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821 

EXERCISES 

The exercises are grouped, as a rule, by sections; however, there are sections for 
which no exercises are given, and in some cases one group is formed of exercises per-
taining to two or more consequent closely related sections. 

In each group, the arrangement of the exercises is not by the degree of difficulty 
but mainly according to the sequence (in the main text) of the concepts involved; 
however, this is by no means a strict rule. 

The formulation of the exercises is often concise, and abbreviated expressions are 
sometimes used which would not be admissible in the main text. 

(Section 1) 

1. If g is a fibering relation, then = Eg implies X => Dg. If = Eg 
implies X => Dg, then there exists a fibering relation a <= g such that Da = Dg. 

2. If A is a class and g is a relation, then there exists a class i c i such that 
f?[(x)] = B for no x e A. 

3. If a is a relation, 0 4= a 4= J, then there exists a g with a o g 4= g o a. 

4. If g is transitive, then g_1 is transitive. If g and a are transitive, then Q o a 
need not be transitive (give an example). 

5. A relation g is an equivalence if and only if it is reflexive and Q o g~l <= g. 

6. If g is a reflexive relation and any two fibres i?[(x)], e[(y)] either coincide or have 
no elements in common, then g is an equivalence. 

7. A relation g is single-valued if and only if g a c J. If Q is single-valued, then 
Q~1 o e is an equivalence but not conversely. 

8. A relation g is one-to-one if and only i f g o 0 _ 1 c : J , 

9. The class of all sets is non-comprisable. 

10. Let <p be a single-valued relation such that Dq> consists of all sets and every q>X 
is a set. Then E{cpX | (pX $ X} is non-comprisable. 
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(Section 3) 

1. If 3C is a monotone class of bijective relations, then \JS£ is bijective. 
2. Let g be a relation and let Jt be a class of sets; consider the class Jt* — 

= £>[[„#]] of all g[M], M e Jt. If A is the largest set in Ji, then g\A\ is the largest set 
in Ji* (but not conversely, even if Dg =) \JJt). If B is a maximal set in Jt, Dg => \)Jt, 
then need not be maximal in Jt*. If g is a fibering relation, then g[B] is maximal 
in Jt* whenever B <=• Dg and B is maximal in Jt. 

3. If g is a relation and Jt is a monotone class of sets, then is monotone. 

4. Let {Xa | a e A) be an indexed class of sets. Let âiï be a monotone class of sub-
sets of A. Then E{(J{X0 | a e B} | B e âS) is monotone. 

5. Let A be a class and let q> be a single-valued relation on A x A into A. There 
exists exactly one single-valued relation on A into A™ such that the following holds : 
if a e A and 0a = {a„ | n e N}, then a0 = a, an + 1 = tp(a„, a> for every n e N. 

6. If A is a class and Z is the class of all multiplets of elements from A (see 3 F.9), 
then Z x Z c Z, Z - (Z x Z) <= A. 

7. An n-multiplet (n e N, n ^ 1) of elements of a class A is defined as follows. 
Consider the class M of all finite relations Q with D g c N - (0) such that 
x e Q [(1)] implies xeA, and if x e Q [(«)], n > 1, then there exist p, q, u and 
v such that ue g [(p)], v e g [(#)], p + q = n and x = <u, v). If n e N, n ̂  1, 
then an element x is called an n-multiplet of elements from A if x e g [(n)] for 
some geM. 

Prove that an element x is a multiplet of elements of A (cf. 3 F.9) if and only if 
it is an n-multiplet (as just introduced) for some n. [Hint: It follows by induction 
that each n-multiplet is a multiplet. On the other hand, if geM, oeM, <m, a.} eg, 
<n, py e a, then g u a u (<m + n, <a, /}>>) e M; hence <a, /?> is an (m + n) multi-
plet if a is an m-multiplet and /? is an n-multiplet. Thus T x T e T where Tis 
the class of all fc-multiplets, ke N, n ^ 1.] 

(Section 4) 

1. Every monotone class is additive and multiplicative. The class of all Nfc, k e N, 
is monotone and completely multiplicative but is not monotonically additive. 

2. The class of all single-valued relations is completely multiplicative and mono-
tonically additive but is not additive. 

3. Let s i be a non-void completely additive and completely multiplicative class 
of sets such that X e si, Ye si =>X — Ye si. Then there exists a class B and 
a fibering relation g such that si consists of all sets of the form X c: B. 
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4. Let si be a class of sets. Then there exists a (uniquely determined) smallest ad-
ditive class of sets S8 containing si\ if si is comprisable, then âS is comprisable. The 
assertion remains valid if "additive" is replaced by "multiplicative" or "additive 
and multiplicative" or " completely additive" and so on. 

5. Prove, on the base of axioms from Section 1, that 
(a) Theorem 4 B.2 and the Axiom of Choice are equivalent. 
(b) The proposition obtained from Theorem 4 B.2 by inserting "comprisable rela-

tion" instead of "relation" is equivalent with Theorem 4 C.1 as well as with the as-
sertion that every non-empty collection of sets which is of finite character (see 4 C.5) 
contains a maximal set. [Hints: If 4 C.1 holds and g is comprisable, consider the 
collection of all single-valued <p cz g; if cp is maximal, then Dip = Dp. If the assertion 
on classes of finite character holds, let Ji satisfy the suppositions of 4 C.1. Con-
sider the collection B of all monotone 9C c Ji such that X e SE => X => A. Then B 
is of finite character. Let si e B be maximal. Then Usi is maximal in JlP[ 

6. Let X be a minimally non-comprisable class. If (p is a single-valued relation, 
then <p\X~\ is either a set or a minimally non-comprisable class; in particular, every 
subclass of X is either a set or a minimally non-comprisable class. 

7. If A is a minimally non-comprisable class, then exp A is also a minimally non-
comprisable class. [Hint: if A = [JSC, HE monotone, then exp A = U{exP X | X e 

8. Any two minimally non-comprisable classes are equipollent. [See 9 A.5.] 
9. If X, Y are minimally non-comprisable classes, then both X u Y and X x Y 

are minimally non-comprisable. 
10. A relation g is minimally non-comprisable if and only if either both Dg and Eg 

are minimally non-comprisable or one of them is minimally non-comprisable and 
the other is a set. 

11. We shall say that a class of sets si is closed with respect to accessibility if (l) 
if X e si and Y is a set equipollent with a subset of X, then Ye si, (2) if SC e si, 
SE c si, then \}9£ e si, (3) if Xesi, then exp X e si. Prove that if a class of sets 
si 4= 0 is closed with respect to accessibility and is monotonically additive, then si 
consists of all sets. [Hint: using 4 A.7 with a suitable <p prove that there exists a non-
comprisable monotone âiï <z si\ apply 4 D.5.] Show that a monotonically additive 
non-void class of sets si satisfying (l) either contains all sets or is of the form 
E {X | card X ^ n} with n e N . 

12. Let si be a class of sets. A set X will be called accessible from si if it is contained 
in every class of sets si which is closed with respect to accessibility. If si is 
a singleton (A) we shall also say that X is accessible from the set A; a set accessible 
from a countable set will be called simply "accessible". 

Prove that the class of all sets accessible from a given class is closed with respect 
to accessibility. 
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13. Let A be the class of all accessible sets. Let A* be the class of all multiplets of 
elements of A (see 3 F.9). Clearly, (l) if x e A*, y e A*, then <x, }>> e A* and, conversely, 
if <x, y) e A*, then x e A*, y e A*. Prove that (2) every singleton belongs to A*; if Q is 
is a relation and every g[(x)] belongs to A*, then Q\X~\ e A* whenever X is a class 
and X e A*; if X e A* and X is a class, then the class of all 7 <=. X such that Ye A* 
is equal to exp X and belongs to A*. [Hint: prove that a set belongs to A* if and 
only if it belongs to A.~\ 

Remark. The above assertions show that, roughly speaking, the property "x e A*" 
may serve as an "interpretation" of the property "x is an element" giving rise to an 
"internal model" (in the sense of mathematical logic) of the axiomatic system pre-
sented in this book. 

(Section 6) 

1. Let <7 be a composition on a class X. If a e X, then the least stable class Y c: X 
containing a is countable. If a is associative and Yis infinite, then <7, c7> is isomorphic 
with <N — (0), + ). If <X, <j> is a group and 7is finite, then <7, cr> is a group. 

2. Let X, a, a, Y be as above. Give an example where 7 is infinite and <7, tr) is 
not isomorphic with <N — (0), + ) , and an example where o is associative and 7 
is finite without being a group. 

3. Let ¥ consist of all finite sequences; let a denote the composition on ¥ de-
scribed in 6 B.2. For any non-empty X c ¥ let H(X) be the smallest stable class 
containing X. Every sub-semi-group G 4= 0 of ( ¥ , <r> with x e G,xayeG=>yeG 
is isomorphic with some H(X) where X consits of one-element sequences (and the 
void sequence). 

4. With the above notation, no a e ¥ (except 0) is invertible; however, every 
a e ¥ is virtually invertible. 

5. If A is a class, let ¥(A) denote the class of all finite sequences of elements from 
A; let ¥(A) be endowed with the composition described in 6 B.2. If G is a semi-group 
and X c- G generates G, then there exists a homomorphism-relation (p on ¥{B) 
onto G where B is a class equipollent with X. 

6. Let ^ = <G, fi} be a semi-group; we shall write xy instead of xpy. Let St, = 
= + , .> be a ring. Let $ = denote the set of all cp e RG such that (pg = 0 
for all g e G with finitely many exceptions. Consider the following compositions on 

: if q>e<f>, i¡/e 4>, then <p + ^ = {(pg + \j/g | g e G} and q> ,\j/ = {xg \ g e G} 
where xg is equal to the sum of all (ph. \¡/k with heG, keG,hk = g, (ph 4= 0 4= i¡/k. 
Prove that $ endowed with these compositions is a ring. 

Remark : This ring, denoted e.g. by is called the ^-ring over 'S. An element 
q> e which assigns a ; to gh i = 1, ..., n, and 0 to each g e G distinct from all gh 

is often denoted by <xxg x + ... + d„g„ and called a "formal combination" of elements 
glt ..., g„ of G with coefficients at, ..., a„ from R. 
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7. If <G, cr). <if, /i) are semi-groups and, for any x e G, y e G, there exists 
a (cr, /i)-homomorphism-relation q> such that <px =(= <py, then, for some set B, there 
exists a one-to-one (a, ¿tB)-homomorphism-relation on G into HB. An analogous 
proposition is valid for groups, semi-rings, rings and modules. 

(Section 8) 

1. Let S denote the class of all comprisable algebraic structs of a given type t. 
If {SCa\ is a family of structs from S, put 9C = TlSEa (see 8 B.8) and denote by na the 
projection of SE onto SE a. If e S and <pa e Horn (<&, then there is exactly one 
i¡/ e Horn SE) with <pa = nao \j/. This condition characterizes TIStaup to natural 
isomorphism. — Give an exact formulation and prove. 

2. With S as above, let S0 c S. If SE a e S (usually we have SEa e S0), then i e S 0 

is called a "free S0-product" (or a "free product in S0") of {SCa} if there are homo-
morphisms Xa e Horn (SEa, SE) such that, for any <& e 50 and q>a e Horn (SEa, <&), there 
exists exactly one \j/ e Horn (3C, D) with (pa = ifr o la. Prove that any two "free 
S0-products" of {SCa} are isomorphic. (Remark: the term "free sum" seems more 
appropriate.) 

3. Every family of groups (semi-groups, abelian groups, commutative semi-groups) 
has a free product (in the corresponding class). Every family of (commutative) semi-
groups has a "free (commutative) product with unit", i.e. a free S0-product, S0 being 
the class of all semi-groups (or commutative semi-groups, as the case may be) con-
taining a neutral element. [Hint (for semi-groups): given <Ga, tra>, {Ga} disjoint, 
consider the semi-group H of all non-void finite sequences of elements of UGa; let 
Xa consist of all pairs <g, h) where g = {x, y}, x e Ga, y e Ga, for some a, and h is 
the one-element sequence {xoay}; consider the smallest congruence on H containing 
(as subsets) all 2a.] 

4. No non-trivial family of fields has a free product (in the class of fields). 

5. With S and 50 as in exercise 2, a struct SC e S0 is called S0"f r e e if, f° r any 
ty e S0 and any surjective (p e Horn (<W, Si), there exists a e Horn (SE, <&) such that 
(p o i\i = \ •. SE SE. — A semi-group is free if and only if it is a free product of a 
family of semi-groups isomorphic to <N — (0), + ) . 

6. Let Xa, a e A, be disjoint semi-groups isomorphic to <N — (0), + ) ; let Xa 

consist of elements xa, x\,... Let R be a commutative ring. Denote by R({xa}) the 
R-ring over the commutative free product with unit of the {Xa}; every p e i?({xa}) is 
called a "polynomial in xa, a e A, with coefficients in R". — If £a e R for each as A, 
then there is exactly one homomorphism 0 of R({xa}) into R such that 0(r . xa) = 
= for each a e A, r e R. If p is a polynomial as described above, then 0p is 
called the value of p for xa = £„, a e A. 
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7. Prove that, for a given {<!;„} and an ideal T <= R, the set of those polynomials p 
the value of which for xa = lies in T, is an ideal of -R({xa}). 

8. Let 9 = <R, a, p, a, be a module over ^ = <Dp, a, let ^ = <G, t> 
be a semi-group. For g e G, he G, xe R°, put xgh = x(gxh); let g consist of all 
<g, x, xgy, g e G, xe RG. Then <i?G, aG, <p, a, /?>c, g, t> is a module-like struct of 
the type « 1 , 2>, s/, 

9. Let A be a set, and let 3F be a proper ideal (8 D.4, 8 D.9, convention) under 
Hexp/i (in other words, a proper filter of sets on A, see Section 12). For every a e A, 
let 9Ca be an algebraic struct of a given type t and let Xa be a congruence on 3Ca. 
For elements x = {xa}, y = {ya} of 9C = Tl9Ca, put xXy if and only if there is an 
S e with ae S => xaXaya. Then X is a congruence on ¡X. 

10. Maximal ideals in 9CA where 9£ is a field are precisely the sets T of the fol-
lowing form: J5" is an ultrafilter (see 12 C.1) on A; Tconsists of all x = {xfl} e 9CA such 
that E{a | xa = 0} belongs to &. 

(Section 9) 

1. For any infinite cardinal b, there exist arbitrarily large cardinals x with xb > x 
and arbitrarily large cardinals y with yb = y. 

2. For any infinite cardinal x denote by log x the least y such that x ^ exp y. 
There exist arbitrarily large cardinals x with log x = x. If log x = x, then there is 
no greatest element in the set of all z < x. 

3. For any infinite cardinals x, y, we have log (xy) = log x + log y, log xy = 
= y log x. 

4. Let X be an infinite set, card X = x. Let b(x) be the least cardinality of a set 
B c N * such that, for any / e N*, there is a g e B with / z ^ gz for all zeX. Then 
x < fc(x) g exp x (it is not known whether e.g. 2>(N0) = exp X0). 

(Section 10) 

1. Every comprisable order is an intersection of monotone orders. 

2. The product of two quasi-ordered classes < A, <r> x <B, t> cannot be monotoni-
cally quasi-ordered unless a = A x A or x = B x B. 

3. Let <A, ^ ) be an ordered set. For every ae A, let 9Ca = (Xa, tra> be a quasi-
ordered set. If <a, x> e <f>, y) e ZXa, put <a, x ) <r<f>, if and only if either 
a < b or a = b, xoay. Then <SX0, CT> will be denoted by | a e A}, ^ > or 
simply Y.9Ca and will be called the sum of {¡¡Ta} under the order ^ . If ^ is equal to 
]A, then we shall speak of the discrete sum (or simply sum) of 
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Prove: if 9CA = 3C for all a, then l,3Ca is isomorphic with (A, ) x lex 3C, and 
the discrete sum ~LSCA is isomorphic with <A, J) x SC\ Y,9CA, with all 3CA non-void, is 
monotone if and only if <A, ^ ) and also all 9Ca are monotone. 

4. An ordered class si = <A, <x> is monotone if and only if, for any ordered 
38 = <£, t> and any surjective order-preserving / : si -* 38 there exists an order-
preserving g \3d -*• si with f c g = \ : 38 ̂  3&. 

5. Let / be surjective for a quasi-ordered set si = (.A, g} and a set B. Let a be the 
intersection of all quasi-orders t on B such that / : si <B, t ) is order-preserving. 
Then cr is a quasi-order and / : si —>• <B, cr) is order-preserving. We denote cr by gjf 
and call it the quotient of g under / ; <B, (?//> will be denoted by <A, g>// and will 
be called the quotient of <A, g) under / . A mapping of the form / : (A, g) -> 
-» g>// will be called a quotient mapping (for quasi-ordered sets). 

6. Every quotient of a monotonically quasi-ordered set is monotonically quasi-
ordered. A quotient of an ordered set need not be ordered. 

7. Every ordered set is a quotient of some D x (0, 1) with D discrete, i.e. endowed 
with JD. 

8. If x e NN, y e NN, put xay if and only if there exists a number p e N such that 
n e N , n > p => xn ^ yn. Then a is a reflexive quasi-order on NN. In <NN, a}, 
every countable set is bounded. 

9. The collection of all left-saturated left-cofinal subsets of a quasi-ordered class 
is multiplicative. 

10. Let ^ be a monotone order on a set A; for every aeA, let 9Ca = (Xa, <ra) be an 
ordered set. If x e UXa, y e HXa, let xay if and only if either x = y or there exists 
an element aeA such that (l) be A, b ^ a => (xb) ab(yb), (2) for some c e A, 
c ^ a, xc 4= yc. Then a is an order on IIXB; it will be denoted by niex{cra} or 
nlex<{afl | a e A}, The ordered set <IIZa, cr) will be denoted by IIlex$Ta or 
n I e x<{^a | a e A}, ^ ) and called the lexicographical product of \3Ca}. It is mono-
tone whenever A is well-ordered (11 A.1) and all 3Ca are monotone; conversely, 
if <TIXa , a) is monotone, all Xa are non-void and contain, with finitely many 
exceptions, more than one element, then A is well-ordered, and all 3Ca are monotone. 

11. Let <A, ^y be a monotone ordered set; let 3Ca, aeA, be complete ordered 
sets containing more than one point. Then nlex{3Ca | a e A} is complete if and only if 
A is well-ordered. 

12. Let A be an infinite set. If f c exp A, <y c exp A, put SEali if and only if 
majorizes 9C in <exp A, <=.). Then cr is a quasi-order on exp exp A. Put U = 

= | 9£ c exp A, [JSC = A}. The cardinality of the collection of all left filters 
in U is exp exp exp a where a = card A. [Hint: if 0 is a set of free ultrafilters in A, 
let Ve consist of all those 3C c exp A which intersect every J5" e 0 . Then Ve is a filter; 
if 0 * 0 ' , then Ve * Vg„ Apply 12 C.7.] 
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13. The following collections of sets are lattices (under inclusion): the collection 
of all subgroups of a given group; of all subrings of a given ring; of all finite subsets 
of a given set; of all congruences (see 8 C.10) on a given algebraic struct; of all equi-
valences on a given set. Each of these collections, with one exception, is also complete. 

14. The ordered set <R, is boundedly complete. Let Y consist of those 
/ e RR = X which satisfy the following condition: 

(*) + ¿2*2) ^ W x i ) + W x i ) whenever S 0, X2 Z 0, ^ + X2 = 1. 
Let fix = -\x\,f2x = - | x - l|. Then sup x ( f u f 2 ) 4= sup,, ( / 1 ; / 2 ) . 

15. Let S be a class; put A = exp exp S, B = E{exp X | X c S). Then <A, <=) 
is complete, B is meet-complete, completely meet-stable, completely meet-preserving, 
and monotonically join-complete, but it is neither finitely join-complete nor join-
stable. 

16. Let si = <>4, a ) be a quasi-ordered class; suppose that no finite non-void 
X <= A has more than one join. If a class B <= A is finitely join-complete and join-pre-
serving, then it is join-stable. 

17. Let a quasi-ordered class (A, <r> be finitely join-complete. If B c A is join-
stable, then it is join-preserving. 

18. Let A = N u (ax) u (a2), a,- non e N, ax 4= a2. For x e A, y e A, put xcy if 
either x e N, y e N, x ^ y, or x = y or else y = a,-, x e N. Put B = (0) u (0^) u (a2), 
Bp = (A — Np) u (0). Then the Bp are meet-preserving; B = f)Bp is meet-stable, 
but is not meet-preserving. 

19. Let si = (A, cr) be a quasi-ordered class. The union of a monotone collection 
of join-preserving subsets is join-preserving, and similarly for meet- and lattice-
preserving sets. 

20. A quasi-ordered class <A, cr) is called (countably) join-complete if every non-
void (countable) set X <= A, has a join, monotonically join-complete if every non-
void X <=. A which is monotonically ordered (under a) has a join. 

A second definition is obtained if "join" is replaced by "meet". Finally, {A, cr) is 
called countably (monotonically) complete if it is both countably (monotonically) 
join-complete and countably (monotonically) meet-complete. 

Let A be an uncountable set. Let B2> B3 consist, respectively, of all finite 
X <= A; all countable X <= A and all X c A of cardinality > exp K0; all countable 
X c A and all their complements. Then B1 is meet-complete and finitely join-
complete, but neither countably nor monotonically join-complete, B2 is countably 
join-complete, but there is a countable monotone f c B2 with no meet (provided 
card A > exp K0); B3 is countably complete, but neither monotonically join-
complete nor monotonically meet-complete. 

21. Let A be a class. In <exp A, <= ), a class Oft <=. exp A is completely join- (meet-) 
stable if and only if it is completely additive (completely multiplicative). 
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22. A monotonically complete and finitely complete (10 F.5) quasi-ordered class 
is complete. 

23. Let si = <A, g> be a quasi-ordered class; let B c A be finitely stable. If, for 
any monotone non-void X c B, every join (in si) of X belongs to B, then B is com-
pletely join-stable. 

(Section 11) 

1. Every ordered set <A, ^ ) such that 

(*) all E{x | x ^ a) are finite 

can be embedded into <B, =>) where B is the collection of all finite subsets of a given 
set. Every infinite monotonically ordered set with property (*) is isomorphic to <N, ) . 

2. Let A and 3Ca, a e A, be ordered sets; let SCa contain more than one point. 
The lexicographical product n i e x$" a (see 10 ex. 10) is well-ordered if and only if 

aeA 

A and all 9£a are well-ordered. 

3. Give an example of a monotonically ordered set which possesses the property 
indicated in 11 A.5, but is not well-ordered. 

4. Let A be a well-ordered class such that every Ax is a set; let a be the first element 
of A. Let M be a class; let b e M. Let S <= U MA* be such that (1) « a , b})'e S, (2) if 

xeA 

x e A, x =f= a, Ax = U {Ay | y < x}, / E MA' a n d / | Ay E S for every y < x, then / e S. 
Let q> be a single-valued relation such that D(p => S, Eg) c M and if / e S, x e A, 
x * a, f E MAthen / u (<x, <pf>) e S. 

Then there exists exactly one g E MA such that ( l ) ga = b, (2) if x E A, x + a, 
then the restriction g(x) of g to AX belongs to S, and gx = (pg(x). 

5. If <A, ^ > as well as 9Ca = (Xa, <ra}, a e A, are well-ordered sets, then the sum 
= | ae A}, (defined as the set LXa endowed by the order con-

sisting of all pairs <<a, x ) , <a, y>> with x<jay, ae A, and all pairs <<a, x ) , <6, y » 
with a < b) is well-ordered. If ord Xa = we put Z = ord E {Xfl}. Show that this 

aeA 
definition is correct and that the composition £ + q obtained in this way is associative, 
but is not commutative. 

6. If <A, ^ ) is a finite monotonically ordered set and if Xa, aeA, are well-ordered 
sets, then the lexicographical product II l ex{X0} (see 10 ex. 10) is well-ordered. If ord 
Xa = put n z a = ord n { X } . Show that this definition is correct and that the 

aeA 
composition £ . rj obtained in this way is associative, but is not commutative. (Re-
mark: most authors denote by rj. /; the number denoted here by £ . rj.) 

7. If A is well-ordered, ord A = a, ^ is an ordinal and £,„ = £, for every aeA, then 

aeA 
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(Section 12) 

1. Let A be an infinite set, card A = a. Let F be the set of all finite covers (collec-
tions) of A. Then card F = exp a. Consider sets M <= F such that {(x) | x e A} is 
a meet of M (under the quasi-order described in 12 A.4). Then the least power of such 
a set M is equal to log a (see 9 ex. 2). 

2. For any cover SC, St SC refines St (£", SC), St (SC, SC) refines St (St SC). 

3. If St SC refines SC, then SC is refined by a disjoint cover of \}9C. The converse 
does not hold. 

4. Put A = (0, 1, 2), SC = ((0, 1), (0, 2)), <*f = ((0, 1), (1, 2)). Then ^ = ((0),(1),(2)) 
is a meet of SC and but no meet of St SC and St refines St SZ. 

5. Let SCm = SCiZ) = {Z[2)} be covers; put X0) = (JX(i\ Let denote 
the projection of X = x X ( 2 ) onto X°\ If 2E is a cover, Z = U ^ , / » -' Z X{i) 

are mappings, and the /¡-image of 2£ refines SC0), then there exists a h : Z X such 
that the h-image of refines {X^ x X'b2)} and / ( = tc; o h. — This property of 
{X<

a
1) x y[2 )} is characteristic for every cover of X which both refines and is refined by 

{A^1' x .X^2'}. Give an exact formulation and prove. 

6. Let SC = ((0, 1, 2), (2, 3)), <& = ((0, 1), (1, 2, 3)). Then there is no meet of SC 
and under the quasi-order defined in 12 A.13. 

7. If both covers and {y6} are point-finite (or star-finite), then {Xa x Yfc} 
is point-finite (star-finite). 

8. If SC is a point-finite cover and / is a mapping of USC onto a set Y such that all 
inverse fibres / - 1 [ ( y ) ] are finite, then the /- image of SC is point-finite. 

9. The union of a directed (under c ) set of centred collections of sets is centred. 

10. Let A be a set; let ¥ cz exp A and let -T be the smallest additive and completely 
multiplicative collection containing SP. If f)SC 4= 0 for every centred SC <= then 
also C]3C 4= 0 for every centred SC <= .T. 

11. Let SC be a collection of sets such that (*) 4= 0 for every centered sub-
collection <&. Then, for every domain-full fibering correspondence / : USC -* Z, the 
collection / [ [ ^ ] ] also possesses property (*). 

12. For any mapping / : A -> B, t h e / - ^ t r a n s f o r m of any free filter on B is free. 

(Section 13) 

1. Let cr> be the categoroid of homomorphisms of groups described in 13 A.1, 
example (D). Let Z be the class of those homomorphisms cp = (p : "¡0 JV from <P 
for which <p[y~\ contains only the neutral element (of X ) . Then <Z, crz) is a catego-
roid but is not a subcategoroid of <3>, ff>. 



E X E R C I S E S 831 

2. Consider the category JÍ of all sets. — (a) If / : X -* Y is a morphism of Jt, 
put Ff = f x f : X x X - > Y x Y. Then F : Jt -» Jt is a covariant functor; the 
associated relation assigns X x X to X. — (b) For any morphism / :X -*• Y 
let Ff be the mapping of exp X into exp 7ass ign ing / [Z] to Z <= X. Then F : Jt -*Jt 
is a covariant functor; the associated relation (13 B.7) assigns exp X to X. — (c) For 
any morphism / : X -*• Y let Ff be the mapping of exp Y into exp X which assigns 
/ - 1 [ Z ] to Z <= Y. Then F : Jt -> Jt is a contravariant functor. 

3. Let X be the product of categoroids X i = <<ř;, a^, i = 1,2. Then <^>la <p2} e 
6 $ , x <P2 is a monomorphism (epimorphism, strong monomorphism, etc.; cf. 
13 B.9, remark) if and only if both cpt and (p2 possess the property in question. 

4. Let Xi = «Tf), i = 1, 2, be categoroids. Put X = Xx x X2. If q> = 
= <</>i, < e x P u t Fi<P = <Pi• Then F ; : X Xř are covariant functors. 
If i f is a categoroid and G ; : i f -» X ř are covariant, then there exists exactly one 
covariant functor H : i ? -» J f such that G ; = F ; 0 H. 

5. Let JT be a category. Let au a2 be objects of X . Suppose that a is an object, 
cPi e Horn (a, at), and for any t^ e Horn (x, a¡) there exists exactly one i¡/ e Horn (x, a) 

with i/f; = cpi o ¡¡z. Then a will be called a product of objects at, a2 in X . — Prove 
that any two products of au a2 are isomorphic. Prove that in the category JÍ of all 
sets, Xx x X2 is a product of objects (i.e. sets) Xlt X2. Consider products of two 
objects in various categories introduced in Section 13. Show that, in the category 
of all monotonically ordered sets containing more than one point, no two objects 
possess a product. 

6. Let X be a category. Let au a2 be objects of X . Suppose that a is an object, 
(Pi e Horn (ah a), and for any e Horn (at, x) there exists exactly one \p e Horn (a, x) 
with ýi = ip o q>i. Then the object a will be called a sum of objects ai, a2 in X. Prove 
that any two sums of au a2 (in a given category) are isomorphic. Prove that, in the 
category Jt, ((1) x Xx) u ((2) x X2) is a sum of sets Xx, X2. Consider sums of two 
objects in various categories introduced in Section 13. 

7. Extend the above definitions from the case of two objects to that of a family of 
objects. 

8. Let X u X2, <£ be categoroids. A mapping F = F : X t x X2 -» i f will be 
called ( l ) "covariant relative to both factors" if it is a covariant functor in the sense 
of 13A.10, (2) "covariant relative to the first and contravariant relative to the second 
factor" if F : Xx x X2 i f is covariant ( X t denotes the category contragredient to 
X t ) , etc. — Consider the underlying categoroid <<ř, tr> of the category of all sets. If 
/ e <P, g e denote by X ( f , g) the mapping of Horn (E/, Dg) into Horn (D/, Eg) 
assigning g 0 cp of to (p. Then {</, g} -> X ( f , g)} determines a functor contravariant 
in the first and covariant in the second factor. 

9. Let A be a non-void class. Let 4> consist of all non-void finite sequences of 
elements of A. If (p = { a 0 , . . . , am} e<P, \j/ = {b0, ...,bn}e<P and bn = a0, let (prý be 
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equal to {b0,..., b„, aL, ...,am); otherwise, <pr\j) is not defined. If a e A, b e A, <p e 
<p = {c0, ..., ct}, then <a, b) Kcp if and only if a = c0, b = ck. — The quadruple 

r, A, k) satisfies conditions (1) —(4) from 13 B.3; it satisfies condition (5) if and 
only if A is comprisable. 

10. In the category of all rings, J : Z -> Q is an epimorphism. 

11. Let H be a group, G a subgroup of H. If J : G -» H is an epimorphism (in the 
category of all groups), then G = H. [Hint: If G =f= H, consider two replicas Hu H2 

of H and their "free product" (see 8 ex. 2) S; let (pt be an isomorphism of H onto H, 
(considered as a subgroup of S). Let X be the least congruence on S containing all 
<<Pi&•> <Pi9) with g e G. Let <p be the mapping of S onto SjX assigning A[(x)] to x. 
Then (p o : H -»• Sjl, i = 1,2, are distinct but coincide on G.] 

R e m a r k : The above assertion easily implies that, in the category of all groups, 
every bimorphism is an isomorphism. 

12. Let be the class of all separated uniformizable topological spaces (see 
27 A.1, 24 A.1); let <P be the class of all continuous mappings / : X -* Y where % e si, 
Ye si. Consider the category (<P, o, sd, k> with k defined in the obvious way. Prove 
that, in this category, epimorphisms coincide with continuous mappings onto dense 
(see 22 A.1) subsets, monomorphisms coincide with injective continuous / : X -* Y, 
strong epimorphisms coincide with quotient mappings (relative to si) of X onto Y. 
strong monomorphisms coincide with embeddings / \X -* Y such that f\X~\ is closed 
in Y. Consider these and other kinds of monomorphisms, epimorphisms, etc., 
for various categories of spaces (topological, proximal, uniform). 

(Section 14) 

1. If P is a set and if int is a single-valued relation on exp P ranging in exp P and 
satisfying conditions (int i), i = 1, 2, 3 of 14 A.11, then u = {X P - int (P - X) | 
| X c P) is a closure operation for P and int = int„. 

2. Let P be a set and let q be a single-valued relation on exp P ranging in exp P 
and satisfying the following two conditions: £0 = 0, g(X u 7) = gX u g Y for each 
X c P, Y c: P. Then u = {X -* X u gX | X c: P} is a closure operation for P and 
the derivative of X is contained in gX for each I c P . I f x i g(x) for each x e P, then 
gX is the derivative of X in <P, u> for each X c P. [Hint: if x e gX, then x e 
e g(X — (x)) u g(x) and by the last condition this implies that x e g(X — (x)).] 
If x e g(x), then g(x) is not the derivative of (x) in <P, u>. 

3. A family {Xa | a e A} is said to be hereditarily closure-preserving in a closure 
space 0 if each family {7a | a e B}, where B <= A, Ya <= Xa, is closure-preserving 
in Every locally finite family is hereditarily closure-preserving, and in an accrete 
space each family is hereditarily closure-preserving; thus a hereditarily closure-
preserving family need not be locally finite. 
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4. Let {Xa | a e A) be a family of subsets of a space, {Ac | c e C} be a family in 
exp A and Yc = (J{Xa | a e Ac}. If {Ac} is point-finite and {Xa} is locally finite then 
{ Y j is locally finite. If U{AJ = A, {Yc} is locally finite and each {Xa | a e Ac} is 
locally finite, then {Xtt | a e A} is locally finite. 

5. In a generalized ordered space <P, iS, w> the order-closed intervals which are 
neighborhoods of a given point x form a local base at x. 

6. If <P, ^ > is order-dense (i.e., x < y => ] x, y [ 4= 0), no point of the ordered 
space <P, m) is isolated. No point of R is isolated. 

(Section 15) 

1. A subset X of a T-space is the intersection of- a closed set with an open set if and 
only if X - X is a closed set. [Hint: I , X = X n ( P - ( X - X)). - II. If X = F n G, 
F closed, G open, then X = F n G n F and hence X - X = F n ( F n G - G).] 

2. Let <P, u) be a topological space. For each X <r P let sdx be the smallest col-
lection of subsets of P such that X e stfx and Ye implies that uYes#x, P — Yes£x. 
Then each collection s f x has at most 14 elements. Find a subset X of the space R of 
reals such that stfx has 14 elements. 

3. If <P, u ) is an order-complete discrete ordered space (i.e. <P, ^ > is order-
complete, u is the order closure for <P, ^ ) and u is a discrete closure), then P is 
finite. [Hint: if x„ is an increasing (decreasing) sequence in <P, u>, then sup {xn} 
(inf {x„}) is a limit point of {x„).] If <P, u> is a boundedly order-complete dis-
crete ordered space, then <P, u ) is countable (each interval [ x , j / ] is finite). On 
the other hand, for each cardinal m there exists a discrete ordered space <P, ^ , u} such 
that the cardinal of P is m (if I is the ordered set of integers and T is a segment of 
ordinals, then the order closure for the lexicographic product of T and I is discrete). 

4. Let 11 be a local sub-base at a point x in a space If a net J f ranging in 0 is 
eventually in each U ell, then Jf converges to x. A similar result for accumulation 
points is not true; e.g. consider a point x in a space such that two sets X and Yform 
a local sub-base and X n Y = (x). 

5. (a) If <P, u> is a closure space, xeuX and °U is a local base at x in <P, u) , then => 
directs °U and there exists a net <{xj, | U e "U\, =>) which ranges in X and converges 
to x in <P, u> (choose xv e X n [/). Thus any space 0 can be described by means of 
convergence of nets, the ordered domains of which are local bases of points of 

(b) If {U„ | n e N} is a local base at x and a sequence S = {St | i e N} converges 
to x, then there exists a subsequence {S,n} of S with Sin e U„ for each n. 

(c) If a space is of a countable local character at x and a sequence {S„} converges 
to x, then there exists a monotone local base {[/„} at x with S„ e U„ for each n; in 
addition, if the space is topological then the sets U„ may be taken open. 

53—Topological Spaces 
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6. U l t r a n e t s . A net Jf is said to be an ultranet if the following condition is 
fulfilled: if Jf ranges in the union of two sets X and Y, then Jf is eventually either 
in X or in Y. It is almost self-evident that: 

(a) If x is an accumulation point of a ultranet Jf in a space 8P, then x is a limit point 
of J f in 0>. 

(b) Every directed net has a generalized directed subnet which is an ultranet. [Hint: 
Let Jf = <N, g > be a directed net and let if be the collection consisting of all subsets 
y of EN such that N _ 1 [ Y ] is residual in <DN, and let us choose an ultrafilter 

on EN containing "V. The generalized subnet Ji of Jf constructed in the proof 
of 15 B.22is an ultranet; indeed, JI is eventually in each element of and therefore, 
if Ji ranges i n l u i ; then X n EN s or Y n EN e 11 because "U is an ultrafilter 
and hence Ji is eventually in X or in 7.] 

(c) If x e uX, where <P, u ) is a closure space, then there exists an ultranet ranging 
in X which converges to x in <P, u}. 

(d) A directed net Jf converges to x in a space 8? if and only if each generalized 
directed subnet of which is an ultranet, converges to x in 8P. 

7. C o n v e r g e n c e of f i l t e r s . A proper filter base f o n a space 8P is said to be 
convergent to a point x if each neighborhood of x contains an element of SC. Thus 
a proper filter SC on converges to x if and only if SC contains the neighborhood 
system of x in A point x is said to be a cluster point of a proper filter base SC in 
a space SP if each neighborhood of x intersects each element of SC, or equivalently, 
if x e | X e SC}. x is a limit point of SC if SC converges to x. 

Prove: (a) Each limit point is a cluster point, and a cluster point of an ultrafilter 
is a limit point. 

(b) If SC and <& are proper filter bases on a space 8P and SC c ty, then each limit 
point of SC is limit point of <&, and each cluster point of <& is a cluster point of SC. 

(c) Let Jf be a directed net ranging in a space 8P and let SC be the set of all subsets 
X of 8P such that Jr is eventually in X. Then SC is a proper filter of sets on 8P, and x is 
a limit (accumulation) point of Jf if and only if x is a limit (cluster) point of SC 
in 0>. 

(d) Let SC be a proper filter on a space 8P. If SC converges to a point x and a net Jf 
ranging in SP is eventually in each element of SC, then Jf converges to x, in particular, 
if {xx | X e SC} is a family such that xx e X for each X in SC, then the net <{xx | X e 
e SC}, 3 ) converges to x . If SC does not converge to x, then some net Jf = 
= <{x* | X e SC}., =>>, where xx eX, does not converge to x, and moreover, x is not 
an accumulation point of 

(e) If x is a cluster point of a proper filter SC on a space 8P, then x is a limit point 
of an ultrafilter <& SC, and x is a limit point of a net Jf which is eventually in each 
X e SC. 

8. All nets are assumed to be directed. Let Jf = <N, ^ > be a net in <exp X, c > 
where X is a set and let jrf be the collection of all residual subsets of <DN, ^ ) . 
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Then 
lim sup Jf = n{U{Nfl | a e A) \ A e d ) 

lim inf Jf = U{D{Na | a e A} \ A e rf} . 

9. Let Jf = <N, g ) be a net in an ordered set <P, -<>. If Ji is a generalized 
subnet of J f , then 

provided the elements in question exist; if lim Jf exists then lim Ji exists and lim Jf = 
= lim Ji. 

10. Let Jf = <N, > be a net ranging in exp \Sf \ where 9 is a closure space. The 
topological upper (lower) limit of Jf in 0>, denoted by Tg, lim sup Jf {Tg, lim inf J f ) , 
is the set of all points x of 8P such that, for each neighborhood U of x in the set 
of all a e DN such that U n Na #= 0 is cofinal (residual) in <DN, :£>. We have 
Tg, lim sup Jf => Tg, lim inf J f . If the topological upper limit and lower limit co-
incide, then the set Tg, lim sup Jf is called the topological limit of Jf in Sf and is 
denoted by Tg, lim J f . Prove: 

(a) If Ji is a generalized subnet of J f , then 

Tg, lim sup Jf n T& lim sup M => Tg, lim inf Ji => Tg, lim inf Jf , 

in particular, Tg, lim „-f = Tg, lim Ji provided that Tg, lim Jf exists. 
(b) If Jf is decreasing (under inclusion), then Tg, lim Jf = 0{Na | a e DN}. 

If Jf is increasing then Tg, lim Jf is the closure of [J{Na | a e DN}. 
(c) Tg, lim sup Jf = f){U{iVa | a ^ a) \ a e DN}. 
(d) If 9 is topological then the sets Tg, lim sup Jf and T& lim inf Jf are closed and 

Tp lim sup Jf = Tg, lim sup J f , Tg, lim inf Jf = Tg, lim inf J f , where Jf — 
= <{Na | a e DN}, 

(e) If <M, is a net in 8? and Ji = <{(Afa) | a e DM), t h e n % lim sup Ji 
is the set of all accumulation points of <M, ^ ) . 

' <{Ma}, ^ > and <{Na}, ^ > are nets in exp then 

provided both limits on the right side exist. 

11. A monotone ordered set is boundedly order^complete if and only if each 
interval-like set is an interval. [Hint: For "if" , given X, consider the interval-like 
sets and For "only i f " consider separately the case when inf X or 
sup X exists.] 

12. PX is topological and the sets Y, Y <= X, form an open base for PX. 

lim inf Jf -< lim inf Ji -< lim sup Ji -< lim sup Jf 

Tg, lim sup {Ma u Na} = Tg, lim sup {Ma} u lim sup {Na} , 

T& lim inf {Ma u Na} => Tg, lim inf {Ma} u T9 lim inf {Na} , 
and hence 

Tg, lim {Ma u Na} = Tg, lim {Ma} u Tg, lim {J^a} 

53' 
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(Section 16) 

1. A mapping/of a closure space <P, « ) into a closure space (Q, v} is continuous 
if and only if i n t „ / _ 1 [ X ] c / " 1 [int^ X] for each X <= Q. 

2. Describe continuity by means of cluster points of sets. 

3. Let / be a mapping of a closure space 8P into another one 2, x e \8P\ and let 
be a local sub-base at fx in 2. Then / is continuous at x if and only if f~l\U~\ is 
a neighborhood of x for each U in 11. [Hint : / _ 1 [D{l7 f l }] = n { / _ 1 [ t / J } - ] 

4. Let / be a mapping of a space 0 into a topological space 2 and let 88 be an 
open sub-base of 2. Then / i s continuous if and only i f / - 1 [ B ] is open in 8P for each B 
in 88. 

5. A mapping / of a space 0 into a space 2 is continuous at x e \8P\ if and only if 
the filter base E{/[(7] | U e 1l} converges to fx, where 11 is the neighborhood system 
of x in 8P. 

6. Let <N, ^ ) be a net ranging in a closure space 8? and let x s \8?\. Let sd be the 
collection of all residual sets in <DN, ) . Then si is a proper filter on DN. Let 
Q = DN u (si), and let v be the closure for Q such that each point of DN is isolated 
and (si) u [ j / ] ( = E{(si) vj A \ A e si}) is the neighborhood system at si in 
<Q, y>. Let us consider the mapping / of (Q, v) into 8P such that N is a restriction 
of gr / and fsi = x. Then / is continuous if and only if the net (N, rg> converges 
to x in 8P. 

7. Let u be a closure for a set P and let {ua | a is an ordinal} be a family of single-
valued relations on e x p P ranging in exp P such that u0 = u, ux+1X = uuaX for 
each a and uaX = {J{ufX | ft < a} if a is a limit ordinal. Then each ua is a closure 
operation, and there exists an a such that ua = tip for all fi > a, whereupon ux is 
the topological modification of u. 

8. Let / be an order-preserving mapping of an ordered space <P, u) into 
another one <Q, -<,u) . The mapping / need not be continuous, but if / is com-
pletely lattice-preserving then / is continuous. 

9. Let / be a continuous mapping of a space 0 into a space 2. If {Xfl} is a locally 
finite family in 2 then {/ - 1[-Xa]} is a locally finite family in 8P\ on the other hand, 
if {X„} is closure-preserving or hereditarily closure-preserving, then { / _ 1 [ X a ] } need 
not have the corresponding property. [Hint: for 2 take an accrete space.] 

(Sections 17-18) 

1. Let 2t and 22 be subspaces of 8P, the closure of \2X \ in 8P be contained in \22\ 
and 3C be a family in exp \2X\. If 3C is locally finite in 8? then 9C is locally finite in 2X. 
If 3C is locally finite in 22 then 3d is locally finite in 8P. 
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2. B o x - p r o d u c t . Let m be an infinite cardinal. If | as A} is a family of 
spaces and P = n{|^ f l |}, then the m-box-product of {9a} is the space <P, u) such that, 
for each xsP, the sets of the form f l^ iT | & e form a local base at x, where 
nb = pr t n (P x \3?b\), Ub is a neighborhood of nbx in 3Pb, B cz A and card B < m. 
If card A < m then <P, u ) is termed the box-product of The box-product clo-
sure operation is the finest closure for P such that the embeddings fya : 8Pa —• <P, u> 
are continuous and the boxes (i.e. sets of the form Il{Za}) form local bases, where 
nafyaX = x> nbfyaX 

= nby for b 4= a. The projections of m-box-products are continu-
ous and carry all neighborhoods into neighborhoods. K0-box-products coincide 
with products. The closures of finite sets with respect to the product closure and the 
box-product closure coincide. 

3. L o c a l c h a r a c t e r s , (a) Let 3, be a subspace of a spaced®. The local character 
at x e 2 in J is at most the local character at x in 3P. The local character of 2 is at 
most the local character of The total character of J is at most the total character 
of SP (SP is assumed to be topological). 

(b) The local character of a sum is the supremum of the local characters. The total 
character of a sum is the sum of the total characters. 

(c) Let xs3P = | a e A}, card A X0. The local character at x is less than 
or equal to the supremum of card A and all the local characters at pr„ x, as A, in 
8?a\ if SPa is the only neighborhood of pra x for no a then equality holds. If the local 
character of each 3Pa at pra x is 1, then the local character of 9 at x is card A. 
Discuss total characters similarly. 

(d) If 0> is a discrete space, card \SP\ > 1 and card A ^ K0, then the local character 
of 3Pa is card A and the total character is card \SP\ . card A. 

4. D o m a i n r e x t e n s i o n s of continuous mappings. L e t / be a mapping of a dense 
subspace <P, u ) of <2> f ) into w>. Let g be an extension of / to a mappingF of 
P u (x) into (R, w>. Each of the following two conditions is necessary and sufficient 
for F to be continuous at x : (a) If a net N ranges in P and converges to x in (Q, u) 
t h e n / o N converges to Fx; (b) If H is a local base at x in <Q, u> then the filter base 
/ [ [ [ / ] n P ] converges to Fx. If / is continuous and F is continuous at x, then F 
need not be continuous; if, in addition, (x) is closed or the closure of (x) is disjoint 
with P, then F is continuous. 

5. A space is said to be compact (countably compact) if each directed net (sequence) 
has an accumulation point. An ordered space is compact if and only if it is order-
complete. In particular, each closed interval of reals and each finite space are compact. 
The ordered space Ttol of countable ordinals is not compact (it is not order-complete), 
but it is countably compact (each sequence is bounded in Tmi). Each of the following 
conditions is necessary and sufficient for a space 9 to be compact (countably com-
pact): 

(a) Each proper filter (with a countable base) has a cluster point (see 15 ex. 7). 
(b) Each interior cover (countable interior cover) contains a finite cover. 
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[Hint: Equivalence of (a) and (b) follows from de Morgan formula; for necessity 
and sufficiency of (a) see 15 ex. 7.] 

A space & is countably compact if and only if each locally finite family of non-void 
sets if finite. 

Any closed subspace of a compact (countably compact) space is compact (count-
ably compact). The sum of a family {8Pa | a e A} of non-void compact spaces is com-
pact if and only if A is finite. In 29 B.5 and 41 A.12 we shall prove that the product 
of compact spaces is compact. For finite families the proof is quite elementary. Let 
& = U{0a | a e A} with A finite and compact and let Jf be a net in Sfi\ we may 
assume A = (0, 1 , . . . , n). Since3PQ is compact there exists a generalized subnet J f Q 

of J f such that pr 0 ° jV0 converges to a point x 0 in P 0 and, by induction, a gene-
ralized subnet Jr

k+1 of J f k , k + 1 ^ n, such that p r t + 1 o .Jfk + X converges to a point 
Xjt+1 in + Clearly J i n is a generalized subnet of J f and jV„ converges to 
{xa | a e A}. 

If F is closed and bounded (i.e. coordinates are bounded) in R" then F is compact. 
Any bounded net in R" has an accumulation point. 

If / is a surjective continuous mapping and D*f is compact then E*f is a com-
pact space. 

Any PX is compact. [Prove: Any interior cover of p x can be refined by an open 
cover. 9£ consisting of sets of the form Y, Y a X. The fact that HE is cover is equivalent 
to the statement that each ultrafilter contains a set Y with F i n 9C. Assuming that the 
set <& of all Y with F in 3C contains no finite cover of X we can find a ultrafilter which 
contains no Y e ^ ; consider a ultrafilter containing complements (in X) of all finite 
unions of elements of 

6. A pseudometric space is a metric space if and only if each net (sequence) has 
at most one limit point. In a semi-metric space a sequence may have many limit 
points. 

7. If d is a semi-pseudometric for a set P such that d<x, z ) ^ 2 max (d(x, y}, 
n 

d(y, z>), then d<x0 , x„> ^ 4 £ d < x i _ 1 , x ;> - 2 d ( x 0 , x t > - 2d<x„_1, x„>, and hence 
¡=i 

4D<x, y} ^ d<x, y ) where D is the greatest pseudometric which is smaller than d. 
Consequently, d is Lipschitz equivalent with a pseudometric. 

8. Let u be the closure induced by a semi-pseudometric d for a set P. The function 

/ = d : ind (<P, u> x <P, u>) R 

is continuous (i.e., d is inductively continuous or "separately continuous" on 
<P, u> x <P, u>) if and only if each open sphere is an open set and each closed 
sphere is a closed set. This follows from the following two statements: / is lower (or 
upper) semi-continuous if and only if each closed (open, respectively) sphere is a 
closed set (an open set, respectively). 
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9. (a) A closure space <P, u> is semi-pseudometrizable if and only if there exists 
a family {Xxn | x e P, n e N ) such that {XXi„ | n e N} is a local base at x for each 
x e P, and if y e XXnn for n e N , then {xn} converges to y. 

(b) Let P = R x R and let u be a closure for P such that the neighborhoods of 
points <x, y) with y 4= 0 or x e Q coincide with those in the product space R x R, 
and that the sets S(z, c) = E{w | d<z, w> + a<z, w> < c}, c > 0, form a local base 
at z = <x, 0>, x e R — Q, where d is the usual metric for R x R and a<z, w> is the 
smallest non-negative angle (in radians) formed by the line R x (0) and the line 
containing z and w. The space <P, u ) is topological and semi-metrizable. It will 
be shown in 22 ex. 7 that <P, u> cannot be semi-metrized in such a manner that each 
open sphere be open.*) 

10. If an interval I = [a, ¿J in R does not contain 0, then the mapping {x -» x - 1 } : 
: I -* R is Lipschitz continuous; hence {x -» x - 1 } : R — (0) R is continuous. 

11. Let dx and d2 be topologically equivalent metrics for a set P and let d be the 
greatest pseudometric smaller than both dt and d2. It is an interesting problem to 
find (necessary, sufficient or both) conditions on the closure operation u induced by 
dt for d to induce u. 

(a) Let P = [0, 1], Ax and A2 be disjoint subsets of P such that the pseudometrics 

where fi is the Lebesgue measure, induce the closure structure of the space [0, 1] 
(i.e., ¿¡<x, y} > 0 for each x 4= y). Using the fact that the density of At is 0 at almost 
all x e P — Ai one finds without difficulty that d = 0. 

(b) Another construction of d; for [0, 1]. Let Q be the set of all fc/2" g l . k e N , 
n e N . Let d,-<0, 1) = 1, and by induction, let a = d;<fc/2n, (fc + l)/2") with 
0 ^ k < 2", n > 0, be defined as follows: (1) if k is even, then a is 

multiplied by \ or J according as i is 1 or 2; (2) if k is odd then a is ¿¡<i(/c — l ) /2 n _ 1 , 
+ l ) / 2 n _ 1 ) multiplied by f or £ according as i is 1 or 2. Clearly, the numbers a 

are well-defined. If 0 ^ k < I ^ 2", then put 

These numbers are also well-defined. Finally, putting ¿¡<x, = d ^ y , x ) , 
d;<x, x ) = 0, we obtain a metric for the set Q. It is easily seen that 

di = {<*, y> - p(Ai n ([x, yj u \y, x]))} 

di<ikl2"-\i{k + 2)/2"-1> 

x ^ y g z implies ¿¡<x, + d^y, z> = d,<x, z ) , 

* This example is due to R . HEATH, Proc. Amer. Math. Soc. 12 ( 1 9 6 1 ) , 8 1 0 — 8 1 1 . 
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and 

( i )" ^ il 

and hence both metrics induce the closure structure of the subspace Q of [0, 1]. 
Let d be the greatest pseudometric for Q smaller than both and d2. Prove that 
d(_x, y} = 0 for each <x, Use the estimate 

It can be shown easily that both metrics dt and d2 admit extensions to metrics for 
[0, 1], inducing the closure of [0, l j . Of course the resulting d for the extended dt 

is also a zero-relation. 
(c) R e m a r k . If <P, dxy is a compact metric space of Hausdorff measure zero 

and d2 is any metric topologically equivalent to du then d is a metric; since the space 
is compact and d is a continuous metric, d is topologically equivalent to dx by 
Theorem 41 C.5. The assumption that the Hausdorff measure is zero can be replaced 
by the assumption that the space is totally disconnected. 

12. S u b s e q u e n c e s in p s e u d o m e t r i c spaces . Let = <P, d ) be a pseudo-
metric space. A sequence {x„} in SP is defined to be metrically discrete if there exists 
an r > 0 such that d(x„, xm> > r for each n 4= m. A sequence {x„} in SP is said to be 
a Cauchy sequence if for each r > 0 there exists an n in N with d(xn, xm> < r for 
each m ^ n. 

(a) No Cauchy sequence is metrically discrete. 
(P) If a sequence S has a limit point, then S is a Cauchy sequence; the converse 

is true in complete spaces, see 22 ex. 6. 
(y) Each metrically discrete sequence is locally finite. 
(8) Each sequence in SP has a subsequence which is either metrically discrete or 

a Cauchy sequence. 
[Hint to (5): Assuming that no subsequence of {x„} is metrically discrete, contsruct 

a subsequence {xn)c} together with a monotone sequence {X^} of infinite subsets of N 
such that the distance from x„fcto each point x(, i eXk, is (n + l ) - 1 at most; {xnit} is 
a Cauchy sequence.] 

13. Let SS be the collection of all bounded subsets (i.e. with finite diameter, in 
particular 0 £ SS) of a pseudometric space <P, d). For each Bl and B2 in SS let 
D<Bl5 B2y be the supremum of all the numbers dist (x, B2), x e Bx and dist (y, B j , 
y e B2. Prove that D is a pseudometric for SS\ the space <SS, D> is called the Haus-
dorff hyperspace of <P, d} (occasionally this term is used for the subspace of <SS, Dy 
consisting of all the closed sets). 

which implies 

d<0, 1 ) ^ 2 " . (i)n/2 — = ( | ) " / 2 . 
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(Section 19) 

1. Let °U be the collection of all subsets of R containing a set of the form Q n 
o ]] — r, r |[, r > 0. It is easy to verify that l l is the neighborhood system at 0 relative 
to a closure compatible with the additive group structure for R. This group will be 
denoted by Rx. Prove t h a t / = J : -* R is continuous a n d / [ I / ] is a neighborhood 
of fx provided that U is a neighborhood of x. Each x e Rx has a neighborhood (J 
such that the interior in R o f / [ t / ] is empty. 

2. Let L be a finite dimensional linear space over ST where 2T = R or ST = C, 
and let X be a base. The relation (p = {Zrxx | x e X} -* max {l?^}} is a norm and the 
closure operation u induced by cp is the unique admissible closure for Lsuch that 
each singleton (equivalently, some singleton) is closed. Unicity will be proved in 
a sequence of auxiliary propositions. 

(a) u is the finest closure among all closures admissible for L. [Let v be any closure 
admissible for L; {r rx} : -*• <L, v) is a continuous mapping and {r rx} : 
: -> <L, m> is an embedding. Consequently, if Lx is spanned over (x) and ux or vx 

are relativizations of u or v, respectively, to Lx, then vx is coarser than ux. The map-
p ing / = {{rxx | x 6 X} -*• £{rxx}} : II{<LX, ux)} <L, m> is a homeomorphism and 
the mapping/ : TI{(LX, u^)} -* <L, v) is continuous, because the addition is continu-
ous; hence J : <L, u) (L, u> is continuous.] 

(b) If a singleton is closed in a topological linear space then each net has at most 
one limit point. [Clearly, each singleton is closed. If x 4= y then x $ y + U + U for 
some symmetric neighborhood U of 0 and hence (x + U) n (y + U) = 0.] 

(c) If a net JT converges to y in <L, v}, if the singletons are closed in <L, u> and 
(/(Do / is bounded, then y is the only accumulation point of Jf in <L, u>. [Since 
cp o Jf is bounded, Jf has an accumulation point in <L, u>. If z is an accumulation 
point of J f in <L, u> then z is an accumulation point of ^V in <L, and hence 
z = y.] 

(d) Assume that <L, v> is a topological linear space and v is a strictly coarser than u. 
There exists a u-neighborhood U of 0 which is not a ^-neighborhood of 0. Conse-
quently, there exists a net Jf in L — U which converges to 0 in <L, u>; hence 0 is not 
an accumulation point of Jf in <L, u>. If q> o Ji is bounded for some subnet M of J f , 
then the singletons are not closed in <L, v) (by (c)). If no cp 0 Ji is bounded, then the 
net {1 ¡(pNa}, where Jf = <{Na}, converges to 0 in 3T, and hence {(llcpNa)Na} 
converges to zero in <L, v}; on the other hand (p((ijcpNa) Na) = 1 for each a, and 
hence the singletons are not closed in <L, u> (again by (c)). 

3. If i f is a topological linear space over = R or 2T = C such that the single-
tons are closed, then {r -* rx} : -* i f is an embedding for each x 0 in i f . 

4. N e i g h b o r h o o d s in t o p o l o g i z e d l i n e a r spaces . Let L b e a linear space 
over y where = R or = C. 
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(a) A set X c Lis said to be absorbing if for each x in Lthere exists an r ^ 0 
such that r ^ r0 implies x e r . X (or equivalently, 0 < r < r0 implies rx e X). 

(a) Let u be a closure for L such that the underlying topologized group is inductively 
continuous. In order that the external multiplication be inductively continuous it is 
necessary and sufficient that each neighborhood of 0 be absorbing, and if U is a 
neighborhood of 0 then r . U be a neighborhood of 0 for each r > 0. 

(P) Let 11 be a filter on Lsuch that 
(1) each U e 11 is absorbing (in particular, 0 e U)\ 
(2) if r > 0 and U e H then r . U e 11 and -U ell. 
There exists a unique closure structure u for Lsuch that 11 is the neighborhood 

system at 0, the underlying topologized group is inductively continuous and the 
topologized external multiplication is inductively continuous. [Hint: the neighbor-
hood system at x is x + <%.] 

(b) A set X c Lis said to be balanced if x e X, |r | ^ 1 => rx e X. Let 0 be the set 
of all r, |r | :g 1. For each X * 0 the set 0.X is the smallest balanced set containing 
X; it is termed the balanced hull of X. 

(a) If <L, u> is a topological linear space, then the collection 11 of all balanced 
neighborhoods of 0 is a local base at 0. H consists of balanced hulls of neighborhoods 
of 0, each element of 1i is absorbing (see (a)), U e 11, r > 0 => r. U e 11, for each U 
in 11 there exists a F in 11 with F + V <= U. 

(P) Let H be a filter base on L such that 
(1) each element of 11 is balanced and absorbing. 

(2) If U eH then V + V <= U for some F i n 11. 
Then there exists a unique closure operation admissible for L such that 11 is a local 
base at 0. 

(c) A subset X of L is said to be convex if x, y e X, r + s = 1, r > 0, s > 0 => 
=> rx + sy e X. If AT and Yare convex then rX + sYis convex for any r, se ST. Next, 
if X is convex, then rX + sX = (r + s) X for each r > 0, s > 0. If = R. then a 
convex set X is balanced if and only if X is symmetric (i.e. x e X — x e X). If X is 

n 

convex then h e X provided that 2: 0, = 1 (such a linear combination 
¡= i 

is said to be convex). 
(a) Let X be a convex and absorbing set (X contains 0). For each x e L let Ax = 

= E{r | r > 0, x e rX}. Clearly Ax #= 0. Let p = {x -» inf Ax | x e L} (p is said to 
be the Minkowski functional of X). Prove 

pO = 0, p(rx) = rpx if r > 0 , p(x + y) ^ px + py . 

If X is balanced then 

p(rx) = |r| px 
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for all x e J , and hence p is a norm. Next 

xe X => px ^ 1, px < I => xe X . 

If u is a closure admissible for L then 

p is continuous <=> X is a neighborhood of 0 . 

(P) Let (p be a norm and U = E{x | (px < 1}. Then U is a convex, absorbing and 
balanced set and <p is the Minkowski functional of U. (Hence, if u is an admissible 
closure for L then <p is continuous if and only if U is open.) 

(y) A space L is said to be locally convex if the convex neighborhoods of 0 form 
a local base at 0. A space L is locally convex if and only if, for any neighborhood U 
of 0, there exists a continuous norm cp such that (px < 1 => xe U. 

(8) A topological linear space is normable if and only if there exists a convex 
neighborhood U of 0 such that if V is a neighborhood of 0 then rV => U for some r. 

[Hint: "only i f " is evident and to prove " i f " consider the Minkowski functional 
of a bounded, convex and balanced neighborhood W <= [/.] 

5. The space S(T) (where T c R" has a positive finite measure). Let S be the real 
linear space of all measurable functions on T. Then (p = {x -> J r [|x(i)|/l + 
+ |x(i)|] df | x e S} is a norm for the underlying additive group of S, and S endowed 
with the closure structure induced by (p is a topological linear space. 

(a) S is not locally convex (and hence, S is not normable). This is an immediate 
consequence of the following result. 

(b) S is the only convex neighborhood of 0. [Let r > 0 and let fi be the measure. 
We shall show that any x e S is a convex linear combination of elements with norm 
< r. Let {X; | 1 ^ i ^ n} be a decompoistion of T such that fiXt < r for each i, 
and let xf be the function which is 0 outside X ; and xLt = n . xt if t e X ;. Clearly 

R 

x = E 1/nXj and q>Xi ^ JX ; di = /iX ; < r.] 
¡= l 

6. P r o o f o f 1 8 D . 1 6 . Let A be a closed subalgebra of the normed algebra F*(y , R) 
where £f is any struct, and assume that A contains all constant functions. 

(a) If we know that for each a, b, r e R, r > 0, there exists a polynomial function 
P = Pabr such that \Px — |x|| < r for each x e [ a, b ], then for any f e A with 
fx| ^ C for each x e we have || | / | — P o / | | < r with P = P-C,c,r> a n d hence 
f\eA. 

(b) (Alternate proof.) It is well-known and easily proved that (l — r)1/2 = 
oo 

= E anr" uniformly on [ 0 , 1 ]. If f e A, | /x | g C for each xe i f , then | /x | = 

="(C2 " (C2 ~ (Mfx))Y12 = C( 1 - (1 - [ ( / . / ) x /C 2 ] ) )" 2 = C(l — E a„( 1 -
B=1 

- [ ( / • / ) x/C2])") uniformly. 
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(Section 20) 

1. B o u n d a r y . Let <P, u> be a closure space and let bd, called the boundary 
operation associated with u, be the single-valued relation on exp P ranging in exp P 
which assigns to each set X the boundary of X in P. The following conditions are 
fulfilled: 

(bd 1) bd 0 = 0, and I c 7 implies bd X <= Y u bd Y. 

(bd 2) bd (X u Y) <= b d X u bd 7 f o r each X <= P, Y <= P. 

(bd 3) bd X = bd (P - X). 

If bd is a single-valued relation on exp P ranging in exp P which satisfies conditions 
(bd 1) and (bd 2), then 

u = {X X u bd X | X <= P} 

is a closure operation for P and the boundary of any subset X in <P, m> is (X 
u b d X ) n ((P - X) u bd (P - AT)) = ( b d l n bd (P - X)) u (bd X n (P - X)) u 
u (X n bd (P — X)), and hence, if bd fulfils also condition (bd 3), then the boun-
dary of any subset X of P is bd X. 

2. Let bd be the boundary operation associated with the closure structure of a 
closure space SP. Then (a) a family {Xa | a e A} of subsets of P is closure-preserving 
if and only if bd | a e B] c \J{bd Xa \ a e B} for each B <= A (the equality is 
not true; e.g. consider any two distinct closed intervals with a common point in the 
space R of reals); (b) bd c U{bd Xa} for each finite family {Xa} in exp P. 

3. If SP = <P, m) is a connected generalized ordered space, thenSP is an ordered 
space. 

4. Let <P, u> be the subspace of R such that P = [ 0, 1 ] u ] 2, 3 [. Thus u is 
a generalized ordered space (17 A.22). There exists no order -< for P such that u is 
the order closure for <P, -<>. [Hint: assuming that u is the order closure for <P, -<> 
one finds (20 B.3, Corollary c) that -< agrees with the usual order or with the inverse 
of the usual order for R on [ 0, 1 J as well as on ] 2, 3 [ and therefore (exactly) one 
of the following possibilities occurs: either 1 is the supremum or the infimum of ] 2, 3 [ 
in <P, -<> or 0 is the supremum or the infimum of ] 2, 3 [ in <P, -<>.] 

5. The empty space is connected and 0 is the only component. 

6. Let Jn = (n - 1 ) x [ 0 , 1 ] , n = l , 2 , . . . , x = <0, 0) , Q = | « = 1 ,2 , . . .} , 
P = Q u (x), and let us consider the closure u for P such that u agrees with the clo-
sure structure of R x R on Q, the singleton (x) is closed and the sets | « ^ k} — 
— (R x (0)), k = 1, 2 , . . . , form a local base at x. Consider the union Yof the locally 
finite family {(<n - 1 , 0)) | n = 1, 2, ...}. The singletons (x) and (_y) are separated for 
each y in Y but the sets (x) and Yare not separated because the closure of each neigh-
borhood of x intersects Y. 



E X E R C I S E S 845 

7. Homeomorphisms of connected ordered spaces, (a) A point x of a connected 
ordered space <P, u>, card P ^ 2, is the greatest element of <P, or the least 
element of <P, :£> if and only if the following condition is fulfilled: there exist 
arbitrarily small neighborhoods U of x such that bd U is a singleton. 

(b) Let i = 1, 2, 3, be connected ordered spaces such that card S: 2, 
has the greatest element as well as the least element, SP2 has the greatest element 

but not the least element, and has neither the least element nor the greatest ele-
ment. Then ^ is not a homeomorph of 3P¡, i #= j (Use (a)). E.g. ] 0, 1 [ and [ 0, 1 [ 
are not homeomorphic. 

(c) There exists a one-to-one continuous mapping / of E{[ 0, 1 [ | n e N} onto 
] 0, 1 [ . [Hint : /carr ies (n) x [ 0 , 1 [ onto [ ( n + 2)"1 , (n + l ) " 1 [ .] 

(d) Let 0> be the sum of a family consisting of a countable infinite number of 
singletons and of a countable number of open intervals, and 2 be the sum of a family 
consisting of a countable infinite number of singletons and also of intervals [[ 0, 1 [. 
Then there exists a one-to-one continuous mapping of 3P onto 2 and a one-to-one 
continuous mapping of 2 onto but the two spaces are not homeomorphic. 

8. Assume that a one-to-:one sequence {x„} converges to an x + x„ in R. Consider 
a closure u for R such that the subset X = (x) u E{x„} is closed, the subspace X is 
discrete, R — X is a subspace of R (in the usual closure structure), and U is a neigh-
borhood of y e X in < R, u ) if and only if (Z — (y)) u i / is a neighborhood of y 
in R. The family {x„} is locally finite in <R, u>, the sets (x„) and (x) are separated for 
each n, but the sets E{x„} and (x) are not separated. Another example is given in 
29 B.9. 

9. A subset C of a metrizable space P is connected if and only if the following 
condition is fulfilled: if X <= P and C n X * 0 4= C n (P - X), then C n b d X * 0. 
[Use the fact that int X and int (P — X) are semi-separated.] 

10. Connected collections of subsets of a set. A collection 9C of subsets of a set P 
is said to be connected if for each X and Y in J" there exists a finite chain from X 
to 7, i.e. a finite sequence {Xf | i ^ n}, n e N, in SC such that X = X0, Y = X„ and 
X,--! n Xj 4= 0 f o r i ^ 1. A component of a collection 9C is a maximal connected 
subcollection 2£0 of ¡X, that is, SC0 is a component of 9£ if 9C0 is connected, and when-
ever is connected and 9C0 <= c $£, then = <&. Prove: 

(a) Every connected subcollection 9Cx of a collection SC is contained in a component 
of 3C. 

(b) If 9Cx and $C2 are two components of a collection HE, then 9CY = ?X2 or (U^i) n 

n ( \ j a r 2 ) = 0. 

(c) If 9C is an interior cover of a closure space 9 and 3T0 is a component of 3C, 
then the set i s simultaneously closed and open in P. 

(d) A closure space SP is connected if and only if each interior cover of 3P is connect-
ed (see 20 B.12). 
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(e) The union of a connected collection of connected subsets of a closure space 0 
is a connected set in 0. 

11. A collection 3C of subsets of a closure space 0 is said to be quasi-connected if 
for each X and Y in 3C there exists a finite sequence {Xt | i g n} such that X0 = X, 
X„ = Y and no pair of sets Xt, i ^ 1, is semi-separated. Prove the following 
ge neralization of 10 (e): The union of a quasi-connected collection of connected sub-
sets of a space 0 is a connected set. Prove analogues of statements (a), (b), (c) 
and (d) of 10 with connected collection replaced by quasi-connected collection (de-
fine quasi-components!). 

(Section 21) 

1. P o i n t sets. A point set is defined to be a struct 9C = (X,0) where 0 is a 
closure space and X is a subset of \0\. We have often worked with point sets ex-
plicitly (e.g. the relation a of 21 A is a class of point sets) or implicitly (we have spoken 
about the closure, the interior or the boundary of a set not specifying the space in 
question, e.g. the closure of the union of two sets is equal to the union of closures, 
a family {Xa | a e A} is closure preserving if and only if the closure of | a e £} 
is equal to the union of {Xa | a e B) for each B <= A). The concept of a point set 
enables us to give precise formulations of many definitions and theorems. Of course 
we must give definitions needed for point sets. Roughly speaking, a point set 3C = 
<X, 0} has a property *J5 if and only if the set X has the property in 0, e.g. SC is 
open or closed if X is open or closed m.0,<& = <7, J2> is the closure of 3C if 0 = 2. 
and 7 is the closure of X in 0. 

F o r m a l d e f i n i t i o n s , (a) Let Tbe the class of all point sets. The closure structure 
of T is the single-valued relation on T ranging in T which assigns to each 9C = 
= <P, u>> the point set <uX, <P, u » which is called the closure of !% and de-
noted by SC. Similarly we define the interior operation 

int = {<.X, <P, u » -> <intu X, <P, « » } , 

and the boundary operation 

bd = {<X, <P, u » <bd„X, <P, « » } . 

(Clearly 9C is open or closed if and only if int 2C = 9C or 3C = SC respectively.) 

(b) Let «< be the relation 

{<X,0>-+<Y,0) \Xc Y} 

for Tand T; «< is an order for T which is called the inclusion. It is easily seen that 
<T, -<> is boundedly-order complete and, given a space 0, the relation {X ->• 

( X , 0 ) jx <= is a bijective order-preserving relation for <exp \0\, <= > and 
the ordered subset of <T, -<> consisting of all (X, 0}, X c j0j. The supremum of 
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a non-void family {(Xa, in <T, «<> is the point set which is called 
the union of {(Xa,0>y) and denoted by The infimum of a {<X„, SP}} 
is the point set <f){Zp}, which is called the intersection of {(.Xa, and denoted 
by n { < * „ I t i s convenient to define f|{<-X"fl, | a e 0} = <\0>\, &>}. Thus the 
class of all closed sets is join-stable and completely meet-stable in <T, «<>, and the 
class of all open sets is meet-stable and completely join-stable in <T, -<>. These two 
results can be formulated as follows: the intersection of any family of closed point 
sets is closed, the union of a finite family of closed sets is a closed set, the union of 
a family of open sets is open, and the intersection of a finite family of open sets is 
open. 

(c) The complement of a point set is defined to be the point set 
— X, SPy. (Clearly SC is open if and only if its complement is closed.) 

(d) 9C is a neighborhood of D if (and only if) -< int If 11 is the collection of 
all neighborhoods of a point set 9C, then 11 is a filter in <T, «<> and each element 
of 11 contains SC. One can define the neighborhood system of a point set, a local base 
and a local sub-base of a point set, and formulate the relations between the closure 
structure of T, int, bd and neighborhoods. 

(e) The product (the sum) of a family {<Zfl, 0>a)}, denoted by Il{<Xfl, 0>a)} 
(2{<Xfl, respectively) is defined to be the point set < n { X j , n { ^ a } > (<2{Xfl}, 
E ^ , , } ) , respectively). Thus the product of connected point sets is a connected 
point set, the closure of a sum is the sum of closures and the closure of the product 
is the product of closures; in symbols 

£{ar0} = n W = n{¥a}. 

(f) L o c a l i z a t i o n . A relation a for the class of sets and the class of closure spaces 
such that <X , SP> E a implies X c is a class of point sets. Let a be a class of point 
sets. A point set 3C is said to be an a-set if 3C E a. A point set 9C = <X, is locally 
an a-set at x if there exist arbitrarily small neighborhoods = (U, SP) of <(x), SP) 
such that 3C n 11 is an a-set. A point set 9C is locally (relatively locally) an a-set if 9C 
is locally an a-set at each x e \SP\ (x e X). Similar definitions may be formulated for 
feeble localization. 

2. The closure of a locally connected subset need not be locally connected (see 
21 B.3): Let us consider the subset P = E{[ 0, 1 ] | n e N} of R x R and put X = 
= P — (<0, 0)). Let u be the closure operation for P such that the relativization of u 
to X agrees with the relativization of the closure structure of R x R, X is open in 
<P, u ) , and U is a neighborhood of <0, 0> if and only if U is a neighborhood of 
<0, 0 ) in the subspace P of R x R and U contains all <n, 0> except for a finite 
number of n's. Consider the set Y = Z{] 0, 1 ] | n E N}. It is easily seen that Y is 
locally connected in <P, u>. Evidenlly uY = P and <P, u> is not locally connected 
at <0, 0>. 
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3. A q u a s i - c o m p o n e n t w h i c h is n o t c o n n e c t e d . Let & be a subspace of 
R x R such that \»\ = « 0 , 0) , <0, 1 » u | n e N} where P„ = (2~n) x 
x [ 0, 1 ] . Each set P„ and also « 0 , 0>) and « 0 , 1 » are components of 0>. Clearly 

each P„ is a quasi-component of On the other hand neither (<0, 0)) nor (<0, 1)) is 
a quasi-component. Iadeed, if X is a simultaneously open and closed subset of 3P 
containing <0, 0) , then X intersects all Pn except for a finite number of n's, and 
hence, P„ being connected, P„ <= X for all P„ except for a finite number of n's. Since 
X is closed, <0, 1> belongs to X. 

4. T o t a l l y d i s c o n n e c t e d spaces . Let a consists of all (X,3Py such that X 
is simultaneously open and closed in 3P. A space 3P is said to be totally disconnected 
if 3P is locally an a-set. (a) Every totally disconnected set is topological, (b) A closure 
space 3P is totally disconnected if and only if 8P is topological and sets simultaneously 
open and closed form an open base for (c) The class of all totally disconnected 
spaces is hereditary and closed under arbitrary products, (d) A space & with closed 
singletons is totally disconnected if and only if 0 is homeomorphic to a subspace 
of 2N> for some cardinal X where 2 denotes the two point set (0, 1) endowed with the 
discrete closure. [Hint: " I f " is evident (see (c)), and "only i f " is proved as follows: 
Let 38 be the set of all simultaneously open and closed subsets of 3P, and for each B 
in 38 let fB be the mapping of 3P into 2 such that fBx = 1 if xe B and fBx = 0 other-
wise. Each fB is continuous, and the reduced product / of { f B | B e is an embed-
ding provided that is an open base for & and the functions fB distinguish the 
points of (e) The following statements are equivalent (8P is totally disconnected): 
X is an a-set in 8P\ X is locally an a-set in 3P\ X is feebly locally an a-set in 

5. The collection of all open (closed) sets in a topological space is locally determ-
ined. 

6. Let a be a relation such that < Y, 2 } e a implies that 2L is a space and Y <= |j2|. 
Given a space 0 = <P, u> and X <= P, let X" (X', respectively) denote the set of 
all x such that X is locally (feebly locally) an a-set at x in 0>. Clearly X" <= X'. 
Prove: 

(a) If X is an a-set in 3P, then X' = P but X" may be empty. 
(b) If 0 is an a-set in 3P, then X' => X" => P - uX; if 0 is the only a-set in then 

X" = X' = P - uX. 
(c) If 0 is topological, then X' is open but X" need not be; however, if each 

relatively open subset of an a-set is an a-set (in particular, if a is hereditary), then 
X" = X' is also open. 

(d) If a is hereditary, and X <= Y <= P, then Y' = Y" c X" = X'. 
(e) Let X* stand for P — X'. If 3? is topological, a is hereditary and 0 is an a-set 

in then X <= Y implies X* e Y*, (X*)* c X* = u(X*) <= uX, and if G is open 
then G n X* = G n (G n X)*. If, in addition, a is additive (i.e. the union of two 
a-sets is always an a-set), then (X u Y)* = X* u Y*. 
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(Section 22) 

1. If K0 ^ n ^ exp m, 8P is a topological space the total character of which is 
^ m , then the density character of 0>n is at most m. 

2. The cardinal of any infinite point-finite family of non-void open sets is at 
most the density character. The cardinal of any disjoint family of non^void open sets 
is at most the density character. 

3. If m is the total character of a space 8? then each interior cover of 8P contains an 
interior cover of a cardinal iS m. In particular, if 8P has a countable total character, 
then each interior cover contains a countable interior cover (a space with the last 
property is said to be a Lindelof space). 

Let 8P be the set of all reals endowed with the closure of right-approximation. Each 
subspace^of 8P is of a countable density character, and any open cover of ^conta ins 
a countable subcover. First prove that if HE is a collection of at least two-point intervals 
in R, then \JSE = for some countable subcollection 1/ of HE. 8P is totally discon-
nected. 

4. A pseudometrizable space is compact if and only if it is countably compact. 
[Hint: If a pseudometric space <P, d} is countably compact then <P, d> contains a 
countable dense set (if each two points of a set X has the distance ^ r > 0 then X is 
finite), hence <P, d} has a countable total character, and hence, each interior cover 
contains a countable interior cover.] 

If a semi-pseudometric space <P, rf) is countably compact then there exists a 
countable X c P such that each sphere about X is dense. 

5. A topological space 9 is locally non-meager if and only if f )K is dense for any 
countable collection of open dense sets. [Hint: If U is open and dense then \8f\ — U 
is nowhere dense.] 

6. C o m p l e t e pseudometric spaces. Let <P,d> be a pseudometric space. A Cauchy 
net is a (directed) net ^ ) such that for each r > 0 there exists an a such that 
b, c ^ a implies d (Nb, Nc} < r. A proper filter 9C is a Cauchy filter if 9C contains 
arbitrarily small sets, i.e. for each r > 0 there exists an X in HE such that d(X) < r. 
If x is an accumulation point (cluster point) of a Cauchy net (Cauchy filter) Jf then x 
is a limit point of J f . <P, d} is said to be complete if the following equivalent condi-
tions are fulfilled: 

(a) Each Cauchy filter has a cluster (or equivalently, a limit) point. 
(b) Each Cauchy net has an accumulation (or equivalently, a limit) point. 
(c) Each Cauchy sequence has an accumulation (or equivalently, a limit) point. 
Any closed subspace of a complete pseudometric space is complete. 
Each complete pseudometric space is a Baire space. [Hint: Let {[/„} be a sequence 

of open dense sets; choose open V„ such that 0 4= V„ + i c | ' ^ <~> K> 
d{Vn+l) < ( n + l ) " 1 . ] 

54—Topological Spaces 
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7. The set I of all irrationals is not Fffin R. [Hint: Each closed F <= I is nowhere 
dense and I is not meager because Q = R — I is meager and R is non-meager.] There 
exists an uncountable disjoint family of countable dense sets in R. 

The space <P, u ) in 18 ex. 9 cannot be semi-metrized in such a manner that the 
open spheres are open. [Hint: Let d semi-metrize <P, u>; there exist an r > 0 and 
a non-meager X c R - Q such that, for each z in X x (0), the r-sphere Uiz, r) about 
z in <P, d ) is contained in S(z, 1). Let x e Q be a cluster point of X; choose <x, y} 
with d « x , 0), <x, y)) < \r\ then <x, 0) is not an interior point of l / « x , y), ^r).] 

8. (a) A normed linear space is said to be complete if the pseudometric given by 
the norm is complete. The normed space F*(0>, R) is complete for any space 3P. 
[If {/„} is a Cauchy sequence, then {/nx} is a Cauchy sequence in R for each x; if 
fx is the unique limit point of {f„x}, then / is a limit point of {/„}.] 

(b) There exists a continuous function on I = [[ 0, 1 ], which does not have a de-
rivative at any point. [Proof. Let C be the subspace of C*(/, R) consisting of all / 
with / 0 = f l , and for every / in C let / * be the unique extension of / to R with 
/* (x + 1) = f*x for all x. For each n let F„ be the set of all / e C such that there 
exists an x in I with 

| f*(x + h)~ f*x\jh ^ n 

for all h > 0. Each F„ is closed (if {/„} converges to / in C, and /„ fulfils the above 
inequality at x„, and if x is an accumulation point of {x„} in I, then / and x satisfy the 
inequality, and hence / e F„) and nowhere dense (this is obvious). Since C is locally 
non-meager (C is closed in C*(J, R)), C - U{-Fn> * 0-] 

9. If <P, dy is a semi-pseudometric locally non-meager space such that each open 
sphere in <P, dy is an open set, andeach sphere about a n l c Pis dense, then Xis dense. 
The assumption that <P, dy is a locally non-meager space cannot be omitted; exhibit 
an example with X a singleton. Corollary: Tai cannot be semi-metrized in such 
a manner that each open sphere is an open set. (Tmi is a countably compact Baire 
space with an uncountable density character, see ex. 4.) 

10. Classification of Bore l sets, (a) Let P be a set and let and Q2 be single-valued 
relations which assign to each countable family in exp P a subset of P. Assume that 

1 b e (a)} = Xa for each a. Let 3C be a collection of subsets of P. If c. exp P, 
let Qi y < be the collection of all with ranging in U. Let us define 
3C0 = 3C and = e ; > | P < a}<, where a, j3 are ordinals and t = 1 if a is 
odd and i = 2 otherwise (each ordinal a can be written in a unique manner in the 
form y + n where y is a limit ordinal and n e N; a is odd if n is odd). Prove that 
U{3Ca | A < coj} +1 = 3Cai. Hence 3Cmi is stable under both GT and Q2. If a is 
odd then = if a is even then Q^ySCJ^ = 3Ca provided that q{ 0 GT ci GT. 

(b) If 0 is a topological space, 3C is the set of all closed sets, = U (precisely, 
= f ° r e a c h {-^n}) a n d 82 = D> then 3Ca is denoted by Fa (more precisely 
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F I f 3C is the collection of all open sets, = fl> Qi = U> then SCa is denoted 
by G a (more precisely, Ga(0>)). 

(c) If Fo(0>) cz Gai(0>) or G 0 ( ^ ) <= FB1(0>), then = G r a i is the collection of 
all Borel sets. If 8P is pseudometrizable. then G 0 c F t and F0 c G j . The families 
{Fp | p < coj} and {Gp | p < coj} are said to be the Borel classifications of the Borel 
sets. 

11. Let i b e a collection of subsets of a space 8P, 9£ be the collection of all 
countable unions (countable intersections) of sets in 9C. The family 3Ca{SC )̂ is count-
ably additive (countably multiplicative), and if 9C is multiplicative (additive) then 
9Ca is multiplicative (additive). If 3C is closed under locally finite unions then 
3C„ is closed under locally finite unions, and hence under <7-locally finite unions. If 
9C is multiplicative and closed under locally finite unions, and {Xa} is locally finite in 
9Cb, then 6 provided Xa <= Ya for some locally finite family {Y„} in 9C. 

12. A t7-point-finite family is point-countable and the converse is not true 
({[x, ->] | x e Tai} is locally countable but not cr-point-finite because each point-
finite subfamily is finite.) 

(Sections 2 3 - 2 5 ) 

1. A d j a c e n t ne t s . Two nets Jf = <AT, ^ > a n d ^ = <M, ^ ) in a semi-uniform 
space 0> = <P, IIs) are said to be adjacent if -< = ^ (in particular DN = DM) and 
the net <{<iVa, Ma> | a e D N } , -<> is eventually in each U e H. A ^"-adjacent (or 
^-adjacent) pair is a pair ( J f , Jty such that the nets ¿V and Ji are adjacent in 8P. 
Let ^¡(SP) be the class of all ^-adjacent pairs of directed nets. Then 

(a) f!(8P) is a symmetric relation; 

(b) m{8P) is transitive if and only if 3P is a uniform space; 
(c) <$(&) = <g(2) implies 0 = 2.; 
(d) two subsets X and Y of 8? are proximal if and only if there exists an ( J f , M) 

in ^(SP) such that Jf ranges in X and M ranges in Y; 

(e) a net Jf converges to x in 8P if and only if ( J f , J i ) e ^(¿P) where Ji ranges 
in (x) and the ordered domains of Ji and Jf coincide. 

2. U n i f o r m l o c a l ba se s . Let P and A be sets, A 4= 0, and let ^ be a relation 
on P x A ranging in exp P such that (1) x e for each x, (2) for any ax and 
a2 in A there exists an a in A such that £(a,x) <= t(„,,x) n Z(a2.x) f ° r e a c h x, (3) for 
each a in A there exists a b in A such that y e £(b,x) implies x e t(a,yy For each a let 
Ua be the sum of | x e P}. Then the collection of all Ua is a base for a semi-
uniformity 11. The collection of all a e A, is a local base at x in <P, 11s). 
Discuss interrelations between semi-uniformities and uniform local bases. Find a 
necessary and sufficient condition for a uniform local base to determine a uniformity. 

53' 
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3. Let <P, dy, P — [ 0, 1 ], be a subspace of the metric space of reals. Let 
D(y, x> = D(x, y ) = 1 if x = 1 In, y = l/(n + 1), n = 1, 2,..., and D(x, y> = 
= d(x, y} otherwise. Evidently D is a semi-metric. Prove: 

(a) The mapping / = j : <P, D> -* <P, d} is a uniformly continuous proximal 
homeomorphism, b u t / i s not a uniform homeomorphism. Thus dand D are proximally 
but not uniformly equivalent. 

(b) Both d and D are totally bounded (hence d is proximally coarse), but D is not 
proximally coarse. 

4. (a) The open cover 11 = { < _ 1 [ a ] | a < a^} of T{01 is not semi-uniformizable. 
[Hint: Let Fbe an inductive neighborhood of the diagonal such that {F[x]} refines 1I. 
Choose a sequence {x„} such that x„+ 1 > sup F[x„] for each n. If x is an accumulation 
point of { x j then x $ U { ^ „ ] } - ] 

(b) A semi-uniformizable cover need not be uniformizable. E.g. consider a semi-
uniformizable cover (P — (x), P — (y)), x 4= y, of the space in 14 A.5 (e). See also 
28 ex. 11. 

(c) A semi-uniformizable vicinity of the diagonal need not be a neighborhood of 
the diagonal, and hence not a uniformizable vicinity. Exhibit such a vicinity on R. 

5. Every interior cover of a pseudometrizable closure space is uniformizable. 
[Hint: It is sufficient to show that every interior cover of a pseudometrizable space is 
star-refined by an interior cover. Let 11 be any interior cover of a pseudometrizable 
space <P, d}; for each x in P let rx be a positive real and Xx be an element (or a mem-
ber) of 11 such that the rx-sphere at x is contained in Xx, and let Yx be the open rjA-
sphere at x. Thus U = {Yx | x e P} is a star-refinement of 11. In fact, given x, let 
v = sup {ry | x e Y,,}, and choose a z with rz > show that st ($/, x) c X z . ] 

6. Two constructions of uniform modification, (a) Let H be a semi-uniformity 
for a set P. Define 1lQ = 11, is a semi-uniformity having the collection of all 
U o U, U e 11 A, for a base, 1FA = F]{1TFI \ < a} if a is a limit ordinal. There exists 
an a such that = 1 t a + l \ 11 a is the uniform modification of 11. 

(b) The collection of all U{^cn ° • •• ° | N 6 N, Q bijective on N„+1} with UT in 11 
is a base for the uniform modification of 11. 

(c) If {<%a} is a family of uniformities for a set P, then sup {<%„} = F){1TA} need not 
be a uniformity. 

7. S e m i - u n i f o r m i z a b l e m o d i f i c a t i o n . For each closure operation u on P 
there exists a finest semi-uniformizable closure v coarser than u. A mapping / : 
: <P, u> -»• St, with ¡L semi-uniformizable, is continuous if and only if / : <P, -> 3. 
is continuous. 

To each closure u for P there exists a coarsest semi-uniformizable closure w for P 
finer than w; if Q is sembuniformizable and if a mapping / : Si -» <P, u ) is conti-
nuous, then / : H -* <P, w) need not be continuous. 
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8. P r o x i m a l n e i g h b o r h o o d s . Let -< be a relation for exp Psuch that (1)0 -< X 
for each X e P ; (2) X < Y => X c Y; (3) If X c X t -< Y, <= Y then X -< Y; (4) if 
X < Y;, i = 1, 2, then X «< Yt n Y2; (5) X < Y=> (P - Y) -< (P - X). Then there 
exists a unique proximity p for P such that X -< Yif and only if Y is a p-proximal 
neighborhood of X. 

9. Let P be an infinite set, x0 e P. Let XpY if and only if x0 e X u Y and X 4= 
4=04= Y o r X n Y 4= 0; p is a proximity. Let u be the induced closure. A set Yis 
dense if and only if x0 6 Y or P — Y = (y0). Let d(x, y} = 1 if x 4= x 0 4= y and 
d(x, y) = 0 otherwise. Clearly d induces p. 

(a) The constant mapping {y x0} : ¥ -> <P, d> is dense in unif F (¥ , <P, d>) 
for each struct ¥ . Hence the uniform limit of a constant net of uniformly continuous 
mappings need not be continuous. 

(b) d is totally bounded but not proximally coarse. 
(c) Each interior cover of <P, d) is a uniform cover (it contains P). Hence <P, d} 

and the uniform modification of <P, d) have the same semi-uniform covers. In parti-
cular, two distinct semi-uniform spaces may have the same semi-uniformizable 
covers. 

(d) Let 1i be the uniformly finest proximally coarse uniformity for P and let i f 
consist of all U u Xk u Xk

l, IceN, U e 1l, where Xk = {x„ xn+l | n ^ k} and 
{x„} is a one-to-one sequence in P; 11 is proximally coarse but i f not. 

10. A s e m i - m e t r i c f o r rea ls . Let d(x, y} = 0 if x = y and d(x, y} = 
= l/ |x — >>| otherwise. Evidently d is a semi-metric for R. 

(a) A set X c R is open in <R, d) if and only if X contains a set of the form 
X(n) = [•<-, n ] u [ « , - > J. The space <R, d ) is topological. 

(b) If a net J/' is eventually in each X(n) (or equivalently, Jf has no accumulation 
point in the space R of reals), then JT converges to each point in <R, d). 

(c) The function d : <R, d} x <R, d} -> R is not continuous. > 
(d) If U = P x P - (0) x [ 0 [, then X cz U[X] for each X c R. On the 

other hand, U is not a semi-neighborhood of the diagonal. 
(e) The semi-pseudometric d is totally bounded; however the semi-uniformity is not 

proximally coarse. 
(f) Every bounded mapping (i.e., the range is contained in a bounded interval) of 

a semi-uniform space into <P, d} is a uniform limit of constant mappings. Hence 
the uniform limit of uniformly continuous mappings into a semi-uniform space need 
not be continuous. 

(g) If <P, d} is any semi-metric space, then D defined by £><x, y) = 0 if 
d(x, >>) = 0 and D<x, y) = (d<x, y > ) - 1 otherwise, is a semi-metric for P. Discuss 
the properties of D. 

11. If 9 is a uniform space and J is a proximity space, then the set P(J, 3P) is 
closed in unif F(J, 0 ) . 
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12. A proximally continuous mapping / of a pseudometric P space into a uniform 
space 2. is uniformly continuous (if d is a uniformly continuous pseudometric on 2L 
then / : 0 -*• <|i>|, d> is proximally continuous and hence uniformly continuous). 

13. E x t e n s i o n s of u n i f o r m l y c o n t i n u o u s p s e u d o m e t r i c s a n d f u n c t i o n s , 
(a) Any semi-uniform space <[Q, V s ) is a subspace of a semi-uniform space <P, IIs) 
such that the relativization of any uniformly continuous pseudometric for <P, 11s) 
to (Q, tT> is zero, (b) Let <N, 11s) be a subspace of R. Since 11 is uniformly discrete, 
each function or pseudometric on <N, 1l~) is uniformly continuous. I f / i s a function on 
<N, 11s) such that the sequence {| fn — f(n + l) |} is not bounded, then / has no uni-
formly continuous extension on R. (c) If d(x, y} = |fx — f y | with / in (b), then 
d has no uniformly continuous extension on R. 

14. T h e U r y s o h n p r o c e d u r e . The fact that in a proximity space <P, p} satisfying 
(prox 5) for each two distant sets X and Y there exists a proximally continuous func-
tion / , 0 ^ / ^ 1, such that f\X~\ a (0) and / [ Y ] <= (l) can be proved as follows. 
From (prox 5) we obtain at once that there exists a family Xr, where r varies over all 
rational dyadic numbers, such that X0 = X, Xx = P — Y, Xr = P if r > 1, X, is 
a proximal neighborhood of X r _ 2 - n , and Xr is distant from P — Xr+2-n (where 
r = (2p + l)/2"). For each x e P let f x = inf {r | x e Ar). It is easily seen that / : 
: <P, p> -»• R is proximally continuous. 

15. The Stone-Weierstrass theorem is not true for complex functions. Let 0 be 
the subspace of the proximity space C with underlying set E{x + iy\x2 + y2 = 1}. 
/ = J : ̂  -> C is a proximal embedding and hence / projectively generates 0. The 
function g : {x + iy x — iy} : 0 -* C is proximally continuous but — F|| ^ 
^ r > 0 for each polynomial function F. Find r. 

16. L i n e a r s p a c e s . A pseudometric d on a module i f is said to be invariant 
if d is invariant with respect to the underlying group, i f is pseudometrizable if and 
only if it is induced by an invariant pseudometric. A pseudometrizable i f need not be 
locally convex (see 19 ex. 5). 

17. Let 0 ) denote the set of all uniform homeomorphisms of a uniform 
space 0 onto itself endowed with the group-structure o (the restriction of the compo-
sition of mappings) and the closure of uniform convergence (i.e. the closure struc-
ture is a relativization of the closure structure of unif F(0,0). 

(a) 3fC{0, 0) is a topological group (in general not commutative). 
(b) If 0 = R then 1iR * 11L (and hence 1lK 4= 11 4= 11 l), and the group multi-

plication {</, g~) ->• / o g) is uniformly continuous with respect to no of the group 
uniformities. [Consider the subgroup consisting of "lines", i.e. mappings of the form 
{x -»• ax + h} : R R.] 

18. Prove the assertion in the remark of 25 B.18. [Hint: In the notation of Theorem 
25 B.18, fix an a in A and take a family {<Pa, of uniform spaces such that 
r a = 1ia for a 4= a and that is proximally equivalent to 11 a. Since the intersection 
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of two proximal vicinities, one of which is finite square, is a proximal vicinity, it fol-
lows easily that the product uniformities Yli^a} a n d W ^ a ) are proximally equi-
valent.] 

(Section 26) 

1. Let <P, u> be a closure space. Each of the following conditions is necessary and 
sufficient for a closure v for the set P to be the quasi-discrete modification of u : 

(a) v is the coarsest quasi-discrete closure operation finer than u; 
(b) a mapping / of a quasi-discrete space 2 into <P, u> is continuous if and only if 

the mapping f : 2 <P, v) is continuous. 

2. The quasi-discrete modification (as a relation) commutes with the topological 
modification, that is, the quasi-discrete modification of the topological modification 
of a space SP coincides with the topological modification of the quasi-discrete modific-
ation of The quasi-discrete modification also commutes with the operation of 
forming subspaces. 

3. Every quasi-discrete space is locally connected. [The star of a connected set X is 
connected as the union of connected sets (y, x), y e X, y e (x), each of which intersects 
a connected set, namely X.] 

4. A quasi-discrete semi-uniformizable space SP is connected if and only if the topo-
logical modification of SP is an accrete space. More generally, the topological modific-
ation of a quasi-discrete semi-uniformizable space is a homeomorph of the sum of 
a family of accrete spaces. 

5. A closure space SP is semi-uniformizable and its quasi-discrete modification is 
topological if the following condition is fulfilled: if U is a neighborhood of a point x 
and y e (x), then U is a neighborhood of y. The condition is also necessary provided 
that SP is quasi-discrete. 

6. A quasi-discrete space is discrete if and only if it is semi-separated. 

7. C o a r s e s e m i - s e p a r a t e d c l o s u r e s (see 26 B.8). 
(a) A mapping/ of a closure space 9 into a coarse semi-separated space 2 is conti-

nuous if and only if the se ts / - 1 [ j>] , y e \2\, are closed. 
(b) Two coarse semi-separated spaces are homeomorphic if and only if they are 

equipollent. 

8. (a) I f / i s a continuous mapping of an infinite coarse semi-separated space 9 onto 
a semi-separated space 2, then card 12\ = 1 or card \3P\ = card \l\. [Hint: either all 
inverse fibres of / are finite or / is constant.] 

(b) I f / i s an embedding-of an infinite coarse semi-separated spaced into a product 
space IT{0>a} such that all SPa are semi-separated, then card \SP\ ^ card \SPa| for some 
a. [Hint: consider the mapping pra o / : SP ->• 8Pa and apply (a).] 
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(c) The set Q in 26 B.10 can be chosen such that card Q = card P (this follows from the 
proof 26 B.10) but cannot be chosen such that card Q < card P (this follows from (b). 

(d) Let 2 be an infinite coarse semi-separated space and let X be an infinite cardinal. 
A topological semi-separated spaced admits an embedding into provided that card 
\&\ g card \2\ and the total character of 8k is at most X. 

9. Let 8? be a coarse semi-separated space. The density character of 8? is min (K0, 
card l^p.The total character of 8? is card \8f\. The local character of 0> is 0 or 1 (if 
\8P\ is finite) or card \8k\ (if \&\ is infinite). 

10. In an infinite coarse semi-separated space, a set X is dense whenever its interior 
is non-void. 

11. Every continuous function on an infinite coarse semi-separated space is constant. 

12. Every coarse semi-separated space is compact in the sense of 17 ex. 5. 

13. The box-product of any family of quasi-discrete spaces is a quasi-discrete space. 

(Section 27) 

1. Prove the necessity of condition (a) of 27 A.7 without Theorem 27A.6. [For 
each al and a2 in A let Daiai = E{x | 7taix = naix}. Prove that each Dai02 is closed, 
and D is the intersection of all Daiai, a , e A.~\ 

2. If / is the identity mapping of a dense subspace 2 of a separated space 8P onto 2, 
then / has no continuous domain-extension on any subspace 3t of 8?, SR. 4= 2. [If g is 
a continuous domain-extension on 8&, then the mapping h = (x gx} : 8$ is 
identity on a dense subspace of 8$, namely on 2, and hence h is the identity mapping. 
Thus 3t = 2.] 

3. A closure space 9 is said to be strongly separated if for each two distinct points x 
and y there exist neighborhoods U of x and V of y such that U n V = 0. Prove: 
every regular separated space is strongly separated and every strongly separated 
space is separated. A separated space which is not strongly separated: Let 2Y and 22 

be disjoint dense subspaces of a separated space 8k and let P = \2X\ u ((0) x 
x |^ 2 | ) v ((1) x 122\) and let u be the closure for P such that (i) x 22 are open 

subspaces of <P, u) , 2X is a subspace of <P, u> and x e u((i) x X), where X c \22\, 
x e if and only if x belongs to the closure of X in 8$. It is easily seen that <P, w> 
is separated but not strongly separated (consider the points <i, x ) , i = 1, 0, x e \22\). 
A strongly separated space which is not regular: Let 2lt 22 and 8k have the meaning 
from the preceding example and let 8k be strongly separated, and consider the sub-
space 1^1 U ((0) X |^ 2 | ) of <P, M>. 

4. If a subspace 2 of a separated space 8k is compact, then | is closed (compare 
with 17 ex. 5). [Hint: if a net Jf ranging in \2\ converges to a point \8k\ — |i>| then Jf 
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has no accumulation point in 2 . ] Hence a continuous mapping of a compact space 
into a separated space carries closed sets into closed sets. Such a mapping need not 
carry open sets into open sets (e.g. consider a continuous function on a bounded 
closed interval of reals). 

5. Let be a separated topological field which is not discrete (e.g. take R, Q 
or C as The set F = E{<x, y} \ <x, y} e x F, y = x - 1 } is closed in x g~ 
(if {<xa, x ~ ' ) } converges to <x, y}, then y — x ^ 1 because xa . x ~1 = 1 must con-
verge to x . y, which shows that x . y = 1). The projection \9~\ — (0) of F into 3~ is 
not closed. Hence projections of a product space onto the coordinate spaces need 
not carry closed sets into closed sets. The set f = F u (<0, 0)) is closed in 2T x 
but the mapping / : -> is not continuous. 

6. If m is the density character of a separated space P, then card 0 ^ exp exp m 
(and hence the total character is at most exp exp exp m; this estimate is attained — 
an example may be obtained by modifying the closure structure of pX). 

7. (a) Each PX is separated. [If ?£ and are distinct ultrafilters then X n 7 = | 
for some X in 9£ and Y in 

(b) The cardinal of any infinite closed subset F of PX is at least exp exp X0. [The 
cardinal of PX with X infinite is exp exp card X. If F is an infinite closed subset of PX 
such that F r\ X is infinite, then F n X <= F is a homeomorph of P(F n X) and hence 
the cardinal of F is at least exp exp X0. If F n (PX — X) is infinite then we can choose 
a sequence {£„} in F — X and Xn e c„ such that {Z„} is a disjoint family. Let Z = 
= E{X„}. We shall construct a one-to-one mapping / of ftZ onto the set Ft = 
= E{£„} c F. If ri is a free ultrafilter on Z then the sets U{F„ | Xn e N}, Yn e £,„, 
Net], form an ultrafilter fr\ on X and frj e It is easily seen that / : pz F is 
bijective.] 

(c) There exists a family {8?a | a e A} of countably compact subspaces of j8N such 
that N <=. ¿?a, {\&a\ — N} is disjoint, card A = exp exp K0. [It is sufficient to show that 
if the cardinal of a subset X of /JN — N is less than card A then there exists a coun-
tably compact subspace 0 such that N c \&>\ n X = 0, card \0>\ ^ exp X0. 
Since each infinite set has at least exp exp X0 cluster points, it has a cluster point in 
/?N — X. Let cp be a single-valued relation which assigns to each infinite set a cluster 
point in PN — X; denote by S(Y) the collection of all countable subsets of Y and 
define by induction Y0 = N, Ya = S(\j{Xf | p < a}, Xa = <p[Yj. It follows that 
U{Y„ | a < QJi} = Xtol is countably compact, card Xmi = exp X0 and Ymi n X = 0.] 

(d) The product of two countably compact spaces need not be countably compact. 
[Let SP and 3. be two countably compact subspaces of pN, N = n | The set 
Nx = {<x, x ) | x e N} is closed in 0 x 2L\ of course JVj is discrete.] 

8. Some example s . There exists a continuous mapping / of a dense subspace 8k 
of a regular separated space SL into a regular separated space 8P such that / has a con-
tinuous extension on each subspace 8k u (x) but not on SL. (E.g., take an infinite 
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separated space SP with exactly one cluster point, say x, and an infinite set A, and fix 
an a in A. Next, let SP = h{SP | a e (A — (a))} and let SL be the space defined as 
follows: the underlying set of SL is | a e A}, SP is an open subspace of SL, 
(a) x SP is a closed subspace of SL, (a) x {\SP\ — (x)) is an open subset of SL, and 
<a, x> belongs to the closure of a set X if and only if either <a, x ) belongs to the closure 
of ((a) x \¥\) n X in (a) x SP or X n (A x (x)) is infinite. Finally, fix a p in A - (a) 
and consider the mapping / of the subspace Si of SL, \Sft\ = \Sl\ — A x (x), into &' 
such t h a t / i s identity on \®\ - ( a x \¥ \ ) , a n d / < a , y> = </?, y> for y e\SP\ - (x).) 

(b) If a space 0 is not regular, then there exists a continuous mapping / of a dense 
subspace M of a space SL into which has a continuous domain-extension to each 
subspace \8$\ u (x) of SL but not to SL. (E g., if 9 = <P, u) is not regular, then there 
exists an x in P such that, denoting by 11 the neighborhood system at x, uU — V 4= 0 
for some Ve 11 and each U e H. Exhibit a topological closure v for P finer than u on 
P — (x) such that the sets uU,U eH, form a local base at x, and consider the identity 
mapping of the subspace Vof <P, u) into <P, «).) 

9. In a regular topological space the collection 9C of all sets of the form G n F, 
G open, F closed, is relatively feebly locally determined (see 21 A.12). [Hint: As-
suming that X relatively feebly locally belongs to SE, prove that X e SE. It is 
sufficient to show that X — X is closed because X = X n (P — (X — X)). Clearly 
each point of P — X is an interior point ofP — (X — X). Fix xeX. Since X feebly 
locally belongs to 9C at x we can choose a neighborhood U of x such that U n X = 
= G n F where G is open and F is closed. Choose an open neighborhood Fof x with 
VcU n G. We have Vn X <= VnX <= U nX n GcFnG = XnU<=X. 
Thus x is an interior point of P — (X — X).] 

10. A subset X of a regular topological space is relatively locally closed if and only 
if X — X is closed (i.e. X = F n G where F is closed and G is open, by 15 ex. 1). 

11. Extension of mappings into complete metric spaces, (a) Let / be a continuous 
mapping of a dense subspace <R, w> of a separated topological space (Q, v) into 
a complete pseudometric space <P, d) (definition 22 ex. 17). There exists a continuous 
domain-extension g of / to a G r subspace <S, u> of <Q, v) (i.e. such that S is a G^ 
in (Q, v)). Proof: For each n in N let 11 „ be the collection of all open subsets U of 
<Q, t)> such that the diameter of f[U n K] is at most (n + 1)_ 1 . Put U„ = \}1ln, 
S = f|{^„}- For each x in S — R let 1lx be the neighborhood system at x, and V x 

be the /-transform of the filter R n [1fx]- Clearly contains arbitrarily small sets 
and hence, <P, d) being complete, each ir

x converges to a point gx. Since <P, d) 
is regular, g : <S, «> -> <P, d) is continuous by 27 B.17 (b). 

(b) State and prove (a) for uniformly continuous mappings of a dense subspace 
of a uniform space into a complete pseudometric space (use 27 B.18 (b)). 

(c) If a dense subspace SL of a separated topological space SP admits a metrization 
by a complete metric, then |i>| is a G, in <P, u>. [ L e t / be the identity mapping of the 
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subspace £t of 0 onto 2.. By (a) / has a continuous domain-extension to a G^-sub-
space ¥ of 0. By ex. 2 / has no continuous proper domain extension, and hence 
Sf = 3 . ] 

(d) Suppose that a space 0 admits a metrization by a complete metric. A subspace 
2 of 0 admits a metrization by a complete metric if and only if |j2| is a in 0 . 
[ " I f " was proved in 22 ex. 7. Conversely, if J admits a metrization by a complete 
metric then is a Ga in the subspace |i>| of 0 (by (c)) and hence in 0 because each 
closed subset of a pseudometrizable space is a G a . ] 

(e) Each homeomorphism / of a subspace of a complete metric space 0 onto 
a subspace 0X of a complete metric space 0 has an extension to a homeomorphism g 
of a G^-subspace 02 of 0 onto a G^-subspace 02 of 0. Proof: Take a continuous 
extension f t o f f to a mapping of a Ga-subspace 0' of 0 into 0 such that is dense 
in 0 ' (by (a)), and then a continuous extension o f / - 1 to a mapping f2 of a G¿-sub-
space 02 of 0 into 0' such that 0X is dense in 02 (this is possible by (a) because by 
virtue of (c) the space 0 admits a metrization by a complete metric). The mappings 
J : 02 -> 0 and o f 2 : 0 2 - * 0 coincide on a dense subspace of 02, namely on 0X, 
and hence they are identical because 0 is separated. Thus f l o f 2 : 0 2 -* 02 is the 
identity mapping of 02 onto 02, and hence f2 is a homeomorphism of 02 onto the 
subspace 02 whose underlying set i s / 2 [ | ^2 | ] - The set \02\ is a G,j in 0 and hence 02 

admits a metrization by a complete metric (by (d)), and thus 02 admits such a 
metrization; this implies that \02\ is a Gs in 0' (by (c)) and hence a G6 in 0. 

12. Two topologically equivalent uniformities coincide provide that they coincide 
on a dense subset. 

13. If the density character of a regular topological space is m then the local 
character is at most exp m. The assumption of regularity is essential. 

14. The box-product of a family of regular (separated) spaces is a regular (separated) 
space. 

15. If JS? is a separated infinite-dimensional normed real module and {/¡} is a finite 
family of linear functionals, then the set n { / i r l [ 0 ] } is n o t bounded. 

(Sections 2 8 - 3 0 ) 

1. Exhibit a separated topological space on which every continuous function is 
constant. [E.g. let {/£„} be a disjoint sequence of non-void finite subsets of R — Q 
such that any non-void open subset of R intersects almost all K„. Consider the closure 
u for Q such that Q — N is an open subspace of <Q, w> and each neighborhood of 
any n e N is of the form (n) u (U n Q — N) with U a neighborhood of K„ in R; if / 
is a continuous function on <Q, u) then fq = lim {fn} | n e N} for each q in Q, and 
hence / is a constant function.] 
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2. Exac t Bore l sets. Let 9 be a closure space. With the notation of 22 ex. 10, 
if ei{Xfl} = Qi{Xa} = f l W , and T̂ is the collection of all exact closed (exact 
open) sets, then the elements of 9Ca are termed exact Fa sets (exact Ga sets, respectively). 
Of course we use the term exact Fa instead of exact Ft, etc. Then exact F0 c exact GL 

and exact G0 c= exact F1; and hence exact F0)[ = exact Gmi (by 22 ex. 10). The sets 
from exact Fmi will be termed exact Borel sets; it should be remarked that these sets 
are often called Baire sets. 

3. A family {/fl} of functions on 3P is termed locally finite (point-finite) if the family 
W f a ) } i s locally finite (point-finite); here N(fa) = E{x \fax 4= 0}. If / = {/„} is 
point-finite, then 

{<x, y ) ^ E { | / f l x -fay\}} 

is a pseudometric, denoted by df. If / is locally finite and all fa are continuous, then 
df is a continuous pseudometric and each N(/0) is open in (\SP\, df}. 

(a) A cover 2£ of 9 is uniformizable if and only if it is refined by a locally finite 
cover consisting of exact open sets. 

A partition of the unity on SP subordinated to a cover 9C of 9 is a locally finite 
family / = {/„} of non-negative continuous functions such that E{/flx} = 1 for each 
x, and the family {N(fa)} refines SC. 

(b) Some partition of unity is subordinated to 9C if and only if 9C is uniformizable. 
[Hint: given a uniformizable cover 9C, take a locally finite family {/„} of non-negative 
functions such that {N(f a )} is a cover refining 9C\ put ga = /,/£{/„}.] 

4. E x t e n s i o n of u n b o u n d e d f u n c t i o n s . Let J be a subspace of a closure 
space 9 such that each bounded continuous function on 2 is the restriction of a 
bounded continuous function on SP (i.e. such that the Cech proximity of 2 is the 
relativization of the Cech proximity of ¿P). Then each continuous function on 2 has 
a continuous extension to SP provided that \2\ and any disjoint exact closed set are 
functionally separated. [Hint: Let <p be a homeomorphism of R onto ] 1, 1 [; given 
a continuous function / on 2, consider a continuous extension g of q> of to 9 and 
Z = E{x | \gx\ ^ 1}. Take a continuous function h, 0 ^ h 1, h[\2\] c (1), 
h[Z] <= (0) and p u t / * = o (g . h).~\ 

5. Let £P = <S, cr> be a struct, g <=. exp S x exp S, and let A be a set. Suppose that 
MgN implies M c N, and consider the set of all covers X of £P with DX = A. 
lfXeW then we write X = {*„}. For X e let Tx denote the set of all Ye Y with 
YagXa or Ya = Xa for each a. Let g x denote the order for defined as follows: 
Y^xZ iiand only if, for each a, Za 4= Xa implies Ya = Za. 

(a) If X e W is point-finite, then each monotone subset of 'Fx has a lower bound; 
in particular, each element of Wx is greater than a minimal element (see part III of 
the proof of Theorem 29 C.1). 

(b) Suppose that X e W is point-finite, and Ye Wx, as A imply that there exists 
a Z i j Y with ZagXa. Then there exists a Z in ¥ x with Z agXa for each a. 
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(c) Let MqN if and only if M = N or M = 0. It follows from (a) that any point-
finite cover X of ¥ has a "minimal" subcover Y, i.e. no proper subfamily of Y is 
a cover. 

6. A semi-uniformizable topological space 0 is normal provided that it is the 
union of a locally finite family of closed normal subspaces. 

7. A semi-uniformizable space with at most one cluster point is hereditarily para-
compact. 

8. (a) Let X be the set of all isolated points of and Y be its complement in 
Twr The set X is locally Fff in Tai, but not Fff (each closed subset of X is finite), and 
Yis locally Ga but not G3. Thus neither Fff-sets nor G r se t s need be locally determined 
in a normal space. 

The set X is relatively locally Fff in Tai +1 but not Fff, Y is relatively locally Ga but 
not G,,; thus neither F^-sets nor Ga-sets need be relatively locally determined in a 
paracompact space (or even in a compact separated space). 

(b) Any continuous pseudom;tric on Ta i has an extension to a continuous pseudo-
mitric for Tai + l, and consequently the fine uniformity of Tai is the relativization 
of the fine uniformity of Tmi + 1. [Hint: First prove that if Fx and F2 are two disjoint 
closed sets in T0)t then at least one of the sets FX and F2 is bounded. Then prove that 
any continuous function on Tmi is constant on some set ^ [ a ] with a < co,.] 

9. A space is pseudometrizable if and only if it is paracompact and there exists 
a sequence of interior covers such that {st (x, #•„)} is a local base at x for each x. 

10. If {Xa} and {Y6} are locally finite families in a normal space such that Xa and 
Yb are functionally separated for each a and b, then a n d U{ifc} a r e functionally 
separated. 

11. A space 0 is uniformizable (or regular) if and only if each cover ([/, — (x)) 
with U a neighborhood of x is uniformizable (semi-uniformizable, respectively). 

(Sections 3 1 - 3 5 ) 

1. For each set P the mapping {u -> {uX | X <= P}} : C(P) <exp P, c ) e x p P 

is completely join-stable. For each u in tC(P) let 6(ii) be the collection of all u-open 
sets; the mapping {u ->• &(U)} : xC(P) (V, is ) is completely join-stable (but not 
meet-stable), where V is the universal class. 

2. If u is the infimum of a non-void collection {ua} in C(P) and X c P, then 
x e uX if and only if for each finite cover of X there exists an X; such that 
x e uaXi for each a. 

3. If a closure u has a lower modification in xC, then u e xC (show that u = 
= sup {v | v ^ u, v e xC}). On the other hand if u has a lower modification in uC 
then u need not be uniformizable (consider C(P) where card P = 2). 
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4. The class of all pseudometrizable spaces is countably meet-stable in C. [Hint: 
If u„ is pseudometrized by d„ then inf {«„} is pseudometrized by E{2~" min (dn, 1)}.] 

5. Let D be the class of all dense-in-themselves closure operations (a closure 
is called dense-in-itself if each point is a cluster point.) 

(a) If u is finer than v and u e D then v e D. 
(b) If {u„} is a down directed (in particular, if E{ua} is a nonrvoid and monotone) 

family in D, then inf {u„} e D. Consequently, each closure of D is coarser than a 
minimal element of D (which is said to be a fine dense-in-itself closure operation). 

(c) If K c C is completely meet-stable then K n D has property (b). In particular, 
there exist fine topological, uniformizable, regular, etc., dense-in-themselves closure 
operations. 

(d) A closure u for P is a fine dense-in-itself closure operation if and only if [Kx] n 
n (P — (x)) is an ultrafilter on P — (x) for each x (here 11 x is the neighborhood system 
at x in <P, u>). 

(e) A topological dense-in-itself closure u for P is a fine topological dense-in-itself 
closure operation if and only if the conditions x e uX, X is dense-in-itself imply 
that (x) u X is a neighborhood of x (or equivalently, each dense-in-itself set is open). 

6. The class of all locally connected spaces is inductive-stable. [Either prove that 
a space inductively generated by a single mapping from a locally connected space 
is locally connected, and make use of the fact that the class of all locally connected 
closure operations is completely join-stable in C, or prove that any quotient of a 
locally connected space is locally connected and the sum of any family of locally 
connected spaces is locally connected.] 

7. K t= C is projective-stable if and only if, for each 2 in C, there exists a K2 in K, 
\K2\ = \2\ such t h a t / : 2 0> with 9 in K is continuous if and only i f f : K2 -> & is 
continuous (of course, K2 is the upper modification of 2 in K). A similar result 
holds for inductive-stable classes. 

8. If J is a quotient of SP then the density character of 2 is at most that of 3P, but 
the local character and the total character of 2? may be greater than the corresponding 
characters of 9 (consider the space obtained by identifying the points of a line in 
R x R). If SP is separated then 2 need not be separated (consider a uniformizable 
space which is not normal, choose disjoint closed sets and F2 which are not separ-
ated, and consider the space obtained by identifying the points of Fl and of F2. 
The points Ft and F2 are not separated). 

9. The graph of a correspondence of 9 into 2 is closed provided that the following 
conditions are fulfilled: 

(a) D/ is closed. 
(b) / is upper semi-continuous. 
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(c) If is the neighborhood system o f / [ x ] then C\{U \ U e 1 i } = / [ x ] (in particular, 
/ [ x ] is closed). 

If SL is regular then condition (c) may be replaced by the weaker condition that 
each / [ x ] is closed. 

10. Every space admits a single-valued determining relation. [Hint: If <6 is a de-
termining relation, Jf e D"^, then the set of all (JV, x ) e can be replaced by a set 
consisting of points x>, x e such that x 4= y => J f x 4= J f y (by a formal 
change of the underlying sets).] 

11. Topological modification of sequential closure operations, (a) If u is a se-
quential closure operation for a set P and uxX = u(\j{ufiX | /J < a}) for each X <=. P, 
then each ux is a closure operation and wmi = sup {ua | a < a^} is the topological 
modification of u. 

(b) Let 9 and 01 be closure spaces and let <F, u ) be the set F{9, 0t) endowed with 
the sequential modification of the closure of pointwise convergence, and let v be the 
topological modification of u. The elements of vC{9, 0t) are called the Baire mappings 
of 9 into 0t, and the family {uaC(9, 01) | a < c u j is called the Baire classification of 
Baire mappings. The elements of uxC(P, 9) are termed the mappings of the a-th 
Baire class. Prove: a n / e F(P, R) is a Baire function if and only i f / _ 1 [ X ] is a Baire 
set in 9 for each closed (open, Baire) set in R. 

12. S e q u e n t i a l l y c o m p a c t spaces . 
An L-closure u for a set P is a coarse L-closure if and only if each sequence has 

a convergent subsequence (i.e. if <P, u> is sequentially compact). 
Each sequentially compact space is countably compact, and the converse is true 

for each space with a countable local character. The class of all sequentially compact 
spaces is closed under formation of countable products and closed subspaces. 
The product of a sequentially compact space with a countably compact space is 
countably compact. (Remember that the product of two countably compact spaces 
need not be countably compact.) 

13. For each S-closure u the closure avu is the upper modification of u in <tuC. 
A uniformizable space St is the uniformizable modification of an S-space if and 

only if a function / on J is continuous whenever the following condition is fulfilled: 
if a sequence S converges to x in J , then the sequence / 0 S converges to fx in R. 

14. The class FFUC is completely meet-stable in S, and each accrete closure belongs 
to ooC. 

15. The classes S, L, <7«C, truC n L, S n u C, and L n u C are closed under sums. 

16. A space 9 belongs to ffuC if and only if 9 is a homeomorph of a subspace 
of 9' x <rRN where 9' is the accrete space such that \9\ = \9'\ and K is an appro-
priate cardinal (use 35 E.3). 
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(Sections 3 6 - 4 0 ) 

1. A closure operation u for a set P is induced by a uniformity which is a coarse 
semi-uniformity if and only if P = U{F; } where {F,} is a disjoint family of closed 
accrete subspaces and F t are finite and open except one, but the complements of 
neigborhods of its points must be finite. 

2. (a) L e t / be a uniformly continuous mapping of a uniform space 3ft = <P, into 
a uniform space SL = <Q, Y>. If 3ft = <R, iV) is a dense subspace of 3P such that 
g = f \ 3ft 2 is a projective generating mapping, then / is a projective generating 
mapping. [If VeY is a regular closed set in 2 x 2 then ( / x / ) _ 1 [ F ] is the closure 
o f (g x g)~l[V].l{Ue<% and U'is a closed element of H contained in U then (g x g)~l 

[ F ] <= U' n (R x R) for some regular closed Ve i f and hence ( / x / ) _ 1 [ F ] is 
contained in U' <= £/.] 

(b) Let 3i be a dense subspace of a uniform space 2. If ^ is pseudometrizable or 
proximally coarse then so is 2. 

3. H e w i t t u n i f o r m i t i e s . A Hewitt uniformity is defined to be a uniformity 
projectively generated by all continuous functions (hence, the proximally coarse 
uniformity topologically equivalent to ^ is a Cech uniformity). 

(a) A separated uniform space 0 = <P, is a uniform homeomorph of a sub-
space of some RN if and only if °U is a Hewitt uniformity. 

(b) <P, is projectively generated by a mapping into a product RK if and only if 
11 is a Hewitt uniformity. 

(c) The Hewitt uniformity of a closure space is defined to be the uniformly finest 
continuous Hewitt uniformity. A closure space 0 is said to be pseudocompact if the 
Cech uniformity of 2P and the Hewitt uniformity of 0 coincide, i.e. if each continuous 
function is bounded. 

(d) Every countably compact space is pseudocompact (if / is continuous and 
|/x„| > n then {x„} is locally finite), a normal pseudoccmpact space is countably 
compact (if {*„} is a locally finite sequence of points of a normal space then some sub-
sequence {x;} is discrete, and hence U{(xn)} i s a closed subspace F ; if / is n on (x^) 
then / is an unbounded continuous function on F which has a continuous extension). 

(e) A space 3P is pseudocompact if there exists a dense subspace 0 of 0 such that 
no infinite family of non-void subsets of 3ft is locally finite in 3ft. 

(f) There exists an infinite separated uniformizable pseudocompact space such 
that no infinite subspace is countably compact. Let R c ftN, R => N, card R = 
= exp K0 , and let each infinite subset of N have a cluster point in R. Let < be 
a minimal well-order for R — N. Let X be the set of all x e R such that x does not 
belong to the closure of the set Xx of all y e R, y < x (y =j= x). The subspace P = 
= N u X of J5N is pseudocompact; this will be proved by showing that each infinite 
subset of N has a cluster point in X. Let Y be an infinite subset of N and let x be the 
smallest element of R such that x belongs to the closure F o f Yin /JN. The set F i s 
open in /?N, hence a neighborhood of x in /?N and Y n Xx = 0. Hence x £ Xx. The 
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space P has the following property: no countable subset of X = P — N has exp X0 

cluster points. In fact, if Z is countable subset of X, then Z <=. Xx for some x in R be-
cause <i?, < ) contains no countable cofinal subset, and consequently card Zp ^ 

card (Xx n X) < exp K0; the first inequality follows from the fact that Xx n X is 
closed in P, and the second from the fact that < is minimal. That no infinite subspace 
of P i s countably compact now follows from 17 ex. 5 (each infinite set contains an 
infinite set without a cluster point). 

4. A pseudometrizable uniformity is not a proximally fine semi-uniformity if 
there exists a Cauchy sequence {x„} such that the family {(x„)} is disjoint, in particular 
if the induced closure is not quasi-discrete. [Hint: Let <P, 11) be a uniform space and 
let {x„} be a sequence in P such that {(x„)} is disjoint, and consider the set X = 
— (x2k x2k+1}* Then the set of all U — X — X U e H is a base for a semi-
uniformity "V proximally equivalent to 1l\ clearly "V 4= 

A uniformly quasi-discrete uniformity is a proximally fine semi-uniformity. The 
converse does not hold. 

5. M o n o t o n e u n i f o r m i t i e s . Let 8P = <P, 11) be a semi-uniform space. 8P is 
defined to be monotone if 11 has a monotone base (i.e. a base V such that ( V , c ) 
is monotone); e.g. every semi-pseudometric space is monotone. The uniform character 
of 9 is the smallest cardinal of a base for 3P. 

(a) Theorem. Every monotone uniform space is proximally fine. This follows from 
the following 

(b) Theorem. If / is a proximally continuous mapping of a monotone uniform 
space 9 into a uniform space SL, then f is uniformly continuous. 

The proof of (b) is similar to that of 25 A.14; instead of sequences use monotone 
nets (as the ordered domain take a base for the uniform structure of & minimally 
well-ordered by =>; exhibit a cofinal set such that the ranges of restricted nets are 
distant in 2). 

6. Loca l l y f i n e u n i f o r m spaces . A semi-uniform space SP = <P, 11) is said 
to be locally fine (a current term open to serious criticism) if {J : -* xe P} 
inductively generates 9 for each U in 1l\ here (7[x] is considered as a semi-uniform 
subspace of 8?. 

(a) The class of all locally fine spaces is inductive-stable in U. Denote by X the 
corresponding lower modification. 

(b) If 11 is a uniformity then so is XH. (It is obvious that Xll is locally fine in the 
"uniform sense", i.e. that the families in question are inductive generating in the 
uniform sense.) 

(c) Given 11 one obtains Xll by transfinite iteration of the following operation: 
the set of all 

U{(C/[x] x U[x]) nUx\xeP}, VxeH, Usll, 

is a base for a semi-uniformity which is inductively generated by the family {J: U [x] -> 
—> P | X £ P} . 

55—Topological Spaces 
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(d) Any fine uniform space is locally fine. Any subspace of a locally fine space is 
a locally fine space; in particular, every subline space (i.e. a subspace of a fine space) 
is locally fine. No example of a locally fine uniform space which is not subfine 
is known. 

(e) A presheaf ¥ of sets over a uniform space is said to be projective in the uni-
form sense if the usual conditions are fulfilled with restriction to uniform spaces. 
A space 0 is locally fine if and only if, for each uniform space 2, the presheaf of all 
uniformly continuous mappings of SP onto 2 is projective in the uniform sense. 

(f) The following is an interesting property of some uniform spaces SP\ f : 0 ->• 2 
is uniformly continuous provided that / is locally uniformly continuous, i.e. each 
point has a neighborhood U such that the restriction off on I/is uniformly continuous, 
or in other words, for each space 2 the presheaf of all uniformly continuous mappings 
of0> into 2 is projective at 

(g) Every uniformly continuous function on a subspace 8? of a locally fine uniform 
space 2 has a uniformly continuous extension to 2. [Hint: Given / on 0 choose 
a uniform cover 11 of 2 such that the diameter of f\U n is at most 1 for each U 
in and apply appropriately the extension theorem for bounded functions to obtain 
"uniformly locally" a uniformly continuous extension.] 

7. The projective limit of a presheaf ¥ over a set (A, g ) may be empty even if 
all connecting mappings are surjective (this is elementary) and <A, is left-di-
rected. E.g. let A be the set of all countable ordinals, ^ be the inverse of the usual 
order for ordinals, Sa be the set of all order embeddings / of the set of all p < a 
into Q such that E/ is righNbounded, and fab assign to each / e Sa the restriction of / 
to Sb. Clearly lim ¥ = 0 (there exists no order-embedding of countable ordinals 
into Q) and all fab are surjective. 

(Section 41) 

1. P s e u d o m e t r i c spaces , (a) A pseudometric space is complete if and only if 
the uniform space is complete. 

(b) Let 2 be a completion of a uniform space 8P. Each uniformly continuous 
pseudometric d on 0> is the restriction of the unique uniformly continuous pseudo-
metric d* on 2; in addition, d induces the uniform structure of 0 if and only if d* 
induces the uniform structure of 2. 

(c) The existence of completions may be proved as follows: If each pseudometriz-
able space has a completion then any uniform space has a completion; indeed, any 
uniform space can be embedded in a product n { ^ a } of pseudometrizable spaces and 
if 0>\ is a completion of 8Pa then 11(0*} is a completion of Tl{0a}; the closure of the 
range of the embedding is the required completion. Next, each metrizable space 
<P, d} can be embedded into U*(<P, d}, R) (by the relation {x -* {y -> d(x, y>} : 
: <P, d} -> R}). If 2 is P endowed with the uniformly accrete uniformity then any 
pseudometric space <P, d> can be embedded into 2 x U*(<P, dy, R). 
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2. A completion of 3P is totally bounded if and only if SP is totally bounded. 

3. C o m p l e t i o n s of topological rings and modules, (a) Any separated topological 
ring is a dense topological subring of a complete topological ring which is said to be 
its completion. If 3CX and ¡%2

 a r e Cauchy filters in SP, = (R, + , •, u), then y = 
= [ i j ] . [%2~] is a base for a Cauchy filter; in fact, given a neighborhood U of O we 
can choose a neighborhood V of 0 and X't e 9C{ such that X't. V + V. X'2 c U; if 
X ^ X i , Xi <= X't and Xt - e= V, then Xi.X2 — Xx.X2 <= X\. V+ V.X'2 c U. 

(b) Any separated topological linear space or algebra has a completion. [It must 
be shown that the external multiplication can be extended continuously; i.e. if 3d is 
a Cauchy filter and r is a scalar, then r . X is a Cauchy filter.] 

4. Two complete topologically equivalent uniformities need not coincide. E.g., 
R is complete and <R, 11) is complete if 11 is the Hewitt uniformity for R; clearly the 
uniformities are different. 

5. H y p e r c o m p l e t e uniform spaces, (a) The Hausdorff hyperspace of a semi-
uniform space SP = <P, 11) is the semi-uniform space H(9) = <exp' P, 11*) where 
11* has the collection of all U* = E{<X, Y> | X c t / [Y], Y c i/[X]}, U e 11, for 
a base. If 9 is a uniform space then H(S?) is a uniform space. The mapping / = 
= {x -* (x)} : 2P -> H(3P) is an embedding: if 9 is a separated uniform space then E f 
is closed in H(3P). Consequently, if 9 is separated and H(9) is complete, then 9 is 
complete. If 9 is complete then H ( 9 ) need not be complete; it can be proved that 
H(3?) is complete if and only if 2P is paracompact and the locally fine modification 
of the uniform structure of SP is fine. If H(8P) is complete then SP is said to be hyper-
complete. Any complete metrizable space is hypercomplete (prove!). 

(b) Let 9 be a semi-uniform space and let E(3P) be exp' (P x P) endowed with 
the semi-uniformity which has the collection of all E{<X, Y > | l / o X = > Y, t / o Y X}, 
U ell, for a base. The mapping / : {x <z, x ) } : 3P -> E(9) is an embedding, and 0* 
is a uniform space if and only if E(8P) is a uniform space. SP is hypercomplete if and 
only if E(8P) is complete. 

6. C o u n t e r - e x a m p l e s t o c o m p a c t n e s s , (a) Find a compact space & such that 
some interior cover contains no finite interior cover. [Hint: Let N be an open discrete 
infinite subset of a separated compact space <P, u), R = P u (x) with x$P, and 
let v be a closure for R such that N is an open discrete subspace of (R, v), R — N 
is a compact subspace of <R, v) with only one accumulation point, namely x, R — N 
is a neighborhood of x, U is a neighborhood o f a y e P — JVif and only if y e U 
and U u (P — N) is a neighborhood of y in <P, u). (R, v) is compact and there 
exists an interior cover which contains no interior cover of cardinal less than 
card (P - N).] 

(b) Find a space <S, w) which is not compact but each infinite subset has a com-
plete accumulation point. [Hint: Let card N = K0 in (a), choose P t c P — N such 
that each subset of N has an accumulation point in Pt but N u Px is not compact, 
and let <S, w) be the subspace of (R, v) with S = N u Pt u (x).] 

55* 



868 E X E R C I S E S 868 

(c) Find a space <P, u> such that each monotone centred collection has a cluster 
point, but some infinite subset N of <P, u> has no complete accumulation point. 
[Hint: Let <P, u> be a space such that P is the disjoint union N u M u (x), where 
N = [){N„ | n e N} with JV„ <= Nn+l, card N„+i > card N„, N„ are compact sub-
spaces of <P, u); M u (x) is a compact space with only one accumulation point, 
namely x, each point of M has a neighborhood U such that U n N is countable, and 
finally, each sequence {*„}, xne Nn+1 — Nn, has a limit point in M.] 

7. If (\1¿ = X in a compact space, 11 is a filter, and each U e 11 is a neighborhood 
of X, then 11 is the neighborhood system of X. If a compact space is regular and 
C\K = (x) where 11 is a collection of neighborhoods of (x), then 11 is a local sub-base 
at x. 

8. Correspondences , (a) I f / i s an upper semi-continuous full correspondence of 
a compact space 0 onto a topological space 2 and if the fibres/[*], x e 0 , are compact, 
then 2 is compact. [If 11 is an additive open cover of 2, then the sets Vv = 
= E{x | / [ x ] czU},Ue 11, are open and cover 0.~\ 

(b) If / : 0 2 is a correspondence such that g r / is closed in 0 x 2 and 2 is 
compact, then/ is upper semi-continuous. [Hint: Assume that {x„} converges to x 
in 0, U is a neighborhood o f / [ x ] in 2 and Xa = /[x f l] — U + 0 for each a. Choose 
ya in Xa and take a generalized subnet of {j>0} which converges to a point y. 
If {x¿} is the corresponding generalized subnet of {x0}, then (x'b, y'b} e gr / , {<x¿, y¿>} 
converges to <x, y} and <x, y} $ gr f.] 

(c) Let / be an upper semi-continuous full correspondence of a compact space 0 
onto a separated topological space 2 such that the fibres / [ x ] are compact. Then / 
is inversely upper semi-continuous. [2 is regular and the fibres / [ x ] are closed, 
hence g r / i s closed, which implies t h a t / - 1 is upper semi-continuous.] 

9. In any compact topological group the right uniformity, the left uniformity and 
the two-sided uniformity coincide. Hence, even if all group uniformities coincide then 
the group need not be commutative. 

10. Let be a collection of continuous functions on a compact space 0 = H{0a} 
containing each function / o pr a : 0 -> R. with / e C*(0a, R). Then the smallest 
algebra containing !F is dense in C*(0, R). (Apply the Stone-Weierstrass Theorem.) 

11. fiX is a Cech-Stone compactification of X endowed with the discrete closure 
structure. [Prove that each bounded function on X has a continuous extension to PXJ] 

12. If 0 is an infinite discrete space, then card \P0\ = exp exp card \0\ (Pospisil). 
[Use the fact that there are exactly exp exp X ultrafilters on an infinite set X. An 
alternate proof: Consider any one-to-one mapping/of 0 onto a dense subset of 
2 = [ 0, 1 ]exp|á>l (22 A.10);/is continuous and has a continuous extension to a map-
ping of P0 onto 2. Hence card \p0\ ^ card \2\ = exp exp card\0\. On the other hand, 
if the density character of a separated space 0 is m, then card 0 ^ exp exp m.] 
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13. A uniformizable space is normal if and only if for each two distinct maximal 
centered collections and $F2 of closed sets some F x e and F2 e 0F2

 a r e separ-
ated. 

14. Wallman compactification. Let 9 be a topological space and let X be the set 
of all x e \SP\ and all maximal centered collections J5* of closed sets in SP with C\!F = 0-
For each closed F in SP let F* be the union of F and the set of all J*" e X — \SP\ such 
that F e ^ . The collection of all F* is a closed base for a topological closure u for X. 
The space <X , w) is called the Wallman compactification of SP. Prove: 

(a) <X, u ) is compact. 
(b) J : SP <X , u ) is an embedding and \Sf\ is dense. 
(c) ( X , u) is separated if and only if SP is separated and normal. 
(d) The Wallman proximity of 9 is a relativization of the Wallman proximity 

of <_X, «>. ' 
(e) The following conditions are equivalent: <X, u } is uniformizable, 9 is normal, 

<X, u> = 

15. If a regular space 9 contains a dense subspace i2 such that each net in 2 has 
an accumulation point in 3P (2, is said to be compact in 9), then SP is compact. 

16. If / is a non-negative real-valued relation on I = [ 0, 1 ], then / : I R is 
upper semi-:Continuous (in the sense of 18 D.1) if and only if the correspondence 

f x ] | x e 1} : I -* R is upper semi-continuous. 
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