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Chapter II 

GENERAL METRIC SPACES 

§ 6. Distance 

6.1. Let P be a given set. Let Q be a finite function on the cartesian product P x P 
such that 

[1] Q(X9 X) = 0; x =f= y => Q(X, y) > 0; 
[2] q(x, y) = q(y, x); 
[3] Q(X9 y) + g(y, z) ^ Q(X9 Z). 

Then we say that g is a distance function (or a metric) in P. The set P is said to be 
a metric space, if there is given a distance function Q in P. The elements of a metric 
space are, as a rule, called points. If a9 b are two points, then by their distance is 
understood the number g(a9 b). 

A metric space P with a distance function q is sometimes denoted more precisely 
by (P, Q)9 in particular when dealing with different distance functions in the same P. 
The letters P and Q will normally denote, throughout all this book, a metric space 
and its distance function. 

The set Ej of all real numbers is a metric space, if we define Q(X9 y) = | x — y |. 
In the following, unless otherwise stated, Et will denote the metric space with the 
distance function just defined. 

More generally, we denote by Em (and call it the m-dimensional euclidean space) 
the set Ej x Ei x . . . x Ej (m factors in the product), where the distance function q 
is defined by putting, for x = (xl9 xl9..., xm)9 y = (yx,y2>j>J, 

The function Q just described obviously possesses properties [1] and [2]. Property [3] 
may be proved as follows: For 1 ^ i < k ^ m one has (x^fc — xkyf)2 ^ 0 and 
hence 2 ^ x]y\ + x\y]'9 therefore 

m ftt tn 1 m 

( S *.•>>,')2 = £ + 2 s I w k y k i=l ¿=1 i — 1 * = /+l 
m tti 1 tn tn tn 

^ I xht + I z {xhl + xbt) = I * M y.2, i=l i = 1 k = i + 1 ¿=1 i — 1 

*) If a is a non-negative real number, a always denotes the non-negative b with b2 = a. 
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and hence 
M I Im Im 
I * * , / i r f . (i) ¡=1 | \] i=i V»=i 

Since 
m m m m 

! ( * « + = E * ? + ! > ? + 2 ^ x ^ , 
i= 1 i=l ¿=1 i= 1 

by (1) we have 
m / I m J m \ 2 

and hence 
Im Im Im 

J (2) 

Writing — instead of xf and — zf instead of y{ we obtain z) ^ ^(x, >>) 4-
+ Q(y, 

Another important example of a metric space is the Hilbert space, which we shall 
denote by H. It is the set of all sequences x = {xj,® i (xt e Ej) such that the series 

ao 
YJ x? converges, endowed with the metric g given b> 

C=1 

00 00 

If xe H, ye H, the series £ j c f , converge and therefore [by (2), write —y( 
i= 1 ¿=1 

instead of yH the series on the right-hand side in (3) also converges. Properties [1] 
and [2] of the function Q are again evident. Formula (2) implies 

I 00 I 00 I CO 

Writing XI — y{ instead of x{ and yt — zf instead of yi9 we obtain z) ^ Q(X, y) + 
+ Q(y> z)-

Remark: Let a, b, c be three points of a metric space P. Then there are points 
a, ß, y in E2 such that 

G(a, b) = Q(a, ß), G(a, c) = Q(OC, y), Q(b, c) = g(ß, y), 

(iQ on the left-hand side designates the distance function in P, Q on the right-hand 
side the distance function in E2). 

Proof : For brevity, we write g(a, b) = r, g(a, c) = s, q(b, c) = t, so that the numbers 
r + s + t, r + s — t, r — s + t, —r + s+t are greater than or equal to zero. 
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It is easy to see that the points 

a = ( y r ' 0 ) ' /,, = ( 4 r ' 0 ) ' 

_ ( f - S2 >/C(r + s + t ) ( - r + s + t)(r - s + t)(r+s- Q]^ 
y-\—2T-> Tr ) 

have the required property. 

6.2. LetP! andP2 be two given metric spaces; let and Q2 be their distance functions. 
Let us define a function gl2 on (Px xP 2 )x(P x xP2) as follows: for x = (xl9 x2), 
>> = ( > W 2 ) P ^ 

Giafo = Vtfei(*i> ^i))2 + fefo, J^))2] • 

Properties [1] and [2] of the functions and q2 imply the same properties of the 
function Q12- We shall prove that the function Q12 also has property [3]. Let z = 
= (zl9z2). By the remark at the end of section 6.1, there exist real numbers al9 

<*2>bi9b2, ct, c2 such t h a t 

Qi(xi,yi) = y/Kbi - ai)2 + (b2 - <*2)2], QI(X19Zx) = Y/[(CL - ax)2 + (c2 - a2)2], 
Qi(yi>zi) = VK^i - bi)2 + (c2 - b2)2], 

and real numbers a3, a49b39b49 c3i c4 such that 

QI(x2,y2) = yj[(b3 - a3)2 + (b4 - a4)\ Q2(X29Z2) = J[(c3 - a3)2 + (c4 - a4)2]9 

Q2(y2,z2) = V[(c3 - b3)2 + (c4 - b4])2]. 
Hence, 

É?l2(*, y) = - ai)2> Qí2(x, Z) = J - ad2> 

Since the distance function in E4 has property [3], we obtain Q\2(pc9 y) + gt2(y, z) ^ 

Ž QM(X9 Z). 
If P j and P2 are given metric spaces with distance functions and Q29 we shall 

understand in the following by their cartesian product P2 x P2 , the set Px x P2 

with the distance function Q12 defined above. 

Remark: Let m9 n = 1, 2, 3, By the remark at the end of section 2.1 we do not 
distinguish between Emx E„ and Em+It. This is in accordance with the evident fact 
that the distance function in E„. x E„ derived from the usual distance functions in 
Ew and E„ is the same as the usual distance function in Em+n. 
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6.3. Let P be a metric space with a distance function Q. Let M c P. The partial 
function (see 2.4) qMxM is evidently a distance function in M. Consequently, every 
subset M of a metric space P may be taken for a metric space. We say that M is 
a point set embedded into the space P. Hence, a point set is a metric space M which 
is a subset of a metric space P, such that the distance function in M is the correspon-
ding partial function of the distance function in P. 

6.4. Let P and Q be metric spaces; let and Q2 be their distance functions. Let / 
be a mapping of P onto Q. We say that the mapping / is an isometry, if 

xeP, yeP => Q2[f(x),f(y)] = Ql(x,y). 

Since the distance function has property [1], / is obviously one-to-one. Evidently, 
the inverse mapping / _ x is an isometry of Q onto P. 

We say that spaces P and Q are isometric if there is an isometry of P onto Q 
(or of Q onto P). 

A metric property of a space P is a property which is preserved on replacing P 
by an arbitrary isometric space, i.e. a property which depends only on the distances 
of points and not on the "concrete form" of the points. We shall investigate only 
metric properties of metric spaces. 

6.5. Let P be a metric space (with a distance function Let A c: P, B cz P. Let M 
be the set of all real numbers G(x,y) with XEA, yeB. The number inf M (see 4.10) 
will be denoted by o(A, B) and called the lower distance of the point sets A and B. 
The number sup M (see 4.10) will be denoted by d(A, B) and called the upper distanec 
of the point sets A and B.*) 
Evidently 

Q(A, B) = Q(B, A), d(A, B) = d(B, A). 

If either A = 0 or B = 0, we have Q(A, B) = oo, d(A, B) = -oo . If A * 0 4= B 
then Q(A, B) is a non-negative real number, and d(A, B) is either a non-negative real 
number or oo. Evidently, for aeP, beP 

Q((a), (b)) = d((a\ (b)) = Q(a, b) . 

If A = (a) is a one-point set, we write 

e(a, B) = e(B, a) = e((a), B), 
d(a, B) = d(B, a) = d((a\ B). 

and call q(a, B) the lower distance**) (and d(a9 B) the upper distance) of the point a 
from the point set P. 

*) The lower distance is much more important than the upper one. Therefore it is often called 
simply the distance. 

* *) Or simply the distance (see the previous footnote). 
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For A a P we put d(A) = 0 provided A = 0 and = d(A, provided 
4= 0. The number d(A) is called the diameter of the point set A. A point set A 

is said to be bounded if d(A) < oo, unbounded, if d(A) = oo. In the case of P = E, 
this definition is in accordance with the definition given in 4.10. 

Exercises 

6.1. Let P be a given set, let g be a finite function with domain PxP such that [1] x = y o 
o Q(x, y) = 0, [2] g(xt y) + g(z, y) ^ z). Then g is a distance function in P. 

6.2. The statement of ex. 6.1 is not true, if we write g(y, z) instead of Q(Z, y). 

In exercises 6.3 and 6.4 C denotes the set of all complex numbers. 

6.3. Let Cm •= C x C x . . . x C (with m factors). For x e Cm9 y e C m , x = (xl9 x 2 , x m ) 

I m 
y = (>'i» y2t •••»>'m) put eC^»^) = / X I xi — y\ I2- Then Q is a distance function in C m , 

\l i= l 
and C/n with this distance function is isometric to the euclidean E 2 m . 

00 
6.4. Let H ' be the set of all sequences {^J fL i {xi e C), such that the series J ] I xi I2 converges. 

i=l 
I °° 

For a- e H ' , e H', x = { .vj y = put Q(X, y) = / £ I XI — YI I2* Then G is a distance 
V i=i 

function in H ' and (H ' , p) is isometric to the Hilbert space H. 
6.5. Let P be the set of all bounded sequences { * J r = i (*f e Ej). If x eP9 y eP9 x = {x,}, 

y = { ^ J put Q(X, y) ~ sup | JC£ — yi |. Then Q is a distance function in P. 
In the following exercises 6.6.—6.12, a and b are points of a metric space P, and /i, B and C are 
non-void point-sets embedded into P. 

6.6.* \Q(a,A)-Q(b,A)\ ^Q(a,b). 
6.7. e K 5 ) g g(a, + e f o 5) . 
6.8. C) ^ d(A, B) 4- d(B, C). 
6.9. The inequality g(A, C) < g(A9 B) + g(B, C) need not hold. 
6.10. If d(A) < oo, then for every point a there is a number <5 (0 < <5 < oo) such that x e A 

implies gia, *) < d. 
6.11. If there is a point a and a number <5 (0 < <5 < oo) such that x e A implies g(a, x) < d, then 

d(A) < oo. 
6.12. d(Ay B) < oo if and only if both A and B are bounded. 
6.13. Let P and Q be metric spaces; let A ^ P9 B <=• Q. Then d(AxB) = yJ(d(A))2 + (d(B))2 

§ 7. Convergence 

7.1. If {xn} is a sequence of real numbers and if x is a real number, then the symbol 
xn x indicates that for every e > 0 there is an index p(e) such that n > p(e) 
implies | xn — x | < e. This is a particular case (P = Et) of the following definition: 

Let P be a metric space. Let {xw} be a point sequence in P, i.e. a sequence, the 
terms of which are points of the space P. Let x be a point of P. Then the symbol 
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x„ x indicates that for every e > 0 there is an index p(e) such that n > p(e) 
implies Q(X„, X) < e. In other words 

xn x if and only if g(xn, x) 0 . 

We write also limxn = x instead of xn x; more definitely we write xH A- for 
n -> oo, or lim xn = x. We say that x is a limit of the sequence {*„}. 

n -+oo 

If x„ x and xn y9 then 0 ^ g(x9 y) ^ g(xn9 X) + g(xn9y) 0, hence g(x9 y) = 
= 0 and hence x = y. Thus, a sequence {*„} has at most one limit in the space P. 
A sequence {*„} having a limit is called convergent (in the space P); if it has no 
limit, it is said to be divergent (in the space P). 

7.1.1. If there is an index p such that xn = x for n > p then xn -> x. 

7.1.2. If xn-> x and if {y„} is a subsequence (see 3.1) of {xn} then also yn .v. 

7.2. Let P be a given set. Let Qx and Q2 be two distance functions in P, i.e. two 
finite functions o n P x ? having properties [1], [2] and [3] stated at the beginning 
of section 6.1. Due to the distance function Qx, P is a metric space, which will 
be denoted for clarity (P, gj); due to the distance function Q2> P is a metric space, 
which will be denoted by (P, e2)-

We say that the distance functions gt, g2 are equivalent if 

xn x in (P, if and only if xn-+ x in (P, g2). 

As an example consider the set EM. For x = (xl9x2, ...9xm)9 y = (yl,y2, 
put 

m 

¿=1 

where p is a real number greater than 1. For p = 2 we obtain the distance function 
with which the set EM was called the w-dimensional euclidean space. We shall 
prove that gp is a distance function for every p > 1. 

Let us begin with the following remark: If a, a9 b are real numbers, 0 < a < 1, 
a ^ 0 and b ^ 0 then 

aab1-* £<ut + (\-aL)b. (1) 

Proof: (1) is evident for a = 0 and for b = 0. Let a > 0, b > 0. The function 
cp(t) = f - at + a - 1 has the derivative q>\t) = a[(l¡t)x"a - 1] in the interval 
E[0 < t] and hence 0 < t < 1 implies q>'(t) > 0, / > 1 implies cp'(0 < 0; as <p( 1) = 
t 
= 0 we obtain the implication 0 < t => q>(t) <; 0, consequently <p(a/b) g 0 and 
hence (1). 
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Now, we are going to prove that for real xi9 y( and p > 1 the so caled Holder 
inequality holds: 

Z 1 = 1 »=i 

Of course, it is sufficient to prove this assuming ^ 0, yi ^ 0 with not every 
xt = 0 and not every yi = 0. Then (2) may be obtained by (1), putting 

1 xp
k , yp*-» 

a = — , a = -— , b 
n m m 

5 > ? ly f«"" 1 ' 
i= 1 ¿=1 

and adding for 1 ^ k ^ m. 
Inequality (2) yields the so called Minkowski inequality 

( I i X,. + yt |p)1/p ^ ( i I x, I")1/p + ( £ | * I")1'". (3) 
¿=1 ¿=1 i = 1 

m m 
To prove (3) we may, again, assume xt ^ 0, yt ^ 0, £ > 0 , £ yi > 0- Under 

¿ = i i= i 

this assumption let us write the formula Vt obtained from (2) by replacing y{ by 
(XI + >>i)p~1 and preserving then, write the formula V2 obtained from VI by 
changing the letters x and y. We obtain (3) by adding Vt and V2. 

Now, we see easily that (for any p > 1) qp is a distance function in Em. The sole 
less obvious inequality was z) ^ Qp(X, y) + Qp(y, z); this is, however, the 
inequality (3), where we write — yt instead of xt and y( — zf instead of y-t. If we 
define the relation lim (xnl, xn2,..., xnm) = (xt, x2,..., xm) by the distance function Qp 

n-* oo 
we verify easily that this relation holds if and only if lim xni = xt (in the ordinary 

oo 
sense) simultaneously for every 1 ^ i ^ m. Thus, all the distance functions qp 

are equivalent. 

7.3. If is a sequence of real numbers such that | xf | ^ l/i for every i, the 
oo 

series £ x\ converges; thus, { x j is a point of the Hilbert space H. We denote by U 
¿ = i 

the set of all { x J e H such that | xx | ^ l/i and call it the Urysohn space; the 
distance function in U is, by 6.3, determined by the inclusion U c H, 

7.3.1. If xn = {xni}fLi e U ,y = {y^i e H then lim xn = y if and only if lim xni = 
n~* oo n-»oo 

= yifor every index /.*) 

Proo/: I. Let xn-* y. For every e > 0 there is an index p such that g(y, xn) < e 

*) The last equality evidently yields I y{ I ^ 1//, i.e. y e U. 
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for n > p. We have g(y, xn) = J TMi ~ *ni)2 ^ I Ji - *„,• I and hence n > p 

implies | yi — xni | < e; thus, xni -> yt for each index i. 

II. Let xni yt for every index i; then, of course, \yt \ = lim | xni | g 1 //. Let 
00 

us choose an e > 0. Since the series £ l//2 converges, there is an index q such 
(30 i = 1 

that J] \/i2 < e2/8. As 1 ^ / ^ q9 there is an index pt such that 

i = q+ 1 

» > Pi => I - Xni I < • 

Put p = max/v Then 
£ 

1 £ / £ g, n > p => | - x„, | < — , 

n>p=> Q(y, x„) = - xni)2 + I+ i(y f - x.,)2] g 

and hence 

Exercises 

7.1. For * = ( * ! , . . . , * „ ) , J ' 0 ' 1 , . . . , > ' J put Q\x,y)= max | — ^ |, Q"{xt y) -
m 

= J ] | Xi—jKf |. Then p' and are distance functions in Em equivalent with each other 
¿ = i 

and equivalent with the ordinary distance function in Em . 
7.2. Let p be a given real number, p > 1. Let H p be the set of all sequences {-^Jf of real numbers 

00 00 

such that the series £ | xt \p converges. For x = y = { y J put gp(x, y) = ( £ | xt — 
i=l 1=1 

— yi I p ) 1 / p . Then gp is a distance function in H p . 
7.3. Let P and Q be metric spaces with distance functions and Q2• For xx e P , YX eP, x2e Q, 

y2eQ>x = (XT, x2\ y = (YLT y2) put ^ ( x , y) = [ f e ^ , + [Q2(X2, y2)]P)Vp (p ^ l), 
Q"(x,y) = maxp,(jr j,>' /). Then q and q" are equivalent distance functions in PxQ (q'2 is 

¿=1,2 
the distance function from 6.2). Regarding these distance functions 

<xn > yJ y) if and on ly i f *» ̂  y • 
7.4.* Let S be the set of all sequences {*,•}? with real terms. For x = {*,}, y = {>>.} put 

Q'(x,y)= X 1 I * . - * I 
n=l n\ 1 + \xn 

y) = inf (— + max | x{ — y{ I) . 
\n l^i^n I 
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Then Q' and Q" are equivalent distance functions in S. If xn = {jcni}j°=i then, regarding these 
distance functions, we have xn-> x if and only if l imx n i = .xi (in the ordinary sense) 

oo 
simultaneously for every i. 

§ 8. Closure of a point set. Open and closed sets 

8.1. Let P be a given metric space. Let A cz P. Put 

A = E[x e P, q(x, A) = 0]. 
X 

The set A is called the closure of the point set A, more precisely, the closure of A 
in the space P. 

The following formulas are evident 

0 = 0 (1) 
A <zA (2) 

Further, one has: 
A a B implies A c B (3) 

Proof: As A c B we have evidently g(x9 A) ^ g(x9 B) for every point x. Thus, 
we obtain the following sequence of implications 

xeÂ=> g(x9 A) = 0=> Q(X, B) = 0 => x e B. 

Further, we have 
A u B = A u B . (4) 

Proof: By (3), Âc A v B, Hence, if (4) does not hold, then there 
is a point x e A v B — (Â kj B). Since xeP — A, we have g(x, A) > 0 and similarly 
g(x, B) > 0; thus, there is an e > 0 such that A) > e, B) > e. If ye 
e A u B, we have either ye A and hence y) ^ ^(x, A), or y e B and hence 

y) è B). Consequently, yeAuB implies y) > e and hence g(xf A u 
u £ ) ^ £ > 0 . This is a contradiction, since xeAuB. 

Formula (4) yields by induction for m = 1, 2, 3, . . . 

U A , = U At. (5) 
i=l ¿=1 

8.2. 8 .2 .1 . The closure A of a point set A is the set of all limits of convergent sequences, 
the terms of which are points of A. 

Proof: I. Let xeA; thus, g(x, A) = 0 and hence for n = 1,2, 3>..., g(x:tA) < 1 ¡n 
and consequently, there is a point xneA such that g(x9 xn) < 1 /«. Obviously 
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II. Let xne A, xn x. For every n, g(.Y, A) ^ q(x, xn) -> 0 and hence o(x, /I) = 0, 
i.e. x e A . 

Further, we have 
e(x, A) = g(x, A). (6) 

Proof: I. If y e A, we have ye A and hence Q(X, y) ^ A). Hence, Q(X, A) = 
= inf Q(X9 y) ^ e(x, ^i). 

ysA 

II. Let v e A. By the preceding theorem there is a sequence {>>„} such that 
yn e A, yn -> y; we have g(x, A) ^ e(x, yn) g e(x, >>) + y) -> e(x, v), hence 
Q(X, 4̂) g g(x, >>). Consequently @(x, ^ inf g(x, }>) = g(x, A). 

yeA 

By (6) and by the definition of closure we obtain 

A = A 

or, in words: the closure of the closure of a point set A coincides with the closure of A. 

8.3. A point set A (embedded into a space P) is said to be closed, more precisely, 
closed in P, if A = A. Hence: 

8.3.1. 0 and P are closed sets. 

By the definition, we obtain easily: 

8.3.2. Any one-point set is closed. 

By 8.2.1 it follows that 

8.3.3. A point set A is closed if and only if 

x„e A, xeP, xn -> x imply xe A 

or, in words: if and only if A contains the limit of every convergent sequence, the terms 
of which are points of A. 

By (5) it follows that 

8.3.4. The union of any finite number of closed sets is a closed set. 

8.3.5. The intersection f j A(z) of closed sets A(z) is a closed set, the number of the 
Z E C 

members A(z) being finite or infinite. 

Proof: Put B = f | A(z). We have B c A(z) for every zeC, hence, by (3), B c A(z); 
zeC 

as the sets A(z) are closed, we have A(z) = A(z). Thus, B cz A(z) for every zeC 
and hence B c f ) A(z), i.e. B a B. Consequently, by (2), B = B. 

zsC 
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8.4. The closure A of a point set A is the least closed set containing the set A. 

Proof: I. A => A by (2); A is closed by (7). 

II. Let F be a closed set, A c F. By (3), F z> A; as F = F, we obtain F => A. 

8.5. A point set A (embedded into a space P) is said to be open, more precisely, 
open in P, if P — A is closed. 

Consequently: 

8.5.1. 0 and P are open sets. 

By analogous theorems of section 8.3, we obtain (see ex. 1.8) the following 
theorems. 

8.5.2. The intersection of any finite number of open sets is an open set. 

8.5.3. The union (J A(z) of open sets A(z) is an open set, the number of the members 
z e C 

A(z) being finite or infinite. 

j' 
8.6. Any open set G c= P such that a e G is called a neighborhood of the point a 
(more precisely, a neighborhood of a in P). A neighborhood of a point set A cz P 
(more precisely a neighborhood of A in P) is any open set G cz P such that A c G. 
Thus, the neighborhoods of a point a coincide with the neighborhoods of the 
set (a). 

Let a e P. Let r e , r > 0. The set 

E[xeP, q(a, Jt) < r] 
X 

will be denoted Q(a, r), more precisely QP(a, r). This is an open set. 

Proof: Let M = P — &(a, r). We have to prove that M is a closed set. Let 
e M, xn -> x. It suffices to prove that XEM. Since xn E M, g(a, x„) ^ r. We 

have x) + q(x, jtn) ^ xn). Since x„) -> 0, we obtain g(a, x) ^ r, i.e. 
xe M. 

Since a E Q(a, r), the set Q(a, r) is a neighborhood of a. It is called the spherical 
neighborhood of the point a with radius r. 

Let A c P. Let r e E A , r > 0. The set 

E[x E P, ¿0 < r] 
JC 

will be denoted by Q(A, r); more precisely, QP(A, r). We evidently have i2[(tf), r] = 
= Q(a, r), ^ c >4 cz r), r) = r) [see (6)]. We see easily that 
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Q(A9r)= \jQ(x,r), 
xeA 

consequently, the set Q(A, r) is open, and hence it is a neighborhood of the set A. 
It will te termed the spherical neighborhood of the set A with radius r. 

Let A a P. A point ae P will be called an interior point of A (with respect to 
the space P), if there is an /• > 0 such that Q(a, r) a A (then, of course, a e A). 

8.6.1. A point set A is open if and only if each of its points is an interior point. 

Proof: I. Let A be open. Choose a point a e A. The set B = P — A is closed, 
i.e. B = Bf and hence aeP — B. Hence, the number r = g(a, B) is positive.*) 
Evidently, Q(a, r) c: A. 

II. Let every point A: E A be an interior point. We may associate with every x e A 
a positive number r(x) such that r(x)] c: A. We have 

A = U (v) <= (J r(x)] cr A , 
x e A x e A 

hence 
A = U Glx, r(*)] , 

xeA 

and consequently A is a union of open sets and hence open. 
Many authors use the term "neighborhood of aeP" for every U a P (open 

or not open) such that a is its interior point. In this, more general, sense, the set 

E[x e P, g(a, x) ^ r], 
X 

(r given, aeP) is a neighborhood of the point a. It will be denoted by Q(afr). 

8.7. Let P be a metric space and let Q be a point set embedded into P. By 6.3, 
Q is also a metric space. A point set A embedded into Q is also embedded into P. 

In the following, if A c= Q, the symbol A denotes the closure of A in P. 

8.7.1. The closure of A in Q is equal to Q n A. Actually, this closure equals 

E[x e Q, Q(X, A) = 0] = Q n E[x e P, e(.v, A) = ()] = Q n A . 
X X 

8.7.2. The set A a Q is closed in Q if and only if there is a closed set F in P such 
that A = Q n F. 

Proof: I. Let A be closed in Q. Then A coincides with its closure in Q, i.e. A = 
= Q n A. A is closed in P. 

II. Let A = <2 n F, F = F. We have A c F and hence A c F by (3). Thus, 
AczQnAcQnF = A and hence A = Q n A. 

*) If B = 0, we have Q(at B) = oo and Q(at r) <= A for every r > 0. 
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The following two corollaries follow easily by 8.7.2: 

8.7.3. If a set A c Q is closed in P, then it is closed in Q. 

8.7.4. If a set A cz Q is closed in Q and Q is closed in P, then A is closed in P. 

8.7.5. A set A cz Q is open in Q if and only if there is a set G open in P such that 
A = QnG. 

Proof: I. Let A be open in Q. Then Q — A is closed in Q and hence there is 
a closed F in P such that Q - A = Q n F, hence A = Q n (P - F). The set 
P — F is open in P. 

11. Let G be open in P and let A = Q n G. The set P - G is closed in P and 
Q — A = Q n (P - G). Thus, Q — A is closed in Q and hence, finally, A is 
open in Q. 

Theorem 8.7.5 has again two corollaries: 

8.7.6. If a set A cz Q is open in P, it is open in Q. 

8.7.7. If a set A c= Q is open in Q and Q is open in P, then A is open in P. 
Generally we will give a fixed metric space P and if we simply say that a point 

set A is closed (open), we mean closed (open) in P. The sets which are closed or 
open in Q c: P are sometimes called relatively closed or relatively open. Similarly, 
the closure A of a set A is the closure in P, Q n A is the relative closure. 

8.8. Let be a sequence of subsets of a metric space P. We associate with the 
sequence {.A„} two subsets B and C of P as follows: [1] xeB if and only if there 
is a sequence {a„}"=w such that an e An for n ^ m and an x; [2] xeC if and 
only if there exist indices it < I 2 < I 3 < . . . and a sequence {an} such that an e Ain 

and a„ x. The set B is termed the lower limit of {An}9 C the upper limit of {An}; 
we denote them 

B = Lim An = Lim A„ 
n~* 00 

C = Lim An = Lim An. 

Evidently, 
Lim An cz Lim An . (1) 
' n~* oc 

If B = C, we write 

Lim An = Lim An = Lim An. (2) 

Asserting that Lim An exists we indicate the validity of (2). 
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Exercises 

In ex. 8.1—8.8, A and B are point sets embedded into a metric space P. 

8.1. A — B ^ A ^ B . 
8.2.* P — A <= P^A. 

8.3. P — P— ~P~—A = P — A. 
8.4. If A is closed and B is open, A — B is closed and B — A is open. 

In the exercises 8.5.—8.9, 8.11, At denotes the set of all interior points of A. The set At is called 
the interior of the set A. 

8.5. At=P — P—'A. 
8.6. At is the largest open set contained in A. 
8.7. A c= B => At^ Br 

8.8. (A nB), = AtnBt. 
8.9. At — Bt ^ (A — B\. 

In ex. 8.10—8.14, P and Q are given metric spaces, A <=• P, B c Qt A 4= 0 * B. 

8.10. AxB = AxB. 
8.11. (AxB)t = AtxBt. 
8.12. A xB is closed in PxQ if and only if A is closed in P and B is closed in Q. 
8.13.* In ex. 8.12 the word closed may be (simultaneously) replaced by the word open. 
8.14. To what extent in ex. 8.10—8.13 is the assumption of A * 0 4= B substantial? 
8.15. If a e P, r > 0 then the set Q(ay r) is closed in P. Thus, r) => D(at r). However, it may 

occur that Q(a, r) * Q(ay r). 
8.16.* x e Lim An means that {?(*, An) 0; x e Lim An means that there is a subsequence {/*in} 

of { i j ~ w i t h Ain) 0. 

8.17. Lim An = Lim An> Lim An = Lim An. 

8.18. * The sets Lim An and Lim An are closed. 
8.19. Let An = (an); if lim an exists, then Lim An — (lim an). Otherwise Lim An — 0. 
8.20.* If /, < i2 < /3 < we have 

Lim An c Lim Ain <=• Lim Ain ^ Lim An; 
hence, 

Lim An = Lim A-ln , 
if the left-hand side exists. 

8.21. One has 

fMn ^ U n ^ C ^ C ^ c n 
n = l n = l i = n n = I i = n n = 1 

§ 9. Continuous mapping. Homeomorphism 

9.1. Let P and Q be given metric spaces. The distance function in both of them 
will be denoted by Q. It will be always evident which one is meant. 
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Let / b e a mapping of P into Q. Let aeP. We say that the mapping/is continuous 
at the point a if 

If a mapping / i s continuous at a point a and if a e M a P, then the partial map-
ping/M is evidently continuous at the point a. 

9.1.1. mapping f is continuous at a point a if and only if for every e > 0 there is a 
d(a, e) > 0 such that xeP9 q(a9 x) < S(a, e) imply o[f(a)9f(x)] < e. 

Proof: 1. Let the condition be satisfied. Let a. Choose an e > 0 and take 
the S(a, e). Since JC„ a, S(a, s) > 0, there is an index p(e) such that n > p(e) 
implies q(a9 xn) < S(a9 e). Thus, n > p(e) implies Q[f(a),f(xn)] < e i.e. /(*„)-• 
->f(a). Hence,/is continuous at the point a. 

II. Let the mapping./be continuous at a point a. Let us choose an e > 0 and 
let us suppose that there exist no suitable S(a, e). In particular, we cannot put 
3(a, e) = I/n for n = 1, 2, 3, . . . i.e. there is a point xn eP such that g(a9 xn) < \jn, 
Q[/(«)> f(xH)] ^ e. Since g(a9 xn) < \/n we have xn a. Since elf(a),f(xn)] ^ e > 0, 
it does not hold that f(xn) -»f(a)9 which is a contradiction. 

A mapping / is said to be continuous (without any further determination), if it is 
continuous at every point of the space P. 

If / is a mapping of a metric space P into a metric space Q9 f(P) is a point set 
embedded into the space Q. If Q' is a point set with /(P) c Q' c Q then Q' is 
a metric space (see 6.3) and / i s a mapping of P into The definition of continuity 
of the mapping / obviously does not change, if we take Q' instead of Q. 

9.2. Let f be a mapping of a metric space P onto a metric space Q. A necessary and 
sufficient condition for f to be continuous is the following: Jf A is open in Q, /_ {(A) 
is open in P. Another form of the condition: If A is closed in Q, f-\(A) is closed in P. 

Proof: 1. Both forms of the condition are equivalent; see ex. 2.13, write P, Q, Q9 A 
instead of A, B, Nt, N2 respectively. 

II. Let f-i(A) be open in P whenever A is open in Q. Choose an aeP, e > 0. 
We have to prove that there is a <5 > 0 such that xeP9 q(a9 x) < S imply 
Q[fip),f(x)] < s. Put A = QQ[f(a)9 e]. A is open in Q and hence f-x(A) is open 
in P. We have aef-t(A) and hence a is an interior point of f . . ^ ) . Thus, there 
is a 5 > 0 such that QP(a9 3) c f_x(A). If xeP 9 g(a9 x) < S9 we have x e QP(a9 5), 
hence xef.^A), h e n c e f ( x ) e A and hence finally Q[f(a),f(x)] < s. 

III. Let the mapping / be continous. Let A be open in Q. Let aef-^A). We 
have to prove that a is an interior point of f~i(A). Since aef-t(A) and since A 
is open9f(a) is an interior point of A and hence there is an e > 0 with QQ[f(a)9 e]czA. 
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As the mapping / is continuous at the point a, there is a S = 6(a, e) > 0 such that 
the following sequence of implications holds 

xeP, Q(a, y) < S => Q[f(a)J(x)] < £ =>f(x) e QQ[f(a\ e] =>f(x) e A => xef-M) • 

Thus, QP(a, <5) cz / _ , M ) . 

9.3. Let / be a one-to-one continuous mapping of a metric space P onto a metric 
space Q. Then the inverse mapping /_ x of Q onto P need not be continuous. An 
example: Let P be the set of all natural numbers 1, 2, 3, . . . ; let Q be the set of all 
rational numbers; the distance functions in P and Q are defined by embedding 
into Et (see 6.3). By ex. 3.1 there is a one-to-one mapping/of the set P onto the 
set Q. It is easy to prove that the mapping / is continuous, while the inverse 
mapping/_! is continuous at no point of the space Q. 

I f / i s a one-to-one continuous mapping of a metric space P onto a metric space Q 
and if the inverse mapping / _ , is also continuous, we say that / is a homeomorphic 
mapping of the space P onto the space Q. The mapping /_ { is then, evidently, 
a homeomorphic mapping of the space Q onto the space P. 

Spaces P and Q are said to be homeomorphic if there exists a homeomorphic 
mapping of P onto Q (or of Q onto P). 

A topological property of a space P is any property which is preserved on replacing P 
by an arbitrary homeomorphic space. Every isometry is a homeomorphic mapping; 
thus, every topological property is a metric property. Of course, the converse is 
not true. 

Let and Q2 be two equivalent distance functions in a set P. Let us, for clarity, 
speak about the metric spaces (P, £,) and (P, £2)> a s we did at the beginning of 
section 7.2. If we assign to every point x e P , considered as a point of (P, Qt) the 
same point x in (P, Q2), we obtain a mapping / of the space (P, Qt) onto the space 
(P^ Qi)- ^ is e&sy to see that the mapping / is homeomorphic. 

On the other hand, let /be a homeomorphic mapping of a space P (with a distance 
function onto a space Q (with a distance function Q2). Let us define a function e0 

on the domain P x P as follows: 

eo(x, y) = Qi[f(x)J(y)]. 

We see easily that e0 is a distance function equivalent with . 
These considerations show that the topological properties are those metric 

properties which remain preserved after replacing a given distance function by 
an equivalent one. 

Evidently, every property of a metric space P, that may be formulated without 
explicitly speaking about the distance function, i.e., in terms of convergence in P 
only, is a topological property. E.g., the closure A of a point set A embedded into 
a metric space P is a topological notion by 8.2.1. (This is not obvious from the 



58 / / . General metric spaces 

definition, however.) Thus, every notion which may be formulated by means of the 
notion of closure, is topological, e.g. the notion of closed set (A = A) and the 
notion of open set (P — A = P — A) are topological. The notion of continuous 
mapping of a space P into a space Q is also topological, being explicitly defined 
only in convergences in P and Q. 

9.4. We often meet with spaces in which the definition of convergence is quite 
natural, while a distance function is defined artificially. E.g., this was the case in 
the space S in exercise 7.4 with both given distance functions. 

A simpler and more important example is the set R, consisting of all real numbers 
and the symbols oo and — oo. We define convergence in R as follows: If x„eR 
then: [1] x„ oo means that for every c e Ej there is an index p(c) such that 
n > p(c) implies x„ > c; [2] xn-> — oo means that for every ceEl there is an 
index p(c) such that n > p(c) implies xn < c; [3] xn -> a, where a e Ex means that 
there is only a finite number of indices n with xn = oo or xn = — oo and that, 
rejecting all terms xn which are oo or — oo, we obtain a subsequence {>>„} of {x„} 
such that yn-+ a in the ordinary sense. 

Now, we shall define a distance function Q in R such that the convergence defined 
by means of Q (see 7.1) coincides with the one just described. This may be done in 
various ways; it does not matter which one we choose, since we are interested now 
only in topological properties of R. 

For x G R, y e R set 1 

Property [1] (see section 6.1) follows from the fact that for x G R, y G R, X < y 
we have 

Property [2] is evident, property [3] follows immediately from the inequality 
\a\ + \b\^\a + b\ (valid for a e , b e Ej) by substituing a = [x/(l + I * I)] -
- [yl( 1 + \y\)]> b = [yl( 1 + \y\)] - [z/( 1 + \z\)] (XGR, ye R, ZGR). 

Thus Q is a distance function in R. 
We see easily that the convergence in R defined by means of the distance function Q 

coincides with the convergence defined above. Consequently, the partial distance 
function £eixEi is equivalent to the ordinary distance function in EA (introduced 
in 6.1.). The distance function £?EixEi is called the reduced distance function in ET. 
Hence, the space ET with the reduced distance function (not with the ordinary one) 
is a point set embedded into the metric space R. 

^We put 

1 + 1*1 "" l +*! y I ' 
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A mapping of a set P into the set R was termed a function (see 2.3). If P is a metric 
space, a function/is said to be continuous (at a point aeP), if the mapping / i s 
continuous (at the point a) in the sense of section 9.1. If the function / i s finite, we 
may define continuity by the ordinary or by the reduced distance function in ET. 
In the calculus, functions are always finite and continuity is defined by means of 
the ordinary distance function in Ex. 

9.5. 9.5.1. Let P be a metric space. Let f be a function on P. A necessary and sufficient 
condition for a function f to be continuous is the following: for every c e E,, the sets 
E [ / ( X ) > c\ and E [ / ( X ) < c] are open (in P). 
X X 

Proof: I. Let the condition be satisfied. Let xneP9 yeP, xn->y. We have to 
prove that f(xn) f(y). We shall distinguish three cases: 

[1] Let f(y) = oo. Choose a c e E l t Since the set M = E [ / ( X ) > c] is open and 
X 

since yeM, there is an e > 0 such that QP(y, e) <= M. As xn y9 there is an 
index p such that the following sequence of implications holds: 

n > p => q(xn9y) < e => xn e QP(y, e) => xne M =>f(xn) > c . 

Thus, for every CEEj, there is an index p(c) = p such that n > p implies 
f(xn) > c, i.e. f(xn) oo q.e.d. 

[2] Let f(y) = -oo. The argument is similar to case [1]. 
[3] Let f(y)e ET. Choose an e > 0. The set Me = E[\f(x) - f(y) I < e] = 

X 

= E [ / ( X ) > f(y) - e] n E[/(JC) < f(y) + s] is open and contains the point y; 
X X 

hence there is an r > 0 such that o(x9y) < r for x e Mt. As x„ y9 there is an 
index p such that: 

n > p => g(xn, y) < r => xne Me=> \f(xn) - f(y) | < e. 

Thus, for every e > 0 there is an index p(e) = p such that n > P implies 
I / t o ~Ay) I < i.e. /(*.) -+f(y), q.e.d. 

II. Let / be a continuous function. It is easy to prove that the set C = 
= E [ye R, y > c] is open in R for every ce EX. Hence, by 9.2, the set f-x(C) = y 

= E [ f ( x ) > c] is open in P. Similarly we prove that also the set E[/(*) < c] is 
X X 

open in P. 
Since 

E[f(x) S c]= P - E[f(x) > c]y 
X X 

E [ / ( X ) ^ C ] = P - E [ / ( X ) < C ] , (1) 
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the condition in the theorem just proved may be expressed as follows: For every 
c e E,, the sets E[f(x) ^ c] and E[f(x) g c] are Hosed in P. 

X X 

Since 
E[f(x) = c] = E[Ax) ^ c] n E[f(x) ^ c), 
X X X 

E[/(X) = 00] = n E[/(x) S n], 
x n=l x 

E[/(x) = - co ] = n E[/(x) g - * ] , (2) 
JC n= 1 x 

E[/(x) < co] = P - E [ f ( x ) = co], 
X X 

E[/(*) > - c o ] = P - E [ f ( x ) = - c o ] , 
X X 

the sets E[f(x) = c] (ce R) are closed in P and the sets E [ f ( x ) < oo], E[f(x) > 
X ' x x 

-oo] (and hence the set E[f(x) e E,] = E[/(x) < oo] n E[f(x) > -oo]) are open 
X X X 

in P for every continuous function. 
From the calculus, we are acquainted with many continuous functions. We may 

use the theorems just proved to prove easily that some simple sets in the euclidean 
spaces are closed or open. E.g., the function / defined on E2 by f(x, y) = x2ja2 + 
H- y2\b2 is continuous; hence, the ellipse E [x2/a2 + y2/b2 = 1] is a closed set, 

(x ,y) 

its interior E [x2/a2 + y2/b2 < 1] and exterior E [x2\a2 + y2/b2 > 1] are open 

sets; the set E [x2\a2 + y2/b2 ^ 1] is closed, etc. 
( v, >•) 

9.6. Let / be a mapping of a metric space P into a metric space Q. The mapping/ 
is said to be uniformly continuous if 

xneP, yn eP, Q(xn9 yn)0 imply Q[f(xn)J(yn)] -> 0 . 

Putting yn = a e P for every n we see that every uniformly continuous mapping 
is continuous. 

Continuity is a topological notion. Concerning uniform continuity, however, 
we can assert that this is a metric notion only: it need not be preserved on replacing 
the distance functions in P or in Q by equivalent ones. 

As a rule, the term uniformly continuous function is used with finite functions 
only (0 = Ej), assuming the ordinary distance function in Ej (not the reduced one). 

9.6.1. A mapping f (of a space P into a space Q) is uniformly continuous if and only 
tffor every z > 0 there is a 3(e) > 0 such that 

A-eP, yeP, Q(x,y)<3(e) imply i?[/(*),/(>>)]< e. 
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Proof: I. Let the condition be satisfied. Let xnep, yneP, g(xn,y„) 0. Choose 
an £ > 0 and determine the 5(e). Since g(xn9yn) 0, there is an index p such that 
g(xn, y„) < S(e) for n > p. Thus, w > p implies g[f(xn),/(>>„)] < e and consequently 
Q[f(Xn),f(yn)] 0. 

II. Let the mapping f be uniformly continuous. Choose an e > 0 and assume 
that there is no suitable <5(e). Thus, we may not put <5(e) = 1/n for n = 1, 2, 3, . . 
i.e. there are points x„eP, yneP such that g(xn9yn) < 1/n, <?[/(*„),/(>'„)] ^ 
Since g(xn9yn) < \/n, we have g(xn9 yn) 0. Since {?[/(*„),/GO! ^ e, g[f(xn), f(yn)] 

0 does not hold. This is a contradiction. 

Exercises 

9.1. Let us define a function / o n Ej as follows: for irrational x put f(x) = 0, for rational put 
fix) — 1. The function / is continuous at no point x e E j . 

9.2. Let us define a function / on EA as follows: for irrational x put f(x) — 0; if m and n are 
integers without common divisor put f(mjn) = 1/| n |. The func t ion / i s continuous at a point 
x e Ex if and only if x is irrational. 

9.3. Let us define a function / on E2 as follows: f(0ty) = 0, f(xty) = (x2 -h y2)/x for x =¥ 0. 
The function / is not continuous at the point (0,0). If A is an arbitrary straight line going 
through (0, 0), i.e. A E [ax + by = 0] where a e E , , b e E j , | a I + I h | > 0, the partial 

Cx,y) 
function fA is continuous at the point (0,0). 

In ex. 9.4—9.5, P is a metric space and A and B are point sets embedded into P\ f is a mapping of P 
into Q. 

9.4. If A v B = P, a e A n B and both the partial mappings fA and fB are continuous at at then 
the mapping / is also continuous at a. 

9.5. If A U B = Pt both sets A and B are closed and both the partial mappings fA and fB are 
continuous, then the mapping / is also continuous. 

9.6. If a mapping / i s continuous, then the set E [x e P, y e Q, y = f(x)] is closed in PxQ. 
(x,y) 

9.7. The characteristic function of a set A is continuous if and only if the set A is both closed 
and open. 

9.8. A mapping / i s continuous if and only if f ( X ) f ( X ) for every X c P. 
9.9. A mapping / i s continuous if and only if f-i(Y) c f ^ ^ Y ) for every Y <= Q. 
9.10.* Let A 4= 0. The function A) is uniformly continuous. 
9.11.* Let d(A) < oo. The function d(x, A) is uniformly continuous. 
9.12.* The distance function Q of the space P is uniformly continuous in the domain P xP. 

In ex. 9.13—9.15,/is a one-to-one mapping of P onto Q. 

9.13. A necessary and sufficient condition for / to be homeomorphic is the following: X c p is 
closed in P if and only if f ( X ) is closed in Q. 

9.14. In ex. 9.13, the word closed may be (simultaneously) replaced by the word open. 
9.15. A necessary and sufficient condition for / to be homeomorphic is the following: X <= p 

implies f ( X ) = f J X ) . 
9.16. Let P and Q be metric spaces, Q 4= 0. For x eP,y eQ pu t / (* , y) = x. Then / i s a uniformly 

continuous mapping of the space PxQ onto the space P. 
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9.17. For x e EA put f(x) = x2. The f u n c t i o n / i s continuous, but it is not uniformly continuous. 
However, if we replace the ordinary distance function in E i by the reduced one, the m a p p i n g / 
is a uniformly continuous mapping of the space Ej into the space E x . 

9.18.* The metric space R is homeomorphic with the interval E[—1 ^ t ^ 1]. We obtain a homeo-
t 

morphic mapping e.g. putting /(oo) = 1 , / (—oo) = —1 and f i t ) = //(1 + 11 |) for f e EA .*) 
9.19.* Let P be a metric space, let a eP, let / , g be finite functions on P, continuous at the point a. 

Then the function, the value of which is given in any x e P by one of the following formulas 
(by the same one for each x eP): 

| f(x) I, max [/(*), *(*)], min [/(*), g(x)], fix) + gix)y fix) - gix), f i x ) . gix) 

is continuous at the point a. If, moreover, gia) =t= 0, the function h, defined for x e E[y e P, 
y 

g(y) * 0] by the relation hix) = fix)/gix)t and defined arbitrarily for xeP — E[y ePf 
y 

giy) =1= 0] is also continuous at the point a. — The reader should examine how the theorem 
has to be altered, if we do not assume finiteness of the functions / , g. 

9.20.* Let gi (/ — 1, 2) be a mapping of a metric space Pi onto a metric space Pi+1; let a1 e Pir 

a2 = g\ia\\ hence a2 eP2. Let the mappings gi (/ = 1,2) be continuous at the points ax. 
Then the mapping / of Pt onto P3 defined by 

xePt => fix) = g2[glix)] 

is continuous at the point a x . 
9.21.* Let / be a continuous mapping of a metric space P onto a metric space Q. Let An P 

in = 1,2, 3 , . . . ) . Then 

/ (Lim An) cz Lim/(/4n) , / (Lim An) c Lim fiAn). 

If the mapping / is homeomorphic, then 

/ (Lim An) = U^fiAn) , / (Lim An) = UmfiAn) 

and hence Lim f(An) exists if and only if Lim An exists. 

§ 10. Separated point sets; the boundaries of point sets 

10.1. 10.1.1. Let P be a metric space. For arbitrary At c= P, A 2 c P there are closed 
sets_ F{, F2 such that F, u F2 = P, At <= P, , A2 c F2, Ft n F2 n (At u A2) = 
= Al n A2. 

Proof: If AX = 0, put = 0, F2 = P; similarly for A2 = 0. Let A1 #= 0 * A2. 
If fix) = Q(X,Ax) — Q(X, A2) for xe P, the function/is continuous onPby ex. 9.10. 
Consequently, by 9.5, the sets Fy = A J ^ Q(X, A2)] and F2 = E [ Q ( X , AT) ^ 

X X 

^ q(x, A2)] are closed. Evidently u F2 = P, Ax c Ft, A2 c F2. It remains to 
prove that Fi N F2 N (At u A2) = Ax n A2. First, let x e Fl N F2, i.e. Q(X9 At) = 
= A2). If xeAl9 we have e(;t, At) = 0, hence ^(x, A2) = 0 and hence xeA2. 

*) This mapping is an isometry if we take the ordinary distance function in E[—1 ^ t ^ 1] 
t 
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Similarly, xeA2 implies xe Ax. Hence Ft n F2 n (Ax u A2) aA{c\A2. On the 
other handy let xe2x c\A2. Then G(x, At) = 0 = Q(X, A2) implies x e Fx n P 2 . 
Hence also A1 n A2 c Fx n F2 n (Àx u A2). 

10.1.2. Let U be a neighborhood of a closed set A. Then there is a neighborhood V 
of A such that Va U.*) 

Proof: In 10.1.1 put Al = A, A2 = P - U. Then Ax = Ài9 A2 = Â2. Find P, 
and F2 by the quoted theorem and put V = P — F2. Thus, the set V is open. We 
have Fx n F2 n [A u (P - U)] = A - U = 0, and hence A n P2 = 0 i.e. A c F, 
and c Î7. Since Px u F2 = P we have K = P — P2 c Fx, and hence finally 
V cz Fx = Fx a U. 

10.2. Point sets ^ and B are said to be separated if: [1] A n B = 0, [2] both /4 and P 
are closed i n i u j 5 . Since condition [1] yields that A = (A u B) — P, P = (A u P) — 
— condition [2] may be replaced by condition [2']: both A and B are open in 
A u P. The property of sets and P being separated is a topological property 
(see 9.3) depending on the space A u B only, not on the whole space P into which 
A u P is embedded. 

The following two theorems follow immediately from the definition (see 8.7.3 
and 8.7.6). 

10.2.1. Two closed disjoint sets are separated. 

10.2.2. Two open disjoint sets are separated. 

10.2.3. Sets A and B are separated if and only if A n P = 0 = P n ^ ; otherwise 
stated: if and only if [1 ] xeB implies Q(X, A) > 0 and [2] x e A implies Q(X, P) > 0. 

Proof: I. Let the sets A and P be separated. Then A n P = 0. The set A is closed 
in A u P; hence, its relative closure in A u P, i.e. (̂ 4 u P) n J4, is equal to A. Hence 
BnÂaAnB=0. Consequently B n Â = 0; similarly, A n B = 0. 

II. Let ^ n P = 0 = P n Â As P cz P, we have ^ n P = 0. As P n ^ = 0, 
we have (A uB)nÂ = AnÀuBnÂ = AnA = A; i.e. the set ^ is equal 
to its relative closure in A u P, i.e. yi is closed in >4 u B. Similarly, P is closed in 
AuB. 

10.2.4. Lei sets A and B be separated. Let C a A, D a B. Then the sets C and D 
are separated. 

*) This property of subsets of metric spaces is termed the normality. An analogous statement 
in more general spaces may be false. (Ed.) 
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Proof: C cz A, D c B and hence A n B = 0 implies C n D = 0, A n B = 0 
implies C n D = 0. 

10.2.5. LE/ Ĵ AS >4 I? be separated; let also sets A and C be separated. Then the 
sets A and B u C are separated. 

P/-00/: ^ n ^ = 0, ^ n C = 0 imply A C\(B\JC) = 0. Since Bu~C = S u C , 
AnB = 0, A nC = 0 imply A n BuC = 0. 

10.2.6. Let sets G and H be open and let G n H = 0. Then G n H = 0. 

Actually, G and / / are separated. 

10.2.7. Sets A and B are separated if and only if there exist open sets U and V such 
that U n V = 0, U => A, V z> B. 

Proof: I. If such sets U and V exist, they are separated. As A cz U, B cz V, also 
A and B are separated. 

II. Let A and B be separated. By 10.1.1 there are closed FL9 F2 such that 

f , u f 2 = P , p , 3 F2=> B , FT N F 2 N ( A U B ) = A N B 

Put U = P - F29 V = P - FX. Then the sets t/ and F are open and UNV = 
= P - u F2) = 0. If we had xe A n F2, we would obtain x e FT n F2 n 
n (JI u B), hence xeAnBnA and hence xe A N B. We have however, An 5 = 0. 
Thus, A n F2 = 0, so that A C P - F2 = U. Similarly, B cz V. 

10.3. For every A cP denote by B(A), more precisely BP(A), the set A n (P - A) (i.e. 
the set E[g(;c, A) = 0, Q(X, P — ,4) = 0]), and call it the boundary of the set A (in 

X 

the space P). The notion of boundary is a topological notion. From the defi-
nition it follows: 

10.3.1. The set B(A) is always closed. Evidently we always have 

B(P- A) = B(A). (1) 

It always holds that 
B{A kjB)CZ B(A) u B(B). (2) 

Proof: Since A cz A u B, we have P - (A u B) <= P - A and hence P — (A u B) cz 
<= P - A. Similarly P - (A u B) c P - B; moreover, A u B = A u B. Thus 

B(A u B) = (A u B) n (P - {A u £)] c ^ n (P ^T) u ¿u ( P ^ i T ) = 

= £(,4) u £(5) . 
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From (2) it follows by induction that 
m m 

B( U Ad c U B(Ad . (3) 
i=i i=i 

We always have 
B(A nB) c B(A) u B(B). (4) 

Actually by (1) and (2) 
B(A nB) = B[P - (An B)] = 

= B[(P - A) u(P- B)] c B(P - A) u B(P - B) = B(A) u B(B). 

From (4) it follows by induction for m = 1, 2, 3, . . . that 
m m 

B i f t A J c z U B i A , ) . (5) 
1=1 1=1 

It always holds that 
B(A - B) c= B(A) u B(B), (6) 

since, by (4) and (1), 

B{A - B) = B[A n (P — B)] c B(A) u B(P - B) = B(A) u B(B). 

We always have 

B(A)aB(A). (7) 

Proof: By ex. 8.2, P - A a P - A; hence 
B(A) = A n(P - A) a A n(P - A) = B(A). 

Formulas (6) and (7) yield 

B(A - B) c B(A)uB(B). (8) 

The notion of boundary is particularly important in the case of open sets. 

10.3.2. If a set A is open, then 

B(A) = A- A. (9) 

Proof: The set P — A is closed, hence P — A = P — A and hence 

B(A) = An P-A = A n(P - A) = A - A. 
oc oc 

10.4.*) Let Gn and Vn (n = 1, 2, 3, ...) be open sets. Let S = f ] Gn. Let T c \J Vn. 
»i=l n = 1 

*) The so called Menger's addition theorem (Ed.). 
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Let, for n = 1, 2, 3 , < ? „ =» G„+1, V„ <= G„. Then 

B{ U Vn) e U fi(^) u M, 
n= 1 n= 1 

oo 

/» = 1 
00 00 00 

Proo/: Put H = B( U Vn), M = SnH. As T = U F* and as the set U 
n = l n = l n = l 

is open, H n T = 0 and hence M cz S — T. Now, it suffices to show that, for 
00 

every aeH — S there is an index k with aeB(Vk). As aeH — S, S = f | Gny 
n = 1 

there is an index h such that aeP — Gh. For every n > h we have Vn c Gn c= Gh> 
00 00 00 

hence (J Vn cz Ghi.hence U Vncz Gh and hence aeP — U F„. On the 
n = » / i + l n = / i + 1 n = h + l 

other hand 

aeHc\JVH=VIV...vVHV U VH = V, U ... U VH U U ^n 
n = « l n = fc + l n = /i + l 

h __ 

and hence a e U VH. Consequently there is an index k with aeVk. We have 
n = 1 

oc 
aeH cP - U ^ c P -

n = 1 
Thus, aeVk-Vk = B(Vk). 

10.5. 10.5.1. Let Q cz P9 A a P. Then 

Bq(Q nA)^Qn BP(A). (10) 

Proo/V By 8.7, BQ(Q n A) = Q n (Q n A) n (Q - Q n A). By formula (3) in 
8.1, QnAc A, Q — QnAczP — A and hence (Q n Q n A) n (Q - Q n A) a 
czQnAn (P - A) = Qn BP(A). 

10.5.2. Let Q cz P. Lei a i/0 ¿e in Q. Let a set U be open in P; let U0 c: ¿7. 
Then there is a set V cz U open in P and such that 

U0 = QnV, BQ(U0) = Q n BP(V). 

Proof: The sets U0 and Q — U0 are open in Q> and U0 n (Q — U0) = 0. Thus, 
the sets U0 and Q — U0 are separated, so that there are T and W open in P such 
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that T nW = 0, T => U0, W ZD Q - C/0. Since U0 is open in 0, there is, by 8.7.5, 
a set G open in P such that U0 = Q n G. Put V = G n T n C/. Thus, the set K c i/ 
is open in P. Since i/0 c i/, L/0 <= J , U0 = Q n G, we have U0 = Q n V. Since 
Kcz T, Q - U0 <z W9 Tn W = 0 and since the sets T and W are open in P, the 
sets V and Q — U0 are separated, so that V n(Q — U0) = 0 and hence Q n K c 
c Qr\U0. Thus, as U0 = Q n V, we have g n K - g n F c Q nJ7 0 - U0. 
We have QnV-QnV=Qn(V-V)=Qn BP(V). Since Q n U0 is the 
relative closure of the set U0 in Q, we obtain, by (9), Q n U0 — U0 = BQ(U0). 
Thus, Q n P f(F) c BQ(U0). By (10), also Q n PP(K) => PQ(C/0). 

Exercises 

10.1. If sets /4 and B are closed, the sets A — B and B — A are separated. 
10.2. A one-point set (a) and a set A are separated if and only if £>(a, A) > 0. 
10.3.* Let m = 3 , 4 , 5 , . . . . Sets Aif A2,..., Am are said to be separated if, for every /, k with 

1 ^ i < k ^ m, A{ and Ak are separated. The sets Aif A2,...»Am are separated if and 
m 

only if: [1] they are disjoint, [2] they are closed in JJ Ax. The word "closed" in [2] may 
i= 1 

be replaced by the word "open". 
10.4. Sets Ait A2>Am are separated if and only if for every w, 1 ^ n ^ m — 1 , the sets 

n 
JJ Ai and An + l are separated. 
1 = 1 

For A <=• Py B c: p put 5(y4, B) = A c\ B KJ B c\ A. The set S(/4, B) is called the junction of the 
sets A and B. 

10.5. The junction S(/i, B) will not change, if the space P is replaced by a space Q, A u B c: 
<= G c P. 

10.6. S(Ay B) = A n B if and only if both the sets A and B are closed in A U B. 
10.7. S(B, C)] = «SfSC/̂ , B), C] does not, in general, hold (the junction is not associative). 
10.8. A = AKJ B{A). 
10.9. A set A is closed if and only if B(A) <= A. 
10.10. A set A is open if and only if A n B(A) = 0. 
10.11. B(A) is the set of all the points at which the characteristic function of A is not continuous. 
10.12. For any closed A, B[B(A)] = B(A). 
10.13. B{B[B(A)]} = B[B(A)] <= B(A). 

In exercises 10.14 and 10.15 the index i has the same significance as it had in ex. 8.5 and the 
following ones. 

10.14. B(At) <= B(A). 
10.15. [B(A)]l = A n [B(A)]t = WiA^ — A. 

10.16. Let P and Q be metric spaces, let A c P, B c Q. Then B(A X B) = B(A)xB U Ax B(B), 

For A ^ B put 5(/l) = A ri B(A). The set S(A) is called the frontier of the set A. 

10.17. B{A) = S(A) U S(P — A) with disjoint summands. 
10.18. S[S04)] = 5(/l). 
10.19. B(A) = S(A) if and only if A is closed. 
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§ 11. Dense-in-itself and dispersed spaces 

11.1. A point a of a metric space P is said to be an isolated point of P if there is a posi-
tive £ such that x e P, g(a, x) < e imply x = a. A non-void space P is said to be 
isolated, if each one of its point is isolated. 

A space P is said to be dense-in-itself if there are no isolated points in P. 
Since a point set Q embedded into a metric space P is also a metric space, we need 

not define explicitly an isolated point of a (nonvoid) point set, an isolated point 
set, or a dense-in-itself point set. 

Evidently, an isolated point a of a set A c= P is an isolated point of every the B 
such that aeB c: A. Consequently, a union U A(z) is dense-in-itself whenever 
every A(z) is dense-in-itself. 

11.1.1. A set A c P is dense-in-itself if and only if the set A is dense-in-itself. 

Proof: I. Let A be detise-in-itself. Then A 4= 0 and hence A 4= 0. If A is not dense-
in-itself, there is an isolated point a e A. There is an s > 0 such that xe A, g(a, x) < e 
imply x = a. Since a e A, we have g(a9 A) = 0 and hence there is a point be A 
with g(a9 b) < e. As A c A, we have b = a and hence ae A. Since a is an isolated 
point of the set A => A and since a e A, a is an isolated point of A. This is a con-
tradiction. 

II. Let the set A be dense-in-itself. Then A 4= 0 and hence A 4-- 0. If the set A 
is not dense-in-itself, it has an isolated point a. There is an e > 0 such that xeA , 
g(a9 x) < e imply x = a. As the set A has no isolated points and as a e A c A, 
there is a point be A such that a 4= b, g(a, b) < ie. Since be A, we have g(b, A) = 0. 
Hence, there is a point ce A with g(b, c) < g(a, b). We have g{a, c) g g{a, b) + 
+ g{b, c) < 2g(a, b) < e, ce A and hence c = a. This is a contradiction, since 
£(6, c) < g(a, 

Let P be an arbitrary metric space. If there is no dense-in-itself subset A cz P, 
we put ^ = 0. Otherwise, K is the union of all dense-in-itself A cz P. By the remark 
above, the set K is dense-in-itself. Thus, it is the largest dense-in-itself set embedded 
into P. The set K is also dense-in-itself, hence K c K so that K = K; this holds, of 
course, with K = 0, too. The set AT is called the kernel of the space P. Again, we 
need not define explicitly the kernel of a point set. 

A set A c P is termed by many authors perfect in P, if: [1] it is dense-in-itself, 
[2] it is closed in P. Notice, that the property [1] depends on the set A only, while [2] 
depends on the space P. 

Many authors consider 0 as a dense-in-itself set. 

11.2. A space P is said to be dispersed, if its kernel is void, i.e. if P does not contain 
a non-void dense-in-itself set, i.e., if for every A 4= 0, A a P, A has an isolated point. 
We need not define a dispersed point set 0 c ? . 
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If a space P is dispersed, then evidently every A cz P is dispersed. Evidently 0 
and every isolated set is dispersed. Obviously no (nonvoid) set is simultaneously 
both dense-in-itself and dispersed. 

11.2.1. If sets A c: P and B a P are dispersed. then the set Au B is also dispersed. 

Proof: On the contrary, let there be a dense-in-itself set S c A u B. As the set B 
is dispersed, it is not the case that S c: B and hence A n S 4= 0; similarly B n S 4= 0. 
Since 0 4= >4 n 5 <= A and since >4 is dispersed, there exists an isolated point a 
of the set A n S. There is an e > 0 such that xe A n S, o(a, x) < e imply x = a. 
As a e S and as S is dense-in-itself, there is a point be S such that 6 4= tf, (?(#, b) < e. 
Thus, b is not contained in A n S and hence b e B n S. 

Thus, the set B n S n , e) is non-void; since B n Sis dispersed the set B n S n 
n £>(¿7, e) has an isolated point c. Hence, there exists an r\ > 0 such that xeB n 
n S n Q(a, e), x) < rj imply * = c. As c e 5 and as S is dense-in-itself, there 
is a point e S such that d 4= c, Q(C, d) < R\, e(c, d) < e — Q(a, C), J 4: a (since 
c g Q(a, c), we have e - c) > 0). As d e S = (A n S) kj (B n S), we have 
either deAnS or deBnS. But de A n S does not hold, as q(a, J) ^ c) + 
+ G(E, d) < E, d =T= a; also de B N S does not hold, for Q(C, d) < R], d ^ E. 

Exercises 

11.1. A point a eP is isolated if and only if the set (a) is open. 

Let Aj designate the set of all isolated points of a point set A; by Ah we denote the set A — Aj. 

11.2. The set Ah is closed in A. 
11.3. A ^ B implies AH <= Bh. 

The set (A)h is denoted by A' and called the derived set of the set A. The points of the set A' are 
termed, as a rule, the accumulation points (or cluster points, or limit points) of A. While Ah depends 
only on the space A, A' depends also on the space P => A. 

11.4. A=AUA'. 
11.5. Ah = A n A'. 
11.6. A' = A— Aj. 
11.7. (A U BY = A' U B'. 
11.8. The set A' is always closed. 
11.9. A' is the set of all limits of convergent one-to-one sequences {*„} such that xn e A. 

m 
11.10. The set Am consisting of zero and of all the numbers of the form £ \!n{ (m, nlf...t 

¿=1 
nm = 1, 2, 3 , . . . ) is dispersed and closed in the space E j . The set Ax — (0) is isolated. We 

OO 
have A'm+l = (Am + l)h = Am. The set (J Am is dense-in-itself and is not closed in E1# 

m= 1 
11.11. Let A ^ B A. The set B is dense-in-itself if and only if the set A is dense-in-itself. 
11.12. If a set A is dense-in-itself, the set A' is also dense-in-itself. 
11.13. If a space is dense-in-itself, then each of its open nonvoid subsets is dense-it-itself. 
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11.14. A space P is isolated if and only if every function on P is continuous. 

In the following exercises, P and Q are two given metric spaces. 

11.15. Let aeP, b e Q. The point (a, b) is isolated in PxQ if and only if the point a is isolated 
in P and the point b is isolated in Q. 

11.16. If P is dense-in-itself, then PxQ is dense-in-itself. 
11.17. If PxQ is dense-in-itself, then either P or Q is dense-in-itself. 
11.18. If P and Q are dispersed, then P x Q is dispersed. 
11.19. If P 4= 0 4= Q and if P x Q is dispersed, then P and Q are dispersed. 

§ 12. Dense and nowhere dense sets. Sets of the first category 

12.1. Let P be a metric space. A point set A cz P is said to be dense, more precisely, 
dense in P, if A = P, i.e. if Q(X, A) = 0 for every point x e P. The density of a set A 
is a topological property (similar to the property of being closed or open) depending 
on the "position" of A in P. This contrasts with the property of being dense-in-itself 
which depends on the "form" of A only. 

The following theorem is obvious by the definition: 

12.1.1. If A cz B cz P and if A is dense, then B is also dense. 

12.1.2. A set A cz P is dense if and only if A n G 4= 0 for every open G 4= 0. 
Proof: I. Let A = P. Let G be open and let A n G = 0. Then A cz P - G, hence 

P = AczP-G = P - G and hence G = 0. 

II. Let ^ 4= P. The set G = P — A is non-void and open, and we have (r 4= 0 = 
= A nG. 

12.1.3. Le/ A be a dense set, /ei G be an open dense set. 7%ew i/je set A n G is dense. 

Proof: Let P 4= 0 be open. The set G n P is open and nonvoid, since G is dense. 
Hence, as A is dense, we have A n G n r 4= 0. Thus, AnGnT 4= 0 for every 
open r 4= 0 and hence A n G is dense. 

12.2. A set A cz P is said to be nowhere dense, more precisely, nowhere dense in P, 
if the set P — A is dense. It is again a topological property depending on the position 
of the set A in the space P, in contrast with dispersedness which depends on the form 
of A only. 

12.2.1. If A cz B cz P and if B is nowhere dense, then A is nowhere dense. 

Proof: As P - B = P and A cz 5, we have P - A P - B and hence P - A => 
z> p - 5 = P. Hence P - ^ = P. 
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From the definition follows immediately: 

12.2.2. If A = B (e.g. if A c B cz A), and if the set A is nowhere dense, then the 
set B is also nowhere dense. 

12.2.3. A set A cz P is nowhere dense if and only if every open G =1= 0 contains an 
open r 4= 0 with A n T = 0. 

Proof: I. Let A be nowhere dense; then, P — A is dense. If G is a non-void open 
set, the set T = G n (P — A) is non-void. The set T is open and A n T = 0. 

II. Let A not be nowhere dense; hence, P — A is not dense. Then there is an open 
non-void set G with G n (P - A) = 0, i.e. G cz A. Let T be a non-void open subset 
of G. We have to prove that A n r 4= 0. If A n T = 0, then A a P — T and hence 
r*zGcAczP — r = P — T; consequently r = 0. This is a contradiction. 

12.2.4. Let Ai (1 g i ^ m\ m = 1, 2, 3,...) be nowhere dense sets. Then the set 
m 

(J Ai is nowhere dense. 
i= 1 

Proof: This is evident for m = 1. If the statement holds for some m and if sets 
m 

Ai(\ ^ i ^ m + 1) are nowhere dense, then the sets U Ax and Am+l are nowhere 
i=l 

m m 

dense and hence the sets P — U A t — P — \J A t and P — Am+i are dense. As 
i=1 1=1 

m m +1 
the set P - Am+l is open, the set (P - (J AJ n (P - Am^t) = P - (J A{ = 

i= 1 ¿=1 
m+1 m+1 

= P — (J is dense (by 12.1.3) and hence the set (J is nowhere dense. 
»=1 ¿=i 

12.3. A set A c: P is called a set of the first category, more precisely, of the first 
category in P, if there is a sequence {An} of nowhere dense sets such that A = 

00 

= (J An. This is again a topological property of the position of A in P. A. set which 
n= 1 

is not of the first category is termed by many authors a set of the second category. 
A set A such that P — A is of the first category is said to be residual. 

12.3.1. If A cz B c P and if B is a set of the first category, then A is a set of the first 
category, too. 

CO 00 
Proof: B = U Bn with nowhere dense sets Bn. Hence, A = U A n Bn and the 

n= 1 n = 1 
sets A n Bn cz Bn are nowhere dense. 
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The definition yields immediately: 

12.3.2. Every nowhere dense set is a set of the first category. 

00 

12.3.3. If An (n = 1, 2, 3,...) are sets of the first category, U An is also a set of the 
n= 1 

first category. 
00 

Proof: We have An = [J Ani with nowhere dense Ani. By 3.5 there is a one-to-one 
¿=1 00 

sequence {(wfc, ik)}k=i consisting of all the pairs (w, i). We have A = [J A„kik. 
k = I 

12.4. Let a point set 0 be embedded into a space P. Then (see 6.3) 0 is also a metric 
space. A point set A embedded into 0 is also embedded into P. The set A may be 
dense in 0 , dense in P, nowhere dense in 0, nowhere dense in P, of the first category 
in 0 , of the first category in P. 

12.4.1. The set A cz 0 is dense in 0 if and only if A •=> Q and if and only if A = 0. 

Proof: By 8.7.1, A is dense in 0 if and only if 0 n A = 0. 0 n A = 0 implies 
0 a A <= 0 c A and hence ^ = g and Qr\A = Qr\Q = Q. 

12.4.2. If a set A cz 0 is dense in P, then A is dense in 0 and 0 is dense in P. 

Proof: As A = P, we have A => Q, i.e. A is dense in Q. Q is dense in P by 12.1.1. 

12.4.3. If a set A c Q is dense in Q and if Q is dense in P, then A is dense in P. 

Proof: A = Q, Q = P and consequently A = P. 

12.4.4. If a set A cz Q is nowhere dense in Q, then A is nowhere dense in P. 

Proof: Let G be a non-void set open in P. We have to prove that there is a non-
void open T cz G with T =1= 0 = A n T. Since A c= Q, in the case QnG = 0 
we may choose T = G. Thus, let Q n G 4= 0. The set 0 n G is open in Q and non-
void. Since A is nowhere dense in 0, there is a non-void A <= 0 n G open in 0 
such that J jr 0 = A c\ A. As J is open in 0, there is a set i / open in P such that 
A = Q n H. Put T = G n H. The set P is open in P and we have P c G. Since 
¿1 c 0 n G, J = 0 n H, we have J = 0 n P, and hence P 4= 0, since A 4= 0. 
Since c 0, J = 0 n P, we have A n T = A n A = 0. 

12.4.5. If A cz Q is a set of the first category in 0 , i/zetf it is a set of the first 
category in P. 

00 

Proof: A = {J A„ with An nowhere dense in 0 and hence nowhere dense in P. 
n = 1 
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Exercises 

12.1. A dense subset A of P contains every isolated point of P. 
12.2.* A set A is dense in P if and only if for every x eP there exists a sequence {*„} with xn e A 

and xn -> x. 
12.3.* If A is dense in P and if G is open in P, then A n G is dense in G. 
12.4. If A is dense in a space P, then A is dense-in-itself if and only if P is dense-in-itself. 
12.5.* A finite set A is nowhere dense in a space P if and only if there is no isolated point of P in A. 
12.6. If A is nowhere dense in Q, then A O Q is nowhere dense in Q. 
12.7.* If a set A is either closed or open or nowhere dense, then the set 13(A) is nowhere dense. 
12.8. If the sets B(A) and B(B) arc nowhere dense, then the sets B(A U B), B(A n B\ B(A — B) 

are nowhere dense. 
12.9. If G is an open set and if A is a nowhere dense set, then A n G is nowhere dense in G 

and A n G is nowhere dense in G. 
12.10. Let A ^ P be a dispersed set. Let P be dense in itself. Then A is dispersed in P. 
12.11. If A and B are separated sets, then the set A r\B is nowhere dense. 
12.12. No set of the first category in P contains an isolated point of P. 
12.13.* A countable set A is a set of the first category in P if and only if it contains no isolated 

point of P. 
12.14. If A is a set of the first category in Q, then A n Q is a set of the first category in Q. 
12.15. If G is an open set and if A is a set of the first category, then the set A n G is of the first 

category in G and the set A n G is of the first category in G. 
In the following exercises, P and Q are two metric spaces, A c P, B Q. 
12.16. If A is dense in P and if B is dense in Q, then A xB is dense in PxQ. 
12.17. If P 4=0 4= G and if A xB is dense in PxQ, then A is dense in P and B dense in Q. 
12.18. If A is nowhere dense in P, then A xB is nowhere dense in PxQ. 
12.19. If A x B is nowhere dense in P x Q, then either A is nowhere dense in P or B is nowhere dense 

in Q. 

§ 13. G^-sets and Fa-sets 

13.1. A point set A embedded into a metric space P is said to be G^ (or a G^-set),. 
oo 

more precisely G5(P), if there exist open sets AnaP such that A = f ] An. Moreover, 
oc n= 1 

in such a case there are open sets Gn cz P such that A = f ] Gn and Gn-=> Gn+1; it 
n n= 1 

suffices to put Gn = n A ¡. The notion of G^-set is a topological notion. 
¿=1 

Obviously: 

13.1.1. Every open set A is Gd (it suffices to put An = A). 
OO 

13.1.2. If A„ (n = 1, 2, 3,...) are Gd-sets, the set f | is also Gs. 
n= 1 oo 

Proof: There are open Ani such that A„ = f | Ani. By 3.5 there exists a one-to-one 
i = 1 00 00 

sequence {(nk9 ik)}?=1 of all the pairs (n, i). We have f | An = f | Ankik. 
n= 1 k=1 
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13.1.3. If A and B are Onsets, the set A u B is also Gd. 
00 00 

Proof: There exist open sets An and Bt such that A = f ] A„, B = f ) B>. If 
n = 1 ¿ = 1 

{(nki ik)}k=i is again a one-to-one sequence of all the pairs («, /), then, as An u Bt 

are open, it suffices to prove that 

AuB= n (AHkuBJ. 
k= I 

oo 

The left-hand side is evidently a subset of the right hand side. Let * e f ) u 

k= 1 
00 00 

u Bik). If x does not belong to A u B, we have neither xe A = An nor x e 
n = 1 i= 1 

thus, there are indices n and i such that neither x e An nor x e 2?f and hence x does 
not belong to An u B%. This is a contradiction, since there is an index k with n = nk 

and i = ik and x e Ank u Bik. 

13.2. Every closed set A is GA. Moreover9 for every closed set A there are open sets Gn 

such that 

00 00 

n= 1 n = 1 
Proof: Put Gn = Q{A, \/n) = A) < 1 /n]. By 9.5 and by ex. 9.10, the sets Gn 

X 

are open. (This also holds for A = 0 since then Gn = 0.) Moreover, the sets E[e(x, A) g 
X 

^ 1 /n] are closed and hence, by 8.4, Gn cz A) ^ l/n] and hence A <= Gn c 
00 00 * 00 

<z Gn cz so that ,4 cz = Gn. It remains to be proved that A z> fl Gn. 
oo n — 1 u = 1 n = 1 

If xe 0 Gn, then A) < l/n for every n, hence g(x, A) = 0 and hence finally _ n = 1 

x e A = A. 

13.3. A point set A embedded into a metric space P is said to be ?a (or a Fa-set), more 
oc 

precisely F^P), if there exist closed sets An cz P such that A — (J A„. Moreover, 
oo n = 1 

in such a case there are closed sets Fn cz P jhc/? = (J F„, Fn cz pn + ! ; it suffices 
n n = 1 

to put P„ = U The notion of F^-set is a topological notion. 
i=i 

13.3.1. A set A is F, if and only if P — A is In fact, 

A = (J An=>P-A= \J(P-An), 
n = l n = 1 
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Thus, the preceding theorems yield: 

13.3.2. Every closed set is F,. 

00 

13.3.3. If An (n = 1, 2, 3,...) are Fa-sets, then the set JJ An is also 
n — 1 

13.3.4. If A and B are Fa-sets, then the set A n B is also Fff. 

13.3.5. Every open set is F,. 

13.4. Let f be a mapping of a metric space P into a metric space Q. Let C be the set 
of all the xeP at which the mapping f is continuous; put D = P — C. Then C is G ¿(P) 
and consequently D is Fff(P). 

Proof: It is easy to see that C is the set of all the xeP having for every n 
{= 1, 2, 3, ...) a neighbourhood G (in the space P) such that 

zeG^Q[f(y),f(z)]<±. (1) 

Denote (for n = 1, 2, 3,...) by the system of all sets G open in P having the 
00 

property (1). Then, Tn = \J X are open sets in P and C = f ) Tn so that C is 
n = 1 

G,(P). 

13.5.*) Let A c B cz P. Let A be Gd and let B be F,. Then there exists a set C c= P 
such that: [1] C is Gd, [2] C is Fai [3] A <= C cz B. 

00 00 

Proof: We have A = f ) Gni B = \J Fn where the sets Gn are open and the sets Fn 
n= 1 n =1 

closed. Let us define recursively the sets Hn and Kn as follows: 

n + 1 
Hx = Gl9 Ki = Gx n Fl9 Hn+i= A, u fl <?lf 

i= 1 

= n U F , . (i) 
1 = 1 

Put 

H=f)Hni K=VKh. (2) 
n= 1 n = 1 

*) From the statement of the theorem we obtain: if A j , A2 are two disjoint subsets of P9 both 
of them G j , F a , or both of them there are Cx, C2 which are both G^ and F^ such that CinC2 = 0, 

ci Cid = 1,2). 
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We may prove by induction that the sets Hn and Kn are both Cd and F̂  so that 
the set H is G^ and the set A!' is Fa. Thus, it suffices to prove that 

A <z H = K c= B. 
By (1) we have 

KnczHn. (3) 
n+1 n 

Moreover, f | G, c f l Gt
 c Hn and hence 

i=i 1=1 
H„ + t <=H n . (4) 

n n + 1 
Finally, Kn c |J P, c (J F,., Kn Hn+l and hence 

¿=1 ¿ = 1 
K n + l ^ K n . (5) 

I. Let x e A. Then we have xeGt for every i, hence, by (1), x e Hn for every w, 
hence xe H. Consequently A c H. 

m 
II. Let xe K. Then there is an index m such that xeKm. By (1), Km cz (J Fi9 

00 i = 1 
hence xe\J Fi = B. Hence, K cz B. 

i=i 
III. Let xeK. Then there is an index m such that xe Km. Thus, by (5), n ^ m 

oo 
implies xe Kn. Thus, by (3) n ^ m implies xeHn9 so that, by (4), x e f ] Hn = H. 

i= 1 
Hence, K cz H. 

n + 1 oo 
IV. Let xeH- K. Then, for every n, xeHn+1 -Kncz f | Hence, xef[Gn = 

oo I = 1 m n = 1 
= A c= B = U Fn, so that there exists an index m such that xe (J Fn. Since also 

n = 1 fn n = 1 
x e Hm, we have JY e Mmn \J Fn = Km, which is a contradition. Thus, H — K=09 

n= 1 
i.e. H = K. 

13.6. Let g by a point set embedded into a metric space P, so that Q is also 
a metric space. 

13.6.1. A set A a Q is Gd(Q) if and only if there is a set B such that [1] A = 
= QnB, [2] B is G,(P). 

00 
Proof: Let A be a G5(0-set. Then A = f | An An open in Q for every n. 

n = 1 
By 8.7.5 there exist sets open in P such that An = Q n Bn. It suffices to put 

CO 

B= f)Bn. 
n=l 
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00 

II. Let B be Gd(P). Then B = f | Bn with Bn open in P for every n. The sets 
n = 1 

oo 
Q n Bn are open in Q, so that QnB = r\Qr\Bnis Gd(Q). 

n = 1 

Similarly we may prove the following: 

13.6.2. A set A c Q is Fa(Q) if and only if there is a set B such that [I] A = Q n B, 
[2] B is Fa(P). 

Exercises 

If A is a point set embedded into a metric space P, we use the following terms: [1] A is Gda, more 
00 

precisely Gda(P), if there exist sets An c P such that A = ( J An and every An is G^; [2] A is 
n = 1 oc 

more precisely Fff5(P), if there exist sets An P such that A — Q An and every An is Fa. 
n= l 

13.1. A set A is FaS if and only if P — A is G ^ . 
13.2. If A is Gd or if A is F f f, then A is both G ^ and Fad. 

00 

13.3. If An are G^-sets, then the set ( J An is G ^ . 
n= 1 
00 

13.4. If A, are Fa 5 sets, then the set An is 
n = 1 

13.5. If A and B are Gd(Jf then the set A n B is G ^ . 
13.6. If A and B are Fff(5, then the set A U B is Fad. 
13.7.* L e t / b e a continuous mapping of a metric space P into a metric space Q. Let A <= Q. If A 

is G5«2), then f . ^ A ) is G ^ P ) ; if A is F 0{Q\ then /„¿A) is Fff(P); if A is G S f f (Q) , then 
f_x(A) is G6<r(P); if A is F^(Q), then / ^ ( ¿ J is Fa5(P). 

13.8. Let A <=: B p . Let A be F ^ and let B be GS<J. Then there exists a set C c: p such that: 
[1] C is Gdat [2] C is Pa5> [3]A^C^B. 

13.9. Let A c= Q c />. The set ^ is if and only if there exists a set B c p such that [1] 
/J - 0 n P, [2] P is G^CP). The set ^ is F f f ( 5(0 if and only if there exists a s e t f i c p 
such that [1] A = Q n [2] P is F ^ P ) . 

13.10.* Let A <= G <= p. if Q is G5(P), then A is G ^ P ) if and only if it is G¿(Q). It is permitted 
to write simultaneously Fa or G ^ or FaS instead of G^. 

13.11.* Every countable set A <= p is Fa(P). 
13.12. If A c= p is a set of the first category, then there is a set B <= p such that [1] A <= Bt [2] B i? 

Fa, [3] B is a set of the first category 
13.13. Let a set A P be F^. Let P — ,4 be a dense set. Then A is a set of the first category. 
13.14. Let P and Q be metric spaces. Let C ^ PxQ. For every xeP put o"x{C) = E [(x, y) e C\. 

y 
If a set C is open (closed, Fff, G^, Sad, Gd(J) in PxQ, also the set ^ ( C ) is, for every xeP 
open (closed, F , , G „ F ^ , G ^ ) in Q. 
Similarly for o'y(C) -•= E[(A% V) eC](ye Q). 

X 

13.15. Let P and 0 be two metric spaces. Let 0 =1= A c />, 0 4= B <= Q. The set A xB is G d(P xQ) 
if and only if A is G¿(P) and B is G / Q ) . It is permitted to write (simultaneously) Fffy or G ^ 
or F ^ instead of Gs. 
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§ 14. Functions of the first class 

14.1. Let P be a metric space. Let / b e a function on P. We say that / is a function 
of the first class, if there is a sequence {/„} of continuous functions on P such that 
/„(*) -> /(x) for every point x e P. We may always attain this by means of bounded 
functions fn; if fn are not bounded, it suffices to replace them by functions gn 

defined as follows: 
*.(*)=/•(*) if 1/nWI in, 
gn(x) = n if /„(x) > n9 

gn(x) = - n if /„(x) < 

The following theorems are evident: 

14.1.1. Every continuous function is of the first class. 

14.1.2. If c{ are real numbers and if f{ are finite functions of the first class, then 
m 
YJ cj% is a finite function of the first class. 
i = 1 

14.1.3. If Q is a point set embedded into a metric space P and i f f is a function of the 
first class on P, then the partial function fQ is a function of the first class on Q. 

14.2. Let / and fn be finite functions on P. We say that / i s the uniform limit of the 
sequence {/„}, if for every e > 0 there is an index p such that for every x e P 

n^p=>\fn(x)-f(x)\<e. 

The index p depends on e only, not on x (otherwise every limit would be uniform). 

14.2.1. Let fbe a finite function. Let {/„} be a sequence of finite functions of the first 
class. Let f be the uniform limit of the sequence {/,}. Then f is a function of the 
first class. 

Proof: For i = 1, 2, 3, . . . there is an index such that 

n ^ Mf implies |/„(x) - / ( x ) | < , 

hence 

m ^ n i 9 n ^ t i i imply |/m(x) - / „ (x ) | < ^ . 

Evidently, we may assume that nt < n2 < . . . . Put 

F(x) = / (x ) - / n j (* ) , Ft(x) =/„i + 1(*) -Jni(x) (ii = 1, 2, 3,...) . 
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Then | Fix) | < -y- and 

t m = Hm t F^x) = lim [ / „ _ ( * ) -fni(x)J = /(x) - / n i (x ) = F(x). 
i = 1 m~* co »=1 m-+oo 

Since /(x) = F(x) + /ni(x), if suffices to prove that F is a function of the first class. 
The functions Ff are of the first class and hence there are finite continuous functions 
\l/in such that lim ^in(x) = Fix) for i = 1,2, 3, . . . and for every x e P . Define 

co 
functions <pin as follows: 

<Pin{x) = Mx) for I I < 

<?.*(*) = ^ for Ilsin(x) ^ ~ , 

^inW = ~ for g . 

Then, <pin are continuous functions; since | F,(x) | < 1/2', we have 

I <pin(x) - Fix) | g |iA(.n(x) - F,(*)|, 

and hence lim (pin{x) = Fix). Put 
oo 

^„W = <P\n(x) + . . . + (pnn(x). 

The functions are continuous; hence it suffices to deduce that lim 4>„(x) = F(x). 
n~* oo 

Choose a point x e P and a number e > 0. Choose an index k such that 1 /2k < e/3 
k 

and such that | F(x) - £ I < e/3. Since lim (pin(x) = Pj(x), there is an index 
i = 1 n-*0o 

m > k such that for i = 1,2,.. . , k and for every n > m we have | (pin(x) — Fix) | < 
< e/3k. Let n > m. Then 

| <f>„(x) - F(x) | £ F,(x) - F ( x ) l + ¿ 1 <pin(x) - Ff(x) | + 
¿=1 »= 1 

00
 e e 00 1 2e 1 

+ E \<Pin(x)\<Y+k--W+ I 

¿=fc+i J i=k+i 2 ^ 2 

Hence, n > m implies | #„(x) — P(x) | < e and therefore lim #„(x) = F(x). 
n~* oo 

14.3. 14.3.1. Lef P be a metric space. Let f be a function on P. A necessary and 
sufficient condition for f to be of the first class is the following: for every c e E{ the 
sets E [ f ( x ) > c] and E[/(x) < c] are F„(P). 
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Another form of the condition: for every c e E,, the sets E[f(x) S c] and 

E[/(x) £ c] are Ga(i>). 
JC 

Proof: I. Let / be a function of the first class and let {/„} be a sequence of con-
tinuous functions such that /„(*)-•/(*) for every xeP. Let c e E l t If f(x) > c, 
there is an index m such that 

n ^ m implies /„(*) ^ c + (1) 

On the other hand, if there is an index m with (1), we have f(x) > c. Hence 

E[/(x) > c] = U n Anm, Anm = E[/„(x) ^ c + - L ] . 
x m = 1 n = m x L J 

Since the functions /„ are continuous, the sets Anm are closed by 9.5, hence the sets 
00 

n Anm are closed and consequently, the set E[/(.v) > c] is Fff. Similarly we may 
n = m x 

prove that also the set E[/(x) < c] is F,. Hence, the sets E[/(x) g c] and E[/(x) ^ c] 
x X X 

are G3(P) by 13.3.1. 

II. Let / b e the characteristic function of a set A, which is simultaneously both 
G5 and F,. Let us prove that / is a function of the first class. Since A is both G^ 
and Fff, there are closed sets Fn and open sets Gn such that 

00 00 

F„cFn+1, G„+i <= Gn, A=\jFn=ClGn. 
n = 1 n = 1 

If Fn 4= 0 and Gn 4= P put 

f ( x ) = g f e ^ - c . ) 

Since P„ and P - Gn are closed sets, g(x, F„) = 0 holds for x e Fn and Q(X, P - Gn) = 
= 0 for xeP — Gn only; as Pn cr Gn, we have Pn) + eO,P - G„) > 0 for 
every point x. The function / , is, by ex. 9.10, continuous and obviously has the 
following properties 

xeFn implies fn(x) = 1 , xeP - Gn implies fn(x) = 0 (2) 

If Fn = 0 and Gn 4= P put /„(*) = 0 for every point x; if Gn = P, put fn(x) = 1 
for every point x. In both cases, /„ is again a continuous function with the pro-
perties (2). It suffices to show that fn(x) f(x) for very point x. First, if x e A = 

00 

= (J Fn, there is an index m such that xe Fm. Since Fn a Fn+l for n ^ tn, x e Fn 
n = 1 

and hence fn(x) = 1; thus, lim fn(x) = 1 = f(x). Secondly, if xeP - A = 
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OC OC 

= P - f | Gn= there is an index m such that x e P - Gm. As 
n=1 n= 1 

Gn+i (= G„, we have, for n ^ m, xeP — Gn, hence fn(x) = 0, and hence 
li mfn(x) = 0 = f{x). 

III. Let / b e finite and let it gain only a finite number of values ct, c 2 , c m . 
Let every set C, = E[/(x) = c,] (1 ^ / ^ m) be simultaneously both G^ and F,. 

x 00 
I f / is the characteristic function of the set C,, we have evidently /(x) = £ c j ^x ) 

i = i 
for every point x. By II, the functions f are of the first class, so that / is of the 
first class. 

IV. Let/be such that: [1] - 1 ^ f(x) ^ 1 for every point x, [2j the sets E [ f x ) > c] 
X 

and E[/(x) < c] are F̂  for every real number c. For n = 1, 2, 3, ... and for an 
X 

integer / with —n^if^n— 1 put 

, „ = e [ ± S , W S i ± l ] = P - ( E [ / ( , ) < i ] u ; [ / ( , ) > i ± i ) , 

. e [ i ^ i < m < i ± i ] - E > i ^ i ] n E [flx> < i ± i ] . 

Then 
i- l ! • I 2 

p= U An, 4 ^ , ; xeBin=>\/(x)---|<—, 
i=-n I '' | 

the sets Bin are Fa and the sets Ain are G^. By 13.5 there are sets Cin such that: 
n — 1 

[1] Ain c Cin cz Bin and hence (J Cin = P and \f(x) - (i/n) | < 2/n for x e Cin 
i= -n 

[2] Cin are FFF, [3] Cin are G,. Put D.„,„ = <:_„,„, Di+ ,,„ = C i+1,„ - U 
j= —n 

(-n g I g n - 2). 
n- 1 

Then: [1] P = \J Din with disjoint summands, [2] xeDin implies |/(x) - i/n | < 
i = -n 

< 2/n, [3] Din are [4] Din are G^. By the property [1] of the sets Din there are 
functions fn on P such that /„(x) = i/n for x e Din. By properties [3] and [4] of the 
sets Din and by III, the functions /„ are of the first class. By property [2] of the sets 
D/n, the function / is a uniform limit of the sequence {/n}; thus, by 14.2.1, / is 
a function of the first class. 

V. Let / be a function such that the sets E[/(x) > c] and E[/(x) < c] are 
X X 

for every ce E,, or, which is by 13.3.1 the same, such that E[/(x) ^ c] and 
X 

E[/(x) ^ c] are G^. By ex. 9.18 there exists a homeomorphic mapping (p of the 
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set R onto the interval E [ - l g / ^ 1]. Set F(x) = (p[f(x)]. Then the function F 
t 

has (on P) the following property 

- 1 g F(x) ^ 1 for xeP. 

Let CG Ex. If, first, c ^ 1, then E[F(x) > c] = 0; secondly, if c < — 1 then 
X _ 

E[/(JC) > c] = P. Thirdly, if - 1 < c < 1, then E[F(x) > c] = E [ f ( x ) > tp-^c)]; 
X CO X X 

fourthly, E[P(x) > - 1 ] = U E[P(x) > - 1 + (1 /n)]. Hence, for every ceEl9 the 
x n- 1 x 

set E[F(x) > c] is F, and this may be similarly proved for the set E[P(x) < c], 
X X 

Thus, by IV, F is a function of the first class and hence there is a sequence {F„} 
of continuous functions such that Fn{x) -*> F(x) for every point x. Put 

Gn(x) = Fn(x) for | Fn(x) | £ 1 , 
' Gn(x) = 1 for Fn(x) > 1 , 

Gn(x)=-1 for P „ ( * ) < - 1 . 

Then Gn are continuous functions such that Gn(P) c E[— 1 ^ t ^ 1] and Gn(x) 
F(x). Put ' 

/„(*) = cp-dGni*)] • 

Then, /„ are continuous functions, and, for every point x, 

fn(x)^cp^[F(x)] = /(x). 

Hence, / is a function of the first class. 
Thus, the proof of theorem 14.3.1 is finished. By formulas (2) in 9.5, for every 

function / of the first class the sets E[/(*) = c] (ce R) are G^ and the sets 
X 

E [ / 0 ) < oo], E[/(x) > -oo] are F„. 
* X 

14.4. Let f and g be finite functions of the first class. Then f . g is a function of the 
first class. If g(x) 4= 0 for every point x eP, fig is also a function of the first class. 

Proof: I. Let c e Ex. If c < 0, then E[f2(x) > c] = P. If c ^ 0, then E [ f \ x ) > c] = 

= E [ f ( x ) > yjc] u E[/(*) < - yjc]. If c ^ 0, then E [ f 2 ( x ) < c] = 0. If c > 0, 
X X X 

then E[f2(x) < c] = E[/(JC) < yjc] N E [ f ( x ) > -jc]. Hence, by 14.3, the sets 
X X X 

E[/2M > c] a n d E[/2(x) < c] are Jra and f2 is a function of the first class. 
JC X 

II. Since 

/ . g is also a function of the first class. 
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III. If c > 0, then (assuming g(x) 4= 0) 

If c < 0, then 

f t ^ M ^ T ] " ! « " ) ^ -
Finally, 

^ [ ¿ ) > 0 ] ' ! [ i W > 0 L 

Hence, by 14.3, l/g is a function of the first class and consequently, by I I , / /g = 
= / . l/g is a function of the first class. 

14.5. 14.5.1. Let f be a finite function on P. Let {/,} be a sequence of finite functions 
on P. Let f(x„) f(x) for every xeP. Let aeP. Let all the functions f„ be continuous at 
the point a. A necessary and sufficient condition for f to be continuous at a is: for 
every e > 0 there is a Sis) > 0 and an index m(e) such that 

Qia,, x) < Sis) implies \fm{t)ix) - fix) | < e . 

Proof: I. Let the condition be satisfied. Choose an e > 0 and determine the ¿(e) 
and m(e) = m. As fm is continuous at the point a, there is an j/(e) with 0 < f/(e) < 
< die) such that qia, x) < 77(e) implies \fmix) — fmia) \ < e. Then 

Qia, x) < rjie) => \ fix) - fid) \ ^ fix) - fjpc) | + |/m(x) - / » | + 
+ \fm(a)-fia)\<3e. 

Hence, for every e > 0, there is an rjie) > 0 such that Qia, x) < rjie) implies 
\fix) — fia) | < 3e. Thus, the function / i s continuous at the point a. 

II. Let the function / be continuous at the point a. Choose an e > 0. There 
exists a <5X > 0 such that gia, x) < Sl implies | fix) - fia) \ < e/3. Since /„(a) 

fia), there is an index m such that \fmia) - fia) \ < e/3. Since / „ is continuous 
at the point a, there is a b2 > 0 such that qia, x) < S2 implies | fm(x) - fmia) | < 
< e/3. Put <5 = min (¿i, S2). Then 

Qia, x)<S=> | fmix) - fix) | ^ | fmix) - fmia) \ + | / » - fia) | + 
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14.5.2. Let fbe a function of the first class on P. Let D be the set of all xeP at which 
the function f is not continuous. Then D is a set of the first category in P.*) 

Proof: I. Let the function / b e finite. There is a sequence {/„} of finite continuous 
functions on P such that fn(x) /(x) for every point x. For every e > 0 and for 
m = 1, 2, 3 , . . . put 

Amtt = E [n> m,v > m=> \ f^x) - /v(x) | ^ e]. (1) 
X 

As the functions / / x ) — /v(x) are continuous, the sets Am%t are closed by 9.5. As 
the sequence {/„(*)} is convergent in the ordinary sense for every x e P , we have 

U Am,* = P (2) 
m=l 

for every e > 0. Put 

BmtE = B(Am>e). (3) 

By ex. 12.7, the sets Bmtt are nowhere dense. Thus, it suffices to prove that 
CO oo 

BmiUn. 
m=ln=l 

Let 

aeP- U U K.i/n- (4) 
m = 1 n= I 

We have to prove that the function / is continuous at the point a. 
Choose an e > 0 and an index p > 1/e. By (2) and (4) we have 

00 00 

fleU ¿mA/p - U 1 / p , 
m=1 m =1 

so that there is an index q such that aeAqtl/p — Bqt 1/p. By (3), we have aeP — 
— P — s o toe number P — AqA/p) is positive. Let 0 < 3 < 
< g(a, P — Aqtifp). Then 

Q(a, S) cz AqA/p , 
so that, by (1) 

Q(a, x) < (5, \l > v > 4 => l/^x) - / v ( x ) | g j . 

*) Theorem 14.5.2 (called sometimes Baire's theorem) gives a necessary condition for / to be 
a function of the first class in P. By 14.1.3 the following theorem also holds: 

14.5.3. Let f be a function of the first class on P. Let Q cz P. Let L)q be the set of such x E Q at 
which the partial function is not cotinuous. The set DQ is of the first category in Q. 

We shall prove later (see, in particular, theorem 16.6.3 and the associated footnote) that the 
inecessary condition, stated in theorem 14.5.3 is, in some special spaces, also a sufficient condition. 
The steps, by which we reach theorem 16.6.3, are, in particular, theorems 14.5.2, 15.8.3, 16.6.2. 
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As fn(x) -» /(*), we have 

e(a,x)<S, n > q => |/„(x) - / ( x ) | 

Thus, by 14.5.1, the function/is continuous at the point a. 

II. Let / be an arbitrary function of the first class. Let {/,} be a sequence of 
continuous functions such that /„(*)-> /(*). By ex. 9.18 there is a homeomorphic 
mapping cp of the set R onto the interval E [ - l ^ t g 1]. Put (p[fn(x)] = Fn(x\ 

t 
<p[f(x)] = F(x). Then the functions Fn are continuous and Fn(x) -> F(x). Thus, 
F is a finite function of the first class. Evidently, the set D of all points at which 
the function / is not continuous coincides with the set of all points at which the 
function F is not continuous. Thus, D is a set of the first category by I. 

14.6. Let fbe a function on P. Let D, the set of all xeP at which f is not continuous, 
be countable. Then f is a function of the first class. 

Proof: Choose a c e , and put A = E[/(*) > c]. Put C = P - D. 
X 

If x G A n C, we have/(x) > c and the function/is continuous at x; consequently, 
for every xe A n C there is a number S(x) > 0 such that Q[x, <5(x)] A. Put 

B = U S(x)] . 
XGA nC 

Then A n C cz B a A and the set B is open. We have A — B a D so that the set 
A - B is countable. By 13.3.5, B is F,, by ex. 13.11 A - B is Fff. Thus the set 
E[/(X) > c] = A = B u (A — B) is Fa by 13.3.3. Similarly, we may prove that 
X 

the set E[/(x) < c] is also Fff. Thus,/ is a function of the first class by 14.3.1. 
X 

14.7. Let / be a function on P. Let ae P. We say that the function / is upper semi-
continuous at the point a if, for every a e E1 with f(a) < a, there is a S > 0 
such that 

x e P, g(a, x) < S imply f(x) < a . 

Similarly, we say that the function / is lower semicontinuous at the point a, if, for 
every (xeE{ with f(a) > a, there is a <5 > 0 such that 

xeP, g(a, x) < d imply f(x) > a . 

We say that a function / is semicontinuous at the point a if it is either upper 
semicontinuous or lower semicontinuous at the point a. We say that a function / 
is upper (lower) semicontinuous if / is upper (lower) semicontinuous at every 
point a e P . 
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Finally, we say that / is semicontinuous, if it is either upper semicontinuous or 
lower semicontinuous. 

The following two theorems are evident: 

14.7.1. A function f is lower semicontinuous at a point a if and only if the function —f 
is upper semicontinuous at the point a. 

14.7.2. A function f is continuous at a point a if and otily if it is both upper and lower 
semicontinuous at the point a. 

14.7.3. Let f be a function on P. The function f is upper semicontinuous if and only 
if for every ceEt the set E[/(x) < c] is open.*) A function f is lower semicontinuous 

X 

if and only if for every c e Et the set E [f(x) > c] is open.**) 
JC 

Proof: I. Let the set E[/(*) < c] be open for every ce EX. Let aeP, a e ELF 
X 

f(a) < a. We have a e E[/(*) < a]; as the set on the right-hand side is open, there 
X 

is a S > 0 such that Q(a9 S) c E[/(*) < a] i.e. such that g(a, x) < S implies/(x) < a. 
JC 

Hence, the function / is upper semicontinuous at the point a. 
II. Let the function / b e upper semicontinuous. Choose a ce ET. Put C — 

= E[/(x) < c]. If aeC9 f(a) < c, hence there is a <5 > 0 such that g(a, x) < 5 
X 

implies f(x) < c, i.e. Q(a, <5) c C. Hence, the set C is open. 

III. We have finished the proof for the case of the upper semicontinuous function. 
The case of the lower semicontinuous function may be reduced to the first one 
by 14.7.1. 

14.7.4. Let f be a function on P. The function f is upper semicontinuous if and only 
if and only if there exists a sequence {/,} of continuous functions on P such that for 
every xeP: [1] fn(x) ^fn+l(x) for n = 1,2,3, . . . ; [2] l im/ , (*)=/(*) . The 

n-+ oo 

function f is lower semicontinuous if and only if there is a sequence {/„} of continuous 
functions on P such that for every xeP: [1] fn(x) ^ fn+l(x) for n = 1, 2, 3 , . . . ; 
[2] l im f n {x) =f(x). 

n-> oo 

Proof: By 14.7.1, we may do the proof for the case of lower semicontinuous 
functions only. 

*) By (1) in 9.5, this condition may be stated as follows: for every ceBi the set E [ / ( * ) ^ 
> c] is closed. x 

**) This condition may be stated: for every c e Ex the set E [ / ( * ) < c] is closed. 
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I. Let {/„} be a sequence of continuous functions on P such that for every xeP: 
[1 ]/»(*) + [2]/,(*)->/(*). Let a e P , « G E ^ / W > a. A s f ( a ) = l im f n (a \ 
there is an index p with fp(a) > a. As the function fp is continuous at the point a, 
there is a S > 0 such that g(a, x) < S implies fp(x) > a. Since fn{x) ^ / n + 1(x) and 
/«(*) /(*)> /pW > a implies /(x) > a. Hence, x) < <5 implies /(x) > a. 
Thus, the function / is lower semicontinuous. 

II. Let the function / b e lower semicontinuous and let —1 ^ / ( x ) ^ 1 for every 
point xeP. For n = 1, 2, 3, . . . and for x e P put 

/ . W = inf [/(z) + n . g(x, Z)] . 
ZEP 

Hence for every z e P, /„(x) ^ /(z) + n. e(x, z). If we put z = x, we obtain 
/„(*) £ / (* ) , so that /„(x) ^ 1 and /n(x) = 1 implies /(x) = 1 . As /(z) ^ - 1 , 
e(x, z) ^ 0, we have/n(x) ^ - 1 . Evidently,/(x) = - 1 implies/n(x) = - 1 . Further, 
if /(*) = « > - 1 , there exists a <5 > 0 such that z e P , g(x, z) < d imply /(z) > 
> "2 (— 1 + a). Hence 

zeP implies /(z) 4- n . g(x, z) ^ min [ - I + nb, 1 + fl)], 

and hence 
/n(x) ^ min [— 1 + w<5,i(-l + <01 > - 1 . 

Thus, /n(x) = - 1 if and only if /(x) = - 1 . Since /(z) + n.g(xfz) ^ / ( z ) + 
+ n . z) + TZ . g(x, y), we have 

inf [/(z) + 72. e(x, z)] g inf [/(z) + /I. Q(y, z)] + n . g(x, y) 
z e P ZEP 

i.e. /n(x) ^ /„(>>) + n . e(x, j), and, of course, /„(>>) ^ /„(x) + 7ig(x, hence 
1/nW — fn(y) I ^ J>). Thus, for every n, fn is a continuous (moreover: 
uniformly continuous) function. Obviously, /„(x) ^ / n + 1 (x ) ^ 1 so that there 
exists g(x) = lim/n(x). As /n(x) ^ /(x), we have g(x) ^ /(x). Let e > 0. Since 
the function / i s lower semicontinuous at the point x, there exists a S > 0 such that 
Q(x, y) < <5 implies f(y) > / (x ) - Since /„(x) = inf [/(z) + n . g(x, z)], there 

*EP 

exists (for the given x) a point z„ e P such that /(z„) + n. g(x, zn) < /n(x) + 
+ I/» £/(*) + 1 In, hence 1 ^ / ( x ) > TZ . e(x, *„) - 1/« + f(zn) ^ TI . Q(X, zn) -
- 1/n - 1, and hence e(x, z„) g 2/w + 1 In2. There exists an index q such that 
for n > q we have 2/TZ + 1/TI2 < S, hence g(x, z„) < 5 and hence /(zn) > /(x) - e. 
On the other hand, /(zn) <^/(zn) + n. g(x9zn) < /„(x) + l/n and hence /(x) < 
</ , (*) +l/7i + e for every n > q, so that/(x) ^ lim (/„(x) + 1/TI) + 8 = g(x) + e. 

n-+ oo 

Since e > 0 was arbitrary, we have /(x) ^ g(x); since also g(x) ^ / (x ) , we have 
fix) = g(x) = lim/n(x). 
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III. Let the function / b e lower semicontinuous. By ex. 9.18 there is a homeo-
morphic mapping (p of the set R onto the interval E [ - l ^ t ^ 1]. Put cp[f(x)] = 

r 

= Evidently, for a G R, P e R we have a < ft if and only if cp(a) < cp(J}). 
Since / is lower semicontinuous, we decide easily that the function F is also lower 
semicontinuous. We have —1 g F(x) ^ 1, F(x) = — 1 if and only if f(x) = — oo, 
F(x) = 1 of and only if f(x) = oo. 

By II, there is a sequence {F„} of continuous functions such that [1] /Xv) g 
^ [2] l imi^W = F(x), [3] - 1 ^ Fn(x) £ 1, [4] Fn(x) = - \oF(x) = 

= -1, [5] Fn(x)=\=>F(x)= 1. 
Put <p_i[F„(*)] = fn{x). Then /„ are continuous functions such that fn(x) ^ 

è f „ + iW and lim/n(x) = f(x). The proof is finished. Moreover, from the proof 
n-> oo 

we obtain that fn(x) = — oo if and only if f(x) = — oo and that fn(x) = oo implies 
f(x) = oo. Thus, we may formulate the following theorem: 

14.7.5. Let f be a finite function on P. The function f is upper semicontinuous if and 
only if there exists a sequence {/„} of finite continuous functions on P such that for 
every xeP: [1 ]/„(*) ^fn+l(x)for n = 1, 2, 3,... , [2] lim/n(x) = f(x). The function f 

n~* oo 

is lower semicontinuous if and only if there exists a sequence {/,} of finite continuous 
functions on P such that for every xeP: [1] fn(x) ^ f n + 1(x) for n = 1 ,2 ,3 , . . . ; 
[2] l i m / M =/ (*) . 

n-» oo 

Theorem 14.7.4 yields: 

14.7.6. Every semicontinuous function is a function of the first class. 

14.8. 14.8.1. Let g and h be functions on P. Let g be upper semicontinuous; let h be 
lower semicontinuous. Let g(x) ^ h(x) for every xe P. Then there exists a continuous 
function f on P such that g(pc) ^ f{x) ^ h(x) for every x e P. 

Proof: I. Let the functions g and h be finite. For te Ej put: [1] X(t) = i for 
/ ^ 0, [2] X{t) = 0 for t < 0. By 14.7.5 there exist sequences {gn} and {hn} of finite 
continuous functions on P such that gn(x) ^ g„+i(X), hn(x) g hn+1(x), gn(x) g(x), 
h„(x) -> h(x). We have 

gn(x) - hi*) à gn(x) - hn+l(x) t gn+ i(x) - hn+1(x), (1) 

and hence the absolute values of the terms (with the exception of the first one) 
of the series 

AiM + Afcito - Ai(*)l - *lgi(x) - h2(x)] + 
+ *lgi(?<) - h2(x)] - X[g2{x) - h3(x)] + ... (2) 
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converge monotonically to zero. As the terms of the series (2) are (with the exception 
of the first one) alternately ^ 0 and ^ 0, the series (2) is, by the well-known 
Leibniz criterion, convergent. Denote its sum by fix). If fn(x) designates the sum 
of the sum of the first n terms of the series (2), then /„ are continuous functions 
and f2n(x) ^ / 2 n + 2 (x) , f^-^x) g / 2 n + l (x ) , fn(x) -> fix), so that, by 14.7.2 and 
14.7.5, the function / is continuous. It remains to prove that, for every x e P , 
gix) ^ fix) ^ hix). Let us distinguish two cases. 

First, let g(x) = hix). Then gn{x) ^ /f„(x), so that the series (2) goes as follows 

AlW + b i W - ftiCv)] + [/|2W - g\(x)] + lgi(x) - h2(x)] + ... 

and its sum f(x) is equal to lim g„(x) = lim hn(x) = g(x) = hix). 
Secondly, let g(x) < /?(x). Then, beginning with a certain n, gn(x) < hnix), 

gn(x) < h„ + i(x). Let m be the least index such that in the w-th term of the series (2) 
we have a negative number after the sign A. By (1), for 2 g n ^ m — 1, in the 
n-th term of the series (2) we have a non-negative number after X, so that fix) is 
equal to the sum of the first m — 1 terms of the series 

h,(x) 4- [glix) - h,ix)] + [h2ix) - glix)] + 
+ lgi(x) - h2ix)] + [h3ix) - g2ix)] + ... . 

Hence, if m = 2i is even, we have fix) = hk(x) and g{x) < h^x). If m = 2/ + 1, 
we have fix) = giix) and g£x) < hi+1ix). Since gnix) ^ gn+1ix), hnix) ^ An+1(.v)„ 
gnix) g(x), hnix) hix) we have obviously gix) ^ fix) ^ hix). 

II. In the general case we proceed as follows: By ex. 9.18 there is a homeo-
morphic mapping <p of the set R onto the interval E[—1 g / ^ 1] such that 

t 
oceR, ßeR, a < ß imply q>(a) < (piß). Putting Gix) = q>[gix)], Hix) = (pUKx)], 
we obtain that - 1 ^ Gix) g l , - 1 g Hix) ^ 1, G(x) g Hix), G is upper semi-
continuous and H lower semicontinuous. By I there exists a continuous function F 
such that Gix) <; F(x) g Hix), hence - 1 g Fix) g 1, so that we may put fix) = 
= <p-i[F(x7)]. Obviously/is a continuous function and g(x) g f i x ) g hix). 

14.8.2. Let A c: P be a closed set. Let k be a continuous function on A. Then there 
exists a continuous function f on P such that the partial function fA is identical with k. 

Proof. Define functions g and h on P as follows: 

g(;t) = hix) = kix) for x e A, 
gix) = — oo and hix) = oo for xeP — A. 

Let c e Ej. We have 
E[xeP,gix) ^ c] = E[xeA,kix) ^ c]. 
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Hence, by 9.5.1 and 8.7.4, the set E[xeP,g(x) ^ c] is closed, so that by 14.7.3 
X 

g is an upper semicontinuous function on P. Similarly we prove that h is a lower 
semicontinuous function on P. As g(x) g h(x) for x e P , there is by 14.8.1 a conti-
nuous function / on P such that xeP implies g(x) g / ( x ) ^ h(x). For xeA we 
have g(x) = k(x) = h(x) and hence /(x) = k(x). 

14.8.3. Let A c P be a closed set. Lei k be a finite continuous function on A. Then 
there exists a finite continuous function f on P such that the partial function fA is 
identical with k. 

Proof: The case A = 0 is trivial; thus, let A 4= 0. By ex. 9.18 there is a homeo-
morphic mapping <p of the set R onto the interval E[— 1 ^ t g 1] such that <p(— oo) = 

t 
= - 1 , <p(oo) = 1 and such that a e R, /? e R, a < /? imply <p(a) < <p(j3). By 14.8.2 
there is a continuous function / on P such that xeA implies /(x) = k(x). Put 
P = E[/(x) = 00] u E[/(x) = -00]. By 9.5 B is closed; evidently A n B = 0. 

X X 

If p = 0 we may put / = /; thus, let P * 0. For x e P put I(x) = <?[/(*)]. Then L 
is a continuous function on P such that x e P implies | L(x) | ^ 1 and such that 
E[| L(x) | = 1] = P. For xeP put 
.X 

: q(X, 4̂) P)/ 
We have 

g(x, A) = O o x e i o x e ^ g(x, P) = 0 o x e P . 

Thus, r is a finite function on P such that r(x) ^ 0 for x e P , r(x) = 0 for x e 
#-(x) — 1 for x e P . By ex. 9.10, the function r is continuous. For xeP put 

F(x) = 
r(xh 

Then, F is a continuous function on P such that: [1] |P(x) | < 1 for x e P , 
[2] P(x) = (p[k(x)] for xeA. For x e P put /(x) = <P-,[F(x)]. Then / is a finite 
continuous function on P such that xeA implies/(x) = k(x). 

Exercises 

In exercises 14.1—14.3, % is a characteristic function of a point set A ^ P. 

14.1. The function % is upper semicontinuous if and only if the set A is closed. 
14.2. The function % is lower semicontinuous if and only if the set A is open. 
14.3. The function / is of the first class if and only if the set A is simultaneously both Fa and G( 

14.4. Deduce theorem 14.1.2 from theorem 14.3.1. 
14.5. Deduce theorem 14.2.1 from theorem 14.3.1. 
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14.6. If finite functions / and g are both upper semicontinuous, then also the function / + g is 
upper semicontinuous. 
Deduce: [1] directly from the definition, [2] from theorem 14.7.3, [3] from theorem 14.7.5. 

14.7. If P is a countable space, then every function on P is of the first class. 
14.8. L e t / b e a function on P. For a eP there exist the limits: 

<Pi(a) —• lim sup f(x), <P2ia) = SUP / (*) . 
n~* oo e ( a , JC) < 1 / n n - * o o 0 < e ( a , x ) < 1 / n 

y^a) = lim inf /(*), y2(a) •= lim inf fix). 
n-* oo c(a, x) < 1/n rt-*oc 0<Q(a,x)< 1/n 

The functions <pt and (p2 are upper semicontinuous, the functions y)x and y>2 are lower semi-
continuous. 

14.9. Let C 4= 0 be an arbitrary set. For every z 6 C let fz be an upper semicontinuous function 
on P. For x eP put f(x) = inf fz(x). Then / i s an upper semicontinuous function. Deduce: 

z e C 

[1] directly from the definition, [2] from theorem 14.7.3. 
14.10. Let / b e a function on such that x < y implies f(x) ^ f ( y ) . Then / i s a function of the 

first class. 
Deduce: [1] directly from the [definition, [2] from theorem 14.3.1, [3] from theorem 14.6. 

14.11. Let {/¡,} be a sequence of continuous mappings of a metric space P into a metric space Q. 
For every A G P let there exist lim fn(x) = f{x) e Q. Then for every set A C f(P) open in 

f(P) the set E[/(*) 6 A] is F , in P. 
X 

14.12. Let / b e a mapping of a metric space P into the euclidean space Em such that, for every set 
A c: f(P) open in / (P) , E [ f i x ) e A] is an Fff-set in P. Then there is a sequence {/„} of conti-

X 

nuous mappings of the space P into Em such that lim fnix) = fix) for every x e P. 
n-*oo 

A func t ion /on P is said to be of the second class, if there exists a sequence {/„} of functions of the 
first class on P such that / n (x ) fix) for every x e P. 

14.13. I f / i s a finite function of the second class on P, there exists a sequence {/„} of finite functions 
of the first class on P such that fnix) fix) for every x e P. 

14.14. Let / be a finite function. Let {/J,} be a sequence of finite functions of the second class. Let / 
be the uniform limit of the sequence {/,}. Then / is a function of the second class. 

14.15. Let / be a function on P. A necessary and sufficient condition for / to be a function of the 
second class is: for every c e E1 the sets E [ f i x ) > c] and E[/(JC) < c] are OdaiP). 
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