse semi-uniform-
ity % of <P, p). I. First we shall show that the proximity q induced by Y is the 
uniformizable modification of p. It is clear that q is a uniformizable proximity proxi-
mally coarser than p. If q is a uniformizable proximity proximally coarser than p, 
then the proximally coarse semi-uniformity Y' of <P, q'} is a uniformity contained 
in °U and hence in Y because Y is the largest uniformity contained in °U. As a con-
sequence, q' is proximally coarser than q. — II. Now let be any semi-uniformity 
inducing p, and Y1 the uniform modification of The proximity qx induced by 
Y l is proximally coarser than p, and q^ being uniformizable, by I it is also proximally 
coarser than q. On the other hand, since % c we have Y c Y i and consequently 
q is proximally coarser than q^. Thus q = q1. 

25 C.3. Theorem. The uniformizable modification q of a proximity p for a set P 
is the unique uniformizable proximity for P satisfying the following condition: 

A mapping f of (P, p) into a uniformizable proximity space 01 is proximally 
continuous if and ionly if the mapping f : <P, q} -* * is proximally continuous. 

Proof. I. Let be the proximally coarse semi-uniformity of <P, p> and let Y 
be the uniform modification of By 25 C.2 the uniformizable modification q of p 
is induced by Y . To prove that q fulfils the condition, suppose that / is any mapping 
of <P, p> into a uniformizable proximity space 01 and let us consider the proximally 
coarse semi-uniformity if of 0t. By 25 B.6, if is a uniformity. Thus by 24 B.4 the 
mapping/ : <P, -> i f ) is uniformly continuous if and only if the mapping 
/ : <P, Y y <|*|, i f ) is uniformly continuous. Since if is proximally coarse, 
proximal continuity is equivalent to uniform continuity (by 25 B.17) which shows 
that the condition indeed obtains. 

II. Uniqueness can be derived from 24 B.4 but a direct proof is simpler. Assuming 
the condition for uniformizable proximities q1 and q2, we find that J : <P, p) -> 
-» <P, q2} is proximally continuous, because J : <P, <j2> <P, q2} has this property, 
and therefore J : <P, q ^ —> <P, g 2) is proximally continuous; the same is true if 
qt and q2 aie interchanged, and consequently qL = q2. 

III. It might be appropriate to give a more direct proof than I of the fact that the 
uniformizable modification q of p fulfils the indicated condition. Since q is proxi-
mally coarser than p, if / : <P, q} * is proximally continuous then necessarily 
/ : <P, p) -» * is proximally continuous. Conversely, let / : <P, p) 0t be proximally 
continuous. Clearly, it is sufficient to find a uniformizable proximity qt proximally 
coarser than p such that / : <P, q ^ -* * is proximally continuous (because then qt is 
proximally coarser than q). Let r be the proximity structure of * and put ql = 
= E«X, Y> | X c P,Y e P,f[X] r/[Y]}. It is easily seen that is a proximity 
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satisfying (prox 5) (because r fulfils (prox 5)) and hence qx is uniformizable. The 
remaining properties are almost self-evident. 

25 C.4. Corollary. A pseudometric d is a proximally continuous pseudometric 
for a proximity space SP if and only if it is a proximally continuous pseudometric 
for the uniformizable modification of 

Proof. The proximity induced by a pseudometric is uniformizable. — It is to be 
noted that 25 C.4 is also a corollary of 25 C.2 because the semi-uniformity induced 
by a pseudometric is a uniformity. 

25 C.5. Theorem. Each of the following three conditions is necessary and suf-
ficient for a proximity space <P, p> to be uniformizable: 

(a) X pY provided that X <=. P, Y <=• P and the distance from X to Y is zero for 
each totally bounded proximally continuous pseudometric for <P, p}; 

(b) X p Y provided that X c P, Y cz P and the distance from X to Y is zero for 
each proximally continuous pseudometric for <P, p>; 

(c) if X non p Y then there exists a bounded proximally continuous function f 
on <P, p} which is 0 on X and 1 on Y. 

Proof. I. First we shall show that conditions (a), (b) and (c) are equivalent to 
each other. It is sufficient to prove (a) => (b) => (c) => (a). Clearly (a) => (b), and to 
prove (b) => (c) assume (b) and let X non p Y; by (b) we can take a proximally con-
tinuous pseudometric d for <P, p> such that the distance from X to Y in <P, d} is 
positive, say r; now consider the function g = {x dist (X, (x))} on <P, p> and put 
/ = {x -»• min (1, r _ 1 . gx)} : <P, p> -> R. Clearly 0 g / g 1 and / is 0 on X and 
1 on Y. Next, g : <P, d} —• R is a Lipschitz mapping, hence uniformly continuous 
and thus proximally continuous. Since g is proximally continuous, / is also proxi-
mally continuous. It is to be noted that it is easy to prove directly, without reference 
to semi-uniformities, that / is proximally continuous. It remains to show that (c) => (a). 
Assuming (c), let X non p Y; we must find a proximally continuous totally bounded 
pseudometric d for <P, p} such that the distance from X to Y in <P, d} is positive. 
Take a bounded proximally continuous function f on <P, p> which is 0 on X and 1 
on Y, and consider the pseudometric d = {<x, y} -> | fx — fy\ | <x, y} eP x P}. 
Evidently d is totally bounded and the distance from X to Yin <P, d} is 1. It remains 
to show that d is a proximally continuous pseudometric for <P, p>. This follows im-
mediately from the fact that, denoting by 11 the proximally coarse semi-uniformity 
of <P, p>, the function dx = d : <P, %y x <P, 1iy -+ R is uniformly continuous 
since it is the composite of two uniformly continuous mappings; namely d{ = 
({<r, s> \r - s|} : R x R R) „ ( / x / : <P, liy x <P, liy ->• R x R); this shows 
that d is a uniformly continuous pseudometric for <P, ley and hence a proximally 
continuous pseudometric for <P, p>. 

It is to be noted that the proximal continuity of d can be proved directly: if X pY, 
then the distance from f\X\ to/ [Y] is zero in R and therefore, clearly, the distance 
from X to Yin <P, d> is zero; this establishes the proximal continuity of d. 
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II. Condition (c) is sufficient. Assuming (c) we shall prove that condition (prox 5) 
is fulfilled (remember that, by 25 B.2, condition (prox 5) implies that p is uniformiz-
able). If X non p Y and / is a proximally continuous function on <P, p} which is 0 
on X and 1 on Y, then the sets U = E{x | fx < i} = / _ 1 [ [ i [ ] and V = 
= E{x | fx > i} = / - 1 [ ] i , _ > ] ] are disjoint proximal neighborhoods of X and Y 
in <P, p>. 

III. Condition (b) is necessary. Let <P, p> be uniformizable and let be a uni-
formity which induces p. If X non p Y, then (/[X] n Y = 0 for some U in ^11, and aU 
being a uniformity, we can choose a uniformly continuous pseudometric à for 
<P, "Wy such that d(x, y) < 1 implies <x, y} eU; clearly the distance from X to Y 
in <P, dy is at least 1. Since d is a uniformly continuous pseudometric for <P, 
d is a proximally continuous pseudometric for <P, p>. 

Remark. The equivalence of conditions (a) —(c) was proved partly by means of 
semi-uniformities and partly without any reference to semi-uniform spaces. The proof 
was accomplished by showing that condition (c) implies (prox 5) and that, if a unifor-
mity induces p, then condition (b) is fulfilled. We want to point out that, without any 
reference to the theory of semi-uniform spaces, one can prove that the condition (c) 
is equivalent to (prox 5). The proof of the implication (c) => (prox 5) was given in II. 
The proof of the implication (prox 5) => (c) is rather difficult; it parallels Ury-
sohn's construction of continuous functions on normal spaces. It is to be noted that 
in our exposition the proofs of all results asserting the existence of continuous, proxi-
mally continuous or uniformly continuous functions were, in fact, based on lemma 
18 B.10. The Urysohn procedure, just mentioned, gives another method of construction 
of continuous and proximally continuous functions (see ex. 14). 

25 C.7. If p and q are uniformizable proximities for a set P, then p is proximally 
coarser than q if and only i f , for each bounded proximally continuous function f 
on <P, p), the function f : <P, q} -» R is proximally continuous (25 C.6). 

Roughly speaking, a uniformizable proximity space is uniquely determined by the 
collection of all bounded proximally continuous functions. 

D. PROXIMALLY CONTINUOUS FUNCTIONS 

The purpose of this subsection is to prove that, for each proximity space 3P, the set 
of all bounded proximally continuous functions on 8P, denoted by P*(*, R), is a 
closed sub-lattice-algebra of the topological lattice-algebra unif F*(*, R) of all 
bounded mappings of 3f into R. 

25 D.l. Conventions. If Sf is a struct, then the symbol F*(5", R) will denote the 
normed lattice-algebra of all bounded mappings of SP into R (see 19 D.14); we shall 
utilize the usual notation, i.e. || || denotes the norm, + and . the addition and the multi-
plication both in F* and in R; moreover, . also denotes the external multiplication. 
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Next, |/| denotes the function {x -» |/x|} : SP R, and the symbols sup and inf 
stand for lattice operations, i.e., sup (/, g) = {x -»• max (fx, gx)}, and similarly for 
inf (/, g). We shall say that Jf is a sub-lattice-algebra of X if the underlying lattice 
of X is a sublattice of the underlying lattice of X and if the underlying algebra of 
Jf is a subalgebra of that of X . Similarly we use the terms sub-lattice-module, etc. 

The main result is the following: 
25 D.2. Theorem. The set P*(0, R) of all bounded proximally continuous func-

tions on a proximity space 0* is a closed sub-lattice-algebra of the normed lattice-
algebra F*(* , R) of all bounded mappings of into R. 

Proof. Clearly every constant function on 0 is proximally continuous. Next, if/ 
is a proximally continuous function, then |/| is also proximally continuous because 

dist(|/|[X],|/| [y])gdist( / [X] , / [Y]) 
for each X <= 0> and Y <= 0>; this inequality follows from the inequality ||x| — |_y|| g 
g |x — which holds for all real numbers x and y. Clearly, if / is proximally con-
tinuous and r is a real number, then r . f is also proximally continuous. It remains 
to show that f + g and/, g are proximally continuous functions whenever/ and g 
are bounded proximally continuous functions, and that if a net {/„} of proximally 
continuous functions converges to/in unif F(*, R), then / is proximally continuous. 
Indeed, the proximal continuity of the functions sup (/, g) and inf (/, g), where / 
and g are bounded proximally continuous functions, follows from the following 
obvious equalities: 

sup (/, g) = f + sup (0, g — / ) = / + Kl9 - f \ + ( g - / ) ) = 
= H \ g - f \ + ( f - g ) ) , 

inf ( f , g ) = - sup ( - / , - g ) . 

The remaining statements are particular cases of propositions 25 D.3 and 25 D.5 
to follow. 

25 D.3. Let 0> = <P, p~y be a proximity space. The sum of two proximally con-
tinuous functions on 0 of which one is bounded, is a proximally continuous func-
tion.The product of two bounded proximally continuous functions on 0 is a proxi-
mally continuous function. 

Proof. I. We shall need the following property of bounded proximally continuous 
functions: if / is a bounded proximally continuous function on <P, p), r is a positive 
real and X pY, then there exist X' <= X and Y' <=. Y such that X' p Y' and the diameters 
of the sets f\X'~\ and /[Y'] are at most r. As the set E/ is contained in a bounded 
interval, we can choose a finite family {/¡} of intervals which covers EIf and such 
that the length of each7; is r. Thus { / " ' [ / , ] } is a finite cover of 0 and the diameter 
of each set / [ / - 1 [/¡]] 7; is at most r. Now if X p Y, then, for some i and j, 
(X n / _ 1 [/,-]) p (Y n / - 1 [ / ; ] ) (by 25 A.2) and the diameters of the sets f[X n 
n / _ 1 [ / i ] ] a n d f l Y ^ f ' V j J ] a r e a t m o s t r• 
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II. Now let / and g be two proximally continuous functions, / bounded and h = 
= f + g. Suppose X p Y. To prove that the distance from h[X] to /i[F] is zero it is 
sufficient to show that the distance from /¡[Z] to />[Y] is at most 3r for each 
positive real r. Let r > 0. Choose X' c X and Y' <= Y such that X' p Y' and the 
diameters of the sets/[X'] and / [ Y'] are at most r (this is possible by I). Now ifxsX' 
and y e Y', then the distance from fx to f y is at most 2r because the distance of the 
set/[X'] from/[Y'] is zero ( / is proximally continuous) and their diameters are at 
most r. Since g is proximally continuous, the distance from g[X'] to g[Y'] is zero 
and therefore we can choose x in X' and y in Y' so that |gx — gy\ < r. Now 
\hx — hy\ g |fx — fy\ + |gx — gy| g 2r + r = 3r, which shows that the distance 
from h[X] to h[Y] is at most 3r. 

III. Suppose that / and g are bounded proximally continuous functions, |/x| g K 
and'\gx\ g K for each x, where K > 0, h = / . g, and X p Y. To prove that the distance 
from /i[X] to /i[Y] is zero it is sufficient to show that, for each r > 0, the distance 
from to /j[Y] is at most 3 K . r. Let r > 0. By I we can choose X' c X and 
Y' <= Yso that X' p Y' and the diameters of the sets/[Z'] and/[Y'] are at most r. Since 
the distance from g[X'] to Y'] is zero, we can choose x in X' and y in Y' such that 
|gx — gy\ < r; since the distance from/[X'] to / [Y ' ] is zero and the diameters of 
these sets are at most r, we obtain |fx . gx — f y . gy\ g |/x| |gx — gy| + \gy\ . 
• \fx ~ fy| ^ K . 3r, and consequently the distance from to /i[Y] is at 
most 3rK; this concludes the proof. 

25 D.4. Examples, (a) The sum of two unbounded proximally continuous func-
tions need not be proximally continuous. For example, let P = N x N, and p be a 
proximity for P such that X pY implies n ^¡[Y] #= 0, i = 1, 2, where n1 = 
= K*> y) x | <x> y) e P} and n2 = {<x, y) -* y | <x, y) e P} and p is not proxi-
mally discrete, i.e. X p Y for some disjoint X and Y. Such a proximity p exists by 
25 B.10. Let us take single-valued relations GT c N x N, i = 1,2, such that DGI = N 
and the equality i^x + g2y = Q\X + g2y' implies x = x', y = y', e.g., g1n = 22n + 1, 
g2n = 22n. Consider the functions / = gt 0 n1 : <P, p) R, g = g2 o n2 : <P, p> -> 
-» R. By the choice of gt we obtain that the values of h = f + g are integers and 

y) = /t<x', implies <x, y) = <x', y'}. It follows that if X and Y are dis-
joint subsets of P, then h[X] and Y] are disjoint subsets of N and hence the distance 
from /j[X] to h[Y] is at least 1. As a consequence, h is not proximally continuous. 
On the other hand, both / and g are proximally continuous because if X p Y, then 
71,1X1 n + 0, ( = 1, 2, and hence f [ X ] n / [ Y ] + 0 and g[X_\ n g[Y] # 0. 

(b) The product of two proximally continuous functions need not be proximally 
continuous, and the following example is based on the fact that the multiplication in R 
is not uniformly continuous. Let/ be the identity mapping of R onto itself. Thus/is 
a proximal homeomorphism. We proceed to prove that the function h = f . / = 
= {x -*• x2} : R -» R is not proximally continuous. Let X be the set of all integers 
n ^ 2 and let Ybe the set of all n + n - 1 , neX. The distance from X to Yis zero 

30—Topological Spaces 
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because (n + n_ 1) — n = n~l, but the distance from h[X] to fc[Y] is at least 2 be-
cause ((n + n - 1) 2 - n2) = 2 + n~2 ^ 2 and also |(n + m)2 - (n + n_1)2| ^ 
^ |n2 — (n + n-1)21 for each n e X and |m| e N. Thus X and Y are proximal but 
h[X] and h[Y] are not, which shows that h is not proximally continuous. 

(c) The product of two proximally continuous functions need not be proximally 
continuous even if one of the functions is bounded. For example the functions 
/ = {x -> x} : R R and g = [x -* sin x} : R -> R are proximally continuous, g is 
bounded but h = / . g is not proximally continuous. To prove that g is proximally 
continuous it is sufficient to show that g is Lipschitz continuous; indeed |sin x — 
— sin y\ g |x — j>|. To show that h is not proximally continuous consider the 
set X of all 2kn, k e N, and the set Y of all 2Kn + SK, Ke N, where the sequence 
{<5k} is so chosen that K sin (2Kn + t>K) = K sin ^ 2"1 and 0 is a limit 
point of {<5jc}. Thus the distance from X to Y is zero but the distance from h\_X~\ to 
/i[Y] is at least 2 - 1 . It may be noted that, on taking for g the mapping {x 
->• dist (x, Z)}, the verification becomes considerably simpler. 

Remark. A mapping of a pseudometric space into another one is proximally con-
tinuous if and only if it is uniformly continuous (25 A.14), and therefore examples 
(b) and (c) can be formulated for uniform continuity: the product of two uniformly 
continuous functions need not be uniformly continuous (even if one of the functions 
is bounded). It should also be noted that the proofs could be given, probably with 
some advantage, by means of more uniform-theoretical tools. 

25 D.5. The uniform limit of proximally continuous functions is a proximally 
continuous function. Stated in other words, P(0, R) is closed in unif F(* , R) for each 
proximity space 

Proof. Suppose that a net {/„} of proximally continuous functions on a proximity 
space 0* converges uniformly to / , i.e., {/„} converges to / in unif F(*, R). Let XpY 
and r be a positive real. We shall prove that the distance from f\X~\ to / [ Y] is at 
most 3r. Since {/„} converges to / uniformly, there exists an index a so that 
|fax — fx| g r for each xeSP. Since fa is proximally continuous, the distance from 
/ a[X] to /fl[Y] is zero and therefore we can choose an x in X and a y in Y so that 
\fax - fay\ < r. Now 

|fx - fy\ g |fx - fax\ + |fax - fay\ + \fay - fy\ < 3r . 

An alternate proof of 25 D.2 can be based on the theory of semi-uniform spaces 
and the fact that if 0 is a proximally coarse semi-uniform space, then U(*, R) = 
= P*(*, R), i.e., a function / on a proximally coarse semi-uniform space is uniformly 
continuous if and only if / is a bounded proximally continuous function (25 B.21). 

25 D.6. Theorem, (a) If 0> is a semi-uniform space and is a commutative topo-
logical group, then U(* , is a closed subgroup of the group unif F(*, <&) and 
contains all constant mappings. 
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(b) If 0 is a semi-uniform space and 3ft is a normed ring, then the set U*(0,8i) 
of all bounded uniformly continuous mappings of 0 into 0 is a ring; if 8ft = R, 
then U*(0,0) contains, with each f , the function |/|. 

Proof. I. Proof of (a). Suppose that 9 = <G, + ,«>• The set U(0, <$) is closed 
in unif F(0, by 24 D.7. Since <8 is commutative, the mapping h = {<x, y} -*• 
-*• (x — y)} : ^ x & -»• 9 is uniformly continuous. Now, if / and g are uniformly 
continuous mappings, then / — g = h o ( / x g), and consequently f — g is uni-
formly continuous as the composite of two uniformly continuous mappings; hence 
U(0, is a subgroup. — II. Proof of (b). Suppose that d is the pseudometric 
corresponding to the norm of 3ft, i.e. d = {<x, y> -> ||x — y||} and let d1 be the 
pseudometric for \3ft\ x \3ft\ such that ^ « X u yj), <x2, y2>> = *2> + 
+ d(yu y2>. It is easily seen that the mapping {<x, y> x . y} = (\8ft\ x \8ft\, d{y -*• 
-* (\0\, d} is Lipschitz continuous and hence uniformly continuous on each set 
X x X, where X is a bounded subset of 82. Now, as in I, we find that/. g is uniformly 
continuous whenever/ and g are bounded uniformly continuous mappings. Finally, 
if 8ft = R, then evidently h = {x -» |x|} : R R is uniformly continuous and hence, 
if / is a uniformly continuous mapping into R, then |/| is uniformly continuous as 
the composite of / and h. 

E. STONE-WEIERSTRASS THEOREM 

By the so-called Weierstrass theorem, for each bounded continuous function / 
on a bounded closed interval I of reals and for each positive real r there exists a poly-
nomial function g = {x -> E{a ;x' | i g n}} such that |fx — gx\ < r for each x in / ; 
stated in other words, if J5" is the set of all polynomial functions on I, then 8F is 
dense in the normed algebra C*(/, R) of all bounded continuous functions on I. 
Notice that J5" is the smallest subalgebra of C*(/, R) containing the functions 
{x 1} : I -* R and J : I -> R. Thus the Weierstrass theorem can be stated as follows: 
the smallest subalgebra of F*(/, R) containing the constant function {x -> 1} and 
the function J : I -» R is dense in C*(/, R). Next, clearly the proximity of I is the 
proximally coarsest proximity for I such that J : / - > R is a proximally continuous func-
tion, and it turns out that C*(7, R) = P*(/, R). (This follows from compactness of /.) 
Thus J : I -» R "entirely determines" the proximity of /, and the smallest subalgebra 
of P*(/, R) containing J : I -» R and the constant function {x -> 1} is dense in the 
normed algebra P* ( / , R). It turns out that this is true in general, for an appropriate 
definition of "entirely determines". 

25 E.l Definition. We shall say that a collection J i of mappings of a proximity 
space 8P = <P, p> into a proximity space 2. projectively generates the proximity of 
8? (or projectively generates 0") if p is the proximally coarsest proximity for P such 
that all mappings / e Ji are proximally continuous. 

The desired result can be stated as follows: 

30« 
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25E.2. Stone-Weierstrass Theorem (for proximity spaces). Let 0 be a proximity 
space projectively generated by a collection M of bounded functions, and let SF 
be the smallest subalgebra of F*(0, R) containing Jl and the constant function 
{x -> 1} : 0 R. Then the closure of F in F*(0, R) is P*(0, R). Stated in other 
words, a bounded function f on0 is proximally continuous if and only if the follow-
ing condition is fulfilled: 

For each positive real r there exists a polynomial function P= {<z0, . ..,z„> -»• 
-»• £ {a ,•„•••;„• z'o" zjp | £ j, g k] | zj e R} : R" -» R and functions f0, ...,/„ in Jl such 
that | fx - P(f0x,.. .,/„x)| ^ r for each x e \0\ i.e. (||/ - P „ ( / 0 x red • • • X reiJn)\\ = rJ-

25 E.3. Remarks, (a) If J( = 0, then clearly the proximity structure of 0 is the 
proximally coarsest proximity for \0\, and the Stone-Weierstrass Theorem states that 
precisely the constant functions are bounded proximally continuous functions; 
this is, of course, trivial. 

(b) The Stone-Weierstrass Theorem states that if Jl projectively generates 0, 
then exactly the bounded proximally continuous functions can be obtained from Jl 
and the constant function {x -»• 1} : 0 -* R by the following operations: 

(1) addition, multiplication and external multiplication (algebraic operations); 
(2) taking uniform limits (a topological operation). 

In other words, / is a bounded proximally continuous function if and only if, for 
each positive real r, there exists a linear combination g of finite products of functions 
of Jl and the function { x - > l } : ^ - » R such that ||/ - g || g r. 

(c) Instead of the assumption that 3F is the smallest subalgebra containing Jl and 
the function {x -»• 1} we can assume that 3F is the smallest ring containing Jl and 
all constant functions. 

(d) By Theorem 25 D.2, P*(0, R) is a closed subalgebra of F*(0>, R) and therefore 
it is sufficient to prove that the closure in F*(&>, R) of OF contains P*(2P, R), i.e. every 
bounded proximally continuous function on 0* is a uniform limit of functions of F . 

The proof of 25 E.2 will be given in 25 E.10. We begin with a discussion of the 
proximity space projectively generated by a family of mappings into proximity 
spaces. It is to be noted that a more advanced theory will be given in Section 39. 

25 E.4. Let F be a collection of bounded functions on a set P. There exists a unique 
proximity p for P such that <P, p> is projectively generated by the collection of all 
functions f : <P, p) .-»• R , / s SF. The set 2> of all pseudometrics df = {<x, y) -> 

\fx ~ fy\ Kx> y) e P x jP}» f^F, generates the proximally coarse semi-
uniformity of <P, p>. If2>' is the smallest set containing 3! and such that du d2 e 
eQ>' =>(dx + d2)e@', then X pY if and only if the distance in <P, d> from X to Y 
is zero for each d in 3>'. 

Proof. I. Let °ll be the semi-uniformity generated by the collection © of pseudo-
metrics; by 23 A.12 the sets of the form E{<x, | d<x, y) < /•}, d e Si, r > 0, 
form a sub-base for 11, and "U is a uniformity by 24 A.9. Clearly each d e 3) is totally 
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bounded and hence °ll is totally bounded; 11 being a uniformity, it is proximally 
coarse (by 25 B.12). — II. Let p be the proximity induced by H. Clearly the last state-
ment of 25 E.4 holds. Hence every/ : <P, p> R, /e is proximally continuous. — 
III. It remains to prove that p is the proximally coarsest proximity for P such that 
all the functions / : <P, p> -> R, / e 3F, are proximally continuous. Let q be any 
proximity for P such that all the functions / : <P, p> -> R, / e J5*, are proximally 
continuous; we shall show that q is proximally finer than p. Since each/ : <P, q} —• 
-> R, / e is proximally continuous, each df, f e 2F, is a proximally continuous, 
pseudometric for <P, p); each df being totally bounded, all the elements of £)' 
are proximally continuous pseudometrics for <P, p> (by 25 B.23), and hence 1l is 
a proximally continuous uniformity for <P, q}. Thus p is proximally coarser than q. 

Assume that a proximity space <P, p) is projectively generated by a collection 5F 
of bounded functions, and for each / in let df be the pseudometric defined in 
25 E.4. If XpY, then the distance from X to Y is zero in each <P, df). It is easy to 
find an example such that X and Fare distant in <P, p> but proximal in each <P, df). 
If the set of all df is addition-stable, then (by 25 E.4) X non p Y implies that X and 
Y are distant in some <P, df}. Similarly, if X p Y then/[X] is proximal to / [Y] in R 
for each/ e but the converse is not true; this follows from the similar result for 
df. It is interesting to show that the converse is not true even if !F is a linear space. 
We shall only construct such an 3F with the following algebraic property: fu f2 e ^ => 
=>fi + / 2 e J5". Using this example the reader may construct without difficulty such 
a linear space J5". 

25E.5. Example. Let <P, p> be a subspace of R, P = l 1 u i 2 u / 3 , = 
= [ 0, 1 ] , 12 = [ 2, 3 ] , I3 = [ 4, 5 J , and let us consider the following two func-
tions / and g on <P, p> :fx = gx = x for x e l l t f x = x — 2 and gx = x for x e / 2 

and finally, fx = x — 2 and gx = x — 4 for x e / 3 . 
It is easily seen that the collection (/, g) projectively generates (P, p). Let 3F be 

the set of all linear combinations rf + sg with non-negative r and s. We shall show 
that 1] n h\_I2 u / 3 ] 4= 0 for each h in ¿F (on the other hand, and I2 u I3 are 
distant in <P, p>). Let h = rf + sg, 0, s ^ 0. It is easily seen that h\IJ = 
= [ 0, r + s ] , h[I2] = [ 2s, 3s + r ] , /i[/3] = [ 2r, 3r + s ] . It is clear that t = 
= min (2r + 2s) g r + s and hence t e h [ / J n h [I2 n / 3 ] . 

Suppose that a proximity spaced is generated by a collection^" of bounded proxi-
mally continuous functions. By the preceding example it is not true that if X and Y 
are distant in 8? then/[X] and/[Y] are distant in R for some / in On the other 
hand one has the following essentially weaker result: 

25E.6. Suppose that a proximity space <P, p> is projectively generated by a 
collection of bounded functions. Then X p Y if and only if the following condition 
is fulfilled: If X is the union of a finite family {X,} and Y is the union of a finite 
family {!}}, then there exist indices i and j such that/[X(] is proximal to/[7j] for 
each f in !F. 
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Proof. For each/in & put pf = E{<X, Y> \f[X] is proximal to/[Y] in R}. It is 
easy to verify that each Pf is a proximity for P and p is the proximally coarsest 
proximity for P proximally finer than each pf, f e F. Now the statement is implied 
by the following lemma: 

25 E.7. Let P be a set and let {pa | a e A} be a family of proximity relations 
for P. There exists a proximally coarsest proximity p for P proximally finer than 
each pa, a e A. If A =|= 0 then X pY if and only ifXcP,YczP and the following 
condition is fulfilled: 

I f { X i } is a finite cover ofX and {Yj} is a finite cover ofY, then there exist indices 
i and j such that Xt paYjfor each a in A. 

Proof. I. If A = 0, then clearly the proximally coarsest proximity p for P has the 
required property. 

II. Suppose that .4 + 0 and let us consider the relation q = E{<X, Y> | a e A => 
=> X pa Y} (by 25 E.5 q need not be a proximity because condition (prox 4) need not 
be fulfilled). Let p be the relation consisting of all <X, Y> such that, for each finite 
cover {X,} of X and each finite cover { Yj} of Y, there exist indices i and j so that 
Xi q Yj. Thus p fulfils the condition in the theorem. We shall prove that p is a proximity 
for P; conditions (prox 1), (prox 2) and (prox 3) are evident and condition (prox 4) 
is verified in the following way. Suppose Xk non p Y, k = 1, 2; we shall prove 
(X' u X2) nonp Y. By our assumption there exist finite covers (families!) SCk of Xk 

and <&k of Y, k = 1, 2, such that for each member X' of SCk and Y' of <&k we have 
X' non q Y'. Let be a finite cover of Y refining the collection EG/1 u E<&2 and let 
SC = ESC1 u ESC2 (remember that E<&1 denotes the collection of all members of <&l). 
Now if X' s9C,Y' e<& then X' belongs to ESC1 or ESC2, say ESC\ and Y'is contained 
in an element Y" of EH/1. By. our assumption X' non q Y" and therefore also, ob-
viously, X' non q Y' which shows that (X1 u X2) non p Y. 

III. Now let p be any proximity for P proximally finer than each pa, a e A; thus 
X p'Y implies XqY. Fix subsets X and Yof P such that Xp'Y; we shall prove that XpY. 
This will imply that p' is proximally finer than p. Let {X,-} be a finite cover of X and 
{ Y j } be a finite cover of Y. Since X p' Y, by 25 A. 3 there exist indices i and j so that 
Xi p' Yj and hence X ; q Yj. As a consequence XpY by the definition of p, which 
completes the proof. 

Now we are prepared to prove two propositions which will imply Theorem 25 E.2. 
We begin with a sufficient condition for a subset of P*(*, R) to be dense in V*(3P, R). 

25 E.8. Suppose that F is a collection of functions on a proximity space 3P = 
= <P, p> satisfying the following condition: 

If X non p Y and if r is a positive real, then there exists an f in such that 
0 ^ fx gr for each xeP, / [ X ] c (0), / [ Y ] <= (r). 

Then for each non-negative bounded proximally continuous function g on 0 and 
each positive real r there exists a finite family { f } in 3F such that | gx — E{/;x}| g 
g r for each x in P. 
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Corollary. If a linear subspace 3F of P*(8P, R) fulfils the above condition, then 
J* is dense in the normed space P*(0, R). 

Proof. I. To prove the corollary it is sufficient to notice that 3F contains all con-
stant functions. Given an r > 0, there exists an / in 3F such that/[0] <= (0),/[P] <= 
<=. (r) (because 0 non p P), and hence fx = r for each x in P. — II. Let g be a non-
negative bounded proximally continuous function on 0 and let r > 0. Let k be the 
smallest positive integer such that gx g kr for each xe P. For each i g k let Xt = 
= E{x | gx g ir}. If 1 g i g k, then the sets X ^ j and P - Xt are distant in * 
and therefore we can choose an / ; in $F such that 0 g / ,x S r for each xe P and 
/ , [ * , _ ! ] = (0),/f[P - X,] <= (r). It is easy to verify that |gx - E{/fx|l ^ i g k}\ g 
g r for each x in P. 

25 E.9. Lemma. Suppose that = <P, p) is a proximity space and SF is a sub-
lattice-module ofP*(0>, R) containing all constant functions, and projectively gener-
ating Then for each X nonpY and each positive real r there exists an f in SF so 
that f is 0 on X, r on Y and 0 g fx g r for each xe P. 

Proof. I. It will suffice to prove that, given X non p Yand r > 0, there exist finite 
families { X j and {Yj} such that X = Y = and for each of the indices 
i and j there exists a required function / y for X f and Yj, i.e. ftJ is 0 on Xh r on Yj 
and 0 gfijX g r for each x in P. Indeed, / = inf sup {/ f j} is then a required func-
tion for X and Y. ' 

Suppose X non p Y, X 4= 0 4= Y and let / be an element of ¿F such that the 
distance from f\X\ to / [ Y ] is positive, say r (such an element need not exist). 
Choose a finite decomposition {X ;} of X and {Y^} of Y such that the diameter of 
each set / [ X ; ] as well as each /[Y7] is less than \r; this is possible because / is 
bounded. We may and shall assume that X ( 4= 0 4= Yj for each i and j. If x eXh 

y' e Yj and fx' < fy', then fx < f y for each x in X ; and y e Yy, indeed, since the 
distance from/[Xf] to/[Y ;] is at least that from/[X] to/[Y], i.e. r, and |fx - fx'| < 
< ir, |fy ~fy' | < ir, we obtain fx < (fx' + \r) g (fy' - < fy. Similarly, 
if fx' > fy' for some x' eXh y' e Yp then fx > f y for each x in X ( and each y in Y}. 
If fx < f y for each x e X ; and y e Yj, then put 

hu = {z - min ( f z , inf/[Y,.])} : * - R , 
gi} = {z^ max (htJz, sup/[X ;])} : * R , 

fu = (3az ~ S U P/[^J ) } : & - R • 
Clearly the function htj, and hence gtj, and finally/^- all belong to 2F, ftj is zero on 
X f and dist ( /[^,] , / [Yj]) ^ r. Now given a positive real s, for an appropriate real 
t, t. fij is s on Yj and zero on Xf. Similarly, if fx > f y for x e X f and y e Yj, then 
the same construction leads to a function / e SF which is zero on Yj and s on Xf. 

III. Now suppose that X non p Y. Since 3F generates by 25 E.6 there exist 
finite decompositions {X(} of X and {Y;} of Ysuch that for each i and j there exists 
an / in F so that the distance from f[X^\ to/[Y ;] is positive. Applying II to each pair 
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Xit Yj we obtain finite decompositions [ZkJ of X and {Tj} of Y such that for each k 
and I there exists a function in SF which is zero on Zk, s on Y, and its range is contained 
in the interval 10, s ] . The proof is complete. 

25 £.10. Proof of Theorem 25 E.2. Suppose that a proximity space 0 is pro-
jectively generated by a collection Jl of bounded functions, and let 3F be the smallest 
algebra containing Jl and the constant function {x 1} : 0 -* R (and hence all 
constant functions). Let us consider the closure of SF in F*(0, R). Since Jl c 
<= P*(0, R), ({x 1} : 0 -> R) e P*(0, R) and P*(0, R) is a closed subalgebra of 
F*(0, R) (by 25 D.2), we have 0 c P*(0, R). Clearly 0 is closed in F*(0, R) (the 
closure structure of F*(0, R) is topological!) and ^ is an algebra by 19 D.5 because 
it is the closure of an algebra, namely of 2F. Since 9 is a closed algebra, ^ is a lattice 
(by 19 D.16). Since P*(0, R) => & => Ji and Jt projectively generates 0, also 
projectively generates 0, and therefore, by 25 E.9, <3 is dense in P*(0, R). Since IS 
is closed, <S = P*(0, R). 

The concluding theorems are intended to clarify the relations between proximities 
and sets of bounded functions. We shall need the following description of the proxi-
mity of bounded subsets of R which is also a corollary of a result of Section 41 on 
compactness. 

25E.11. Theorem. A bounded subset X of R is proximal to a subset Y of R if 
and only ifX n F + 0. 

Proof. If X n Y 4= 0, then the distance from X to Yis zero and hence the sets X 
and y are proximal (without any supposition on X). Conversely, assuming that a bound-
ed set X is proximal to a set Y, i.e. the distance from X to Y is zero, we can take 
sequences {x„} in X and {y„} in Y such that the sequence {|x„ — y„|} converges to 
zero. Since X is bounded, some subsequence {x„(} of {x„} converges to a point x 
(Corollary to 15 B.24). Clearly xeX. Since |x - ynJ g |x - x„J + |x„( - y j , the 
sequence {yn|j also converges to x. Thus x £ Fand hence xsX n Y. 

25 E.12. Theorem. Let 0 = <P, p} be a uniformizable proximity space and 
let A be a closed linear subspace of F*(0, R) containing the constant function 
{x 1} : 0 -» R. The following statements are equivalent: 

(a) A = P*(0, R) . 
(b) A is a subalgebra of F*(0, R) (i.e. gu g2 e A => gv g2 e A), if XpY and 

feA, then / [ X ] n / [ Y ] + 0, and if X non pY then there exists an f in A, 0 g / g 1, 
which is zero on X and one on Y. 

(b') A is a sublattice of F*(0, R) (i.e. g e A => \g\ e A, or equivalently, gu g2 e 
eA=>sup(gl, g2)<=A, inf (gu g2)eA), ifXpYandfsA then f [ X ] n / [ Y ] * 0, and 
ifX non pYthen there exists an f in A,0 g / g 1, which is zero on X and one on Y. 

(c) A is a subalgebra ofF*(0,R)andXPYifandonly if f[X~] n / [ Y ] 4= 0 for 
each f in A. 
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(c') A is a sublattice of F*(0, R) and X pY if and only if f[X~] n / [ 7 ] * 0 for 
each f in A. 

(d) A is a subalgebra ofF*{0, R) and A projectively generates 0. 
(d') A is a sublattice of F*{0, R) and A projectively generates 0 

Proof. Evidently (b) implies (c), and (b') implies (c'). By 25 E.11 (c) implies (d), 
and (c') implies (d'). Every closed subalgebra is a sublattice (by 19 D.16) and there-
fore (d) implies (d'). By the proof 25 E.10 of the Stone-Weierstrass Theorem, (d') 
implies (a). It remains to show that (a) implies both (b) and (b'). This follows from 
25 C.5 and 25 D.2. 

Remark. Notice that the preceding theorem states that, under certain assumptions, 
A is stable under multiplication if and only if A is lattice-stable (compare (b) and (b') 
or (c) and (c') or (d) and (d')). 

A proximity space 0 is uniquely determined by any mapping of 0, in particular, 
by any function on 0. Indeed, if/ is a mapping of 0 into any struct, then 0 = D*/. 
By 25 C.5 a uniformizable proximity space 0 = <P, p> is uniquely determined by 
graphs of bounded proximally continuous functions, namely X non p Y if and only 
if there exists a bounded proximally continuous function / such that (gr / ) [X] cz (0) 
and (gr / ) [7] t= (1). If J5" is a class of mappings, then gr [ F ] will denote the class of 
all gr/, / e f . Theorem 25 D.2 states that gr [P*(0, R)] is a closed subalgebra of 
the normed algebra gr [F*(0, R)] of all bounded real-valued relations on 0, and 
evidently it contains all constant relations. In the converse direction the foregoing 
results lead to the following important theorem. 

25E.13. Theorem. Let P be a set and A a closed subalgebra of gr[F*(P, R)] con-
taining all constant relations. There exists a unique uniformizable proximity p 
for P such that gr [P*(<P, p>, R)] = A. The proximity p is described by any of 
conditions (b), (c) or (d) from 25 E.12. 

Proof. By 25 E.4 there exists a unique proximity projectively generated by the 
collection A. The remainder follows from 25 E.12. Another formulation may be in 
place. 

25E.14. The relation {0 -> gr [P*(0, R)] | 0 is a uniformizable proximity space} 
is a one-to-one relation ranging on the class of all closed algebras of bounded real-
valued relations containing all constant relations. 

Of course, by a closed algebra of bounded real-valued relations we mean a closed 
subalgebra of a normed algebra gr [F*(0, R)], where 0 is a struct. 

25 E.15. Examples, (a) Let 0 be the sum of a non-void family {0 a | a e A\ of 
uniformizable proximity spaces and let B be the set of all bounded functions / on 0 
such that all functions /„ = / oinj„ : 0a -> R are. proximally continuous and all fa-
except for a finite number of a's are zero-functions. It is easily seen that B projectively 
generates 0. Clearly B is an algebra. By the Stone-Weierstrass Theorem, B is dense 
in P*(0, R). On the other hand, it is easily seen that B 4= P*(0, R). 
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(b) Let 2 be a subspace of a uniformizable proximity space 2? and let g be the 
mapping of P*(0, R) into P*(2, R) which assigns to each / the domain-restriction 
to 2. It is almost evident that Eg projectively generates 2. Since Eg is an algebra, 
Eg is dense in P*(0, R) by the Stone-Weierstrass Theorem. In the next subsection 
we shall show essentially more, namely Eg = P*(0, R), stated in other words, each 
bounded proximally continuous function on a subspace 2 of a uniformizable pro-
ximity space is the domain-restriction of a bounded proximally continuous function 
on the whole space, i.e., it permits a bounded uniformly continuous extension on the 
whole space. 

25E.16. Remark. The Stone-Weierstrass Theorem does not hold for complex-
valued functions (see ex. 15). 

F. EXTENSION OF UNIFORMLY CONTINUOUS 
PSEUDOMETRICS 

The purpose of this subsection is to prove the following two rather profound 
results. 

25 F.l. Theorem. Let 2 be a subspace of a uniform space Every bounded 
uniformly continuous function on 2 has a uniformly continuous domain-extension 
on i.e. the mapping 

{/->/!•£} : R) - U*(2, R) 
is surjective. 

25 F.2. Theorem. Let 2 be a subspace of a uniform space 2P. Every bounded 
uniformly continuous pseudometric for 2 is the relativization of a bounded uni-
formly continuous pseudometric for 

First we shall prove that 25 F.1 implies 25 F.2. The proof will be given in two pro-
positions which follow. 

25F.3. If d is a uniformly continuous pseudometric for a subspace of 
a semi-uniform space <P, and if there exists a uniformly continuous pseudo-
metric D for <P, Hy such that d(x, y> g D(x, y} for each <x, y} e Q x Q, then 
there exists a uniformly continuous pseudometric d* for <P, such that d is 
the relativization of d*. 

Proof. Let /<*, = d(x, y} if <x, y} e Q x Q and /<*, y> = £><x, y> if 
<x, s ((P x P) - (Q x Q)). It is evident that / = {<*, y> | <x, y> 6 
e P x P} is a uniformly continuous semi-pseudometric for <P, Let d* be the 
largest pseudometric for P such that d* g / . Clearly d* is a uniformly continuous 
pseudometric (J : <P,/> -*• <P, d*} is Lipschitz continuous and hence uniformly 
continuous) and we shall prove that d is the relativization of d*. Fix a point <x, _y> 
of Q x Q. Since d* g / , we have d*(x, g d(x, to prove the inverse in-



25. P R O X I M I T Y SPACES 475 

equality we shall use proposition 18 B.4 which states that d*(x, y} is the infimum 
of all the numbers 
(*) S{ /<x b x, + 1>|i ^ n - 1}, n Z 1 
where {x,} varies over all finite chains from x to y, i.e. x0 = x, x„ = y. We shall 
prove that each of the numbers (*) is greater or equal to d<x, _y>. If all the x ; 

belong to Q, then/<xf, x i + 1> = d(xh x i + 1 ) and the required inequality follows 
from the triangle inequality for d. If all the x t , . . . , x„_t belong to P — Q, then 
/<X;, x i + 1 > = D<Xj, x i + 1 > and the triangle inequality for D yields that the number 
(*) is at least D<x, y} 2: d<x, y}. The general case reduces to the preceding two ca-
ses. Indeed, let { i j | j g m} be the increasing sequence of those i for which x( e Q. 
The sum (*) can be written as follows: 
( « ) S{E{/<xf, * i + i> | ij g i< ij+1} \ j g m - l } 
Each of the numbers E{/<x ;, x i + 1 ) | ij g i < iJ + i} is at least d(xip x i j+1> by the 
second of the above mentioned particular cases, and hence (**) is at least d(x, y} by 
the first of these cases. 

According to 25 F.3, to prove 25 F.2 it is sufficient to verify the following proposition 
whose proof will be based on 25 F.1. 

25F.4. If d is a bounded uniformly continuous pseudometric for a subspace 
of a uniform space <P, Hy, then there exists a uniformly continuous pseudo-

metric D for <P, 1iy such that d(x, y ) g £><x, for each <x, e Q x Q. 
Proof. By 23 D.19 the function d:(Q,-f~> x <Q, - f } ->• R is uniformly continu-

ous and, of course, bounded. Since <g, "fy x <Q, is a subspace of <P, 1iy x 
x <P, 1iy, by 25 F.1 there exists a bounded uniformly continuous function / on 
<P, <%} x <P, 1iy the restriction of which to <g, Y") x <Q, tT> is d. For each x 
and y in P let D<x, = sup {|/<x, z> — f(y, z>| | z e P}. It is easily seen that 
D = {<x, £)<x, j') | <x, e P x P} is a pseudometric for P. If <x, e 
e Q x Q, then D(x, y) ^ |/<x, y) — f(y, y>| = d(x, y>. It remains to show that 
D is uniformly continuous. Let r be a positive real. We must find a U in 1l such that 
<x, y) £ U implies D(x, y) g r. Since / is uniformly continuous in <P, liy x 
x <P, 1iy we can choose a U in 11 such that <x, y> e U, <x', y') e U implies 
|/<x, x'> - f(y, / >| ^ r. Now if <x, >>> e U, |/<x, z> - f(y, z>| ^ r because 
<z, z) e U, and hence D<x, y) g r. 

It remains to prove Theorem 25 F.1. Its proof will be performed by means of a 
device introduced by P. Urysohn in his proof of the theorem on continuous extension 
of functions on normal spaces. 

25 F.5. Proof of 25 F.1. Let f0 be a bounded uniformly continuous function on 
a subspace 2 of a uniform space The required uniformly continuous extension g 
of f0 on 0 will be given in the form 
(1) 9 = % „ | n e N} 

where the series converges uniformly and g„ are uniformly continuous functions on 
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The sequence {g„} will be constructed together with a sequence {/„} in U*(i>, R) 
such that 

( 2 ) / n + i = f m - g . \ 2 , i.e. / n - / n + i = 3 „ | 5 , 

and 
(3) {/n*} converges to zero for each x e \£l\ . 

First we shall show that if such sequences exist, then g is a uniformly continuous 
extension of f0. The function g is uniformly continuous as the uniform limit of 
a sequence, namely {£{g„ | n g k] | k e N}, of uniformly continuous functions. 
If x e \l\, then (by (2)) 

g0x + ... + g„x = (f0x - f i x ) + ... + (f„x - fB+1x) = f0x - fn + lx 

and hence, by (3), gx = f0x. Existence of {/„} and {g„} is provided by induction. By 
our assumption there exists a real number K such that |/0x| g K for each x e 
Put 

Kf2V + 1 

' • - i U • 
We shall prove that there exist sequences {/„} in U*(£>, R) and {gn} in U*(0>, R) such 
that (1) holds and 

(4) |/„x| g 3r„ for each xe\&\, 

(5) \g„x\ g r„ for each x e . 

Clearly (4) implies (3) and (5) implies that the series (1) is uniformly convergent. 
Evidently |/0x| g K = 3r0. The inductive step consists in showing that, given an 
f„ e U*(J, R) satisfying (4), there exists a g„e U*(0, R) such that (5) holds and the 
function fn+1 defined by (2) fulfils condition (4) (with n replaced by n + 1). Consider 
the sets 

X = {x\xs\2\ ,f„x g - r „ } , 7 = {x | x e , f„x ^ rn} . 

The sets X and Y are proximally distant in J2 and hence in 3P (because the proximity 
induced by the uniform structure of 2, is the relativization of the proximity induced 
by the uniform structure of see 25 A.20). Therefore, by 25 C.5, there exists a proxi-
mally continuous function gn on SP such that (5) holds and g„ is — r„ on X and r„ 
on y. By our assumption (4) the values of /„ on X lie between — 3r„ and - r , ; o n Y 
they lie between r„ and 3rn. Thus |/„+ tx 
- (X u y), then |/„ + 1x| g |/nx| + |gnx 

g 2r„ for each x in X u Y. If x e \2\ 
g 2r„. Thus always |/n + 1x| g 2r„ = 

= 3rn + 1. Since g„ is proximally continuous and bounded, g„ is uniformly continuous 
by 25 B.21. 

25 F.6. Remark. In the exercises it is shown that theorems 25 F.1 and 25 F.2 are 
not true for unbounded functions and pseudometrics. 
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