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Chapter III 

SPECIAL M E T R I C SPACES 

§ 15. Complete spaces 

15.1. Let P be a metric space. Let {x„} be a sequence of points of P. We say that 
{x„} is a Cauchy sequence if, for every e > 0, there is an index p(e) such that 

m > p(e) , n > p(e) => g(xm9 x„) < e . 

The notion of a Cauchy sequence is metric, not topological. 

15.1.1. Any convergent sequence is a Cauchy sequence. 

Proof: Let xn -> x. Let e > 0. There is an index p(e) such that n > p(e) implies 
g(xn , x) < e/2. Then 

m > p(e\ n > p(e) => g(xm9 xn) g g(xm9 x) + g(x9 xn) < e/2 + e/2 = e. 

P is said to be a complete space if P is a metric space such that every Cauchy 
sequence of points of P is convergent in P. Evidently, every finite metric space 
(e.g. 0) is complete. Completeness is also a metric notion and not a topological one. 

15.1.2. If P and Q are complete spaces, then PxQ is a complete space. 

Proof: Let {(*„,>'„)} be a Cauchy sequence of points of PxQ. As 

g(xm9 xn) g g[(xm9 ym)9 (x„, yn)] , 

{xn} is evidently also a Cauchy sequence. Since P is complete, there exists 
lim x„ = x G P; and analogously lim yn = ye Q. Obviously (xn, yn) -> (x, j). 

15.1.3. The euclidean space Em is complete. 

Proof: I. Ej is complete by the well-known Bolzano-Cauchy theorem from 
the calculus. 

II. If Em is complete, Em+1 = EmxE t is complete by 15.1.2. 

15.1.4. The Hilbert space H is complete. 

Proof: Let {x„}®=1 be a Cauchy sequence of points x„ = {xni}?=l e H. As 
Q(*mi> *ni) ^ */»)> f° r every i {xni}®=1 is a Cauchy sequence. Since the space Ej 
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is complete, yt = lim xni exists for every i. Put y {y^^ Let us choose an e > 0. 
n - * oc 

Since {x„}r=i is a Cauchy sequence, there is an index p(c) such that 

m > p(s), n > p(e) => q{xm, xn) < e . 

We have, for /c = 1, 2, 3,..., 
k oo 

Z (*mi - * J 2 ^ Z (*»i - xm)2 = *„)]2, ¿=i ¡=i 
and hence 

00 

m > p(e), n > p(s) => Z - xm)2 < e2 

1 = 1 
On the other hand 

k k 
Z CVi - Xni)2 = lim Z (X<ni " Xni)2 > 

/ = 1 m oc i = 1 

and therefore 
k 

n > p(e) => Z tV; - ^¿)2 ^ e2 . 
i=l 

00 

Hence, the series Z (Ji — xni)2 converges, and, by formula (2) in 6.1, the series 
oo i = 1 

Z J 2 also converges, i.e. ye H. Moreover 
¿ = 1 

k 

[Q(y,xn)]2 = l im Z (yi- xni)2, 
k~> cc i= 1 

and hence n > p(e) implies g(y, xn) g e. Hence y = lim xn. 

15.2. Let Q be a point set embedded into a metric space P; hence 2 is also a metric 
space. If {x„} is a sequence of points of Q, then {xn} is a Cauchy sequence in the 
space Q if and only if it is a Cauchy sequence in the space P. On the other hand, 
a sequence may be convergent in the space P without being convergent in the 
space Q. 

15.2.1. Let Q c P. Let Q be a complete space. Then Q is closed in P. 

Proof: Let {xn} be a sequence of points of Q. Let there exist x = l imx n eP. 
By 8.3.3, it suffices to show that x e Q . But {*„} is a Cauchy sequence by 15.1.1. 
Since the space Q is complete, there exists lim xn e Q. Hence, xe Q. 

15.2.2. Let P be a complete space, let Q c P be closed. Then Q is a complete space. 

Proof: Let {x„} be a Cauchy sequence of points of Q. Since P is a complete space, 
there exists x = lim x„ eP. As Q is closed, xe Q by 8.3.3. Hence, the sequence {x„} 
is convergent in Q. 
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15.3. Let P be an arbitrary space. Let C be the set of all Cauchy sequences of points 
of P, which are not convergent in P. If {*„} and {>>„} are elements of C, we shall 
call them (in this section only) equivalent if £?(.*„, j > n ) 0 (Q denotes the distance 
function in P, of course). It is easy to prove that the set C may be divided into 
classes such that: [1] every sequence {xn} e C belongs to exactly one class, [2] two 
sequences {*„} e C and {;>,,} e C are equivalent if and only if they belong to the 
same class. Let us choose a subset Q of C containing exactly one element from any 
class. (Of course, if the space P is complete, C = 2 = 0.) 

In what follows, for convenience, lower case Latin letters denote the elements 
of P, lower case Greek letters denote the elements of Q. 

We define a function g0 in the range ( P u g ) x ( ? u Q) as follows: 
[1] if a e P, b e P, then g0(a9 b) = g(a9 b); 
[2] if a = {ian} e g , b eP , then g0(a, b) = g0(b, a) = lim g(anf b). Certainly we 

must prove that {(?(an, b)} converges in Ex. Since Et is complete, it suffices to prove 
that 6)} a Cauchy sequence. Let e > 0. As {a„} is a Cauchy sequence, there 
is an index p such that m > p, n > p imply g(am, an) < e. Let m > p9 n > p; then 
Q(am> b) ^ an) + 6(an, b) < g(an, b) + e and similarly g(an9 b) < g{am9 b) + e. 
Consequently m > p, n > p imply | g(am9 b) - g(an9 b) \ < e and hence {g(an9 b)} 
is indeed a Cauchy sequence. 

[3] if a = {an} eQ, P = {bn} e Q, then g0(<x9 p) = lim g(an9 bn). Again, we have 
to prove that {g(an9 bn)} is convergent in Et and again it suffices to prove that it 
is a Cauchy sequence. Let e > 0. As {an} and {¿„} are Cauchy sequences, there is 
an index p such that m > p, n > p imply g(am9 an) < e/2 and g(bm9 bn) < e/2. Let 
m > p, n>p; then g(am9 bm) ^ g(am9 an) + g(an9 bn) + g(bn9 bm) < g(an9 bn) + £, 
and similarly g(an9 bn) < g(am9 bm) + e. Consequently m > p9 n> p implies 
\Q(<lm>bn) — g(an9bn) | < e, and hence {g(an9bn)} is indeed a Cauchy sequence. 

We shall prove that e0 is a distance function in P u Q, i.e. that it possesses the 
properties [1], [2], [3] exhibited in section 6.1. 

I. Evidently g0(a9 a) = 0, e0(a, a) = 0 and also g0(a9 b) > 0 for a # b. If a 4= P, 
then g0(ai9p) = lim^(cn,fen) =# 0 (and hence > 0), since, by the definition of the 
set Q9 the sequences a = {an} and p = {Z>„} are not equivalent. Also e0(a, b) = 
= g0(b9 a) = lim g(an9b) 4= 0 (and hence > 0); the equality lim an = b cannot 
hold, as a = {<an} e Q c= C is not convergent in P. 

II. g0(a9 b) = g0(b9 a)9 g0(cc9 b) = g0(b9 a), e0(a, P) = g0(p9 a) is evident. 

III. Let a, p, y be three elements of P u Q. If a e g , then a = where {a„} 
is a sequence of points of P; if a eP, put an = a for every n. The sequences {bn}9 

{c„} are defined analogously. Then gQ(ai9 P) = lim g(an9bn) and similarly for g0(<x9 y), 
g0(P, y). However, g(an9 cn) g g(an9 bn) + g(bn9 cn) and hence lim g(an9 cn) g 
^ lim g(an9 bn) + lim g(bn9 cn)9 i.e. g0(cc9 y) g ^0(a, P) + g0(P9 y). 

Consequently, the set P u Q endowed with the distance function £0 is a metric 
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space. Since the partial distance function (q0)PXP coincides with g, the space P = 
= (P, Q) is a point set, embedded into P u g = (P u g, 

Let a = {IAN} e then Q0(OL, an) = lim g(ak, a„). Let e > 0. Then there is an 
k-> oo 

index /? such that k > p, n > p imply < e. Hence n > p implies lim g(aky 

an) g e, i.e. n > p implies g0(a, an) g e. Hence g0(a, an) -> 0, i.e. an -> a. Con-
sequently, by exercise 12.2, the set P is dense in the space P u g . 

The space P u g is complete. Let {a„} be a Cauchy sequence in P u g. Since 
the set P is dense in P u g, there are points aneP such that g0(an, < 1/«. For 
every e > 0 there is an index p(e) such that m > p(e)9 n > p(e) imply g(a,n, a„) < s/3; 
obviously, we may assume p(s) > 3/e. For m > p(e)9 n > p(e) we have g(am, an) = 
= Qo(am, an) g g0(am9 am) + g0(aw, a„) + g0(<xn9 an) < 1 \m + e/3 + 1 \n < e. Thus, 
{an} is a Cauchy sequence of points of P. Now, it suffices to prove that {an} converges 
in P u g, since if an p then g0(ocn9 P) g g0(ccn9 an) + g0(an, P) < wo0(an, p) + \/n 
and thus also an p. In the case that {an} is convergent in P there remains nothing 
to prove. In the other case {<an} e C, and hence there is a P = {bn} e g equivalent 
with {fln}. We know (see above) that Q0(bn, /?) 0; as {an} and {£„} are equivalent, 
we have g0(an9 bn) = g(an9 bn)0; as g0(an9 p) g g0(an9 bn) + g0(bn, p), there is 
Qo(an> P) i-e. P, and hence {#„} is convergent in P u g. 

15.4. A metric space P0 is called a completion of a metric space P if: [1] P is a point 
set embedded into P 0 , [2] P0 is complete, [3] P is dense in P0 . If P = P0 , then the 
space P is complete. On the other hand, if P is complete, then P = P by 15.2.1 
(P denotes the closure of the set P in P0). But P = P0 by [3] and hence P = P 0 . 

15.4.1. jEuery metric space has a completion. If Pt and P2 are two completions of 
a space P, then there exists an isometric mapping f of Px onto P2 such that f(x) = A* 
for every xeP. 

Proof: In section 15.3 we constructed the metric space P u g , which is obviously 
a completion of the metric space P. Let Pt and P2 be two completions of a metric 
space P, let g, and g2 be distance functions in P, Pj and P2 respectively; hence, 
g = (eOpxp. If xePt then by exercise 12.2 there is a sequence {an} such that 
aneP9 gx(an9 x) 0. The sequence {an} is a Cauchy sequence by 15.1.1. Since the 
space P2 is complete, there is a point y eP2 such that g2(an9 y) 0. Preserving the 
original point xePl9 let us replace the sequence {tfn} by a sequence {bn} having 
the same properties, i.e. bneP9 gx(bn9 x) 0. Instead of y we obtain some point 
zeP2 such that g2(bn9 z) 0. Then g2(y9 z) g g2(y, a„) + g2(an9 bn) + g2(bn9 z). 
But g2(an9 bn) = g(an9 bn) = g¿an9 bn) g gx(an9 x) + g^(bn9 x). Since g2(y9 an) 0, 
g2(bn9 z) 0, gx(an9 x) 0, g ^ x) -> 0, we have g2(y, z) = 0 and hence z = y; 
i.e., the point y e P2 is uniquely determined by the point x e PL. On putting y = f(x) 
we obtain a mapping / of the space Px into the space P 2 . If xeP9 we may choose 
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a = x for every w, and hence f(x) = x for xeP. If xePl9 x' ePl9 we choose 
sequences {an}, \a'n} such that an eP , a'neP, c'ifa,, *) -> 0, Q^an, x') 0. By defini-
tion o f / , we have Q2[anJ(x)] 0, Q2[an,f(x')] -> 0. Consequently an x, a'n-+ x' 
in P, and an-+f(x), a'n-+f(x') in P2 and hence, by exercise 9.12, ei(fln>an)-> 

(?,(*, *'), Q2(an, a'n) -> e2[/(*),/(*')]• s i n c e Qifa, a'n) = Q(an, <0 = ^(a*, <0, we 
have (?I(.Y, x') = £2 [/(*)>/(*')]• Hence, the mapping/ is isometric. It remains to 
show that / is a mapping of Pt onto P2, i.e. that for every y e P2 there is an x e Pt 

such that f(x) = y. Let yeP2. By exercise 12.2 there is a sequence {an} such that 
,an g P, Q2(ani y) 0. The sequence {a„} is a Cauchy sequence by 15.1.1. Since the 
space Pl is complete, there is a point xePt such that Evidently 

Ax) = y. 

15.5. A metric space P is said to be absolutely closed, if it has the following property: 
If P is embedded into any space P 0 , then P is a closed subset of P0 . 

15.5.1. A metric space is absolutely closed if and only if it is complete. 

Proof: I. Let P be absolutely closed. Let P0 be its completion, (cf. 15.1.1). By 
15.2.2 P is complete. 

II. Let P be complete. Then it is absolutely closed by 15.2.1. 

A metric space P is said to be an absolute Qyspace, if it possesses the following 
property: i f P is embedded into any metric space P 0 , then P is always a G5-set in P 0 . 
For reasons which will be evident immediately (cf. 15.6.3), we shall use the term 
topologically complete space instead of absolute G^-space. 

15.5.2. A metric space P is topologically complete if and only if there is a complete 
space Q such that P is a C5-set in Q. 

Proof: I. Let P be an absolute Gd-space. Let P0 be its completion (cf. 15.4.1). 
Evidently P is a G^-set in P0 and P0 is complete. 

II. Let there exist a complete space Q such that P is a G^-set in Q. Let R be a metric 
space into which P is embedded. We have to prove that P is a G5-set in P. Let R0 

be a completion of the space R (cf. 15.4.1). Hence Q and P 0 are complete spaces 
and P is embedded into both of them. Let P(Q) and P(P0) be closures of the set P 
in Q and R0 respectively. By 15.2.2 P(Q) and P(P0) a r e complete spaces and P 
is embedded into both. Obviously, P is dense in both P(Q) and P(P0), and hence 
P(Q) and P(P0) are two completions of the space P. Hence, by 15.4.1, there exists 
an isometric mapping / of the space P(Q) onto the space P(P0) s u c ^ that f(x) = x 
for xeP. As P is a G,-set in Q and P <= P(Q) c Q, P is a G^-set in P(Q) by 13.6.1. 
Since the concept of a Gd-set is metric (even topological), we conclude from the 
existence of the mapping/that P is a G^-set in P(R0) too. By 13.2, P(P0) is a G^-set 
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in R0 and hence, by exercise 13.10, P is a G^-set in R0. As P cz R c R0f P is a G^-set 
in P by 13.6.1. 

15.5.3. Let P be a topologically complete space. Let A be a G ¿-set in P. Then A is 
a topologically complete space. 

Proof: By 15.5.2 there is a complete space Q such that P is a G^-set in Q. By 
exercise 13.10, A is a G r se t in Q and hence A is topologically complete by 15.5.2. 

15.6. 15.6.1. Let f be a homeomorphism of a metric space P onto a metric space Q. 
Then there exist topologically complete spaces P0 and Q0 such that: [1] P is embedded 
into P0, [2] Q is embedded into Q0, [3] there exists a homeomorphism cp of the space 
P0 onto the space Q0 such that q>(x) = f(x) for xeP. 

Proof: Let and Qx be completions of P and Q respectively (cf. 15.4.1). Denote 
by P2 the set of all xePt such that for every e > 0 there is a S > 0 such that 

a G P, a' G P, q(a, x) < <5, q(a!, X) < S => q[f(a),f(a')] g e. (1) 

Let Q2 denote the set of all elements y e Q^ such that for every e > 0 there 
is a S > 0 with 

beQ, b'eQ, q(b,y)<3, Q(b',y)<5 => elf-iWJ-^b')] g c. 

For positive integers m, n let Amn be the set of all xePY satisfying 

a e P, a'eP, q(ay x)<-^9 q(a\ x) < i - => q[f(a),/(a')] g - j i -

lt is easy to see that 

Pi = N U Amn. (2) 
m = 1 n = 1 

oo 
If JT G (J Amnf there is an index n such that x e Amn; if x' GPx and q(x, x') < 1/2ny 

n= 1 oo 

then obviously x'e Amt2n and hence x'e\JAmn. Consequently, for every xe 
oo n = 1 oo 

^ U Amn there is a 5 > 0 such that QPl(x, 3) c U Amn
 a nd hence, by (2), P2 is 

n = 1 m=1 
a G^-set in Pt. Similarly, Q2 is a Ga-set in Q{. 

The mapping / is continuous, since it is a homeomorphism. Hence, given a point 
x e P , to every e > 0 there is a 6 > 0 such that 

a e P, e(a, x) < 3 => *?[/(*),/(*)] £ y . (3) 

However, from (3) there follows (1), i.e. x eP2. Hence P c P 2 . As the inverse mapping 
/ _ ! is also continuous, we obtain similarly that 2 c Q2 . 
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Choose a point xeP2. As Px is the completion of P, the set P is dense in Pl 

and Pj contains P2 ; hence, by exercise 12.2, there is a sequence {a^such that aneP 
and an x. Let e > 0. Since xeP2, there is a S > 0 such that (1) holds. Since 
a„-+ x, there is an index p such that n > p implies g(an, x) < S. By (1) m > p 
and n > p imply Q[f(am),f(an)] g e. Hence, {/(#„)} is a Cauchy sequence. Since 
f(an) e Q c Qi and is a complete space, there is a point y e Qr such that f(an) y. 
Preserving the point x, we replace the sequence {an} by another sequence {an} with 
the same properties, i.e. a'neP, an -> Put a2n-x = a„, a2rt = since aneP, 
a : - + x e P 2 l there is l i m / M e f t . By 7.1.2 l i m / R ) = l i m / K ) , lim/fai) = 
= lim/(a;,') and consequently lim f(an) = lim f(a'n). Hence, the point y = limf(an) 
depends on the point x e P 2 only, and not on the choice of the sequence {an}. Hence, 
we may put y = (px(x). If x e P9 we may choose an — x for all n\ consequently 
(PI(x) = f(x). Hence, cpx is a mapping of P2 into Qx such that cp^x) = f(x) for 
xeP. Similarly we construct a mapping cp2 of the set Q2 into the set P, such that 
yeQ implies <p2(y) = /_ 

Let xneP2, xeP2, xn -> x. For every n there is a sequence {an]'(J=i such that 
anieP, lim ani = hence, \im f(ani) = </>](*„). With every /1 we may associate 

i ~ * / : i - * o o 

an index /(w) such that for bn = art>i(/l) we have g(bH, xn) < \/n, « (̂.v,,)] < 
< \/n. Now ¿„e? , ¿>„ x and hence j\bn) cpx(x). As (?[/(£„), <?iOn)] < 1/«, we 
also have (Pi(x„)-> <Pi(x). This proves that the mapping of P2 into Qx is con-
tinuous. The continuity of the mapping cp2 of Q2 into Px may be proved in a similar 
manner. 

Put P0 = E[x e P 2 , (px{x) e Q2], Q0 - E[y e Q2, <p2(y)eP2]. Evidently P c P0 , 
* y 

Q a Q0. As ^ a G^-set in and as is a continuous mapping of P2 into Qx, 
by exercise 13.7 the set P0 is a G^-set in P2 . Since P2 is a G^-set in P1? the set P0 

is a G^-set in Px by exercise 13.10. As Px is a complete space, P0 is topologically 
complete by 15.5.2. Similarly Q0 is topologically complete. 

Put (p = ((pi)Po, i¡t = (<p2)<?0 (cf-2-4)- -YeP0, there is a sequence {«„} such 
that aneP, x, /(a„) = q>{x). Since xeP0, we have <p(.v) g g 2 . Since 
FM e <2,/(¿J <?(*), w e h a v e = / - i L / R ) ] <P2[<P(X)] and hence <p2[<p(*)] = 
Since cp(x)eQ2, xeP2i we have (p(x)eQ0. Hence (p(P0) c g 0 . Since 
we have <p2[cp(x)] = hence = .x and consequently il/(Q0) zd P0 . 
Similarly we prove that \p(Q0) c P0 , <p(P0) 3 Q0. Hence, q>(P0) = Q0i ijj(Q0) = p 0 , 
i.e. cp is a continuous mapping of P0 onto Q0 and ^ is a continuous mapping of 0O 

onto P0 . We have also seen that ty[(p(x)] = x for x G P0 , and hence 1¡/ = cp_{ and cp 
is a homeomorphic mapping of P0 onto Of course xeP implies cp(x) =/(.y). 

15.6.2. Le/ P Q be homeomorphic spaces. If P is topologically complete, 0 
is also topologically complete. 

Thus, topological completeness is not only a metric property (which was obvious 
from the definition), but, moreover, a topological property. 
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Proof: Let / be a homeomorphism of a topologically complete space P onto 
a metric space Q. By 15.6.1 there are topologically complete spaces P0 , Q0 containing 
P, Q respectively, and a homeomorphic mapping (p of Q0 onto P0 such that cp(Q) = P. 
As P is topologically complete and P c= P0 , P is a G rset in P0. Since q> is a con-
tinuous mapping of the space Q0 onto the space P0 and Q = <p_j(P), Q is a G^-set 
in Qq by exercise 13.7. Let Q1 be a completion of Q0 (cf. 15.4.1). Since Q0 is topolo-
gically complete, Q0 is a G^-set in Q{. Hence, by exercise 13.10, Q is a G^-set in Ql 

and consequently, by 15.5.2, Q is topologically complete. 

15.6.3. A metric space P is topologically complete if and only if there is a complete 
space homeomorphic to P. 

Proof: I. By 13.2, 15.5.1 and by the definition of topologically complete spaces, 
any complete space is topologically complete. Hence by 15.6.2, a space homeo-
morphic with a complete space is topologically complete. 

II. Let P = (P, Q) be a topologically complete space with the distance function Q. 
It suffices to prove (cf. 9.3) that there is a distance function Q0 in P equivalent with 
the distance function Q and such that (P, Q0) is complete. By 15.4.1, the space P — 
= (P, Q) may be embedded into a complete space Q. Without danger of misunder-
standing, we may denote the distance function in Q by Q just as the previously given 
distance function in P. Since P is topologically complete, there exist open sets Gn 

00 
in Q such that P = f l G„. If P = the space (P, Q) is complete and there is nothing 

n = 1 

to prove. Hence we may suppose P =1= Q and then, of course, we may suppose 
Gn # Q for every w.*) For A- eP, >' eP, « = 1,2,... put 

/„(A-, y) = <j(.\\ y) + Q{A\ Q - Gn) + e(y. Q - Gn\ (1) 

^ ' » - M - 121 

| 
Qo(x, y) = q(x> y) + £ - -g„(x , v). (3) 

n = 1 2 
As A e P c= Gn, Q — G„ = Q — Gn (where the right hand side denotes, of course, 
the closure in Q), we have g(xy Q — Gn) > 0, and similarly Q(\\ Q - Gn) > 0. 
Hence 0 g Q(X, y) < f„(x, y), and consequently 

0 ^gn(x,y)< 1; (4) 

thus the series on the right hand side of (3) is convergent. Moreover, 

0 g g(x,y) ^ eo(x*y)- (5) 

*) There is an a e Q — P and hence P — [Gn — (a)] where Gn — (a) # Q are open: conse-
n = 1 

quently, we could take Gn — (a) instead of Gn. 
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Evidently Q0(x, x) = 0 and Q0(x, y) > 0 for x 4= y. Obviously Q0(X, Y) = 0o(.y, x). 
Since for any numbers c > 0, ^ 0, t2 ^ one has the evident relation 

c + tx - c + t2 

and since for xeP, yeP, zeP we have Q(X, Z) ^ O(x,y) + z), we obtain 

e ( x -> < ^ g(*. J>) + g(y.z) 
v ' ; =

 LE(X, Y) +.e(*, Q - G„) + z) + Q{z, Q-G„)' w 

By exercise 6.6, 
(2 - Gn) ̂  Q(X, y) 4- q(x, Q-Gn), 

Q(y, Q-Gn) £ z) + ¿?(z, 0 - <r„), 

and hence the denominator on the right-hand side in (6) is not less then either of the 
two following numbers 

Ofa, y) 4- <?(*, Q - Gn) 4- Q(y, Q - Gn), 
¿?0>, + Q(y, Q - Gn) + Q - Gn). 

Hence, by (6), it follows that 

gn(x, z) ^ gn(x, y) 4- gn(y, z) 

and consequently, by (3), we obtain Q0(X, Z) ^ y) + q0(y, z). 
We have proved that Q0 is a distance function in P. We shall show that the distance 

functions Q0 and Q in P are equivalent, i.e. that for xneP, xeP there is 

g(xn, x) 0o Q0(xni x)->0. 

If Qo(xn, x) -> 0 then x) 0 by (5). Now let q(xni x) 0. Choose an e > 0. 
Find an index k such that l/2k < e/2. By (4), for every n there is 

2 ^siC*»«*) ^ £ i = = i < T ' »=k+i 2 ¿=k+i 2 2 z 

hence 
* 1 8 

£o(*n, *) < x) 4- £ — x) 4- T , 
i=i 2 z 

and thus, by (1) and (2), 

Putting 
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we obtain a continuous function / with dcmain E[/1 t ^ 0] such that /(0) = 0. 
X 

Hence there is a 3 > 0 such that 0 ^ t < 3 implies f(t) < C/2. Since g(x„, X) 0, 
there is an index p such that the following sequence of implications holds: 

£ £ j' n> p=> O g g(xni x) <3 =>f[g(xn, *)]< — => x) < y + y = e. 
i 

Hence indeed Q0(X„, x) 0. 
It remains to prove that the space (P, g0) is complete. Let {*„} be a Cauchy se-

quence in this space. We have to show that there is a point x eP such that g0(x„, x) 
-*0; of course, it suffices to prove since the distance functions g0 

and g are equivalent. Since {*„} is a Cauchy sequence with respect to the distance 
function g0, it is, by (5), a Cauchy sequence with respect to the distance function g. 
As (Q, g) is complete, there is a point xeQ such that x ) 0 . We are to 

OO 
prove that xeP. Assume the contrary, that xeQ — P. Since P = Gnf there is 

»1=1 
an index k such that xeQ —Gk. Hence g(xn, Q — Gk) ^ x). Since e(;cn, x) 

0, we have 
Q(x„Q - (?*)-> 0. (7) 

By (3), 

2* 
Hence, by (1) and (2), 

2* g(xmy xn) + e(xm, Q — Gk) + g(xn, Q - Gk) 

By exercise 6.6 we have 

Q(xm, Q - Gk) é Q(xm, x„) + efo, 2 - Gk); 
hence, 

1 Q(xm,xJ Qo(xm, xn) ^ 
2k+1 g(xm,xn) + g(xn,Q-Gk) 

Since {xn} is a Cauchy sequence with respect to g0, there is an index p such that 
m > p, n > p imply <?o(*,„>*n) < l/2*+2. Hence the following implications hold 

m>p, n> p*>-f wm/*w)
n <i*>o(xm9xM) < Q(xm, Q - Gk) . 

g(xm,xn) + g(xn,Q-Gk) 2 
Consequently 

m > p=> lim e(xfn, x„) ^ lim g(xn, (2 - G*) 
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and hence by (7) and by exercise 9.10 it follows that 

m > p=> g(xmf x) g 0 => g(xm, x) = 0 => xm = x , 

which is a contradiction, since xmeP and x e Q — P. 

15.7.15.7.1. Let Pbea complete space. Let An (n = 1, 2, 3,...) be point sets embedded 
00 

into P, such that An 4= 0, d(An) 0, A„ => An + {. Then the set An consists of 
n= 1 

exactly one point. 

Proof: Let us choose an e An. If s > 0, there is an index p such that d(Ap) < c. 
For n > p we have ctne A„ c Ap. Consequently, m > p and n > p imply q(am9 an) ^ 
g d(Ap) < e. Hence, {<an} is a Cauchy sequence. As the space P is complete, there 
is a point x0 such that an x0. Given a positive integer n, at e An+1 for i ^ n 4- 1; 

oo oo 

hence, by 8.2.1, x0eAn + l c: A„. Consequently x0e f ) An. Let xe f | F° r 

n =1 n= 1 

every n there is Q(X, x0) g d(An). Since d(An) 0, we obtain Q(X, x0) = 0, and 
hence x = x0. 

The theorem just proved is a (particularly important) special case of the following 
more general theorem: 

15.7.2. Let P be a complete space. For n = 1, 2, 3, . . . , let Sn > 0 with Sn 0, 
An c: P, A„ =T= 0, /4N => . Let there exist finite sets Kn P, Kn 4= 0 JMC/J that 

00 
.v G y4n implies Q(X, Kn) < Sn. Then f ) An 3= 0. 

n = 1 
Proof: I. Let us choose ane A„. We shall prove that the sequence {an} contains 

a convergent subsequence. For every n, an e An <= Alf and hence there is a point 
xe Kt such that g(an, x) < d{. Since the set Kx is finite, there is a point x{ e Kx 

such that there is a subsequence {alfl}®=1 of {ait} with g(alni x) < 5X for every n; 
as A„ r> An+l, evidently alneAn for every n. 

Now, suppose that for a given i (-= 1,2,3,...) the same construction has been car-
ried out as for i = 1; namely, that we have determined a point x^Ki and a sequence 
{ain}™= i such that, for every n, aitleAn, g(ainix,) < <5f. For n > / we have 0inGv4n c 
C= >4 I + 1 and hence, for every N > i, there is a point X G + 1 such that Q(ain,x) < <5I + 1 . 
As the set Ki+l is finite, there is a point X/+1 GAT/+1 and a subsequence 

Kn}r=i such that e(0 i+1 | l l, .v,) < <5i+1 for every n. Evidently, ai+ltneAn. Hence, 
we may construct recursively the sequences {ain}n

x=i for i = 1, 2, 3, . . . 
Put bn = artn; hence {/;„} is a subsequence of the sequence {an}. We have to prove 

that {/>„} is convergent; since the space P is complete, it suffices to prove that {bn} 
is a Cauchy sequence. The sequence {¿„ĵ L* is a subsequence of Hence 
n ^ i implies q(bn, xf) < and consequently m ^ /, n ^ i imply q(bmi bn) < 2<5,. 
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Since Si -> 0, {bn} is a Cauchy sequence. Since P is complete, {¿>n} is convergent. 

II. By I., there is a convergent sequence {a„} such that a„eAn. Let an-* x0. 
If n is given and / ;> n + 1 then a^ An+X, and hence, by 8.2.1, .v0G/4n+, c A„. 

oc oo 

Consequently x0 e f ) An, and hence f) A„ 4= 0. 
11 = 1 n = 1 

15.8. 15.8.1.*) Let P 4= 0 be a topologically complete space. Let Gn a P be open sets, 
oo oo 

Gn dense in P. Then Gn + moreover, the set f ) Gn is dense in P. 
n=1 «=1 

Proof: I. First show that f | Gn =N From 15.6.3 it follows easily that it suffices 
n = I 

to prove this under the assumption that P is complete. Choose a point aieGi. 
Since the set Gi is open, there is a real number 5i such that 0 < <5, < 1/2 and 
E[g(aj, x) ^ <5j] c= CJ1. More generally, for any given n (=1,2 ,3 , . . . ) assume 
X 

there have been found a point an and a number Sn such that an e Gn, 0 < Sn < 1/2", 
E[g(an, x) g <5„] a Gn. As the set Gn+l is dense, there is a point an+] e Gn+l such 
X 

that Q(an9 an + 1) < Sn. As Gn+l and x) < ¿>n] are open sets, there is a number 
X 

<5n+1 such that 0 < dn+l < \/2n+1, E[Q(an + i ,x) ^ Sn+1] a Gn+i n E[o(an, x) ^ 
X X 

g 5J. Hence, the points an and the numbers <5„ may be constructed recursively. 
Put Sm = E[Q(an, x) ^ ¿J. Then SH c Gnf Sn Sn+l9 d(Sn) ^ 25n - 0, S„ 4= 0. 

X 00 

Moreover, Sn = Sn (e.g. by 9.5 and exercise 9.10). Hence, by 15.7.1, f | * 0. 

As Sn c G„, + W. 
n = 1 

n = 1 
II. Let T #= 0 be an open set. By 12.1.2, it suffices to show that T n f ) Gn ± 0. 

n= 1 
By 13.1.1 and 15.5.3, T is a topologically complete space. The sets T n Gn are open 

oo 

by 8.7.5, and dense in V by exercise 12.3. Hence, by I, f | (P n Gn) 4= 0, i.e. f n 
oo n = 1 

0. 
n = 1 

15.8.2. Let P ^ {) be a topologically complete space. Let A be a set of the first category 
in P. Then P — A 4= 0; moreover, the set P — A is dense in P. 

00 
Proof: We have A — (J Anf where An are nowhere dense sets, i.e. the (open) 

n = 1 oo oo 

sets Gn = P - An are dense. Hence, by 15.8.1, the set f | Gn = P - U ¿n i s dense. 
oo n = 1 n = 1 

By 12.1.1 also the set P - A => P - U An is dense. 
n= 1 

*) 15.8.1 (15.8.2, resp.) is sometimes called Baire's theorem. 
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15.8.3. Let P =# 0 be a topologically complete space. Let f be a function of the first 
class with domain P. Let C be the set of all xeP at which f is continuous. The set C 
is dense in P. 

Proof: By 14.5.2, P - C is a set of the first category. Hence, by 15.8.2, the set C 
is dense. 

15.8.4. The set R of all rational numbers is not a Cd-set in Et. 

Proof: If a e R, then the set (a) is nowhere dense in R by exercise 12.5. Hence, 
by exercise 3.1, the set R is a set of the first category in R. Consequently, the space R 
is not topologically complete by 15.8.2. Hence, R is not a G^-set in Et by 15.1.3 
and 15.5.2. 

Exercises 

15.1. Let P = A KJB. Let A and B be complete spaces. Then P is a complete space. 
15.2. Let P = A U B. Let A and B be topologically complete spaces. Then P is a topologically 

complete space. 
15.3. Let C be a non-void set. Let P be a metric space. For each z e C let A(z) be a complete space 

embedded into P. Then Q A(z) is a complete space. 
z e C 

15.4. Let P be a metric space. For n = 1, 2, 3 , . . . let An be topologically complete spaces embedded 
00 

into P. Then f ) An is a topologically complete space. 
n = 1 

15.5. Let P and Q be topologically complete spaces. Then P x Q is a topologically complete 
space. 

15.6. Every absolutely open space (cf. analogous definitions in section 15.5) is void. 
15.7. Let P be a complete space. Let Q ^ P. Then Q is a completion of the space Q. 
15.8. Let P be a topologically complete space. Let A be a closed set of the first category in P. 

Then A is nowhere dense in P. 
15.9. Let P be a topologically complete space. Let An (rt = 1, 2, 3 , . . . ) be dense G^-sets in P. 

00 

Then the set f ) An is dense in P. 
n= 1 

15.10. The spaces in exercises 6.5, 7.2, and 7.4 are complete. 
15.11. In the proof of theorem 15.6.1 the following equalities hold: P0 -= P2 n (p2(Q2), QQ = 

= Q2n ^ ( j y . 
15.12. In theorem 15.6.1 we may put P = E[0 < / < 1] U E[1 < / < 2] u E[2 < t < 3] = Qy 

t t t 
f ( t ) = 1 — t for 0 < t < 1, / ( f ) = 3 — t for 1 < / < 2, f ( t ) - t for 2 < t < 3, Px = 
= q1 = p u ( 0 ) U (1) u (2) u (3). In the proof of the quoted theorem we have P2 = 
= PU(0) U (3) = Q2tPQ=PKJ (3) = Q0. 

15.13. Let P be a topologically complete space. Let / be a function of the first class with domain P. 
Let Q be a non-void G5-set in P. Then there is a point x e Q such that the partial f a c t i o n fQ 

is continuous at x. 
15.14. Let / be a function with domain Ex. Let C be the set of all points x eEt such that / is con-

tinuous at x. Then C is not the set of all rational numbers. (This may be proved using 13.4.) 
Compare with the result of exercise 9.2. 
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15.15. For x G Ex put fix) = lim lim cos2n minx. The function / is nowhere continuous. Hence 
m ~ * oo co 

it is not a function of the first class. 
15.16.* The set of all members of a Cauchy sequence is bounded. 

§ 16. Separable spaces 

16.1. An open basis of a metric space P is a system © of open subsets of P such 
that for every neighborhood U of any point xeP there is a neighborhood V 
of the point x with F e © and V cz U. 

16.1.1. Let © be a system of subsets of a metric space P. © is an open basis of P if and 
only if: [1] every set from © is open; [2] for every open G cz P, G =j= 0, there is a system 
21 c ©, 21 4= 0, such that G = \J X. 

x^x 
Proof: I. Let the system © have the properties [1] and [2]. Let U be a neighborhood 

OC 

of a point x e P. Then there is a system 21 c: ©, 21 4= 0, such that U = \J X. Since 
XeK 

x G Uy there is a KG21 with x e V. The set V is a neighborhood of A* and we have 
V c U. 

II. Let © be an open basis of the space P. Let G cz P be a non-void open set. 
As G 4= 0, there is a point a e G. G is a neighborhood of the point a and hence 
there is a set H e © with ae H c= G. Thus, the system 21 of all the X e 23 such that 
X c G is non-void. Evidently (J X a G. If x e G, G is a neighborhood of the 

point a, so that there is a set Ue 23 with xe U c G ; thus, U e 21 and consequently 
xe \J X. Thus, G a U X, i.e. G = \J X. 

XeW XsS}{ 

A separable space is a metric space which has (at least one) countable open basis. 
This is obviously a topological property. 

16.1.2. Let P be a separable space. Let Q c P. Then Q is separable. 

Proof: If 23 is an open basis of P and if we replace every set X G © by the set Q n X, 
we obtain a system ©0- 8.7.5 yields that 230 is an open basis of the space Q. If © 
is countable, the system ©0 is evidently also countable. 

16.1.3. A metric space P is separable if and only if there is a countable A c= P dense 
in P. 

Proof: I. Let © be a countable open basis of the space P. Let us choose one point 
in each non-void I e93 . Let A be the set of all chosen points. Then A is a countable 
set. If G is non-void and open, choose an X G G. AS © is a basis, there exists a U G © 
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with x e U cz G. If ae A is the point chosen in U, we have a e A n U c: A n G. 
Thus, A n G 4= 0 for every non-void open G, so that the set is dense by 12.1.2. 

II. Let ^ be a dense countable subset of P. Let 93 be the system of all Q(a, r), 
where a varies over all the points of A and r varies over all the positive rational 
numbers. By 3.5.2 and 3.6 we see easily that the system 93 is countable. By 8.6.1 
we see easily that 93 is an open basis of P. 

16.1.4. The Hilbert space H is separable. 

Proof: Let A be the set of all r = {rn}S° such that: [1] every rn is a rational number; 
[2] there exists an index p such that rn = 0 for every n > p. Evidently A <= H. 

00 

Let .r = {xn}f e H. Choose an e > 0. There exists an index p such that £ x\ < 
p n=p+1 

< s2/2. For 1 ^ n g p there are rational numbers rn such that £ (xn — rn)2 < e2/2. 
n = 1 

For n > p put rn = 0. If r = {rn}", we have r e A, G(x, r) < e. Thus, Q(X, A) < e. 
As e > 0 was arbitrary, we have q(x, A) = 0, i.e. xeA. Thus, A = H, i.e. the set A 
is dense in H. The set A is countable by ex. 3.1 and 3.14. 

16.1.5. The euclidean space Em (m = 1, 2, 3, ...) is separable. 

Proof: Let Qm be the set of all points * = {xn}J° e H with xn = 0 for n > m. 
Qm is separable by 16.1.2 and 16.1.4. The spaces Em and Om are evidently isometric, 
so that Em is also separable. 

16.1.6. Let P be a metric space. For every 3 > 0 let there be a countable set A(3) c p 
such that A{3)\ < 3 for every xeP. Then P is separable. 

OO 
Proof: Put B = U A(\/ri). The set B is countable by 3.6. For every point xeP 

n = 1 

we have B) ^ {?[*, A(\/ri)] < l/n, hence B) = 0, i.e. xeB. Thus, B = P, 
i.e. the set B is dense, so that P is separable by 16.1.3. 

16.1.7. Let P be a metric space. Let there exist a number 3 > 0 and an uncountable set 
A a P such that 

x e A, ye A, x #= y imply Q(X, y) > 3. 

Then P is not separable. 
Remark: This theorem is a useful criterion for proving that a given space is not 

separable. Its converse is valid; however, it cannot be prowed without a use of the 
theorem that the set P may be well ordered. (Which is not proved in this book; 
see 4.3.) 

Proof: Let 93 be an open basis of the space P. For every xe A there is a set B(x) e 93 
with * e B(x) c Q(X9 3). If x e A, y e A, x 4= y, we have y e B(y), while x is not 
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in B(y), hence, B(x) 4= B(y). As the set A is uncountable, the system of all the P(.\) 
is uncountable. Thus, the system 23 is uncountable. 

16.2. 16.2.1. Let P be a separable space. Let SIX be a disjoint system of open subsets of P. 
Then the system is countable. 

Proof: By 16.1.3 there is a countable dense subset A. By 12.1.2, we may choose 
in every G e 2i — with the exception of G = 0, which may be also an element of 
2i - a point <p(G) eA n G. The set of all points <p{G) is countable by 3.4.1. Since 
the system 21 is disjoint, we have q>(Gx) 4= cp(G2) for G, 4= G2. Thus, the system 21 
is also countable. 

16.2.2. A necessary and sufficient condition for P to be a separable space is the following: 
For every system 21 of open sets with |J X = P there is a countable system 2i0 c 2t 

such that (J X = P. 
XeKo 

Proof: I. Let the condition be satisfied. For n = 1, 2, 3, . . . denote by the system 
of all Q(x, 1 jn) with xeP. There is a countable %n c S„ such that U X = P. 

00 XeZn 

Put 23 = U Then 23 is a countable (see 3.6) system of open sets. It suffices 
n= 1 

to prove that 23 is an open basis of the space P, i.e. that for any given neighborhood 
U of a given point aeP there is a set Fe23 with ae V c U. There is a number 
r > 0 with Q(a, r) c= U. Choose an index n > 2jr. Since %n c= (J X = P, 

X e Zn 

there is a point beP such that Q(b, \/n)eX„ cz 23 and aeQ(b, \/n). Then the 
following sequence of implications holds 

x e Q(b, \/n) => g(b, x) < \\n => q(ay x) ^ g(a, b) + 
+ Q(b, x) ^ 2/n < r => x e Q(a, r) c= U, 

hence Q(b, \/n) cz U. This Q(b, 1 /n) is an element of 23. 

II. Let P be separable. Let 21 be a system of open sets with (J X = P. Let © 

be a countable basis of the space P. With every xeP we may associate a set Ax e 21 
such that xeAx; then we choose a set Bxe 23 such that xeBx cz Ax. Evidently 
U Bx = P. Since the system © is countable, there is a countable C a P such that 

xeP 

u Bx = U Bx i.e. u Bx = P. As Ax => Bxi we also have (J Ax = P. Thus, the 
xeC xeP xeC xeC 

system 2l0 of all Ax with x G C is countable and such that 2i0 cz 21, (J X = P. 
Xe^o 

16.2.3. A necessary and sufficient condition for P to be separable is the following: 
Every open basis contains a countable open basis. 
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Proof: I. Let the condition be satisfied. Since there is at least one open basis 
(namely the system of all the open sets), there is a countable open basis, i.e. P is 
separable. 

II. Let P be separable. Let 93 be a countable open basis. Let 9X be an arbitrary 
open basis. If there is given a point XEP and an index n = 1, 2, 3 , . . . , there is a set 
An(x)E$l such that xeAn(x) <=: Q(x, 1 /«); further, there is a set B„(X)E^& such 
that X G Bn(x) C A„(x). Since the system 93 is countable, there is, for every n, a coun-
table set CN c= P such that U Bn(x) = U Bn(x), i.e. \J Bn(x) = P. Since Bn(x) cz 

x e Cn xeP xeCn 
c An{x), we have (J An(x) = P. Let 9i0 be the system of all An(x) (n = 1, 2, 3 , . . . 

xeC„ 
..., x G Cn). Then 9l0

 c 91 and the system 9l0 is countable by 3.4.1 and 3.6. It suffices 
to prove that the system 9i0 is an open basis, i.e. that for every neighborhood U 
of any point aeP there is a set FG 9l0 with ae V c U. There is a number r > 0 
such that Q(a, r) c= U. Choose an index n > 2/r. Since U An(x) = P, there is 

xeCn 

a point beCn with- a G An(b). We have An(b) c= 1/«), hence < 1/n; 
thus x G ¿2(6, 1/n) implies Q(b, x) < 1/w which implies ^(a, A:) g ^(a, 6) + x) < 
< 2/n < r, hence Q(b, l/n) a Q(a, r) c: i/. Hence ¿7 e An(b) cz i/. Since beCn, we 
have ^n(6)G9i0. 

16.3.16.3.1. Let P be an uncountable separable space. Let Q be the set of all the xeP 
such that every neighborhood of x is uncountable. Then: [1] P — Q is countable, 
hence, the set Q is uncountable, [2] the set Q is dense-in-itself 

Proof: I. With every xeP — Q we may associate a countable neighborhood 
U(x). The sets U(x) - Q are (see 8.7.5) open in P - Q and we have U (£/(*) -

xeP-Q 

-Q) = P-Q. P-Q is a separable space by 16.1.2. Thus, by 16.2.2, there is 
a countable A c P - Q such that U - Q] = U - Qb i.e. U -

xeP—Q xeA xeA 

— Q] = P — Q. Hence, the set P — Q is countable by 3.6. Q is uncountable, since 
otherwise the set P = (P — Q) u Q would be also countable. 

II. If xe Q and e > 0, the set Q(x, s) is a neighborhood of the point x and it is, 
consequently, uncountable. Since P — Q is countable, the set Q n Q(x, e) = 
= Q(x, e) — (P — Q) is uncountable. Hence, there is a y e Q, y =f= x with y) < e. 
Thus, x is not an isolated point of the set Q. Hence, Q is dense-in-itself. 

16.3.2. Every dispersed separable space P is countable. 

Proof: If P were uncountable, it would contain, by 16.3.1, a dense-in-itself set Q. 

16.4. Let P be a separable space. Let a non-void system % of closed subsets of P have 
co 

the following property: I f , for p = 1, 2, 3,. . . , AneM, An => An + i , then f | Ane 91. 
n = 1 
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Then there is at least one minimal set M e 2(, i.e. a set M such that A e 21, A cz M 
imply A = M. 

Proof: Let be a sequence the members of which are exactly all the elements 
of a (countable) open basis 23 of the space P. Choose arbitrarily a set At e2l. If 
(for n = 1, 2, 3,...) the set An e2l is chosen, choose, if it is possible, an An+l e2I 
with An+1 c: An — Bn; if it is not possible, put An+1 = An. Then we always have 

00 

Ane 21, An+1 a An and hence M = f | Let us prove that M is minimal 
n = 1 

in 21. Let there be, on the contrary, a set C e 21 with C c M 4= C. Choose a point 
ae M — C. The set P — C is a neighborhood of the point a. Since 23 is an open 
basis, there is an index n such that a e Bn c P - C. We have Ce 21, C cz M — Pn c 
cz An — Bn. Hence, A„+1 cz An — P„, so that a e P — An + 1 for asBn. This is a 
contradiction, since a e M c z A n + i . (The theorem just proved is called the 
Brouwer reduction theorem.) 

16.5. A metric space P is separable if and only if there is a point set Q embedded into 
the Urysohn space U which is homeomorphic with P. 

Proof: I. Since U cz H, the space Q embedded into U is, by 16.1.2, and 16.1.4, 
separable; thus, a space P homeomorphic with Q is also separable. 

II. Let P be separable. We may assume that P 4= 0. By 16.1.3 there is a countable 
set A dense in P. Let T be the set of all the triples (a, r, s) where ae A and r, s are 
rational numbers such that 0 < r < s. Evidently (see 3.5.2 and 3.6) T is a non-void 
countable set, so that we may form a one-to-one sequence {(<an, r„, consisting 
exactly of all the elements of T. For xeP, n = 1, 2, 3, . . . put 

f i x ) = gpc, Q(an, r„)] ( 1 ) 
e[x, Q(an, O] + e[x, P - Q(an, s„)] 

if Q(an, sn) 4= P, 
/„(*) = 0 if Q(an9sn)=P. 

The ̂ denominator on the right-hand side in (1) could be zero only in the case of 
x e Q(an, rn) — Q(an, sn); in such a case we would have simultaneously g(an9 x) g rn 

and Q(an,x) ^ sn, which is impossible, as rn < sn. Thus, fn is a finite continuous 
function (see ex. 9.3) on P. Evidently: [1] for xeP we have 0 ^/„(x) g 1, so that 
{(1 /")/„(*)}? e U; [2] g(an9 x) < rn implies /„(*) = 0, [3] e(am9 x) > sn implies 

/„(*) = 1. Put 

= and Q = F(P). 

Then F is a mapping of the space P onto the space Q. We shall prove that F is 
a homeomorphic mapping, i.e. that: [1] Pis one-to-one, [2] Pis continuous, [3] P_ j 
is continuous. 
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Let .v G P, y E P, x 4= y. Since A is dense in P, there is an a e A such that g{a9 x) < 
<2 Q(x,y). Since g(x, y) ^ g(a, x) 4- g(a, y), we have g(a, y) > g(a, x). Hence 
there exist rational numbers r, s with 0 ^ g(a, x) < r < s < g(a9 y). There is an 
index n such that a = an, r = r„, s = sn. We have fn(x) = 0, /„(;;) = 1, hence 
fn(x) 4= /„OX hence F(x) 4= F(y). Thus, the mapping F is one-to-one. 

Let XjeP, xeP, xt x. Since the functions fn are continuous, we have, for 
every lim/„(A,) = /N(X) so that, by 7.3.1, lim F(X,) = F(x). Thus, the mapping F 

i CC i-> 00 

is continuous. 
Let .Yf6P, XGP, limF(*(.) = F(x). By 7.3.1, lim/n(^) = fn(x) for every index n. 

oo i~> oo 

Let us assume that lim 4= A\ Then there is a number e > 0 and an infinite set M 
00 

of indices / such that i e Af implies x) > e. As A is dense in P, there is an a e A 
with g(a> x) < e/2. There are rational numbers r, 5 with 0 g g(a, *) < r < 5 < 
< e/2. There is an index « such that a = an, r = rn9 s — sn. Then g(an, x) < /*„ 
and, for / G M, g(anrx¡) > sn9 so that fn(x) = 0 and, for / G A/, /„(A:,) = 1. Since the 
set M is infinite, /„(*,) does not converge to /„(*); this is a contradiction. Thus, 
lim .v, = x. Hence, the mapping , is continuous. 
i t 

16.6. 16.6.1. Let P be a separable space. Let e be a positive number. Let f be a finite 
function on P. For every aeP let there be a number <5(fl) > 0 and a finite function (p{a) 

of the first class on Q(a, <5(fl)) such that | q>{a\x) - f{x) \ < e for every x e Q(a, S(a)). 
Then there is a finite function </> of the first class on P such that | cp(x) — f(x) \ < e 

for every x G P. 

Proof: The sets Q{a, d'a)) are open and we have (J Q(a, <5(o)) = P. Hence, 
aeP 

by 16.2.2, there are (with the exception of the trivial case of P = 0) sequences 
00 

{a„}i and {«5„}f such that a„eP, Sn = <5(0"\ U i2(a„, <5„) = P. Put cpn = <pta"\ 
n n= 1 

A, = i2 (a l f 5 , ) , = Q(an+l,5n + l ) - U fl(a„ ^ (it = 1,2,3,. . .) . The sets 
i = 1 oo 

A„ are Fa (see 13.3.2, 13.3.4 and 13.3.5) and we have P = \J An with disjoint 
n = 1 

summands. Hence there is a finite function cp on P such that x e An implies (p(x) = 
= (pn(x). Evidently | cp(x) - /(.x) | < r. for every x G P. Thus it suffices to prove 
that (p is a function of the first class. 

Let c G Ej. We have 
a.. 

Efo>(jr) > r] = (J /*„ n E[* e Q(an, S„), <pH(x) > e]. 
x n ~ 1 x 

Since <p„ is a function of the first class on Q(a„, <5„), the set Bn = E[* e Q(an, 5.), 

<p„(.v) > c] is, by 14.3.1, F„[i2(a„, <5„)]. The set Q(a„,S„) ¡s open in P and hence 
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it is F„(P) by 13.3.5. Hence, P„ is Fa(P) by ex. 13.10. Thus, A„nB„ is Fa(P) by 
00 

13.3.4, so that B[(p(x) > c] = \J (An n Bn) is Fff(P) by 13.3.3. Similarly we may 
x n = 1 

prove that E[<p(x) < c] is Fff(P). Thus, (p is a function of the first class by 14.3.1. 
X 

16.6.2. Let P be a separable space. Let fbe a function on P with the following property: 
in every non-void closed set A cz P there is at least one point at which the partial 
function fA is continuous. Then f is a function of the first class. 

Proof: I. First, let us assume that the function / i s finite. It suffices to prove that 
for every e > 0 there is a finite function Fe of the first class such that | / (x) -
— P£(x) | < e. Then/ i s the uniform limit of the sequence {P1/n}, so that, by 14.2.1, 

/ is a function of the first class. Let us assume that the function Fc does not exist 
for some e > 0. Let us denote by G the set of all the a e P for which there is a number 
3(a) > 0 and a finite function cp(a) of the first class on Q(a, S(a)) such that 
| /(x) - <pia)(x) | < e for every x e G(a, <5(a>). If a e G we see easily that Q(a, <5(fl)) cz 
cz G. Hence G = U Q{a, <5(a)), so that the set G is open. Since we assume that Fr 

aeG 

does not exist, we have, by 16.6.1, G =j= P. Thus, P — G is a non-void closed set, 
so that, by the assumed property of the function / there is a point aeP — G in 
which the partial function ( f ) P - Q is continuous. Since the function ( f ) P - Q is finite 
and continuous at the point a, there is a 3 > 0 such that | f(x) — f(a) | < c for 
every xe(P - G)n Q(a, 3). 

By 16.1.2, G is a separable space. (/)G is a finite function on G. By the definition 
of the set G and by theorem 16.6.1, where we replace P by G, there is a finite 
function ij/ of the first class on G such that | f(x) — ^(x) | < e for every xeG. 

Let us define a finite function cp on Q(a, <5) as follows: For x eG n Q(a, 3) put 
<p(x) = i¡/(x), for x e (P — G) n Q(a, 3) put cp(x) = f(a). Thus, x e Q(a, <5) implies 
| cp(x) - f(x) | < e. It suffices to prove that (p is a function of the first class on 
Q(a, 3), as then it follows from the definition of the set G that aeG, which is 
a contradiction. 

Let ce E1# Since ^ is a function of the first class on G, the partial function 
Wcnfiia^) is of the first class on G n Q(a, 3), so that, by 14.3.1, the set 

E [ x e G n Q(a, 3), i/r(x) > c] (1) 
x 

is Fa[G n Q(a, 5)]. The set G n Q{a, 3) is open in Q(a, 3) and hence it is FJQ(a, 3)\ 
by 13.3.5, so that the set (1) is also Fa[Q(a, <5)] by ex. 13.10. 

If c ^ J(a), we have 

E[x 6 Q(a, 3), <p(x) > c] = E[* e G n Q(a, 3), ij/(x) > c] 
* X 
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so that E[* e Q(a, <5), <p(x) > c] is F,[Q(a, <$)]. If c <f(a), we have 
X 

E[x e Q(a, Ô), <p(x) > c] = 
X 

= E[* e G n 5), ^(x) > c] u [(P - G) n Q(a, <5)] (2) 
X 

and the first summand is Fa[Q(a, 5)]. The set (P — G) n Q(a, Ô) is closed in Q(a, <5), 
hence, by 13.3.2, it is F.[Q(a, Ô)]. Thus, by (2) and 13.3.3, the set E[xeQ(a9S), 

<p(x) > c] is F,[0(a, <5)]. 
Similarly we can prove that, for every ce EX, the set E [x e Q(af ô), cp(x) < c] 

X 

is Fa[Q(a, 5)]. Hence, by 14.3.1, (p is a function of the first class on Q{a, <5). 

II. There remains the case of / which is not finite. By ex. 9.18, there is a homeo-
morphic mapping (p of the set R onto the interval E[—1 ^ t g 1]. Put P(x) = 

r 

= <?[/(*)]. Then P is a finite function on P. If a set >4 c P, yl 4= 0 is closed, there 
is a point a e such that the partial function fA is continuous at a. Evidently the 
function FA is also continuous at a. By I, F is a function of the first class. As 
j\x) = <p_,[F(x)], fis also a function of the first class. 

16.6.3. Let P be a topologically complete separable space. A nesessary and sufficient 
condition for a function f on P to be of the first class is the following: In every non-void 
closed set A a P there is at least one point such that the partial function fA is 
continuous at it*) 

Proof: I. The condition is sufficient by 16.6.2. 

II. Let / be a function of the first class on P. Let A a P by a non-void closed 
set. By 13.2 and 15.5.3 A is a topologically complete space. Let C be the set of all 
x e A at which the function fA is continuous. fA is a function of the first class on P, 
so that, by 15.8.3, the set C is dense in A. Since A 4= 0, we have C 4= 0. 

*) This necessary and sufficient condition may be replaced by several others. Let P be a topolo-
gically complete separable space. Let / be a function on P. For A <=• P let SA be the set of all 
x e A at which the partial function fA is continuous; put DA = A — SA. Then every one of 
the following conditions [1], [2], [3], [4] is a necessary and sufficient condition for / to be of 
the first class: 

[1] For every non-void closed A P, SA * Q. 
[2] For every non-void closed A ^ Pf SA is dense in A. 
[3] For every non-void closed A ^ P, DA is of the first category in A. 
[4] For every A <= P, DA is of the first category in A. 

Proof: By 16.6.3 it suffices to prove that conditions [1], [2], [3], [4] are equivalent, i.e. that [1] => 
=> [4] => [3] => [2] => [1]. If [1] holds, / is of the first class by 16.6.3 and hence, by 14.5.3 
(see the footnote to theorem 14.5.2), [4] holds. Evidently [4] => [3]. If [3] holds, [2] holds by 
13.2, 15.5.3, 15.8.2. Finally, obviously [2] => [1]. 



16. Separable spaces 113 

16.6.4. Countable metric spaces are topologically complete if and only if they are 
dispersed. 

Proof: I. Let P be a countable topologically complete space. Let us assume*that P 
is not dispersed. Let Q be its kernel (see 11.1). Then Q 4= 0, Q = Q and Q is dense-
-in-itself, i.e. it has no isolated points. By 13.2 and 15.5.3, Q is a topologically 
complete space. Since Q is countable and has no isolated points, Q is, by ex. 12.13, 
of the first category in Q, in contradiction with 15.8.2. 

II. Let P be a countable dispersed space. Let P0 be its completion (see 15.4.1). 
As P is dense in P0 , P0 is separable by 16.13. Let us define a function / on P0 as 
follows: /(x) = 1 for x e P , / ( x ) = 0 for - P. Let A be a non-void closed 
subset of P0. If A n P = 0, the partial function fA is continuous (since it is a con-
stant). As P is dispersed, if A n P 4= 0, there exists an isolated point a of the set 
A n P. There is a <5 > 0 such that xe A n P, q(a, x) < 25 imply x = a. If a is an 
isolated point of the set A, then fA is obviously continuous at the point a. In the 
converse case there is a point be A such that a 4= b, g(a9 b) = 51 <3. If xe A and 
o(b, x) < q(a, b), we have q(a, x) g q(a, b) + g(b, x) < 2g(a, b) < 25 and, moreover, 
x 4= a, so that, by the choice of the number 5, x is not an element of A n P. Thus, 
A n Q(b, <5j) c P0 - P, so that xeAn Q(b, 5X) implies /(x) = 0, and hence fA 

is continuous at the point b. Thus, in all cases, there is a point a e A at which fA 

is continuous. Since P0 is separable, / is, by 16.6.2, of the first class, so that, by 14.3, 
the set P = E[/(x) ^ 1] is G5(P0). As P0 is complete, P is topologically complete 

X 

by 15.5.2. 

16.7. Let P be a separable space. Let An c P (n = 1,2,3,...). Then there is 
a subsequence {C„} of {An} such that Lim Cn (see 8.8) exists. 

Proof: As P is separable, there is a sequence {Prt}^= i such that its terms form an 
open basis of the space P. Put A{

n
0) = A„. If, for some i (= 1, 2, 3,...), the sequence 

{y^-^}® is chosen, we choose, if it is possible, some subsequence for which 
Pi n Lim A(

n
i} = 0; if it is not possible, put A(

n
i} = A?'1* for every n. Put C„ = A(

n
n\ 

rt-> oo 

so that the sequence {Cn} is a subsequence of {An}. We have to prove that Lim CH 

exists. Let us assume the contrary. Hence, Lim Cn 4= Lim C„, so that there exists 
a point 

x e Lim Cn — Lim Cn. 

By ex. 8.16, g(x, Cn) does not converge to zero. Thus, there is a number 5 > 0 and 
indices j\ < j2 < A < ... such that Q(X, Cjn) > 5 for every n. If g(x, j ) < 5, by 
ex. 6.6 we have g(y, CJn) > 5 — g(x,y) > 0 for every n, so that, by ex. 8.16, y is 
not an element of Lim Cjn. Thus, i2(x, 5) n Lim Cjn = 0. Since Q(x, <5) is a neigh-
bourhood of x, there is, by definition of the sequence {Pn}, an index i such that 
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xe Bi a Q(x, <5), hence, B{ n Lim Cjn = 0. For n ^ / — 1 we have jn ^ i — 1, 
so that C7n = is a term of the sequence Hence, there is a subsequence 
{CJn}™= i of {y4Î,I-1)} such that the set 2?; contains no point of the upper limit of 
the subsequence. Thus, Bt n Lim A(

n
l) = 0. Since {Cn}"=1 is a subsequence of 

we have, by ex. 8.20, Lim Cn c: Lim A(
n
l) and hence B{ n Lim Cn = 0. This is-

a contradiction, as x G Bt n Lim C„. 

Exercises 

16.1. Let A be a dense subset of a metric space P. Let /i be a separable space. Then P is separable. 
oo 

16.2. Let An (n = 1, 2, 3 , . . . ) be separable spaces embedded into a metric space P. Let ( J An = P. 
n= 1 

Then P is separable. 
16.3. Let A be a separable space embedded into a metric space P. Then the closure A and the derived 

set A' of A are separable spaces. 
16.4. Let P and Q be separable spaces. Then P x Q is a separable space. 
16.5. The spaces from exercises 7.2 and 7.4 are separable. 
16.6. The space from exercise 6.5 is not separable. 
16.7. A system 53 of open subsets of a metric space P is an open basis of the space P if and only if 

for every e > 0 
U X = P where 93, = E[X e 93, d(X) < e]. 

Xe©e X 

16.8.* Let be an open basis of a metric space P. Let 332 be an open basis of a metric space Q. 
Let 9312 be the system of all the sets of form GxxG2 where e93 l f G2 e 932. Then ® 1 2 

is an open basis of the space PxQ. 

§ 17. Compact spaces 

17.1. A totally bounded space is a metric space P such that every sequence of points 
of P has a Cauchy subsequence. This is obviously a metric property; however, 
it is not a topological property (see 17.2.5). Since a point set embedded into a metric 
space is a metric space, we need not define the notion of totally bounded point 
set. Evidently: 

17.1.1. Point sets embedded into a totally bounded space are totally bounded. 

17.1.2. Each totally bounded space P is bounded. 

Proof: If d(P) = oo, there is a sequence {xn} such that xneP, Q(xit xn) > n for 
i < n. {;*:„} has no bounded subsequence, while every Cauchy sequence is bounded 
(ex. 15.16). 
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17.1.3. Let P be a metric space. Let there be an infinite set A a P and a number 
<5 > 0 such that 

xe A, ye A, x 4= y imply Q(X, y) ^ 3 . 

Then P is not totally bounded. 

Proof: There is a one-to-one sequence {*„}, xneA. {xn} has no Cauchy sub-
sequence. 

17.1.4. A metric space P is totally bounded if and only if for every 5 > 0 there is 
a finite set A(5) a P such that v4(<5)] < 5 for every xeP. 

Proof: 1. Let the sets A(5) exist. Let xneP (n = 1, 2, 3, ...). Put xK
n
0) = xn and 

construct recursively sequences [xi
n

i)]^=1 ( / = 0, 1, 2, ...) as follows: Since A(l/i) 
is finite and is less than 1// in distance from every there is a point e A(\/i) 
and a subsequence of {x{

n
i~1)}^)

=i such that Q(yi9 x(
n°) < 1// for every n. 

Put zn = x(
n
n). Then {z„}^=1 is a subsequence of {x„}i. It suffices to prove that {.zn} 

is a Cauchy sequence. Let s > 0. Choose an index i such that 1// < e/2. Then 
{zn}i°=i is a subsequence of Hence 

m > i,n> i=>e(yi> < Q&i, zn) < !/*'=> Q(zm, z„) < e. 

II. Let P be totally bounded. Let S > 0. Choose an arbitrary xx eP. If points x{ 

(1 <[ i ^ n) are chosen, choose a point xn+1 eP, if it is possible, such that 
x i + i ) ^ d. By 17.1.3 there is an index n such that xl9 x 2 9 x n exist, while 

there is no xn+l. The points x1,...ixn form a finite set A(S) c P such that 
efx, < S for every x e P . 

17.1.5. A point set Q embedded into the euclidean Em is totally bounded if and only 
if it is bounded. 

Proof: I. Totally bounded Q is bounded by 17.1.2. 

II. Let Q be bounded. There exists a c (= 1, 2, 3,...) such that Q c= R where 

R = E l\x, \ ^ ^ c]. 
( X I , . . . ,Xn) 

If <5 > 0 is given, choose an index k such that yjm\k < <5 and denote by A(S) the 
set of all (xl9..., xm) with kxt = (1 / g m), where y,- are integers and | yi | ^ 
^ ck. Then A(d) is a finite set, A(d) cz R and A(d)] < <5 for every x e R. Thus, 
R is totally bounded by 17.1.4. Thus, Q is totally bounded by 17.1.1. 

17.1.6. Every totally bounded point set Q embedded into the Hilbert space H is 
nowhere dense in H. 

Proof: Let Q not be nowhere dense. By 12.2.3 there is an open G 4= U such that 
Q n T 4= 0 for every open T such that 0 4= T c G. Choose an a = {«„JT e G-
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There is a S > 0 such that Q(a9 <5) c G. Put ¿>in = an for i 4= n9 bnn = an <5/2, 
b. = {6iff}*=1. Then g(a, &,) = 8/2 so that Q(bi9 6/4) c i2(a, 5) c: (7. Since the set 
F, = Q(bi9 <5/4) is open and 0 4= P. <= G, there is a point ct e Q n P f. For i 4= k 
we have 

¡2 <5 <5 
<5 —2~ = W ^ Ci) 4- g(ci9 ck) + g(ck, < — 4- O + —, 

hence, 

e(ci9 ck) > V l z l s > o for i4= k. 
yJ2 

Thus, Q is not totally bounded by 17.1.3. 

17.2. A compact space is a metric space such that every sequence of its points has 
a convergent subsequence. This is evidently a topological property. As a point 
set Q embedded into a metric space P is a metric space, we need not define the 
notion of compact point set. 

Many authors use the term compact for every point set embedded into a compact 
(in our sense) space, and, for compact (in our sense) point sets, use the term 
compact in itself. 

17.2.1. A metric space P is compact if and only if it is complete and totally bounded. 

Proof: I. Every compact space is complete. Let P be a compact space embedded 
into a metric space Q. Let xn e P, xe Q, x. As P is compact, we may find 
a subsequence {>>„} of {xn} such that lim yn e P exists. By 7.1.2, we have lim = x. 
Thus, x e P. Hence, by 8.3.1, P is a closed subset of Q. Thus, P is complete by 15.5.1. 

II. Every compact space is totally bounded by 15.1.1. 

III. Let P be a complete totally bounded space. If xneP9 has a Cauchy 
subsequence. Any Cauchy sequence in P is convergent. Thus, P is compact. 

17.2.2. A point set Q embedded into a compact space P is compact if and only if it 
is closed in P. 

Proof: I. Let Q be compact. Q is closed in P by 15.2.1 and 17.2.1. 

II. Let Q be closed in P. By 17.1.1 and 17.2.1 Q is totally bounded. By 15.2.2 
and 17.2.1, Q is a complete space. Thus, Q is compact by 17.2.1. 

17.2.3. A point set Q embedded into the euclidean Em is compact if and only if it is 
bounded and closed in Em. 

Proof: I. Let Q be compact. Q is bounded by 17.1.5 and 17.2.1. Q is closed in Em 

by 15.5.1 and 17.2.1. 
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II. Let Q be bounded and closed in Em. Q is totally bounded by 17.1.5. Q is 
a complete space by 15.1.3 and 15.2.2. Thus, Q is compact by 17.2.1. 

17.2.4. The Urysohn space U is compact. 

Proof: Let n = 1,2,3,. . . . Denote by A„ the set of all the sequences {*/};= i 
such that: for i > n, = 0; for 1 ^ i ^ n, xt = y,/m, where y{ is an integer with 
| yt | g n. We have An c U and An is a finite set. 

00 00 

If S > 0 is given, choose an n such that £ l//2 < <52/2, X! I/'2 < n2(&2!2). 
i=n+1 ¿=1 

Then we prove easily that ^(x, < 5 for every x e U. Thus, U is totally bounded 
by 17.1.4. It follows easily by 7.3.1 and 8.3.3 that U is a closed subset of H, so 
that U is a complete space by 15.1.4 and 15.2.2. Thus, U is compact by 17.2.1. 

17.2.5. A metric space P is separable if and only if there is a totally bounded space Q 
homeomorphic with P. 

Proof: I. Let Q be totally bounded. Since every finite set is countable, Q is 
separable by 16.1.6 and 17.1.4. Since separability is a topological property, the 
space P homeomorphic with Q is also separable. 

II. Let P be separable. By 16.5 there is a point set Q a U homeomorphic with 
P. Q is totally bounded by 17.1.1, 17.2.1 and 17.2.4. 

17.2.6. Every compact space is separable. 
This is an important corollary of theorem 17.2.5. 

17.3. 17.3.1. Let P be a metric space. Let A <= P, B c p9 A #= 0 4= B. Let A be 
compact. Then there are points y e A, z e A such that 

Q(Y, B) = min Q(X, B) = G(A, B) , 
xeA 

Q(Z, B) = max Q(X, B). 
xeA 

If d(B) < oo, there are points u e A, ve A such that 

d(u, B) = min d(x, B), 
xeA 

d(v, B) = max d(x, B) = d(A, B). 
x 6 A 

Proof: There exist sequences {y„} and {zn} such that 

yn eA9 zne A, g(yn, B) ^ inf g(x, B), g(zn, B) sup g(x, B) . 
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As A is compact, there are subsequences {y'n} of {yrt}> izn} of {zn} and points ye A, 
ze A such that y'n y, z'n-+ z, so that, by ex. 9.10, Q(y„9 B) q(y9 B\ q(z'n, B) -> 

q{z9 B). By 7.1.2 we have lim q(y'n9 B) = lim q(yn, B\ Km Q{Z'H9 B) = lim q{zn9 B). 
Hence, q(y9 B) = inf q(x9 B) = min q(x9 B), q(z9 B) = sup q(x9 B) = max^(x, B). 

xeA xeA xeA xeA 

The existence of the points u and v can be proved similarly, using d(x9 B) instead 
of q(x9 B) and ex. 9.11 instead of ex. 9.10. 

17.3.2. Let P be a metric space. Let A c= P, B cz P, A + 0 4= B. Let A and B be 
compact. Then there are points yt e A9 y2e B9 zt e A, z2 e B such that 

Q&I, yi) = niin Q(X1 , X2) = Q(A9 B), 
xi eA 
X2 eB 

q(zt, z2) = max ^(X!, x2) = d(A9 B). 
xieA 
x2eB 

Proof: By 17.3.1 (see also 17.1.2) there are points yL e A9 zt e A such that 

Q(yi, B) = q(A9 B), d{zv, B) = d(A9 B). 

By 17.3.1 there are points y2e B9 z2e B such that Q(yt, y2) = q{y{, Bq(zt, z2) = 
= d[zl9(z2)]^d(zi9B). 

17.3.3. Let P b? a compact space. There exist points yeP, zeP such that 

q{y9 z) = max , x2) = d{P). 
xieP 
x2eP 

This is a particular case of theorem 17.3.2, as d(P) = d(P9P). 

17.3.4. Let P be a metric space. Let A a P9 B c P9 A =t= 0 4= B9 A n B = i). Let A 
be compact and let B be closed in P. Then q(At B) > 0. 

Proof: Let, on the contrary, q(A, B) = 0. By 17.3.1 there is a point ye A such 
that q(y, B) = 0 and hence yeB. This is a contradiction, since y e A, B = B, 
A nB = 0. 

17.4. 17.4.1. Let A c Et be a non-void bounded and closed set. Then there exist 
numbers min A and max A. 

Proof: Choose a number ceEt such that A cz E[x > c]. By 17.2.3 and 17.3.1 
X 

there exists a number ye A such that q(c, y) = min q(c9 x). We have q(cf x) = 
xeA 

= x - c, q(c, y) = y — c. Hence, y — c = min (x — c), and hence y = min x. 
xeA xeA 

Similarly for the maximum. 
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17.4.2. Let f be a continuous mapping of a compact space P onto a metric space Q. 
Then Q is compact. 

Proof: Let yn e Q (n = 1, 2, 3, ...). There exist points xneP such that f(xn) = yn. 
Since P is compact, there are indices i1 < i2 < i3 < ... such that lim xin = .v 

n-* or. 
exists. Since/is continuous, we have lim yin = /(;c) G Q. Hence, {>'„} has a convergent 

n~* m 
subsequence {>>,•„}. 

17.4.3. Let P be a compact space. Let f be a finite continuous function on P. The 
set / (P) is bounded and closed. There exist numbers min/(/i) and m a x f ( A ) . 

Proof: / (P) is compact by 17.4.2. Hence, the statement follows from 17.2.3 
and 17.4.1. 

17.4.4. Let f be a continuous mapping of a compact space P into a metric space Q. 
Then f is uniformly continuous. 

Proof: Let xneP, yneP, Q(X„, yn) 0. We have to prove that Q[f(x„)9J'(yH)] -> 0. 
Let us assume the contrary. Then there is a number ô > 0 and indices i\ < i2 < 
< i3 < ... such that g[f(xin), /O i n)] > 5 for every n. Since P is compact, there is 
a subsequence {;„} of the sequence {/„} such that l imx j n = zeP exists. Since 
Q(xn, >>„)-> 0, we also have lim yJn — z. Since the mapping / is continuous, we 
have lim/(*,„) = /(z), lim/0>,n) = /(z), hence (see ex. 9.12) lim o[f(x}n),f(yjn)] = 0, 
which is a contradiction. 

17.4.5. Let P be a compact space. Let f be a finite continuous function on P. Then f 
is uniformly continuous. 

This is a particular case of theorem 17.4.4. 

17.4.6. Let f be a one-to-one continuous mapping of a compact space P onto a metric 
space Q. Then the inverse mapping /_ { is continuous, i.e. f is a homeomorphic 
mapping. 

Proof: If A is a closed set in P, it is compact by 17.2.2. Hence, the set f(A) is 
compact by 17.4.2. Thus,/(>4) is closed in Q by 15.5.1 and 17.2.1. Thus, for every A 
closed in P,f(A) is closed in Q so that is continuous by 9.2. 

17.5. 17.5.1. Let P be a compact space. Let, for n = 1, 2, 3,..., An <= P, An 4= 0, 
00 

An z. An+l. Then f | An 4=0. 
n = 1 

Proof: For n = 1,2,3, . . . there is, by 17.1.4, a finite set Kn c P such that 
00 

Q(X9 Kn) < 1 In for every xeP. Thus, f | An ± 0 by 15.7.2 and 17.2.1. 
n = 1 
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17.5.2. The statement of theorem 15.7.2 may be supplemented by the proposition that 
oo 

f)An is compact*) 
1 

00 
Proof: Let an e f ) A{ (n = 1,2,3, . . . ) . Then aneAn, so that, by the proof of 

<=I 
theorem 15.7.2, we may find a convergent subsequence {b„} of {an}. If n ^ / -f 1 

oo 
we have bneAi+l, hence lim bn e Ai+l cz Aif hence lim e f ) Hence, for 

oo i = i 
every sequence {an} in the space f ) Ax there is a subsequence {bn} which has 

00 / = 1 
a limit in f \ At. 

i= I 

17.5.3. Let a metric space P not be compact. Then there exist closed sets An c= P 
00 

(n = 1, 2, 3, ...) such that An * 0, An 3 An+l, f | 4 , = 
71= 1 

Proof: There is a sequence i of points of P which has no convergent sub-
oo 

sequence. By 8.3.3 we conclude easily that the sets An = (J (xf) are closed. 
oo i = n 

Evidently * 0, => + 1 , f l An = 0. 

17.5.4. y4 necessary and sufficient condition for a metric space P to be compact is 
the following: For every system of open sets such that (J X = P there is a finite 

system c such that (J X = P. 
Xg9IO 

Proof: I. Let P be compact. By 16.2.2 and 17.2.6 there is a sequence {Xn} such 
oo n 

that Xn 6 91, U Xm = P. Put A„ = P - J Xt. We have An = An, An => An+i. 
oo n = 1 ao i = 1 

We have f ] An = P — (J Xn = 0, so that by 17.5.1 there exists an index TZ such 
n= 1 n n= 1 

that ^ = 0, hence, (J ^ = P. 
1 = 1 

II. Let P not be compact. By 17.5.3 there are closed sets An c P such that 
oo 

An =# 0, An => An + 1, DAn = 0. Put Gn = P — An. Then the sets Gn are open 
oo n = 1 oc m 

and we have (J Gn = P - f | = -P, while, for m = 1, 2, 3, . . . , (J Gn = 
m n = 1 n = l n=* 1 

= p - n Am = p - 4. + p. 

*) We do not assume that the space is compact. Similarly as in 15.7.2, we assume the comple-
teness of P only. 



15. Complete spaces 121 

17.6. Let P be an arbitrary metric space. Let us denote by P* the system of all 
compact subsets of P with the exception of the set 0. If A eP*, BeP*, there exist 
(see 17.3.1) real numbers 

u(A, B) = max g(x, B), 
xeA 

u(B, A) = max g(y, A). 
yeB 

Put 
g*(A, B) = max [u(A, B), u(B, A)]. 

If A = B, evidently g*(A, B) = 0. If A 4= P, we have either A - B 4= 0, so that 
P) > 0 (as P = P by 15.2.1 and 17.2.1) or P - ^ = 0 so that w(P, ,4) > 0. 

Thus, for A 4= P we always have g*(A, B) > 0. Obviously always g*(A, B) = 
= g*(B, A). If also CeP*, then by ex. 6.6 we have for xe A and yeB: 

hence 

hence 

and similarly 

thus 

Q(X, C) ^ g(x, + <?(>>, C) ^ Q(X, y) + U(B, C), 

g(x, C) ^ min g(x, y) + u(B, C) = g(x, B) + u(B, C) ^ 
yeB 

^ u(A, B) + w(P, C) ^ Q*(A, P) + g*(B, C) , 

z/(/i, C) ^ p) + C) 

"(C, A) ^ g*(A, B) 4- Q*{B, C) ; 

g*(A, C) ^ g*(A, B) + g*(B, C). 
Thus, g* is a distance function in P*. The metric space (P*, is called the 
Hausdorjf hyperspace of the space P. 

17.6.1. If AneP* (n= 1,2,3,.. .), AeP*, fte/i 

w(/i, y4n) -> 0 if and only if A cz Lim /!„. 

Proof: 1. Let /!„) 0. Let a e A. We shall prove that a e Lim An .We have 
Q(ay An) ^ max g(x, >4n) = w(/4, /!„), hence g(a, An) 0. By 17.3.1 there is a point 

xeA 

an e An such that g(a, an) = g(a, An). We have tf„) 0, hence an -> ¿7. As 
a„e/ln , we have a e L i m ^ n . 

II. Let A c Lim An. We shall prove that u(A, An) 0 .Let us assume the contrary. 
Then there are a number S > 0 and indices < /2 < /3 < ... such that u(A, Ain) > 5 
for every n. There are points bneA with g(bn, An) = max g(x, An) = u(A, An). 

xeA 

Since A is compact, there is a subsequence {jn} of {/„} such that lim bjn = ae A 
exists. Since A <= Lim A„, there are points an e An such that an a. As bjn a> 
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•an -> a, we have g(bJni aJn) 0. Hence, there is an index m such that ajm) < 3. 
We have u(A, Ajm) = = m i n Q(bJm, x) ^ Q(bjm9 aJm) < 3. This is a con-

XeAJm 
tradiction as u(A, A.J > S, since jm is a member of the sequence {/„}. 

17.6.2. Let An eP* (n = 1, 2, 3,...), AeP*. Then always 

u(An, A) 0 implies Lim An cz A 

and if P is compact, also 

Lim An c= A implies u(An, A) -> 0 . 

Proof: I. Let Let aeL\mAn; we shall prove that aeA. Since 
a e L i m ^ n , there exist indices i\ < i2 < i3 < ... and points aneAin such that 
an -» a. We have ^(a,,, A) g max ^(jc, = u(Ain, A), hence g(an, 4̂) -> 0, so that, 

XeAin 
by ex. 9.10, g(a, A) = 0, i.e. as A. By 15.2.1 and 17.2.1, A = A. 

II. Let P be compact and let Lim^4n c A. We shall prove that u(An, A) 0. 
Let us assume the contrary. Then there are a number 3 > 0 and indices il < i2 < 
< i3 < ... such that u(Ain,A) > 3 for every n. There exist points ane An such 
that G(an, A) = max Q(X9 A) = u(Anf A). Since P is compact, there is a subsequence 

xeAn 

{;„} of {/„} such that lim ajn = a exists. Since ajne Ajn, Lim A„ <= A, we have 
aeA and hence g(a, A) = 0, so that, by ex. 9.10, Q(ajn, A) 0 i.e. u(AJn, 4̂) -> 0. 
This is a contradiction, since {/„} is a subsequence of {/„} and u(Ain, A) > 3 > 0 
for every n. 

17.6.3. Let AneP* (n = 1, 2, 3,...) A eP*. If the space P is compact, An A 
(with respect to the distance function g*J if and only if Lim An = A (in the sense 
of section $.8). If P is an arbitrary metric space, then A„ A if and only if: 

00 

[1] Lim An = A, [2] the set A u (J An is compact. 
n= 1 

Proof: I. Let An-+ A. Then g*(An, /i) 0, hence on the one hand u(A, y4„) 0, 
so that, by 17.6.1, ,4 c: Lim An, on the other hand w(/i„, yl) -> 0, so that, by 17.6.2, 

Lim An cz A. Since always Lim An a Lim An, Lim An = A. 
OC 

II. Let An A. Let xneAu \J At. If xn e A for infinitely many indices n, 
¿=1 

or if there exists an index i such that xneAi for infinitely many indices n9 then there 
00 

is a subsequence of {*„}, which has a limit in A u |J Ai9 as the sets A and A{ 
» = 1 

are compact. If none of the cases occur, there are indices il < i2 < i3 < ... such 
that there exists a subsequence {j>n} of {xn} with yn e Ain for every n. We have 
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Q(yn> A) ^ max q(x, A) = w(>4in, ,4) ^ g*(Ain, A). Since v4n -> A, we have eO>„, 
x e A i n 

—• 0. By 17.3.1 there exist points such that e0>„, z„) = q(yn, >4), hence 
Q(yn> zn) 0- Since A is compact, there are indices nx < n2 < n3 < ... and a point 
ae A such that lim znk = a. Since zn) -> 0, we have lim^nk = a. Hence there 

k-*oo k-+ oo oo 
is a subsequence {j^Jj^i {*n}> which has a limit in A c ,4 u U A{. Thus, 

00 »=1 
the set A u U ^ is compact. 

f=i 
oo 

III. Let Lim An = A and let either P ov A v \J At be compact. By 17.6.1, 
i= 1 

u(A, An) 0. In the proof of theorem 17.6.2 we used the assumption of compact P 
only in the assertion that a sequence {an} with an e An has a convergent subsequence; 

00 
this, however, follows from the assumption that AKJ\JA„ is compact. Hence, 

n= 1 
u(An, A) -*> 0. Since u(A, An) 0, u(An, A) -> 0, we have g*(A„, A) 0, i.e. 
An-+A. 

17.6.4. Let metric spaces P and Q be homeomorphic. Then their Hausdorff hyper-
spaces P* and Q* are homeomorphic. More precisely: Let f be a homeomorphic 
mapping of the space P onto the space Q. For XeP* put (p(X) = f(X); then cp is 
a homeomorphic mapping of P* onto Q*. 

This is a corollary of theorem 17.6.3 (see also ex. 9.21 and theorem 17.4.2). 

17.6.5. If P is a complete space, then P* is also a complete space. 
Proof: Let {An}™=l be a Cauchy sequence with respect to the distance function Q*. 

00 
Put Bn = U Ai. T h e n Bn &n+i> = Bn. Choose an index m and 

i = n 

a number d > 0. Since the sets Ai are compact, there is, by 17.1.4, for every i 
a finite set Kt such that xeAt implies Q(X, Ki) < Since {An} is a Cauchy 
sequence, there is an index p > m such that for n > p we have u(An, Ap) < 
If x G An, n > p, we have Ap) ^ u(An, Ap) < ¿<5, hence there is a point y G Ap 

p 
with Q(X, y) < i<5. We obtain easily that g(x, JJ K{) g S for every xeBm. Hence, 

oo i = m 

by 15.7.2 the set A = f | is non-void. By 17.5.2 A is compact. Hence, A eP*. 
n = 1 

Choose an e > 0. Since {A„} is a Cauchy sequence, there is an index q such that 
for i > q, j > q we have u(Ai9 Aj) < ie. 

00 
Choose an n > q. If x e A, we have x e Bn = U A x so that there is a point 

oo i = n 

x' e |J A I such that Q(X, X') < \e. There exists an index i^n> q with x' e A 
i — n 

We have Q{X', An) < u(AlP A„) < is, so that, by ex. 6.6, Q(X, A„) < Q(X, X') + 
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4- Q(X\ An) < E. Thus, for n > q and xe A we have An) < e, so that, for 
n > q, u(A, An) ^ e, i.e. u(A, An) 0. Choose again an n > q. If x e An then, 
for every i ^ w, q(x, At) ^ u(An, A^ < ie, so that for every / ^ n there is a point 
yTE A{ <=. B-t with Q(X, y() < ic. By the assertion expressed (and then proved) at 
the beginning of the proof of theorem 15.7.2 we may choose a subsequence of {yt 

which has a limit z e A. As Q(X, yt) < ^e, we have, by ex. 9.12, Q(X, Z) < e, hence 
(?(x, A) < e. Thus, n > q, x e An imply Q(X, A) < £, so that for n > q we have 
u(A„, A) e, i.e. u(An, A) -> 0. Since also u(A, An) 0, we have q*(Any A) -> 0, 
i.e. A„-> A, so that the sequence {An} is convergent (with respect to the distance 
function Q*). 

17.6.6. If P is a totally bounded space, then P* ¿y a/so totally bounded. 

Proof: Choose a number <5 > 0. By 17.1.4 there is a finite set K a P such that 
K) < <5 for every xeP. Denote by ft the system of all the subsets of K9 with 

the exception of the' set 0. Evidently ft is a finite subset of P*. Choose an A eP*. 
Put B = E[xeK, G(x, A) < S]. We may prove easily that B e ft and that Q*(A, B) < S. 

X 

Hence, the space P* is totally bounded by 17.1.4. 

17.6.7. I f P is a separable space, then P* is also separable. 
This is a corollary of theorems 17.2.5, 17.6.4 and 17.6.6. 

17.6.8. If P is a compact space, then P* is also compact. 
This is a corollary of theorems 17.2.1, 17.6.5 and 17.6.6. 

17.7. Let K 4= 0 be a given compact space. Let P be a given metric space. Let us 
denote by PK the set of all continuous mappings / of K into P. 

If fePK, gePK, put (p(x) = g[f(x), g(x)] for x e K. By ex. 9.12 we deduce 
easily that cp is a finite continuous function on K. By 17.4.3 there exists a number 
max q [/(.v), g(x)]; denote this number by e+( / , g). If / = g, evidently Q+(f g) = 0; 
if /'+ g, evidently Q+(f,g) > 0. Obviously we always have Q+(fg) = Q+(g,f)> If 
also hePK, then, for every xeK, df(x)9 h(x)] ^ Q[f(x), g(x)] + Q[g(x), h(x)] ^ 
^ Q+(f> g) + Q+(g> h), hence Q+(f h) g Q+(f g) 4- g+(g9 h). Hence, q+ is a distance 
function in PK. Whenever we speak about PK, we shall mean the metric space 
(PK, Q+). The following three theorems are evident: 

17.7.1. If K consists of a single point, then the spaces P and PK are isometric. 

11.1.2. If compact spaces K 4= 0 and L are homeomorphic, then the spaces PK and PL 

are isometric. 

17.7.3. If spaces P and Q are isometric, then the spaces PK and QK are isometric. 
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17.7.4. If spaces P and Q are homeomorphic, then the spaces PK and QK are homeo-
morphic. 

Proof: Let cp be a homeomorphic mapping of P onto Q. Let us associate, with 
every fePK, a mapping #( / ) of K into Q as follows: the image of a point xeK 
under the mapping <P(f) is the point <p[f(x)]. We see easily that <P is a one-to-one 
mapping of PK onto QK. We have to prove that both the mappings 4> and 
are continuous. Thus, let fnePK, fePK; we have to prove that 

/„ - > / if and only if <*>(/„) <*>(/). 

Denote by Hv and H2, respectively, the Hausdorff hyperspaces of KxP and Kx Q. 
For xeK, yeP put [¡/(x, y) = [x, cp(y)]. It is easy to see that ^ is a homeomorphic 
mapping of KxP onto KxQ. For ZeHx put V(Z) = tfr(Z). By 17.6.4, V is a homeo-
morphic mapping of / / t onto H2 • 
Put 

Fn= E [x e K, y = /„(*)], F = E [xeK, y =/(>;)], 
(x,y) (x>y) 

Gn= E {xeK, Z - <p[fn(x)]}, G = E {x e K, z = <?[/(*)]}. 
(x,y) ix,z) 

We can prove easily (see 17.4.2) that Fne / / t , Fe / / l , Gne H2, Ge H2, and that 
*P(Fn) = Gn,W(F) = G. Since is a homeomorphic mapping, we have Fn F 
if and only if Gn -> G. We shall prove that f„ / if and only if Fn F. Similarly 
we may prove that <P(fn) # ( / ) if and only if Gn G, hence, we prove in fact 
that fn-+f if and only if <£(/„) 0(f). 

First, let /„ -> / in P*. Choose an £ > 0. There is an index /; such that, for n > p, 
g+(f„,f) < e, hence g[fn(x),f(x)] < e for every XEK. If xeK, we have [A\/„(X)] e 
eFn and [x,f(x)]eF, and the distance of the points [x,fn(x)]9 [*,/(*)] in the space 
KxP is equal to e[/»(*)>/(*)]• Hence, for n > p: z e Fn implies g(z, F) < e, z e F 
implies Q(Z, Fn) < e, so that for n > p the distance of Fn from F in //, is less than e. 
Thus, Fn F in Hv. 

Secondly, let P„ -> Pin Hx. Choose an e > 0. By 9.6.1 and 17.4.4 there is a 3 > 0 
such that 

xeK, yeK, g(x, y) < S imply g[f(x),f(y)] < e/2. 

We may suppose that 3 < e/4. There exists an index p such that for n > p the dis-
tance of Fn from F in PK is less than 3. Let n > p, x e K. Then \x,fn(x)] e Fn, so 
that there is a point [y,f(y)] e F (hence, yeK) such that 

Q{[x,fn(x)], [yj(y)]} = y/{[Q(x,y)]2 + Q[fn(x),f(y)]2} < 3 < e/4, (1) 

so that g{x,y) < 3, hence g[f(x),f(y)] < e/2 and hence 

Q{[x,f(x)], [yj(y)]} ^ J{[Q(x,y)]2 + [g(f(x),f(y)]2} < 
< y/[32 + (e/2)2] < Vt(e/4)2 + (e/2)2] < 3e/4. (2) 
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By (1) and (2) we obtain 

el/.(*),/00] < e/4, Q[f(x\f{y)] < 3e/4 

and hence elfn(x)»f(x)] < Thus> for n > P we have Q+(fn>f) < e so that/B - » / 
in PK. 

17.7.5. If K =¥ 0 is a compact space and if P is a complete space, then PK is a complete 
space. 

Proof: Let {/„} be a Cauchy sequence in PK. For every e > 0 there is an index 
p(e) such that for m > p(e), n > p(s) we have max Q[fm(x),fn(x)] < e. Consequently, 
for every xeK, {/„(*)} is a Cauchy sequence in P. As the space P is complete, we 
obtain, for every xeK, a point f(x) e P such that fn(x) /(*). Thus,/is a mapping 
of K into P. For every e > 0 

xeK, ' m > p(e), n > p(e) imply /»(*)] < e, 

hence, by ex. 9.12 

xeK, m> p(e) imply g[fm(x% f(x)] ^ e. 

Choose an index m > p(e/3). By 9.6.1 and 17.4.4, there is a 3 > 0 such that 

x e K, y g K, Q(X, y) < S imply Q[fm(x)Jm(y)] < e/3 . 

Let x e K, ye K, Q(X, y) < S. Then 

Q[Ax),f(y)] ^ Q[f(x)Jm(x)] 4- Q[fm(x),fm(y)] + 
+ Q l f J M M < *l3 + e/3 + £/3 = e. 

Hence, the mapping / is continuous, so that fePK. Moreover, n > p(e) implies 
Q+(fn>f) ^ hence /„ / i.e. the sequence {/„} is convergent in PK. 

17.7.6. IfK 4- 0 is a compact space and ifP is a separable space, then PK is a separable 
space. 

Proof: By 16.1.3 there is a countable set A dense in P. Choose a <5 > 0. For n = 
= 1, 2, 3, . . . denote by the set of all fePK such that 

xeK, yeK, Q(x9y)<\/n imply Q[f(x),f(y)] < IS . 
00 

By 9.6.1 and 17.4.4, (J = PK. By 17.1.4, for every n there is a finite sequence 
n=I 

{cjr- i (the Points ct and the number m depend on n) of points of K such that for 
every xe K there is an index i such that Ci) < 1 /«. Let us denote by the set 
of all the sequences {a^ 1 with a-xeA. By ex. 3.14, the set is countable. Let us 
associate with every {tfjr=i e exactly one mapping fe<Pn9 where, if it is possible, 
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this/ is chosen in such a way that aJ < iS for 1 g / g m. Let be the set 
of all the mappings associated with the sequences {¿7,}̂  i e The set Vn is countable 

00 
by 3.4.1, hence, by 3.6, the set iP = U i s a l s o countable. 

n = 1 
Now, let fePK be arbitrary. There is an index n such that f e 4>n. Since A is dense 

in P, there is a sequence {a^=x such that (?[/(cf), at] < i<5 for 1 g i g m. Let 
geWn be the mapping which is associated with the sequence For 1 g 
g / g /w we have eigfo), flj < IS, hence e[/(c,), < i<$. If x is an arbitrary 
point of the space K, there is an index i with Q(X, c.) < \/n. Sinee/e <Pn,geVn a 
we have e t /W. / fa ) ] < i*9 Q[g(x), g(Ci)] < iS, hence Q[f(x)tg(x)] g e [/'(*),/(<?,)] + 
+ 0[/(i\), + e[g(*), sfa)] < thus> Q+(f>8) < <*. Hence, for every fePK 

there is a g e ¥ with Q+(f, g) < <5. Since T is countable, PK is separable by 16.1.6. 
If P is compact, PK need not be compact (see ex. 17.17). 

17.8. Let A'be a compact point set embedded into the space Et. Let us assume that K 
contains at least two distinct points. By 17.2.3 and 17.4.1 there exist points 

a = min K, b = max K. 

We have a < b. Put J = E[a g t g Evidently K c J; we may have K = 7. 
t 

A contiguous interval of the set K is any interval S = E[u < t < v] (we E,, 
r 

V 6 E1, u < v) such that [1] S n K = 0, [2] u e Ky v e K. 

17.8.1. J — K is a disjoint union of all the contiguous intervals of the set K. 

Proof: I. Let S = E[u < t < v] be a contiguous interval. Evidently a g u < 
t 

> v g b. hence, S c= 7. As S n K = 0, we have S cz J - K. 

II. Let Sx = E[ux < t < vx]9 S2 = E[u2 < t < V2] be two contiguous intervals. 
t t 

Let ce Sx n S2. Since Sx n K = 0, vt e K, we have vx = min K nE[t > c]. Since 
t 

S2 n K = 0, v2 E K, we have v2 = min K n E[t > c]. Hence, vx = v2 and similarly 
r 

we may prove that ux = u2. Thus, Sx = S2. Hence, the system of contiguous 
intervals is disjoint. 

III. Let CEJ - K. The sets K' = K n E[t ^ c] and K" = K n E[f g c] are 
f r 

compact (see 17.2.3). We have ¿ G T , aeK", hence K' #= 0 4= K". By 17.4.1 there 
exist v = min X', u = max .K". We have u g c g v. Since c E J — K, u E K, v e Kr 

we have u < c < v, i.e. ce S = E[u < t < v]. Obviously S is a contiguous interval, 
t 

17.8.2. Systems of contiguous intervals are countable. 
This follows by 16.1.5, 16.2.1 and 17.8.1. 
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17.8.3. Let < b. Let 9ft be a disjoint (possibly void) system of intervals 
of the form E[u < t < v], where a ^ u < v ^ b. Then there is exactly one compact 

t 
set K c Et with a = min K,b = max K, such that 501 is the system of all its contiguous 
intervals. 

Proof: Put J = E[a ^ t g b], M = \J X. Evidently M c / . If the required 
t 

set exists, it must be identical with J — M by 17.8.1. Thus, put K = J — M. The 
set M is (see 8.5.3) open in EL9 so that K is closed in EX and bounded, and hence 
compact. Obviously a = min K, b = max K. It remains to be shown that is 
the system of all contiguous intervals of K. 

Let S = E[w < t < v] e 9ft. We have S c AT, hence S n A: = 0. If there were 
t 

a ve M, there would be an interval St e 9W, veSt. We see easily that St S =¥ 0, 
S 4= St, which is a contradiction. Thus, ve K, and similarly ue K. Hence, every 
3 e 3)1 is a contiguous interval. Since, by 17.8.1, M is the disjoint union of all conti-
guous intervals, we deduce easily that every contiguous interval is in 9ft. 

For a moment, let us denote by Af3 the set of all the sequences {jn}n = i s u c h that 
their terms are 0, 1 or 2, and by M2 the set of all {in}?=i such that their terms are 

00 

either 0 or 2. It is well-known that: [1] if {jn} e M3 , then Y*Jnfin G «A where J = 
n = 1 

= E[0 < t 1]; [2] if t e J, t 4= 0, t 4= 1, and if there is an index m such that 
f oc 

/ .3m is an integer, then there are exactly two sequences {;m} e M3 with YjJn!^n = 1 

n = 1 
(if we find the least possible m, then exactly one from the two numbers jn is equal 
to 1, and for n > m there is always in one sequence a jn = 0 and in the other always 
a jn = 2); [3] if teJ and if no number t. 3m is an integer, then there is exactly one 

oo 

sequence {./„} e Mz with £ jn/3n = t (and there is infinitely many n such that 
n = 1 

jn 4=0 and infinitely many n such that jn 4= 2). Denote by D the set of all the numbers 
00 

£ iJ3" with {/„} eM2. The set D is called the (Cantor) discontinuum. Put 
/!= 1 

3 = E[l/3 < t < 2/3]; (1) 
t 

if n = 1, 2, 3, . . . and if every one of the indices il9 i2,..., in has either the value 0 
or the value 2, put 

S „ „ + + (2, 

Denote by 9ft the system consisting of the interval (1) and all the intervals (2). We 
see easily (see 17.8.3) that the set D is compact, min D = 0, max D = 1, and that 9ft 
is the system of all the contiguous intervals of the set D. Put 

H0 = E[0 ^ / ^ i ] , H2 = EH ^ 1]; 
t t 



15. Complete spaces 129 

if n = 2, 3, 4, . . . and if every one of the indices il9 i 2 , / „ has either the value 0 
or the value 2, put 

Then we have 

J - S = H0KJ H2 

with disjoint summands on the right-hand side, and, for n = 1, 2, 3, ... 

J - ( S v \ J S h v - Shil u ... u U Shi2...in) = U Hhh...inint„ 
hence 

n = 1 
00 

For every xe D there is exactly one sequence {/„} e M2 such that * = £ U^"-
n= 1 

We see easily that then 

* = I = nw,,,,„-
n= 1 J 

17.8.4. Let P 4= 0 be a compact space. Then there exists a continuous mapping f of 
the discontinuum D onto P. 

Proof: I. Choose a S > 0. By 17.1.4 there exists a finite number of points akeP 
(1 g k <^m) such that 

m _ 
P = U S). 

k= 1 

Choose a h = 1, 2, 3, . . . with w g 2h (the number h may be chosen greater than 
a prescribed number) and put ak = am for w + 1 g /: g 2\ Then 

2h 

U 
* = 1 

The points ak (1 g k g 2fc) may be denoted by bhh„Ah where each one of the indices 
/*!, i2,..., has either the value 0 or the value 2. Put 

Then 
¿tfW-.fc) < 2<5 

and the sets li2...,-h are non-void and compact (see 17.2.2). 

II. Let us carry out the construction just described with the given space P and 
<5 = 1/22. Let us denote the number h by /zx. Now, let us carry out the construction 
again with any one from the 2hx spaces Pili2...in and <5 = 1/23; we may assume that 
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the number h has in all 2hi cases the same value, which we denote by h2 — hx. 
For every P l l i2 we obtain 2HL~HX spaces Pixil...ih^ With any PIII2...IH2 and <5 = 1/24 

we again carry out the construction, choosing always the same value h3 — h2 for h. 
Proceeding this way we obtain natural numbers hi < h2 < h3 < ... and compact 
sets P/j12... ifj (every index has the value 0 or 2) such that 

where, on the right-hand sides, the summation indices are ihn + 1, '/,n + 2> h, 

For every point t G D there is exactly one sequence {/„} e M2 with t = £ 
The set „ n = 1 

n p i M n w 
n = 1 

consists, by (1) and (3), of exactly one point (see 15.7.1, 17.2.1 and 17.2.2), which 
we denote by fit). In this way we obtain a mapping / of D into P. 

For every xeP there is, by (2) and (3), at least one sequence {/„} e M2 such that x 
belongs to the set (4). Thus, / is a mapping of D onto P. 

Choose a point i0 = X i{
n
0)/3n e D; hence {i(

n
0)}eM2. Let e > 0. Determine 

an m with 2 m < e. We may prove easily that [1] / o e / ^ o j ^ o ) . , , ^ ) , [2] if (i lf il9... 
•.. > hm) 4= • • •, O t h e n QOo' Hi>i2...ih ) ^ 1/3*-. Hence, f o r / e A U - f0 I < 

m 00 

< 1 /3hm, we have r e / / , ( 0 ) i 2 ( 0 , . . , ; i (0); hence, for t e D, \ t - t0\ < 1/3^, t = ^ 
m n = 1 

{/„} e M2 we have f(t) eP^o^o) . . , - ^ ) , hence <?[/(/), f(t0)] g d(Piii0)i2i°>...ihm«») < 
< 2~m < e. Thus, the mapping / is continuous. 

17.9. We say that P is a locally compact space, if P is a metric space and if for every 
.v e P there is a neighborhood U such that its closure U is compact. Local compact-
ness is obviously a topological property. 

17.9.1. A metric space is separable and locally compact if and only if it is homeomorphic 
with an open subset of a compact space. 

Proof: I. Let G be an open subset of a compact space Q. Let P be homeomorphic 
with G. We have to prove that P is separable and locally compact. Since both pro-
perties are topological ones, it suffices to deduce this for G (instead of P). G is sepa-
rable by 16.1.2 and 17.2.6. Let xeG. Then G is a neighborhood of the point Jt 
(in the space Q), so that, by 10.1.2, there is a neighborhood U of x such that 
U <z G. The set U is compact by 17.2.2. Since U c G, we have U = Gr\U9U = 

(1) 

(2) 

(3) 

00 

00 
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= G n U, i.e., U is a neighborhood of x in G and U is the closure of U in G. Thus. 
G is locally compact. 

II. Let P be separable and locally compact. Since P is separable, there is, by 16.5. 
a subset G of the Urysohn space U homeomorphic with P and hence locally compact. 
The closure G of the set G in U is compact by 17.2.2 and 17.2.4. It remains to show 
that the set G is open in G, hence, that G — G is closed in G. Let us assume the 
contrary. Then (see 8.3.3) there is a sequence {*„} with xn e G — G such that lim xn ~ 
= XEG exists and does not belong to G — G, so that x e G. Since G is locally 
compact, there is a set V open in G, containing the point x and such that its closure 
in G, V0, is compact. By 8.7.1, V0 = G n V, where (similarly as in the following) 
the bar denotes the closure in U. By 8.7.5, V = G n W, where W is open in U. 
We have (r = ( G n F ) u ( G - V) = (G n V) u (G - W) c (G n V) u (U - W\ 
i.e., 

G <= K0U(U - W). (1) 

The set V0 is closed in U by 17.2.2. The set U - W is also closed in U as W is 
open in U. Hence, the set on the right-hand side in (1) is closed in U, so that (see 8.4) 
G <= V0 u (U - W), hence G n W c V0 c: G. Since xn-* xeW and since W is 
open in U, there is an index p such that for n ^ p we have xn e W, i.e. xn e G n Wy 

hence e G. This is a contradiction. 

17.9.2. A metric space P is separable and locally compact if and only if there is a compact 
space Q and a point ae Q such that the set Q — (a) is homecmorphic with P. 

Proof: I. Let Q be a compact space. Let ae Q. Let Q — (a) be homeomorphic 
with P. The set Q — (a) is cpen in Q. Thus, P is separable and locally compact 

by 17.9.1. 
II. Let P be separable and lccally compact. By 17.9.1 there exists a compact space 

K = (K, Q) and an open G cz K hcireomorphic with P. Denote by Q the set con-
sisting of all points of the set G and one new element, which will be denoted by a. 
Let us distinguish two cases: 

Ila. Let P be compact so that G is also compact. By 17.1.2, a\G) < oo. Let us 
define a finite function on QXQ as follows: for XEG, YEG put = 
= Q(x,y)9 for XEG put Q0(a9x) = g0(x, a) = 1 + d(G)9 finally, put g0(a9 a) = 0. 
We see easily that £0 is a distance function in Q and that the space (Q, q0) is compact. 
Since the partial distance functions in G determined on the one hand by the distance 
function G, on the other hand by the distance function o0 in Q z) G 
coincide, P is homeomorphic (moreover, identical) with the set Q — (a) embedded 
into Q. 

lip. Let P not t e compact, so that G is not ccmpact either. By 17.2.2. G =# G 
so that K — G =(= O; since G is open in K, K — G is closed in K and hence compact 
by 17.2.2. 
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Let us define a finite function Q0 on Q x Q as follows: for x e G, y e G put 

Qo(x, y) = min [o(x, y)9 q(X9 K - G) + Q(y9 K-G)]9 (1) 

for x e G put q0(X9 a) = g0(a, x) = q(X9 K — G); finally, put g0(a9 a) = 0. For 
xeQ, yeQ, evidently q0(X, y) = e00>, Further, q0(X, y) = 0 if * = 

Y) > 0 if x 4= since £?(.*:, — G) > 0 for x e G and since K — G — K — G. 
Let us define a finite function^ on Kx AT as follows: for x e G9 y e GputQi(x,y) = 

= Q(x9y); for * e G , yeK-G put ^ (x , j/) = Ql(y, x) = K - G); for x e 
e K — G, ye K — G put ^ (x , y) = 0. For x e Q, y e Q we define, for the moment, 
a chain from x to y to be every finite sequence {Wj}r=i such that: [1] «¿e K for 1 g 
g / g m9 [2] = x if x e G and ul e K - G if x = a, [3] um = y ii yeG and 
wm e K — G if y = a. The number 

m — 1 
S {?i(«i> (equal to 0 for m = 1) 
¿=i 

is called the length of the chain {w,};rt= i • We may prove easily that for xeQ, yeQ 
there are chains from x to y and that the number ¿?0(X y) is the least length of such 
chains. 

Let xe Q, ye Q, zeQ. There is a chain {u]™= x from x to y with length q0(X9 y). 
There is a chain {"¿}r=+m+1 from y to z with length z). Then {wJ^Y i s a c h a i n 

from x to z with length on the one hand greater than or equal to q0(X9 Z)9 on the 
other hand equal to q0(X9 y) + g0(y9 z). Thus, Q0(X, y) + g0(y9 z) ^ q0(X9 Z). 

This proves that e0 is a distance function in Q. Let us prove that the space (Q, Q0) 
is compact. Thus, let {x„}J° be a point sequence in Q. We have to prove that there 
is a subsequence of {x„} convergent with respect to the distance function {?0- This 
is evident if xn = a for infinitely many indices n. In the contrary case we may find 
a subsequence {xi}J° of {x„} such that x'n eG for every n. It may occur that there is 
a number e > 0 such that, for infinitely many indices n^ < n2 < n3 < Q(x'n.9 

K — G) ^ e. Then we have for every i 

x'nieK-QK(K-G9 e) = L. 

The set QK(K — G, e) is open in K. Hence, L is closed in K. Hence, by 17.2.2 L is 
a compact space (with respect to the partial distance function determined in L 
by the distance function Q of the space K). Thus, there is a subsequence of 
{*«,}£I such that there is a point yeL with e(yn9y)->0. As e0(yn9y) ^ g{yn, y)9 

we also have Q0(yn,y) 0, i.e. the sequence {yn} is convergent with respect to the 
distance function g0. There remains the case where for every e > 0 there is an 
index p such that for n ^ p we always have Q{x'n9 K — G) < e. Then a) = 
= q{x'n9 K — G) 0; hence, x'n a with respect to the distance function o0. 

It remains to be shown that both the partial distance functions determined in G, 
on the one hand by the distance function Q in K G and on the other hand by the 
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distance function Q0 in Q z> G, are equivalent, i.e. that, for xneG, x eG we have 

x)-> 0 if and only if Q0(xn, x) 0 . 

First, if x) 0, we have x) -» 0, since q0(X„, X) g x). Let, secondly, 
As x e ( 7 and K — G ~ K — G, we have Q(X, AT — (7) > 0, so that 

there is an index p such that, for n ^ /?, e0(*n> *) < <?(*> ^ — G) g - Gj + 
+ q(X, K - G). By (1), for n^ip we have £?o(*„> *) = x), so that o(.v„, .v) 0. 

17.10. 16.1.5 and 17.2.3 yield: 

17.10.1. The euclidean space EM (m = 1, 2, 3 , . . . ) is separable and locally compact: 
however, it is not compact. 

By 17.9.2 there is a compact space <2 a n d a point a e g such that EM is homeo-
morphic with Q — (a). We are going to construct such a space by means of the 
elementary calculus. 

The set of all points x = (x0, xt,..., xm) of the euclidean space EM+1 with 
00 

£ xf = 1 will be called the m-dimensional spherical space (m = 0, 1, 2, 3,...) and 
i = 0 

denoted by SM. The distance function in SM is certainly the partial distance function 
of the usual one in Bm + 1 . The space S0 consists of exactly two points, while the spaces 
S„, (m = 1, 2, 3,. . .) are infinite. 

9.5 and 17.2.3 yield: 

17.10.2. The spherical space Sm (m = 0, 1, 2, ...) is compact. 

17.10.3. Let a e Sm9 b e SM (m = 0, 1,2,...). There exists an isometrical mapping f 
°f onto Sm such that f(a) = b. 

Proof: I. We shall prove that, for — 1 g / g m — 1 there is an isometrical mapping 
ft of Sm onto SOT such that if f(a) = c{ = (ci0, cn,..., cim\ then, for 0 g y g /, 
Ctj = 0. This statement is trivial for i = —1. Let it hold for some i (— 1 g / g 
g m — 2). It suffices to prove that then it also holds for i + 1. This is evident if 
cit i+i = 0. In the contrary case put, for (x0, xx,..., xm) e Sm : <p(xQ, xt, .... . v j = 
= (x'0,x'i9 ...,x'm), where 

v' — CM + 2*»+l Ci,i+iXi + 2 1+1 ~~ ¡( 2 2 \ ' 
\J\citi+l + Ci,i + 2) 

v/ _ ~~ci,i+lxi+l + Ci,i + 2xi + 2 
i + 2 — Y~2 2 x ' 

x j = XJ9 o ^ j ^ m , i + 1 4= y 4= i + 2 . 
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If we put c i + 1 = (ci+lt0, Ci+1,Ci+l>m), where c i + 1 , i + 1 = 0, ci+iti+2 = 
= VW!i+i + ch+2), ci+1J = cu for 0 1 / ^ , i + 1 + i + 2, we see easily 
that ci+1 e SM, that c i + l ty = 0 for 0 ^ 7 ^ i + 1, that cp is an isometrical mapping 
of Sm onto SOT and that <p(ci+1) = ct. The required isometrical mapping / J + 1 will 
be evidently obtained putting/ i+1(x) = p - i [//(*)] for x e S m . 

II. By I (where we put / — w — 1) there is an isometrical mapping/ ' of SM onto 
Sm with either f'(a) = (0, . . . , 0, 1) or f'(a) = (0, . . . , 0, - 1 ) . Since there is an iso-
metrical mapping h of Sm onto Sm such that h(0,0, - 1 ) = (0, . . . , 0, 1) [it suf-
fices to put h(x0, xl9..., xm) = (—x09 — xl9..., -xm)L we may assume that 
f'(a) = (0, . . . ,0 , 1). Similarly, there is an isometrical mapping / " of S,„ onto Sm 

such that f"(b) = (0, . . . ,0 , 1). Putting/(x) =f'Lv[f\x)] we obtain an isometrical 
mapping / such that f(a) = b. 

17.10.4. Let a e Sm (m = 1, 2, 3 , . . . ) . The spaces EM and Sm - (a) are homeomorphic. 

Proof: By 17.10.3 we may assume that a = (I, 0 , . . . , 0). For (x0> xi9..., xm) e 
eSm - (a) pu t / (*o ,* i , = O W 2 . - - > y m ) where 

* = i 1 ^ ™ ) - 0 ) 

We calculate easily that equations (1) are equivalent to the equations 

m 

z - 1
 2v 

£ yf + 1 E y.2 + 1 
¿ = 1 ¿=1 

It follows easily that / is a one-to-one mapping of SM — (a) onto EW and that both 
the mappings/and are continuous. 

Exercises 

17.1. If P and Q are totally bounded spaces, then P x Q is a totally bounded space. 
17.2.* If P and Q are compact spaces, then P x Q is compact. 
17.3. If sets / i c p a n d ^ c p a r e totally bounded, then A U B is totally bounded. 
17.4.* If /4 c p and B ^ P are compact sets, then A \J B \s compact. 
17.5. Let A ^ P. The closure ^ is compact if and only if every point sequence {*„} in A has a con-

vergent subsequence (in P; the limit need not belong to A). 
17.6. Let P be a compact space. Let An P, /i„ => Let G be a neighborhood of the set 

OC 

f ) An. Then there is an index m such that An <=• G for every n > m. 
n= 1 
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17.7. Let Q be the completion of a metric space P. P is totally bounded if and only if Q is compact. 
oo 

A metric space is said to be a-compact, if P — JJ An> where every summand is compact. 
n = 1 

17.8. Let P be a <r-compact space. A point set A P is cr-compact if and only if it is Fff(P). 
17.9. An isolated metric space is compact if and only if it is finite. 
17.10. Let A c E m , B c E m . Let A * 0 4= B. Let A be closed and B bounded. Then there exists 

a point y e A such that 

O(Y, B) = min B) = Q(A, B). 
xeA 

17.11. Let A <= E m , B <= E m . Let A * 0 4= Let ,4 and 5 be closed; let A be bounded. Then there 
exist points yx e A> y2 e # such that 

eOi, y2) = min »xi) = Q(a> b)' 
xieA 
x2eB 

17.12. Let / be a continuous mapping of a metric space P into a metric space Q. Let A <= p be 
compact. Let e > 0. Then there is a 3 > 0 such that 

x e A , ye.P, o(xty) < S ^ Q[f(x)J(y)] < e. 

In the exercises 17.13—17.16, P* is the Hausdorff hyperspace of P. 

17.13. If P is not complete, then P* is not complete. 
17.14. If P is not totally bounded, then P* is not totally bounded. 
17.15. If P is not separable, then P* is not separable. 
17.16. If P is not compact, then P * is not compact. 
17.17. If P = K = E[0 ^ t ^ 1] and if /„(f) = tn

y then there is no subsequence of {/„} convergent 
t 

in PK. Thus, PK is not compact, while K and P are compact. 
17.18. Deduce theorem 17.6.7 directly, without use of theorems 17.2.5, 17.6.4 and 17.6.6. 
17.19. Deduce theorem 16.7 f rom theorems 16.5, 17.2.4 and 17.6.8. 
17.20.* Every open subset of a locally compact space is a locally compact space. 
17.21. A locally compact space is cr-compact if and only if it is separable. 
17.22. Let the assumptions and notation of 17.9.2 be preserved. Let / b e a homeomorphic mapping 

of P onto Q — (a). Let {*„} be a point sequence in P . We have f(xn) ->a if and only if there 
is no convergent subsequence of {-v„}. 

17.23.* R (see 9.4) is a compact space. 
17.24. Let a e Ex, b £ Ex, a < b, P = E[a g t ^ b\. If c > 0, a > 0, denote by ^ ( a , c) the system 

t 

of all the finite functions / on P such that 

xePy yeP imply j f ( x ) —f{y) \ £ c \ x — y\*. 

If a > 0, put 0 ( a ) = ( J WijXyC). We say that a function / on P satisfies the L i p s c h i t z 
c> o 

c o n d i t i o n of t h e o r d e r a i f / e < P ( a ) . If / e i > ( a ) , a > 1, then / i s a constant. Let 0 < 
< a < p ^ 1, so that 0 ( a ) => <P(P). Let c > 0. I f e ^ ( a , c), f2 e c\ put 

Q ( f l J 2 ) = ™ * \ f l ( x ) - f 2 { x ) \ . 
xeP 



136 III. Special metric spaces 

Then c) — [^(a , c), g] is a complete space. The set 

0(/3) n c) 

is of the first category in ^ ( a , c). Thus, by 15.8.2, there is a function / e 0 ( a ) such that 
/ e &(p) for no P > a. Moreover, it may be shown that there is a function which satisfies 
the Lipschitz condition of order a while for no ft > a and no interval Q = E [a j ^ t ^ 6 J ^ P 

i 
does the partial function satisfy the Lipschitz condition of order p. 

17.25. State the so called Borel (Heine-Borel) theorem. This is obtained from theorem 17.2.3 inter-
preting the word "compact" in the sense of theorem 17.5.4. 
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