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Chapter 111
SPECIAL METRIC SPACES

§ 15. Complete spaces

15.1. Let P be a metric space. Let {x,} be a sequence of points of P. We say that
{x,} is a Cauchy sequence if, for every & > 0, there is an index p(e) such that

m > p(e) , n > p(e) = e(¥m, X,) < €.

The notion of a Cauchy sequence is metric, not topological.

15.1.1. Any convergent sequence is a Cauchy sequence.

Proof: Let x, — x. Let ¢ > 0. There is an index p(e) such that n > p(e) implies
o(x,, x) < ¢/2. Then

m > p(e), n> p(e) = (X, X,) £ 0(Xm, X) + 0(x, x,) < £/2 + ¢/2 = ¢.

P is said to be a complete space if P is a metric space such that every Cauchy
sequence of points of P is convergent in P. Evidently, every finite metric space
(e.g. 0) is complete. Completeness is also a metric notion and not a topological one.

15.1.2. If P and Q are complete spaces, then Px Q is a complete space.

Proof: Let {(x,,y,)} be a Cauchy sequence of points of Px Q. As

Q(xm’ xll) é Q[(xm’ yﬂl)’ (x’l’ y")] b
{x,} is evidently also a Cauchy sequence. Since P is complete, there exists
lim x, = x € P; and analogously lim y, = y € Q. Obviously (x,, y,) = (x,.»).
15.1.3. The euclidean space E,, is complete.

Proof: 1. E, is complete by the well-known Bolzano-Cauchy theorem from
the calculus.

II. If E,, is complete, E, ., = E, x E, is complete by 15.1.2.

15.1.4. The Hilbert space H is complete.

Proof: Let {x,},=; be a Cauchy sequence of points x, = {x,;}i>; € H. As
0(Xmi» Xp1) £ (X, X,), for every i {x,;}.°-, is a Cauchy sequence. Since the space E,
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is complete, y; = lim x,; exists for every i. Put y = {yi};’il, Let us choose an ¢ > 0.

n—oc

Since {x,}.= is a Cauchy sequence, there is an index p(¢) such that

m > p(e), n>p(e)=o(Xm X,) < ¢.
We have, fork=1,2,3,...,
k

Y (x

i=1

507 S T G = 50 = e 5T,
and hence :
m > p(g), n > p(e) =>§:l(x,,,,- - x,)? < &,
On the other hand -
i‘( i — X,)* = lim Z Kimi = %07,

m—oci=1

and therefore

n > p(e) = i(ys - x)? el

Hencc the series Z (y; — x,)? converges, and, by formula (2) in 6.1, the series

Zy, also converges i.e. y e H. Moreover
i=1

[Q(y, xn)lz =klim ‘_Zl(yi - xni)2 ’
and hence n > p(¢) implies o(y, x,) < €. Hence y = lim x,.

15.2. Let Q be a point set embedded into a metric space P; hence Q is also a metric
space. If {x,} is a sequence of points of Q, then {x,} is a Cauchy sequence in the
space Q if and only if it is a Cauchy sequence in the space P. On the other hand,
a sequence may be convergent in the space P without being convergent in the
space Q.

15.2.1. Let Q < P. Let Q be a complete space. Then Q is closed in P.

Proof: Let {x,} be a sequence of points of Q. Let there exist x = lim x, € P.
By 8.3.3, it suffices to show that x € Q. But {x,} is a Cauchy sequence by 15.1.1.
Since the space Q is complete, there exists lim x, € Q. Hence, x € Q.

15.2.2. Let P be a complete space, let Q = P be closed. Then Q is a complete space.

Proof: Let {x,} be a Cauchy sequence of points of Q. Since P is a complete space,
there exists x = lim x, € P. As Q is closed, x € Q by 8.3.3. Hence, the sequence {x,}
is convergent in Q.
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15.3. Let P be an arbitrary space. Let € be the set of all Cauchy sequences of points.
of P, which are not convergent in P. If {x,} and {y,} are elements of C, we shall
call them (in this section only) equivalent if g(x,,,) = 0 (¢ denotes the distance
function in P, of course). It is easy to prove that the set C may be divided into
classes such that: [1] every sequence {x,} € C belongs to exactly one class, [2] two
sequences {x,} € C and {y,} € C are equivalent if and only if they belong to the
same class. Let us choose a subset Q of € containing exactly one element from any
class. (Of course, if the space P is complete, C = Q = (J.)

In what follows, for convenience, lower case Latin letters denote the elements.
of P, lower case Greek letters denote the elements of Q.

We define a function g, in the range (P L Q) x (P L Q) as follows:

[11if ae P, b e P, then gy(a, b) = o(a, b);

[2]if « = {a,} € Q, beP, then g¢(a, b) = go(b, @) = lim g(a,, b). Certainly we
must prove that {o(a,, b)} converges in E,. Since E, is complete, it suffices to prove
that {o(a,, b)} is a Cauchy sequence. Let ¢ > 0. As {a,} is a Cauchy sequence, there
is an index p such that m > p, n > p imply o(a,., a,) < &. Let m > p, n > p; then
o(an, b) = ola,, a,) + o(a,, b) < o(a,, b) + ¢ and similarly o(a,, b) < 0(@n b) + &.
Consequently m > p, n > p imply | o(a,,, b) — ¢(a,,b)| < ¢ and hence {¢(a,, b)}
is indeed a Cauchy sequence.

[Blif a = {a,} €Q, B = {b,} € Q, then gy(a, B) = lim ¢(a,, b,). Again, we have
to prove that {o(a,, b,)} is convergent in E, and again it suffices to prove that it
is a Cauchy sequence. Let ¢ > 0. As {a,} and {b,} are Cauchy sequences, there is
an index p such that m > p, n > p imply o(a,, a,) < ¢/2 and go(b,,, b,) < €/2. Let
m > p, n>p; then o(a,, b,) < 0(an, a,) + (@, b,) + 0(b,, b,) < 0(@,, b,) + &,
and similarly o(a,, b,) < 0(@,, b,) + €& Consequently m > p, n > p implies
| e(@n, b,) — 0(a,, b,)| < &, and hence {¢(a,, b,)} is indeed a Cauchy sequence.

We shall prove that g, is a distance function in P U Q, i.e. that it possesses the
properties [1], [2], [3] exhibited in section 6.1.

1. Evidently gy(a, @) = 0, go(a, @) = 0 and also go(a, b) > 0 fora + b. If a + S,
then go(«, B) = lim g(a,, b,) + O (and hence > 0), since, by the definition of the
set Q, the sequences a = {a,} and B = {b,} are not equivalent. Also g.(x, b) =
= go(b, @) = lim g(a,, b) + 0 (and hence > 0); the equality lima, = b cannot
hold, as « = {a,} € Q = C is not convergent in P.

IL Qo(a’ b) = Qo(bs a), Qo(“’ b) = Qo(b’ a)a Qo(aa ﬁ) = QO(B’ d) is CVident-

III. Let «, B, y be three elements of P U Q. If a € Q, then o = {a,}, where {a,}
is a sequence of points of P; if a € P, put a, = a for every n. The sequences {b,},
{c,} are defined analogously. Then go(e, f) = lim ¢(@,, b,) and similarly for go(a, 7),
00(B, 7). However, o(a,, ¢,) < o(@,, b,) + o(b,, ¢,) and hence lim g(a,, ¢,) <
< lim o(ay, b,) + lim @(b,, cp); i.€. @o(® 1) S @o(@, B) + @o(B, ).

Consequently, the set P u Q endowed with the distance function gq is a2 metric
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space. Since the partial distance function (@o)pxp coincides with g, the space P =
= (P, 9) is a point set, embedded into P v Q = (P v @, 0o)-

Let a = {a,} € Q, then go(a, a,) = lim o(ay, a,). Let ¢ > 0. Then there is an
k= ©
index p such that k > p, n > p imply o(a;, @,) < &. Hence n > p implies lim g(a,,
k=

a,) £ ¢, i.e. n > p implies gq(a, a,) < &. Hence gy(a, a,) = 0, ie. @, — a. Con-
sequently, by exercise 12.2, the set P is dense in the space P u Q.

The space P u Q is complete. Let {a,} be a Cauchy sequence in P U Q. Since
the set P is dense in P U Q, there are points a, € P such that g,(«,, @,) < 1/n. For
every ¢ > 0 there is an index p(¢) such that m > p(e), n > p(g) imply ¢(«,,, &) < ¢/3;
obviously, we may assume p(g) > 3/e. For m > p(e), n > p(e) we have g(a,, a,) =
= QO(am’ an) é Qo(ams am) + Qo(am’ an) + Qo(ans an) < l/m + 8/3 + l/n <e ThUS,
{a,} is a Cauchy sequence of points of P. Now, it suffices to prove that {a,} converges
in Pu Q, since lf a, — B then Qo(an’ B) é Qo(“m an) + Qo(an’ ﬂ) < QO(atn ﬂ) + l/n
and thus also a, — f. In the case that {a,} is convergent in P there remains nothing
to prove. In the other case {a,} € C, and hence there is a § = {b,} € Q equivalent
with {a,}. We know (see above) that g,(b,, f) — 0; as {a,} and {b,} are equivalent,
we have Qo(am bn) = Q(ans bn) - 0; as Qo(ana ﬂ) é Qo(an’ bn) + Qo(bm ﬂ)’ there is
2o(a,, p) = 0, i.e. ¢, - B, and hence {a,} is convergent in P U Q.

15.4. A metric space P, is called a completion of a metric space P if: [1] P is a point
set embedded into Py, [2] P, is complete, [3] P is dense in P,. If P = P, then the
space P is complete. On the other hand, if P is complete, then P = P by 15.2.1
(P denotes the closure of the set P in P,). But P = P, by [3] and hence P = P,.

15.4.1. Every metric space has a completion. If Py and P, are two completions of
a space P, then there exists an isometric mapping f of P, onto P, such that f(x) = x
for every xeP.

Proof: In section 15.3 we constructed the metric space P U Q, which is obviously
a completion of the metric space P. Let P, and P, be two completions of a metric
space P, let o, ¢, and g, be distance functions in P, P; and P, respectively; hence,
0 = (@1)rxp- If x€ P, then by exercise 12.2 there is a sequence {a,} such that
a,€P, o,(a,, x) > 0. The sequence {a,} is a Cauchy sequence by 15.1.1. Since the
space P, is complete, there is a point y € P, such that ¢,(a,, y) = 0. Preserving the
original point x € P,, let us replace the sequence {a@,} by a sequence {b,} having
the same properties, i.e. b, € P, ¢,(b,, x) = 0. Instead of y we obtain some point
ze P, such that g,(b,,z) —» 0. Then 0,(¥,2) < 02(3>4,) + 02(a,, b,) + 02(by, 2).
But Q2(ana bn) = Q(am bn) = Ql(am bn) =< Ql(an’ x) + Ql(bns X). Since Qz(y, a,,) -0,
0,(b,, 2) = 0, 0,(a,, x) > 0, 0,(b,, x) > 0, we have @,(y,z) = 0 and hence z = y;
i.e., the point y € P, is uniquely determined by the point x € P;. On putting y = f(x)
we obtain a mapping f of the space P, into the space P,. If x € P, we may choose
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a, = x for every n, and hence f(x) = x for xeP. If xe P,, x' € P;, we choose
sequences {a,}, {a,} such that a, e P, a,eP, o,(a,, x) > 0, g,(a,, x") - 0. By defini-
tion of f, we have @[a,, f(x)] = 0, g,[a,, f(x")] = 0. Consequently a, - x, a, = x’
in P, and a, - f(x), 4, f(x') in P, and hence, by exercise 9.12, g¢,(a,, a,) —
hd Q,(.\’, X’), Qz(ana alll) - Ql[f(x)’f(xl)]' Since Ql(an’ a:l) = Q(am al’l) = QZ(am al’l)’ we
have ¢,(x, x") = @, [f(x), f(x")]. Hence, the mapping f is isometric. It remains to
show that f'is a mapping of P, onto P,, i.e. that for every y € P, there is an x e P,
such that f(x) = y. Let y e P,. By exercise 12.2 there is a sequence {a,} such that
a, € P, 9,(a,, ) —» 0. The sequence {a,} is a Cauchy sequence by 15.1.1. Since the
space P, is complete, there is a point x e P, such that ¢,(a,, x) = 0. Evidently

Sx) = .

15.5. A metric space P is said to be absolutely closed, if it has the following property:
If P is embedded into any space P,, then P is a closed subset of P,.

15.5.1. A metric space is absolutely closed if and only if it is complete.

Proof: 1. Let P be absolutely closed. Let P, be its completion. (cf. 15.1.1). By
15.2.2 P is complete.

I1. Let P be complete. Then it is absolutely closed by 15.2.1.

A metric space P is said to be an absolute Gs-space, if it possesses the following
property: if P is embedded into any metric space Py, then P is always a Gs-set in P,,.
For reasons which will be evident immediately (cf. 15.6.3), we shall use the term
topologically complete space instead of absolute G;-space.

15.5.2. A metric space P is topologically complete if and only if there is a complete
space Q such that P is a Gs-set in Q.

Proof: 1. Let P be an absolute G,-space. Let P, be its completion (cf. 15.4.1).
Evidently P is a G,-set in Py and P, is complete.

I1. Let there exist a complete space Q such that Pis a G,-set in Q. Let R be a metric
space into which P is embedded. We have to prove that P is a G;-set in R. Let R,
be a completion of the space R (cf. 15.4.1). Hence Q and R, are complete spaces
and P is embedded into both of them. Let P(Q) and P(R,) be closures of the set P
in Q and R, respectively. By 15.2.2 P(Q) and P(R,) are complete spaces and P
is embedded into both. Obviously, P is dense in both P(Q) and P(R,), and hence
P(Q) and P(R,) are two completions of the space P. Hence, by 15.4.1, there exists
an isometric mapping f of the space P(Q) onto the space P(R,) such that f(x) = x
for ve P. As Pis a Gysetin Q and P < P(Q) = Q, P is a Gy-set in P(Q) by 13.6.1.
Since the concept of a G,-set is metric (even topological), we conclude from the
existence of the mapping f that P is a Gy-set in P(R,) too. By 13.2, P(R,) is a G,-set
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in R, and hence, by exercise 13.10, Pis a G4setin Ry. AsP = R = R,, Pis a G,-set
in R by 13.6.1.

15.5.3. Let P be a topologically complete space. Let A be a Gy-set in P. Then A is
a topologically complete space.

Proof: By 15.5.2 there is a complete space Q such that P is a G,-set in Q. By
exercise 13.10, 4 is a G,-set in Q and hence A is topologically complete by 15.5.2.

15.6. 15.6.1. Let f be a homeomorphism of a metric space P onto a metric space Q.
Then there exist topologically complete spaces P, and Q, such that: [1] P is embedded
into Py, [2] Q is embedded into Qq, [3] there exists a homeomorphism ¢ of the space
P, onto the space Q, such that ¢(x) = f(x) for x € P.

Proof: Let P, and Q, be completions of P and Q respectively (cf. 15.4.1). Denote
by P, the set of all x € P, such that for every £ > 0 there is a § > 0 such that

acP, aeP, oax) <6, od,x)<d = g[f(a),fla)] £e. Q)

Let Q, denote the set of all elements y € @, such that for every ¢ > 0 there
isa é > 0 with

beQ, b'eQ, ob,y) <9, ob,y)<d = olf-1(b), /)] <.

For positive integers m, n let 4,,, be the set of all x e P, satisfying

aeP, a'eP, o@x)<—, ofa\ )<~ = o[f(@)f(@)] S -
It is easy to see that

P2= n UAmn' (2)

m=1n=1

If xe U A4,,,, there is an index »n such that x € 4,,,; if x’' € P; and o(x, x") < 1/2n,
n=1

0
then obviously x’e€ A,, ;, and hence x'e€{J 4,,. Consequently, for every xe

n=1 ©

e U 4,., there is a § > 0 such that Q, (x,d) = U 4,, and hence, by (2), P, is
n=1 m=1

a G,-set in P,. Similarly, Q, is a G,-set in Q.
The mapping f is continuous, since it is a homeomorphism. Hence, given a point
x e P, to every ¢ > 0 there is a § > 0 such that

aeP, g(a,x)<do= é[f(a),f(x)] < -g— )]

However, from (3) there follows (1), i.e. x € P,. Hence P < P,. As the inverse mapping
f-1 is also continuous, we obtain similarly that 0 = Q,.
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Choose a point x € P,. As P, is the completion of P; the set P is dense in P,
and P, contains P,; hence, by exercise 12.2, there is a sequence {q,}such that a, e P
and a,— x. Let ¢ > 0. Since x € P,, there is a 6 > 0 such that (1) holds. Since
a,— x, there is an index p such that n > p implies g(a,, x) < é. By (1) m > p
and n > p imply ¢[f(a,), f(a,)] < &. Hence, {f(a,)} is a Cauchy sequence. Since
f(a,) € Q = Q, and Q, is a complete space, there is a point y € Q, such that f(a,) — y.
Preserving the point x, we replace the sequence {a,} by another sequence {a,} with
the same properties, i.e. a,€P, a, —» x. Put a3,_, = a,, a3, = a,; since a, € P,
a, — x € P,, there is lim f(¢;)e Q,. By 7.1.2 lim f(a,) = lim f(a;), lim f(a,) =
= lim f(a,) and consequently lim f(a,) = lim f(a,). Hence, the point y = lim f(a,)
depends on the point x € P, only, and not on the choice of the sequence {a,}. Hence,
we may put y = ¢,(x). If xe P, we may choose a, = x for all n; consequently
©,(x) = f(x). Hence, ¢, is a mapping of P, into @; such that ¢,(x) = f(x) for
x e P. Similarly we construct a mapping ¢, of the set Q, into the set P, such that
y € Q implies ¢,(y) = f-1(3).

Let x,e P,, xeP,, x,— x. For every n there is a sequence {a,;};2, such that
a,;€P, lima,; = x,; hence, lim f(a,;) = ¢,(x,). With every n we may associate

“‘ kA i— oo

an index i(n) such that for b, = a, ;,, we have g(b,, x,) < 1/n, ¢[f(b,), @.1(x,)] <
< 1/n. Now b, € P, b, —» x and hence f(b,) = ¢,(x). As o[f(h,), 01(x,)] < 1/n, we
also have ¢,(x,) = ¢,(x). This proves that the mapping ¢, of P, into Q, is con-
tinuous. The continuity of the mapping ¢, of Q, into P, may be proved in a similar
manner.,

Put P, = E[x € P,, ¢,(x) € @], O, = E[y € Q,, p.(y) € P,]. Evidently P < P,,

x y

0 < Q. As Q, is a G,-set in Q; and as ¢, is a continuous mapping of P, into Q,,
by exercise 13.7 the set P, is a Gs-set in P,. Since P, is a Gy-set in Py, the set P,
is a Gy-set in P, by exercise 13.10. As P, is a complete space, P, is topologically
complete by 15.5.2. Similarly Q, is topologically complete.

Put ¢ = (¢)p,, ¥ = (92)g, (cf.2.4). If x € P,, there is a sequence {a,} such
that a,€ P, a, > x, f(a,) > ¢,(x) = ¢(x). Since x € Py, we have ¢(x) e 0,. Since
f(a,) € Q, f(&,) = ¢(x), we have a, = f_[f(a,)] > ¢,[¢(x)] and hence @,[p(x)] = x.
Since ¢(x) € Q,, x € P,, we have ¢(x) € Qy. Hence ¢(Py) = Q,. Since ¢(x) € Q,,
we have ¢,[p(x)] = Y[e(x)], hence Y[e(x)] = x and consequently y(Q,) > P,.
Similarly we prove that y(Qo) < Po, ¢(Po) = Q. Hence, ¢(Po) = Qo, Y(Qo) = Py,
i.e. ¢ is a continuous mapping of P, onto Q, and ¥ is a continuous mapping of Q,
onto P,. We have also seen that Y[¢(x)] = x for x€ Py, and hence Y = ¢_, and ¢
is a homeomorphic mapping of P, onto Q,. Of course x € P implies ¢(x) = f(x).

15.6.2. Let P and Q be homeomorphic spaces. If P is topologically complete, then Q
is also topologically complete.

Thus, topological completeness is not only a metric property (which was obvious
from the definition), but, moreover, a topological property.
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Proof: Let f be a homeomorphism of a topologically complete space P onto
a metric space Q. By 15.6.1 there are topologically complete spaces Py, Q, containing
P, Q respectively, and a homeomorphic mapping ¢ of Q, onto P, such that ¢(Q) = P.
As P is topologically complete and P = P,, Pis a Gs-set in P,. Since ¢ is a con-
tinuous mapping of the space Q, onto the space Py and Q = ¢_,(P), Q is a Gset
in Qq by exercise 13.7. Let Q, be a completion of Q, (cf. 15.4.1). Since Q) is topolo-
gically complete, Q, is a G,-set in Q,. Hence, by exercise 13.10, Q is a G,-set in 0,
and consequently, by 15.5.2, Q is topologically complete.

15.6.3. A metric space P is topologically complete if and only if there is a complete
space homeomorphic to P.

Proof: 1. By 13.2, 15.5.1 and by the definition of topologically complete spaces,
any complete space is topologically complete. Hence by 15.6.2, a space homeo-
morphic with a complete space is topologically complete.

Il. Let P = (P, ¢) be a topologically complete space with the distance function g.
It suffices to prove (cf. 9.3) that there is a distance function g, in P equivalent with
the distance function ¢ and such that (P, g,) is complete. By 15.4.1, the space P =:
= (P, ¢) may be embedded into a complete space Q. Without danger of misunder-
standing, we may denote the distance function in Q by g just as the previously given
distance function in P. Since P is topologically complete, therc exist open sets G,

in Q such that P = ) G,. If P = Q, the space (P, ¢) is complete and there is nothing
n=1 .

to prove. Hence we may suppose P & Q and then, of course, we may suppose
G, + QO for every n.*) For xeP, ye P, n =1,2,... put

f;,(x, .V) = Q(X’ )‘) + Q(x9 Q - Gll) + Q()" Q - Gn)v (])
o(x. y)

X5 V) = N 2

g (‘ .)) fn(x’ y) ( )
= |

0o(%, ¥) = o(x, y) + Z, 5 gd(X, ¥)- (3)

AsxePc G, Q-G, =0 — G, (where the right hand side denotes, of course,
the closure in @), we have o(x, Q — G,) > 0, and similarly o(y,Q — G,) > 0.
Hence 0 < o(x, y) < f,(x, ), and consequently

0= g.(x,y) <1; 4
thus the series on the right hand side of (3) is convergent. Moreover,
0 = o(x, ) S o(x, »). (%)

«
*) Therc is an a € Q — P and hence P == n [G, — (a)] where G, — (@) + Q are open: conse-
n=1
quently, we could take G, -— (a) instead of G,.



100 I11. Special metric spaces

Evidently @o(x, x) = 0 and @o(x, y) > 0 for x % y. Obviously go(x, y) = 00(», x).
Since for any numbers ¢ > 0, t; = 0, t, = ¢, one has the evident relation

ly < 7}
C+t1_ C+t2

and since for xeP, yeP, ze P we have o(x, z) < o(x,y) + o(», 2), we obtain

o(x, y) + o(y, 2)

gi(x, 2) = o(x, y) +0(x, @ — G) + o(y,2) + (2,2 ~ G,)

(6)
By exercise 6.6,

e, Q—G)=solx,y) + ox 0 —G),

Q(y’ Q - Gn) é Q(y: Z) + Q(Z, Q - Gn)r

and hence the denominator on the right-hand side in (6) is not less then either of the
two following numbers

Q(x:y) + Q(xa Q - Gn) + Q(y’ Q - Gn) )
ez + e, Q- G) + oz Q- G).
Hence, by (6), it follows that
8n(*, 2) < 8u(x, ¥) + 841, 2)

and consequently, by (3), we obtain gy(x, 2) < 0o(x, ¥) + 2o(, 2).
We have proved that g, is a distance function in P. We shall show that the distance
functions g, and ¢ in P are equivalent, i.e. that for x, € P, x € P there is

Q(xnt x) - 0°Qo(xm x) - O .

If go(x,, X) = O then g(x,, x) = 0 by (5). Now let g(x,, x) > 0. Choose an ¢ > O.
Find an index k such that 1/2* < ¢/2. By (4), for every n there is

o

1.
2k 27

Ms

1
eV Y o=
i=k+1 Z‘g(x ) i=k+1 2}

=

hence
k

o %) < o5 ) + ¥ o - 8l D)+ 5

and thus, by (1) and (2),

Qo(x,,, X) < Q(xna x) + Z 2! Q(X,,, x) -Qi-(x;l(’xf)Q G‘) B

Putting

t
fO =1+ Z 2' t+e(x,0-G)’
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we obtain a continuous functicn f with dcmain E[7] ¢ 2 0] such that f(0) = 0.

x
Hence there is a 6 > 0 such that 0 < ¢ < 6 implies f(r) < ¢/2. Since o(x,, x) = 0,
there is an index p such that the following sequence of implications holds:
n>p=0= o(x,, x) < d=f[o(xn, x)] < Es-"=>LQO(x,,, x) < % + —;— =
3 L
Hence indeed g4(x,, x) = 0.

It remains to prove that the space (P, ¢,) is complete. Let {x,} be a Cauchy se-
quence in this space. We have to show that there is a point x € P such that ¢y(x,, x) —
— 0; of course, it suffices to prove g(x,, x) = 0, since the distance functions ¢o
and ¢ are equivalent. Since {x,} is a Cauchy sequence with respect to the distance
function g, it is, by (5), a Cauchy sequence with respect to the distance function ¢.
As (Q, 0) is ccmplete, there is a point xe Q such that g(x,, x) = 0. We are to

[+ o]
prove that x e P. Assume the contrary, that xe Q — P. Since P = [\ G,, there is
n=1i

an index k such that x e Q — G,. Hence ¢(x,, QO — G,) < g(x,, x). Since g(x,, x) —

— 0, we have
o(x,, @ — G) - 0. Q)

By (3),
1
Qo(xm’ xn) 2 '2_,‘ gk(xrrn Xy) °d
Hence, by (1) and (2),

_1_ 0(Xm5 xn)
2,‘ Q(xm! xn) + Q(xmv Q - Gk) + Q(xn’ Q - Gk)

Qo(xm s Xn g

By exercise 6.6 we have

Q(xm’ Q - Gk) é Q(X,,,, xn) + Q(xm Q - Gk);
hence,
1 0(%m> X»)
Qo Xm» X, Z—- - .
O( ) 2k+l Q(xm’ xn) + Q(xn’ Q - Gk)

Since {x,} is a Cauchy sequence with respect to g, there is an index p such that
m>p, n> p imply ¢(*m, X,) < 1/2°*2. Hence the following implications hold

Q(xm’xn) 1
< == 0(Xp, X,) < 0(X, @ — Gy).
m > p, n>p=>g(x,,,,x,,)+a(x,.,Q—Gk) 3 0(Xm» Xa) < 0(¥m» @ )

Consequently

m > p = lim g(x,,, x,) £ lim ¢(x,, @ — Gx)

n—x n—+ o



102 111. Special metric spaces

and hence by (7) and by exercise 9.10 it follows that
m > p=>g(Xp,, x) < 0=>o(x,, x) = 0=>x, = x,

which is a contradiction, since x,,€ P and xe Q — P.

15.7.15.7.1. Let P be a complete space. Let A, (n = 1, 2, 3, ...) be point sets embedded
@
into P, such that A, + U, d(4,) >0, A, > A,.,. Then the set [\ A, consists of

n=1
exactly one point.

Proof: Let us choose a, € 4,. If ¢ > 0, there is an index p such that d(4,) < e.
Forn > p we have a, € 4, = A4,. Consequently, m > p and n > p imply ¢(a,, a,) <
< d(4,) < e Hence, {a,} is a Cauchy sequence. As the space P is complete, there
is a point x, such that a, — x,. Given a positive integer n, a;€ A,+, fori = n + 1;
hence, by 8.2.1, x,€ A,+, = A,. Consequently x,e ()} 4,. Let xe ) 4,. For

n=1 n=1
every n there is o(x, xo) < d(4,). Since d(A4,) —» 0, we obtain ¢(x, x,) = 0, and
hence x = x,.

The theorem just proved is a (parficularly important) special case of the following
more general theorem:

15.7.2. Let P be a complete space. For n=1,2,3,..., let 6, > 0 with §,— 0,
A, c P, A, + 0, A, > A,.,. Let there exist finite sets K, = P, K, + (} such that

-]
x € A, implies o(x, K,) < 8,. Then () A, + 0.
n=1

Proof: 1. Let us choose a, € 4,. We shall prove that the sequence {a,} contains
a convergent subsequence. For every »n, a,€ 4, < 4,, and hence there is a point
x € K, such that g(a,, x) < J,. Since the set K, is finite, there is a point x, € K,
such that there is a subsequence {a,,},>, of {a,} with o(a,,, x) < &, for every n;
as A, © A,+,, evidently a,, € 4, for evary n.

Now, suppose that for a given i (= 1,2,3,...) thz same construction has been car-
ried out as for i = 1; namely, that we have determined a point x;€ K; and a sequence
{ain}n=y such that, for every n, a;, € 4,, ¢(a;,, x;) < &;. For n > i we have a,,e 4, <
< A; 4+, and hence, for every n > i, there is a point x € K, , such that g(a,,, x) < ;4.
As the set K, is finite, there is a point x;,, € K;,, and a subsequence {@; 4 ,}nz1
of {a;,}n=y such that o(a;4,,, X;) < 8;4, for every n. Evidently, a;,, ,€ 4,. Hence,
we may construct recursively the sequences {a;,},~, for i = 1,2,3,...

Put b, = a,,; hence {b,} is a subsequence of the sequence {a,}. We have to prove
that {b,} is convergent; since the space P is complete, it suffices to prove that {b,}
is a Cauchy sequence. The sequence {b,},-; is a subsequence of {a;,}.-1. Hence
n = i implies o(b,, x;) < §; and consequently m = i, n = i imply ¢(b,,, b,) < 26;.
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Since &; » 0, {b,} is a Cauchy sequence. Since P is complete, {5,} is convergent.

II. By I, there is a convergent sequence {a,} such that a,e A4,. Let a, — x,.
If n is given and i> n + | then q;€ A,,H, and hence, by 8.2.1, x,e d,,, = A4

ne

Consequently x, € ﬂ A,, and hence n A, + 0.

n=1 n=

15.8. 15.8.1.*) Let P =i= 0 be a topologically complete space. Let G, = P be open sets,
G, dense in P. Then n G, + 0; moreover, the set ﬂ G, is dense in P.

n=1 n=1

Proof: 1. First show that (] G, + U. From 15.6.3 it follows easily that it suffices
n=1

to prove this under the assumption that P is complete. Choose a point a, € G,.

Since the set G, is open, there is a real number 8, such that 0 < §, < 1/2 and

Elo(a,, x) £ 6,] = G,. More generally, for any given n (=1,2,3,...) assume

there have been found a point a, and a number §, such that a,€ G,, 0 < §, < 1/2",
Ele(a,, x) £ 8,] = G,. As the set G, is dense, there is a point a,,, € G,,, such

that o(a,, a,,,) < 6,. As G,,, and E[o(a,, x) < J,] are open sets, there is a number
X
‘Sn+l such that 0 < 6n+l < 1/2"+l: E[Q(an+ls X) § 6n+1] < Gn+l N E[Q(am x) =<:

< 4,). Hence, the points a, and the numbers §, may be constructed recursively.
Put S, = E[o(a,, x) £4,]. Then S, = G,, S, > S,4,, d(S,) =25,-0, S, + 0.

Moreover, S, = S, (e.g. by 9.5 and exercise 9.10). Hence, by 15.7.1, ] S, + 0.
0 n=1
As S, <G, NG, = 0.

n=1
IL Let I 4 ¢ be an open set. By 12.1.2, it suffices to show that ' n [ G, * U.
n=1

By 13.1.1 and 15.5.3, T is a topologically complete space. The sets I' N G, are open
by 875 and dense in " by exercise 12.3. Hence, by I, n rngG,) *0,ie. I'n
N n G, + (.

n=1

15.8.2. Let P + () be a topologically complete space. Let A be a set of the first category
in P. Then P — A + (); moreover, the set P — A is dense in P.

Proof: We have A = |J A,, where A4, are nowhere dense sets, ie the (open)

n=1

sets G, = P — A, are dense. Hence, by 15.8.1, the set ﬂ G, =P — U A, is dense.

n=

By 12.1.1 also the set P — 4 > P — U A, is dense.

n=1

*) 15.8.1 (15.8.2, resp.) is sometimes called Baire’s theorem.
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15.8.3. Let P =+ (J be a topologically complete space. Let f be a function of the first
class with domain P. Let C be the set of all x € P at which f is continuous. The set C
is dense in P.

Proof: By 14.5.2, P — C is a set of the first category. Hence, by 15.8.2, the set C
is dense.

15.8.4. The set R of all rational numbers is not a G-set in E,.

Proof: If ae R, then the set (a) is nowhere dense in R by exercise 12.5. Hence,
by exercise 3.1, the set R is a set of the first category in R. Consequently, the space R
is not topologically complete by 15.8.2. Hence, R is not a G;-set in E, by 15.1.3
and 15.5.2.

Exercises

15.1. Let P = 4 U B. Let A and B be complete spaces. Then P is a complete space.

15.2. Let P=A U B. Let A and B be topologically complete spaczs. Then P is a topologically
complete space.

15.3. Let C be a non-void set. Let P be a metric space. For each z € C let A(z) be a complete space

embedded into P. Then n A(z) is a complete space.
zeC
154. Let P be a metric space. Forn = 1, 2, 3, ... let 4, be topologically complete spaces embedded

[
into P. Then n A, is a topologically complete space.
n=1
15.5. Let P and Q be topologically complete spaces. Then PxQ is a topologically complete
space.
15.6. Every absolutely open space (cf. analogous definitions in section 15.5) is void.
15.7. Let P be a complete space. Let Q = P. Then Q is a completion of the space Q.
15.8. Let P be a topologically complete space. Let 4 be a closed set of the first category in P.
Then A is nowhere dense in P.
15.9. Let P be a topologically complete space. Let A4, (n =1,2,3,...) be dense Gy-sets in P.

o]
Then the set () A4, is dense in P.
=1

15.10. The spaces in exercises 6.5, 7.2, and 7.4 are complete.

15.11. In the proof of theotem 15.6.1 the following equalities hold: Py == P, N @,(Q,), Qp =
=0, N@y(Py).

15.12. In theorem 15.6.1 we may put P = E[O <t<l1] uE[l <t< 22U E[2 <t<3 =

f@)=1—t for 0 <t <1, f(t)—3—t for l<t<2 fit)=1¢ for 2<t<3, P =
=0, =PU 0 Vv()w() V@) In the proof of the quoted theorem we have P, =
=PU©OUQR) =0,,P,=PU@) = Q.

15.13. Let P be a topologically complete space. Let f be a function of the first class with domain P.
Let Q be a non-void G;-set in P. Then there is a point x € Q such that the partial faaction fQ
is continuous at x.

15.14. Let f be a function with domain E, . Let C be the set of all points x € E; such that fis con-
tinuous at x. Then C is not the set of all rational numbers. (This may be proved using 13.4.)
Compare with the result of exercise 9.2. .
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15.15. For x € E; put f(x) = lim lim cos®” m!znx. The function f is nowhere continuous. Hence
m— o0 n—w
it is not a function of the first class.

15.16.* The set of all members of a Cauchy sequence is bounded.

§ 16. Separable spaces

16.1. An open basis of a metric space P is a system B of open subsets of P such
that for every neighborhood U of any point x e P there is a neighborhood V
of the point x with V'e®B and V < U.

16.1.1. Let B be a system of subsets of a metric space P. B is an open basis of P if and
only if: [1] every set from B is open; [2] for every open G = P, G =+ (J, there is a system
N =B, A+, such that @ = |J X.
XeA
Proof: 1. Let the system B have the properties [1] and [2]. Let U be a neighborhood

of a point x € P. Then there is a system U = B, A + (J, such that U = Y X. Since
Xe

xe U, there is a Ve with xe V. The set V is a neighborhood of x and we have
Vel

II. Let B be an open basis of the space P. Let G = P be a non-void open set.
As G = (J, there is a point ae€ G. G is a neighborhood of the point a and hence
there is a set H € B with ae H < G. Thus, the system U of all the X € B such that

X = G is non-void. Evidently |J X = G. If xe G, G is a neighborhood of the
Xe

point a, so that there is a set UeB with x e U = G; thus, U eW and consequently
xe U X. Thus, G UX,ie. G= U X.

Xe XeN XeU

A separable space is a metric space which has (at least one) countable open basis.
This is obviously a topological property.

16.1.2. Let P be a separable space. Let Q < P. Then Q is separable.

Proof: If B is an open basis of P and if we replace every set X € B by the set 0 n X,
we obtain a system B,. 8.7.5 yields that B, is an open basis of the space Q. If B
is countable, the system B, is evidently also countable.

16.1.3. A metric space P is separable if and only if there is a countable A = P dense
in P.

Proof: 1. Let B be a countable open basis of the space P. Let us choose one point
in each non-void X € B. Let A4 be the set of all chosen points. Then A4 is a countable
set. If G is non-void and open, choose an x € G. As B is a basis, there exists a Ue B
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with xe U = G. If ae A is the point chosen in U, we have aeAnUc AnG.
Thus, A n G # (J for every non-void open G, so that the set 4 is dense by 12.1.2.

II. Let A4 be a dense countable subset of P. Let B be the system of all Q(a, r),
where a varies over all the points of 4 and r varies over all the positive rational
numbers. By 3.5.2 and 3.6 we see easily that the system B is countable. By 8.6.1
we see easily that B is an open basis of P.

16.1.4. The Hilbert space H is separable.

Proof: Let A be the set of all r = {r,}{ such that: [1] every r, is a rational number;
[2] there exists an index p such that r, = 0 for every n > p. Evidently 4 < H.

@
Let x = {x,}T € H. Choose an ¢ > 0. There exists an index p such that Y. x2 <
n=p+1

p
< €%/2. For | £ n £ p there are rational numbers r, such that ) (x, — r,)* < &%/2.
v n=1

Forn > p put r, = 0. If r = {r,}7°, we have re 4, o(x, r) < &. Thus, g(x, 4) < &.
As ¢ > 0 was arbitrary, we have g(x, 4) = 0, i.e. x € 4. Thus, 4 = H, i.e. the set 4
is dense in H. The set A is countable by ex. 3.1 and 3.14.

16.1.5. The euclidean space E,, (m = 1,2, 3,...) is separable.

Proof: Let Q,, be the set of all points x = {x,}7 e H with x, =0 for n > m.
Q.. is separable by 16.1.2 and 16.1.4. The spaces E,, and Q,, are evidently isometric,
so that E,, is also separable.

16.1.6. Let P be a metric space. For every > 0 let there be a countable set A(9) = P
such that o[x, A(8)] < & for every x € P. Then P is separable.

Proof: Put B = |J A(1/n). The set B is countable by 3.6. For every point x € P
n=1

we have o(x, B) < olx, A(1/n)] < 1/n, hence o(x, B) = 0, i.e. xe B. Thus, B = P,
i.e. the set B is dense, so that P is separable by 16.1.3.

16.1.7. Let P be a metric space. Let there exist a number 6 > 0 and an uncountable set
A < P such that
xeA, yed, x £y imply o(x,y) > 9.

Then P is not separable.

Remark: This theorem is a useful criterion for proving that a given space is not
separable. Its converse is valid; however, it cannot be prowed without a use of the
theorem that the set P may be well ordered. (Which is not proved in this book;
see 4.3.)

Proof: Let B be an open basis of the space P. For every x € A4 there is a set B(x) € B
with x € B(x) = Q(x, ). If xe A, ye A, x + y, we have y € B(y), while x is not
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in B(»), hence, B(x) + B(y). As the set A is uncountable, the system of all the B(x)
is uncountable. Thus, the system B is uncountable.

16.2. 16.2.1. Let P be a separable space. Let A be a disjoint system of open subsets of P.
Then the system W is countable.

Proof: By 16.1.3 there is a countable dense subset 4. By 12.1.2, we may choose
in every G e U — with the exception of G = (4, which may be also an element of
A — a point ¢(G) € A N G. The set of all points ¢(G) is countable by 3.4.1. Since
the system 2 is disjoint, we have ¢(G,) # ¢(G,) for G, + G,. Thus, the system ¥
is also countable.

16.2.2. A necessary and sufficient condition for P to be a separable space is the following :
For every system U of open sets with \J X = P there is a countable system W, < VA

Xel
such that J X = P.

Xeo

Proof: 1. Let the condition be satisfied. Forn = 1, 2, 3, ... denote by &, the system

of all Q(x, 1/n) with x € P. There is a countable T, = S, such that |J X = P.
© XeTn

Put 8 = J T,. Then B is a countable (see 3.6) system of open sets. It suffices

n=1
to prove that B is an open basis of the space P, i.e. that for any given neighborhood
U of a given point g € P there is a set Ve ®B with ae V < U. There is a number

r >0 with Q(a,r) = U. Choose an index n > 2/r. Since I, < &,, U X =P,
XeTn

there is a point b€ P such that Q(b, 1/n)e I, =« B and ae Q(b, |/n). Then the

following sequence of implications holds

x € Q(b, 1/n) = o(b, x) < 1/n=g(a, x) < o(a, b) +
+ob,x) £2m<r=xeQar)cU,

hence Q(b, 1/n) = U. This Q(b, 1/n) is an element of B.

II. Let P be separable. Let A be a system of open sets with {J X = P. Let B
Xe

be a countable basis of the space P. With every x € P we may associate a set 4, €A

such that x e A4,; then we choose a set B, € B such that xe B, < A4,. Evidently

U B, = P. Since the system B is countable, there is a countable C = P such that

xeP

UB.=UB,ie. UB,=P. As A, o B,, we also have J 4, = P. Thus, the

xeC xeP xeC xeC

system U, of all A, with xe C is countable and such that 2, <9, |J X = P.
XedNo

16.2.3. A necessary and sufficient condition for P to be separable is the following:
Every open basis contains a countable open basis.
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Proof: 1. Let the condition be satisfied. Since there is at least one open basis
(namely the system of all the open sets), there is a countable open basis, i.e. P is
separable.

II. Let P be separable. Let B be a countable open basis. Let U be an arbitrary
open basis. If there is given a point xe P and an index n = 1, 2, 3, ..., there is a set
A, (x) e ¥ such that x e 4,(x) = Q(x, 1/n); further, there is a set B,(x) eB such
that x € B,(x) = A,(x). Since the system B is countable, there is, for every n, a coun-
table set C, = P such that |J B,(x) = U B,(x), i.e. U B,(x) = P. Since B,(x) =

xeCp xeP xeCn

< A,(x), we have |J 4,(x) = P. Let A, be the system of all 4,(x) (n=1,2,3,...

x€Cn

..., x€ C,). Then A, = A and the system A, is countable by 3.4.1 and 3.6. It suffices
to prove that the system 2, is an open basis, i.e. that for every neighborhood U
of any point a € P there is a set Ve U, with ae V' < U. There is a number r > 0
such that Q(a, r) = U. Choose an index n > 2/r. Since |J A4,(x) = P, there is

xeCp
a point be C, with-ae A4,(b). We have A4,(b) = Q(b, 1/n), hence o(a, b) < 1/n;
thus x € Q(b, 1/n) implies (b, x) < 1/n which implies o(a, x) < ¢(a, b) + o(b, x) <
< 2/n < r, hence Q(b, 1/n) = Q(a,r) = U. Hence ae A,(b) = U. Since be C,, we
have A4,(b) e ,.

16.3. 16.3.1. Let P be an uncountable separable space. Let Q be the set of all the x € P
such that every neighborhood of x is uncountable. Then: [1} P — Q is countable,
hence, the set Q is uncountable, [2] the set Q is dense-in-itself.

Proof: 1. With every xe P — Q we may associate a countable neighborhood
U(x). The sets U(x) — Q are (see 8.7.5) open in P — Q and we have | (U(x) —

xeP—-Q

— Q)=P— Q. P— Q is a separable space by 16.1.2. Thus, by 16.2.2, there is
acountable 4 =« P — Qsuchthat | [U(x) - Q] = U [U(x) — Ql,ie. U [U(x) -
xeAd xeA

xeP—-Q
— 0] = P — Q. Hence, the set P — Q is countable by 3.6. Q is uncountable, since
otherwise the set P = (P — Q) u Q would be also countable.

II. If x € @ and € > 0, the set Q(x, ¢) is a neighborhood of the point x and it is,
consequently, uncountable. Since P — Q is countable, the set Q n Q(x, ¢) =
= Q(x, &) — (P — Q) is uncountable. Hence, thereisa y e Q, y * x with g(x, y) < e.
Thus, x is not an isolated point of the set (). Hence, Q is dense-in-itself.

16.3.2. Every dispersed separable space P is countable.

Proof: If P were uncountable, it would contain, by 16.3.1, a dense-in-itself set Q.

16.4. Let P be a separable space. Let a non-void system U of closed subsets of P have

the following property: If, for p = 1,2,3,..., A, €U, A, > Ay, then [ A,e.
n=1
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Then there is at least one minimal set M €U, i.e. a set M such that AeN, A = M
imply A = M.

Proof: Let {B,}{ be a sequence the members of which are exactly all the elements
of a (countable) open basis B of the space P. Choose arbitrarily a set 4, e U. If
(for n =1, 2,3,...) the set 4, € A is chosen, choose, if it is possible, an A,,, €U
with A4,,, < 4, — B,; if it is not possible, put 4,,, = 4,. Then we always have

A, e, A,,, = A, and hence M = [) A4,eU. Let us prove that M is minimal
n=1

in . Let there be, on the contrary, a set Ce W with C =« M #+ C. Choose a point
ae M — C. The set P — C is a neighborhood of the point a. Since B is an open
basis, there is an index n such that ae B, =« P— C. We have Ce ¥, Cc M — B, c
< A, — B,. Hence, A,,, = A, — B,, so that aeP — A,,, for ae B,. This is a
contradiction, since ae M < A4,,,. (The theorem just proved is called the
Brouwer reduction theorem.)

16.5. A metric space P is separable if and only if there is a point set Q embedded into
the Urysohn space U which is homeomorphic with P.

Proof: 1. Since U = H, the space Q embedded into U is, by 16.1.2, and 16.1.4,
separable; thus, a space P homeomorphic with Q is also separable.

II. Let P be separable. We may assume that P + (J. By 16.1.3 there is a countable
set A dense in P. Let T be the set of all the triples (a, r, s) where ae 4 and r, s are
rational numbers such that 0 < r < s. Evidently (see 3.5.2 and 3.6) T is a non-void
countable set, so that we may form a one-to-one sequence {(a,, r,, 5,)}1 consisting
exactly of all the elements of 7. For xe P, n = 1,2,3,... put

Q[X, Q(an ’ rn)]

fn(x) = Q[x, Q(am r")] + Q[x, P - Q(a,,, S,,)]

M

lf Q(a,', sn) 4: P,
fi(x) =0 if Qa,,s,)=P.

The denominator on the right-hand side in (1) could be zero only in the case of
xeQa,,r,) — Qa,,s,); in such a case we would have simultansously ¢(a,, x) <,
and g(a,, x) = s,, which is impossible, as r, < s,. Thus, f, is a finite continuous
function (see ex. 9.3) on P. Evidently: [1] for x € P we have 0 < f,(x) < 1, so that
{a/m) f,(x)}L eU; [2] ea,, x) <r, implies f,(x) =0, [3] o(a,,x) > s, implies
f(x) = 1. Put
F(x) = {% f,,(x)}l and Q= F(P).

Then F is a mapping of the space P onto the space Q. We shall prove that F' is
a homeomorphic mapping, i.e. that: [1] F is one-to-one, [2] F is continuous, [3] F_,
is continuous.
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Let xe P, ye P, x + ). Since A4 is dense in P, there is an a € A such that g(a, x) <
< }o(x, y). Since o(x,y) < o(a, x) + o(a, y), we have g(a, y) > o(a, x). Hence
there exist rational numbers r, s with 0 £ g(a, x) < r < 5 < ¢(a, y). There is an
index n such that a=a,, r=r,, s =s,. We have f,(x) =0, f,(») = 1, hence
1) * £,(»), hence F(x) & F(y). Thus, the mapping F is one-to-one.

Let x;e P, xe P, x;— x. Since the functions f, are continuous, we have, for
every n, lim f,(x;) = f,(x) so that, by 7.3.1, lim F(x;) = F(x). Thus, the mapping F

i+

i+

is continuous.
Let x;€ P, x€ P, lim F(x;) = F(x). By 7.3.1, lim f,(x;) = f,(x) for every index n.

i—o i~
Let us assume that lim x; # x. Then there is a number ¢ > 0 and an infinite set M
i~ w

of indices i such that i € M implies o(x;, x) > ¢. As A4 is dense in P, there is ana € A
with g(a, x) < ¢/2. There are rational numbers r, s with 0 < g(a@, x) <r <s <
< ¢/2. There is an index n such that a = a,, r = r,, s = s,. Then g(a,, x) < r,
and, for ie M, ¢(a,,-x;) > s,, so that f,(x) = 0 and, for ie M, f,(x;,) = 1. Since the
set M is infinite, f,(x;) does not converge to f,(x); this is a contradiction. Thus,
lim x; = x. Hence, the mapping F_, is continuous.

i

16.6. 16.6.1. Let P be a separable space. Let € be a positive number. Let f be a finite
function on P. For every a € P let there be a number 6 > 0 and a finite function ¢
of the first class on Q(a, 5°) such that | 9(x) — f(x)| < & for every x € Q(a, 6©).
Then there is a finite function ¢ of the first class on P such that | p(x) — f(x)| < ¢
for every x € P.

Proof: The sets Q(a, 5'”) are open and we have |J Q(a, 6°) = P. Hence,
aeP

by 16.2.2, there are (with the exception of the trivial case of P = (J) sequences
{a,}f and {3,}F such that a,eP, §, = &, D Qa,,s,) = P. Put ¢, = @',
A, = Qa,,0,), Apyy = Q@415 04+1) — ij Q"(:z:, 6) (n=1,2,3,...). The sets
A, are F_ (see 13.3.2, 13.3.4 and 13.3.5)'2—1111d we have P = Q A, with disjoint

summands. Hence there is a finite function ¢ on P such that x € 4, implies @(x) =
= ¢,(x). Evidently | o(x) — f(x)| < ¢ for ¢very x e P. Thus it suffices to prove
that ¢ is a function of the first class.

Let ce E,. We have

Elp(x) > ¢] = l:}l A, N E[x € Qa,, 6,) » ¢a(x) > c].

Since ¢, is a function of the first class on Q(a,,d,), the set B, = E[er(a,,, 0,),

@,(x) > c] is, by 14.3.1, F,[Q(a,, 5,)]. The set Q(a,,d,) is open in P and hence
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it is F(P) by 13.3.5. Hence, B, is F,(P) by ex. 13.10. Thus, 4, n B, is F,(P) by
13.3.4, so that E[p(x) > ¢] = U (4, n B,) is F,(P) by 13.3.3. Similarly we may

n=1

prove that E[p(x) < c] is F,(P). Thus, ¢ is a function of the first class by 14.3.1.

16.6.2. Let P be a separable space. Let f be a function on P with the follovwing property:
in every non-void closed set A = P there is at least one point at which the partial
Sfunction f, is continuous. Then f is a function of the first class.

Proof: 1. First, let us assume that the function fis finite. It suffices to prove that
for every ¢ > 0 there is a finite function F, of the first class such that | f(x) —
— F(x)| < & Then f'is the uniform limit of the sequence {F,,,}, so that, by 14.2.1,
/'is a function of the first class. Let us assume that the function F, does not exist
for some & > 0. Let us denote by G the set of all the a € P for which there is a number
6 >0 and a finite function @@ of the first class on Q(a, 6) such that
[ f(x) — 0®(x)| < & for every x € Q(a, §9). If a e G we see easily that Q(a, 6V) <
c G. Hence G = | Qa, 6), so that the set G is open. Since we assume that F,

aeG

does not exist, we have, by 16.6.1, G & P. Thus, P — G is a non-void closed set,
so that, by the assumed property of the function f there is a point ae P — G in
which the partial function (f)p- o is continuous. Since the function (f)p- is finite
and continuous at the point a, there is a 6 > 0 such that | f(x) — f(a)| < ¢ for
every x € (P — G) n Q(a, J).

By 16.1.2, G is a separable space. (f) is a finite function on G. By the definition
of the set G and by theorem 16.6.1, where we replace P by @, there is a finite
function  of the first class on G such that | f(x) — ¥(x)]| < ¢ for every xe G.

Let us define a finite function ¢ on Q(a, §) as follows: For x € G n Q(a, d) put
@(x) = Y(x), for xe (P — G) n Q(a, ) put ¢(x) = f(a). Thus, x € Q(a, §) implies
| (x) — f(x)] < &. It suffices to prove that ¢ is a function of the first class on
Q(a, 6), as then it follows from the definition of the set G that ae G, which is
a contradiction.

Let ce E,. Since ¥ is a function of the first class on G, the partial function
(V)G naca, 5 is of the first class on G N Q(a, 8), so that, by 14.3.1, the set

E[x e G n Q(a, 6), Y(x) > c] M

is F,[G N Q(a, 9)]. The set G n Q(a, J) is open in Q(a, §) and hence it is F,[Q(a, §)]
by 13.3.5, so that the set (1) is also F,[Q(a, 8)] by ex. 13.10.
If ¢ = f(a), we have

]f[x € (a, 8),p(x) > c] = E[x€ G n Q(g, 8), y(x) > c]
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so that E[x € Q(a, 6), ¢(x) > c] is F,[Q(a, 6)]. If ¢ < f(a), we have
E[x € Q(as 6)) §0(x) >c]=

= E[x e G n Q(a, 8), Yy(x) > c] U [(P — G) N Qa, J)] ()

and the first summand is F,[Q(a, §)]. The set (P — G) N Q(a, d) is closed in Q(a, J),
hence, by 13.3.2, it is F,[Q(a, 6)]. Thus, by (2) and 13.3.3, the set E[x e Q(a, ),

o(x) > c] is F,[Q(a, 5)].
Similarly we can prove that, for every ce E,, the set E[x € Q(g, ), p(x) < c]

is F [Q(a, 6)]. Hence, by 14.3.1, ¢ is a function of the first class on Q(a, ).

II. There remains the case of f which is not finite. By ex. 9.18, there is a homeo-
morphic mapping ¢ of the set R onto the interval E[—1 < ¢ < 1]. Put F(x) =
t

= @[f(x)]. Then F is a finite function on P. If a set A = P, A & (J is closed, there
is a point a € 4 such that the partial function f, is continuous at a. Evidently the
function F, is also continuous at a. By I, F is a function of the ﬁrst class. As
J(x) = ¢_1[F(x)], fis also a function of the first class.

16.6.3. Let P be a topologically complete separable space. A nesessary and sufficient
condition for a function f on P to be of the first class is the following: In every non-void
closed set A = P there is at least one point such that the partial function f, is
continuous at it.*)

Proof: 1. The condition is sufficient by 16.6.2.

1I. Let f be a function of the first class on P. Let 4 = P by a non-void closed
set. By 13.2 and 15.5.3 4 is a topologically complete space. Let C be the set of all
x € A at which the function £, is continuous. f, is a function of the first class on P,
so that, by 15.8.3, the set C is dense in 4. Since A ¥ ¢, we have C + (.

*) This necessary and sufficient condition may be replaced by several others. Let P be a topolo-
gically complete separable space. Let f be a function on P. For 4 < P let S, be the set of all
x € A at which the partial function f, is continuous; put D, = A — S 4. Then every one of
the following conditions [1], [2], [3], [4] is a necessary and sufficient condition for f to be of
the first class:

[1] For every non-void closed 4 < P, S, + 0.

[2] For every non-void closed 4 < P, S, is dense in 4.

(3] For every non-void closed 4 < P, D, is of the first category in A4.
[4] For every A < P, D , is of the first category in A.

Proof: By 16.6.3 it suffices to prove that conditions [1], [2], [3], [4] are equivalent. i.e. that [1] =
= [4] = [3] = [2] = [1]. If [1] holds, f is of the first class by 16.6.3 and hence, by 14.5.3
(see the footnote to theorem 14.5.2), [4] holds. Evidently [4] => [3]. If [3] holds, [2] holds by
13.2, 15.5.3, 15.8.2. Finally, obviously [2] = [1].
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16.6.4. Countable metric spaces are topologically complete if and only if they are
dispersed.

Proof: 1. Let P be a countable topologically complete space. Let us assume-that P
is not dispersed. Let Q be its kernel (see 11.1). Then Q =+ (5, @ = O and Q is dense-
-in-itself, i.e. it has no isolated points. By 13.2 and 15.5.3, Q is a topologically
complete space. Since Q is countable and has no isolated points, Q is, by ex. 12.13,
of the first category in Q, in contradiction with 15.8.2.

II. Let P be a countable dispersed space. Let P, be its completion (see 15.4.1).
As P is dense in Py, P, is separable by 16.13. Let us define a function f on P, as
follows: f(x) = 1 for xe P, f(x) = 0 for xe P, — P. Let A be a non-void closed
subset of P,. If A n P = (), the partial function f, is continuous (since it is a con-
stant). As P is dispersed, if A n P # (J, there exists an isolated point a of the set
AN P. There is a 6 > 0 such that xe A n P, g(a, x) < 26 imply x = a. If a is an
isolated point of the set A, then f, is obviously continuous at the point 4. In the
converse case there is a point b€ A such that a &b, ¢(a, b)) =0, <d. If xe 4 and
o(b, x) < o(a, b), we have o(a, x) = o(a, b) + o(b, x) < 29(a, b) < 26 and, moreover,
x # a, so that, by the choice of the number §, x is not an element of 4 n P. Thus,
AnQb,8,) =Py — P, so that xe A n Q(b, §;) implies f(x) = 0, and hence f,
is continuous at the point b. Thus, in all cases, there is a point a e 4 at which f,
is continuous. Since P, is separable, f'is, by 16.6.2, of the first class, so that, by 14.3,
the set P = E[f(x) = 1] is G4(P,). As P, is complete, P is topologically complete

by 15.5.2.

16.7. Let P be a separable space. Let A, = P (n=1,2,3,...). Then there is
a subsequence {C,} of {A,} such that Lim C, (see 8.8) exists.

Proof: As P is separable, there is a sequence {B,},-, such that its terms form an
open basis of the space P. Put A4 = 4,.If, for some i (= 1,2, 3, ...), the sequence
{44~ D)7 is chosen, we choose, if it is possible, some subsequence {A,’}" for which

B; A Lim 4 = ¢; if it is not possible, put AP = A%V for every n. Put C, = A",

n— o

so that the sequence {C,} is a subsequence of {4,}. We have to prove that Lim C,
exists. Let us assume the contrary. Hence, Lim C, + Lim C,, so that there exists
a point o
xelim C, — Lim C, .

By ex. 8.16, o(x, C,) does not converge to zero. Thus, there is a number § > 0 and
indices j; < Jj, <Jj3 < ... such that g(x, C;) > 6 for every n. If o(x,y) <4, by
ex. 6.6 we have o(y, %, C;,) > 6 — e(x,) > 0 for every n, so that, by ex. 8.16, y is
not an element of Lim C;_. Thus, Q(x, 6) n Lim C;, = . Since Q(x, d) is a neigh-
bourhood of x, there is, by definition of the sequence {B,}, an index i such that
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x € B; = Q(x, §), hence, B;nfiE Ci.=0. For nzi—1 we have j, 2i -1,
so that C;, = A% is a term of the sequence {4{™V}7. Hence, there is a subsequence
{C;. 3oy of {4%7 1} such that the set B; contains no point of the upper limit of

the subsequence. Thus, B; n Lim A = @. Since {C,}= is a subsequence of {4},
we have, by ex. 8.20, Lim C, « Lim A and hence B; n Lim C, = (). This is

“a contradiction, as x € B; n Lim C,.

Exercises

16.1. Let A4 be a dense subset of a metric space P. Let A be a separable space. Then P is separable,
2]
16.2. Let 4, (n = 1,2, 3,...) be separable spaces embedded into a metric space P. Let U A, =P.
n=1

Then P is separable.
16.3. Let A be a separable space embedded into a metric space P. Then the closure A and the derived
set A” of A are separable spaces.
16.4. Let P and Q be separable spaces. Then P X Q is a separable space.
16.5. The spaces from exercises 7.2 and 7.4 are separable.
16.6. The space from exercise 6.5 is not separable.
16.7. A system B of open subsets of a metric space P is an open basis of the space P if and only if
for every € > 0
U X=P where B, =E[XeB,dX)<¢].
XeB. X

16.8.* Let B, be an open basis of a metric space P. Let B, be an open basis of a metric space Q.
Let B, be the system of all the sets of form G, X G, where G| € B;, G, € B,. Then B,
is an open basis of the space P X Q.

§ 17. Compact spaces

17.1. A rotally bounded space is a metric space P such that every sequence of points
of P has a Cauchy subsequence. This is obviously a metric property; however,
it is not a topological property (see 17.2.5). Since a point set embedded into a metric
space is a metric space, we need not define the notion of totally bounded point
set. Evidently:

17.1.1. Point sets embedded into a totally bounded space are totally bounded.

17.1.2. Each totally bounded space P is bounded.

Proof: If d(P) = o, there is a sequence {x,} such that x, € P, g(x;, x,) > n for
i < n. {x,} has no bounded subsequence, while every Cauchy sequence is bounded
(ex. 15.16).
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17.1.3. Let P be a metric space. Let there be an infinite set A < P and a number
& > 0 such that
xeAd, yeA, x =y imply o(x,y) =6.

Then P is not totally bounded.

Proof: There is a one-to-one sequence {x,}, x,€ A. {x,} has no Cauchy sub-
sequence.

17.1.4. A metric space P is totally bounded if and only if for every § > Q there is
a finite set A(6) = P such that g[x, A(6)] <  for every x € P.

Proof: 1. Let the sets A(S) exist. Let x,e P (n = 1,2, 3, ...). Put x{¥ = x, and
construct recursively sequences [x'’], (i =0,1,2,...) as follows: Since A(1/i)
is finite and is less than 1/i in distance from every x{~ %), there is a point y; € A(1/i)
and a subsequence {x{"}=, of {x{~1}=, such that o(y;, x¢’) < 1/i for every n.
Put z, = x!". Then {z,}7, is a subsequence of {x,}7. It suffices to prove that {z,}
is a Cauchy sequence. Let ¢ > 0. Choose an index i such that 1/i < ¢/2. Then

{z,}5= 1 is a subsequence of {x{"}°.,. Hence

m > i’n > i'-:"’Q(yi’zm) < ]/1, Q(yi’ zn) < 1/i=>Q(Zm,Z”) <e.

II. Let P be totally bounded. Let 6 > 0. Choose an arbitrary x, € P. If points x;
(1 £i = n) are chosen, choose a point x,,,€P, if it is possible, such that
o(x;, x;4+1) = 6. By 17.1.3 there is an index » such that x,, x,, ..., X, exist, while
there is no x,,,. The points x,,...,x, form a finite set 4(5) = P such that
olx, A(6)] < 6 for every x € P.

17.1.5. A point set Q embedded into the euclidean E,, is totally bounded if and only
if it is bounded.

Proof: 1. Totally bounded Q is bounded by 17.1.2.
II. Let Q be bounded. There exists a ¢ (=1, 2,3,...) such that Q = R where

R = E [leléca"',lxmléc]'

(X1,00e s Xn)
If 6 > 0 is given, choose an index k such that \/m/k < 6 and denote by A(S) the
set of all (x,, ..., x,,) with kx; = y; (1 < i < m), where v, are integers and | ;| <
< ck. Then A(9) is a finite set, A(6) = R and g[x, A(8)] < & for every x € R. Thus,
R is totally bounded by 17.1.4. Thus, Q is totally bounded by 17.1.1.

17.1.6. Every totally bounded point set Q embedded into the Hilbert space H is
nowhere dense in H.

Proof: Let Q not be nowhere dense. By 12.2.3 there is an open G = () suchthat
QN T 0 for every open I' such that ¢ + I = G. Choose an a = {a,}7 €G.
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There is a 6 > 0 such that Q(a, §) = G. Put b,, = a, for i & n, b,, = a, + /2,
b; = {bi}a=1- Then o(a, b;) = 6/2 so that Q(b;, 6/4) = Q(a, d) = G. Since the set
r; = Q(b;, 5/4) is open and 0 £ I'; = G, there is a point c;e Q A T;. For i £k
we have

;2

') )
5 = o(bi, by) < a(bi, ) + alci, c) + (e, by) < i o(ci, &) + T

hence,

o(c;, c) > \/f/;l 6>0 for ik

Thus, Q is not totally bounded by 17.1.3.

17.2. A compact space is a metric space such that every sequence of its points has
a convergent subsequence. This is evidently a topological property. As a point
set Q embedded into a metric space P is a metric space, we need not define the
notion of compact point set.

Many authors use the term compact for every point set embedded into a compact
(in our sense) space, and, for compact (in our sense) point sets, use the term
compact in itself.

17.2.1. A metric space P is compact if and only if it is complete and totally bounded.

Proof: 1. Every compact space is complete. Let P be a compact space embedded
into a metric space Q. Let x,e P, xe Q, x, - x. As P is compact, we may find
a subsequence {y,} of {x,} such that lim y, € P exists. By 7.1.2, we have lim y, = x.
Thus, x € P. Hence, by 8.3.1, P is a closed subset of Q. Thus, P is complete by 15.5.1.

II. Every compact space is totally bounded by 15.1.1.

III. Let P be a complete totally bounded space. If x, € P, {x,} has a Cauchy
subsequence. Any Cauchy sequence in P is convergent. Thus, P is compact.

17.2.2. A point set Q embedded into a compact space P is compact if and only if it
is closed in P.

Proof: 1. Let Q be compact. Q is closed in P by 15.2.1 and 17.2.1.

II. Let Q be closed in P. By 17.1.1 and 17.2.1 Q is totally bounded. By 15.2.2
and 17.2.1, Q is a complete space. Thus, Q is compact by 17.2.1.

17.2.3. A point set Q embedded into the euclidean E,, is compact if and only if it is
bounded and closed in E,,.

Proof: 1. Let Q be compact. Q is bounded by 17.1.5 and 17.2.1. Q is closed in E,,
by 15.5.1 and 17.2.1.
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II. Let Q be bounded and closed in E,,. Q is totally bounded by 17.1.5. Q is
a complete space by 15.1.3 and 15.2.2. Thus, Q is compact by 17.2.1.

17.2.4. The Urysohn space U is compact.

Proof: Let n=1,2,3,.... Denote by 4, the set of all the sequences {x;};%,
such that: for i>n, x; = 0; for 1 < i £ n, x; = y,/in, where 7, is an integer with
| y;]1 < n. We have 4, = U and 4, is a finite set.

o

If 6 > 0 is given, choose an n such that Y 1/i < 8%/2, Y. 1/i* < n*(6%/2).
i=1

i=n+1
Then we prove easily that go(x, 4,) < 6 for every x € U. Thus, U is totally bounded
by 17.1.4. It follows easily by 7.3.1 and 8.3.3 that U is a closed subset of H, so
that U is a complete space by 15.1.4 and 15.2.2. Thus, U is compact by 17.2.1.

17.2.5. A metric space P is separable if and only if there is a totally bounded space Q
homeomorphic with P.

Proof: 1. Let QO be totally bounded. Since every finite set is countable, Q is
separable by 16.1.6 and 17.1.4. Since separability is a topological property, the
space P homeomorphic with Q is also separable.

II. Let P be separable. By 16.5 there is a point set § = U homeomorphic with
P. Q is totally bounded by 17.1.1, 17.2.1 and 17.2.4.

17.2.6. Every compact space is separable.

This is an important corollary of theorem 17.2.5.

17.3. 17.3.1. Let P be a metric space. Let A = P, Bc P, A +() + B. Let A be
compact. Then there are points y € 4, z € 4 such that

e(y, B) = mi;l o(x, B) = o(4, B),

o(z, B) = max g(x, B) .

xed

If d(B) < oo, there are points u € 4, v € A such that

d(u, B) = min d(x, B) ,

xeA

d(v, B) = max d(x, B) = d(A, B) .

xXeAd

Proof: There exist sequences {y»} and {z,} such that

Yn€A, z,€ A, o(¥n> B) - inf@(xa B), Q(zn’ B) - sup o(x, B).
xeA

xeA
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As A is compact, there are subsequences {y,} of {,}, {2z} of {z,} and points y € 4,
ze A such that y, - y, z, - z, so that, by ex. 9.10, ¢(¥s, B) = ¢(», B), ¢(z,, B) -
— 0(z, B). By 7.1.2 we have lim g(y,, B) = lim ¢(y,, B), lim o(z,, B) = lim o(z,, B).
Hence, ¢(y, B) = inf ¢(x, B) = min g(x, B), o(z, B) = sup o(x, B) = max g(x, B).

xeAd xeA xed

The existence of the points # and v can be proved simllarl)’, using d(x, B) instead
of o(x, B) and ex. 9.11 instead of ex. 9.10.

17.3.2. Let P be a metric space. Let A< P, B< P, A+ + B. Let A and B be
compact. Then there are points y, € A, y, € B, z, € A, 2, € B such that

e(yy, ¥2) = min g(x,, x,) = e(4, B),

X1€EA
x2€B

o(zy, 2;) = max o(x,, x,) = d(4, B)..
x1ed
Xx2€B

Proof: By 17.3.1 (see also 17.1.2) there are points y, € 4, z; € A such that
Q(yl’ -B) = Q(A’ B) ’ d(zl’ B) = d(A’ B) .

By 17.3.1 there are points y, € B, z, € B such that o(yy, ¥;) = e(y,, B). o(z, z,) =
= d[Z, N (22)] = d(zl N B).

17.3.3. Let P bz a compact space. There exisi points y € P, z € P such that

o(y, 2) = max o(x,, x;) = d(P) .
x;:P

This is a particular case of theorem 17.3.2, as d(P) = d(P, P).

17.3.4. Let P be a metric space. Let Ac P, B P, A+ @3 +B, AnB=0.Let A
be compact and let B be closed in P. Then o(4, B) > 0.

Proof: Let, on the contrary, g(4, B) = 0. By 17.3.1 there is a point ye 4 such
that o(y, B) = 0 and hence ye B. This is a contradiction, since ye 4, B = B,
AnB=10.

17.4. 174.1. Let A = E, be a non-void bounded and closed set. Then there exist
numbers min A and max A.

Proof: Choose a number ¢ € E, such that 4 = E[x > ¢]. By 17.2.3 and 17.3.1

X
there exists a number ye 4 such that g(c, ¥) = min g(c, x). We have o(c, x) =
. xeA
=x—2¢ @(,y)=y—c Hence, y —c=min(x — c), and hence y = min x.
xeAd xeA
Similarly for the maximum.
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17.4.2. Let f be a continuous mapping of a compact space P onto a metric space Q.
Then Q is compact.

Proof: Let y,e Q (n =1, 2, 3, ...). There exist points x, € P such that f(x,) = y,.
Since P is compact, there are indices i; < i, < i3 < ... such that limx; = x

n
n—o

exists. Since f'is continuous, we have lim y; = f(x) € Q. Hence, {y,} has a convergent
n—xn

subsequence {y; }.

17.4.3. Let P be a compact space. Let f be a finite continuous function on P. The
set f(P) is bounded and closed. There exist numbers min f(A4) and max f(A).

Proof: f(P) is compact by 17.4.2. Hence, the statement follows from 17.2.3
and 174.1.

17.4.4. Let f be a continuous mapping of a compact space P into a metric space Q.
Then f is uniformly continuous.

Proof: Let x, € P, y, € P, o(x,, y,) = 0. We have to prove that o[ f(x,), /(3,)] = O.
Let us assume the contrary. Then there is a number 6 > 0 and indices i; < i, <
< iy < ... such that o[ f(x;), f(¥:;)] > & for every n. Since P is compact, there is
a subsequence {j,} of the sequence {i,} such that lim x;, = zeP exists. Since
0(x,, y») = 0, we also have lim y; = z. Since the mapping f is continuous, we
have lim f(x;,) = f(2), lim f(y;,) = f(2), hence (see ex. 9.12) lim o[ f(x;,), f(¥;)] = O,
which is a contradiction.

17.4.5. Let P be a compact space. Let f be a finite continuous function on P. Then f
is uniformly continuous.

This is a particular case of theorem 17.4.4.

17.4.6. Let f be a one-to-one continuous mapping of a compact space P onto a metric
space Q. Then the inverse mapping f_, is continuous, i.e. f is a homeomorphic

mapping.

Proof: 1f A is a closed set in P, it is compact by 17.2.2. Hence, the set f(A4) is
compact by 17.4.2. Thus, f(4) is closed in Q by 15.5.1 and 17.2.1. Thus, for every 4
closed in P, f(A) is closed in Q so that f_, is continuous by 9.2.

17.5. 17.5.1. Let P be a compact space. Let, for n =1,2,3,..., A, =P, A, %+ (,

[

Ay, > Aypy. Then ) A, + 0.

n=1

Proof: For n=1,2,3,... there is, by 17.1.4, a finite set K, = P such that
o(x, K,) < 1/n for every x € P. Thus, ) A4, + @ by 15.7.2 and 17.2.1.
n=1
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17.5.2. The statement of theorem 15.1.2 may be supplemented by the proposition that

@
N A, is compact.*)

n=1

Proof: Let a,,e ﬂ A; m=1,2,3,...). Then a,€ A,, so that, by the proof of
theorem 15.7.2, we may find a convergent subsequence {b,} of {a} Ifn>i+1

we have b, € A;,,, hence limb,e 4;,, = A;, hence lim b,,en A;. Hence, for
© i=1

every sequence {a,} in the space () 4; there is a subsequence {b,} which has
© i=1
a limit in () 4;.

i=1

17.5.3. Let a metric space P not be compact. Then there exist closed sets A, c P
2]

(n=1,2,3,..) such that A, + U, A, > A,s1, 4, = 0.
n=1

Proof: There is a sequence {x,},= of points of P which has no convergent sub-
sequence. By 8.3.3 we conclude easily that the sets A4, = U (x;) are closed.

Evidently A, + 0, A, o A,4+,, N A4, = (1.
n=1

17.5.4. A necessary and sufficient condition for a metric space P to be compact is
the following: For every system U of open sets such that \J X = P there is a finite

XeA
system Wy = A such that J X = P.

X eAo
Proof: 1. Let P be compact. By 16.2.2 and 17.2.6 there is a sequence {X,} such
that X, e, UX P Put 4, —P—UX We have A, = A,, A, > Ay, -

w n=1 i=1

We have n A, =P — U X, = 0, so that by 17.5.1 there exists an index n such

n= n n=1

that 4, = (/J, hence, |J X; = P.

i=1
II. Let P not be compact. By 17.5.3 there are closed sets A, = P such that
A, 0, 4, o A,,H, n A, = 0. Put G, =P — A,. Then the sets G, are open

and we have U G, —-P— N 4, =P, while, for m=1,2,3,..., UG,=

n= n=1

=P - nA —P A, * P.

n=1

*) We do not assume that the space is compact. Similarly as in 15.7.2, we assume the comple-
teness of P only.
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17.6. Let P be an arbitrary metric space. Let us denote by P* the system of all
compact subsets of P with the exception of the set (J. If 4 € P*, B e P*, there exist
(see 17.3.1) real numbers

u(A, B) = max g(x, B),

xeA
u(B, A) = max o(y, A4) .
yeB
Put
0*(A, B) = max [u(4, B), u(B, A)].

If A = B, evidently ¢*(4, B) = 0. If 4 & B, we have either 4 — B % {J, so that
u(4,B) > 0 (as B= B by 15.2.1 and 17.2.1) or B — A = (J so that u(B, A) > 0.
Thus, for 4 = B we always have ¢*(4, B) > 0. Obviously always ¢*(4, B) =
= 0*(B, A). If also C € P*, then by ex. 6.6 we have for xe A and y € B:

o(x, C) S o(x, p) + o(», C) £ o(x, ) + u(B,C),

hence
o(x, C) £ min o(x, y) + u(B, C) = o(x, B) + u(B,C) <
YeB
< u(A4, B) + u(B, C) < ¢*(4, B) + ¢*(B,C),
hence

u(A, C) £ 0*(A4, B) + 0*(B, C)
and similarly
u(C, A) = ¢*(4, B) + ¢*(B,C);
thus
0*(4, C) £ 0*(4, B) + 0*(8, ().

Thus, ¢* is a distance function in P*. The metric space (P*,o*) is called the
Hausdorff hyperspace of the space P.

17.6.1. If A,eP* n=1,2,3,...), A€ P*, then
u(4, A,) > 0 ifandonlyif A < Lim A4,.

Proof: 1. Let u(4, A,) = 0. Let ae A. We shall prove that ae Lim 4, .We have
o(a, A,) £ max o(x, A,) = u(A4, A,), hence g(a, A,) - 0. By 17.3.1 there is a point

xeA
a,e A, such that o(a, a,) = o(a, 4,). We have ¢(q, a,) - 0, hence a,— a. As
a,€ A,, we have ae Lim 4,.

II. Let A = Lim A,. We shall prove that u(4, 4,) — 0 .Let us assume the contrary.

Then there are a number § > 0 and indices i, <i, <iy<..suchthatu(4,4;) >4
for every n. There are points b,e A with o(b,, 4,) = max g(x, 4,) = u(A, 4,).

xed
Since A is compact, there is a subsequence {j,} of {i,} such that limb; =ae4

exists. Since 4 = Lim 4,, there are points a, € 4, such that a, » a. As b; — a,
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a, — a, we have ¢(b;,, a;,) = 0. Hence, there is an index m such that g(b;,,, a;,) < 8.
We have u(4, 4;,) = o(b;, , 4;.) = min g(b;,,, x) < o(b;,,,a;,) < 5. This is a con-

xeAjm

tradiction as u(4, 4; ) > §, since j, is a member of the sequence {i,}.

17.6.2. Let A,eP* (n = 1,2,3,...), Ae P*. Then always
u(4,, A)— 0 implies Lim A, < A
-and if P is compact, also
I.EA,, c A implies u(A,, A)— 0.

Proof: 1. Let u(4,, A) —» 0. Let aeﬁA"; we shall prove that ae A. Since

aeLim A4,, there exist indices i; < i, <i; <... and points a,e 4; such that
a,— a. We have Q(a,,, A) < max o(x, A) = u(4;,, A), hence ¢(a,, A) —» 0 so that,

st,

by ex. 9.10, o(a, A) = 0, i.e. ac 4. By 15.2.1 and 17.2.1, 4 = A.

II. Let P be compact and let Lim 4, = 4. We shall prove that u(4,, A) - 0.
Let us assume the contrary. Then there are a number § > 0 and indices i; < i, <
< iy < ... such that u(4; , A) > & for every n. There exist points a,€ A4, such
that ¢(a,, A) = max o(x, A) = u(4,, 4). Since P is compact, there is a subsequence

xX€An

{j.} of {i,} such that lima;, = a exists. Since a;, € 4;,, Lim 4, = A, we have
.a€ A and hence g(a, A) = 0, so that, by ex. 9.10, Q(ah A) - 0 ie. u(4;,, A) > 0.
This is a contradiction, since {j,} is a subsequence of {i,} and u(4; ,4) > >0
for every n.

17.6.3. Let A,e P* (n = 1,2,3,...) Ae P*. If the space P is compact, then A, - A
(with respect to the distance function o*) if and only if Lim A, = A (in the sense
of section 8.8). If P is an arbitrary metric space, then A,— A if and only if:

[1] Lim A, = A, [2] the set A v U A4, is compact.
n=1

Proof: 1. Let A, - A. Then ¢*(4,, A) - 0, hence on the one hand u(4, 4,) — 0,
so that, by 17.6.1, A < Lim A4,,, on the other hand u(4,, A) - 0, so that, by 17.6.2,

Lim A, = A. Since always Lim A4, cmA,,, Lim 4, = 4.

II. Let A, > A. Let x,e Au U 4;. If x,e A for infinitely many indices n,

i=1
or if there exists an index i such that x, e 4; for mﬁmtely many indices n, then there

is a subsequence of {x,}, which has a llmlt in Au U A;, as the sets A and 4;
i=1

are compact. If none of the cases occur, there are indices i{; < i, < i3 < ... such
that there exists a subsequence {y,} of {x,} with y,e 4; for every n. We have
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(V> A) £ max o(x, A) = u(4,,, A) < 0*(4;,, A). Since A, - A, we have o(V», 4) >

xed;
— 0. By 17.3.1 there exist points z,e A such that o(y,, z,) = o(¥,, A), hence
(¥, 2,) = 0. Since A is compact, there are indices n, < n, < n; < ... and a point
a e A such that lim z,, = a. Since ¢(y,, z,) = 0, we have hm y,,,‘ =a. Hence there

k— o
is a subsequence {Vmtiz1 of {x,}, which has a limit in A cAvu U A;. Thus,
=1
the set 4 U U A; is compact.

III. Let Lim 4, = A and let either P or 4 U |J 4; be compact. By 17.6.1,
i=1

u(A, A,) — 0. In the proof of theorem 17.6.2 we used the assumption of compact P

only in the assertion that a sequence {a,} with a, € 4, has a convergent subsequence;

this, however, follows from the assumption that 4 u J
n=1

u(A,, A) — 0. Since u(4,A4,)— 0, u(4,, A) =0, we have o*(4,, A)—>0, ie.
A,— A

A, is compact. Hence,

17.6.4. Let metric spaces P and Q be homeomorphic. Then their Hausdorff hyper-
spaces P* and Q* are homeomorphic. More precisely: Let f be a homeomorphic
mapping of the space P onto the space Q. For X € P* put ¢(X) = f(X), then ¢ is
a homeomorphic mapping of P* onto Q*.

This is a corollary of theorem 17.6.3 (see also ex. 9.21 and theorem 17.4.2).

17.6.5. If P is a complete space, then P* is also a complete space.

Proof: Let {A }2-1 be a Cauchy sequence with respect to the distance function o*.

Put B, = U A;. Then B, +0, B, > B,,,, B, = B,. Choose an index m and

a number 6 > 0. Since the sets 4; are compact, there is, by 17.1.4, for every i
a finite set K; such that xe A4, implies o(x, K;) < 14. Since {4,} is a Cauchy
sequence, there is an index p > m such that for n > p we have u(4,, 4,) < 1.
If xe A,, n > p, we have o(x, 4,) < u(4,, A ) < 40, hence there is a point ye 4,

with o(x, y) < 14. We obtam easily that o(x, U K;) £ 6 for every x € B,,. Hence,
by 15.7.2 the set 4 = n B, is non-void. By 17 5.2 A is compact. Hence, A4 € P*.

n=1
Choose an ¢ > 0. Since {4,} is a Cauchy sequence, there is an index g such that

for i > g, j > q we have u(4;, A)) < }e.

Choose an n > q. If xe 4, we have xe B, = |J 4; so that there is a point
x"€ U 4; such that g(x, x') < {e. There exists an index { = n > g with x" e 4;.

We have o(x', 4,) < u(4,, 4,) <1s, so that, by ex. 6.6, o(x, 4,) < o(x, X) +
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+ g(x', A,) < &. Thus, for n > ¢ and xe A4 we have g(x, 4,) < ¢ so that, for
n>gq, u(d,A,) < ¢ ie u(4, A)) —» 0. Choose again an n > q. If xe A4, then,
for every i = n, o(x, 4;) < u(4,, A;) < 1e, so that for every i = n there is a point

€ A; = B; with g(x, y;) < 4¢. By the assertion expressed (and then proved) at
the beginning of the proof of theorem 15.7.2 we may choose a subsequence of {y;},
which has a limit ze€ 4. As go(x, ;) < ¢, we have, by ex. 9.12, o(x, z) < ¢, hence
o(x, A) < €. Thus, n > g, xe A, imply o(x, A) < ¢, so that for n > g we have
u(A,, A) < ¢, ie. u(4,, A) - 0. Since also u(4, A,) = 0, we have p*(4,, A) —» 0,
i.e. 4, > A, so that the sequence {4,} is convergent (with respect to the distance
function ¢*).

17.6.6. If P is a totally bounded space, then P* is also totally bounded.

Proof: Choose a number 6 > 0. By 17.1.4 there is a finite set K = P such that
o(x, K) < 6 for every x € P. Denote by R the system of all the subsets of K, with
the exception of the set (J. Evidently R is a finite subset of P*. Choose an A4 € P*.
Put B = E[xeK o(x, A) < 8]. We may prove easily that B € & and that p*(4, B) < 4.

Hence, the space P* is totally bounded by 17.1.4.

17.6.7. If P is a separable space, then P* is also separable.
This is a corollary of theorems 17.2.5, 17.6.4 and 17.6.6.

17.6.8. If P is a compact space, then P* is also compact.

This is a corollary of theorems 17.2.1, 17.6.5 and 17.6.6.

17.7. Let K + O be a given compact space. Let P be a given metric space. Let us
denote by P the set of all continuous mappings f of K into P.

If fePX, gePX, put o(x) = o[f(x), g(x)] for xe K. By ex.9.12 we deduce
easily that ¢ is a finite continuous function on K. By 17.4.3 there exists a number
max ¢ [f(x), g(x)]; denote this number by ¢*(f, g). If f = g, evidently ¢*(f; g) = 0;
if f + g, evidently o*(f;, g) > 0. Obviously we always have ¢*(f, g) = 0¥ (g, /). If
also he PX, then, for every xe K, olf(x), A(x)] £ olf(x), g(x)] + elg(), h(x)] <
< 0% (f,8) + 0%(g, k), hence o*(f; h) < 0¥ (f, 8) + o (g, h). Hence, ¢ is a distance
function in PX. Whenever we speak about PX, we shall mean the metric space
(PX, 0%). The following three theorems are evident:

17.7.1. If K consists of a single point, then the spaces P and PX are isometric.

17.7.2. If compact spaces K + V) and L are homeomorphic, then the spaces PX and P*
are isometric.

17.7.3. If spaces P and Q are isometric, then the spaces PX and QX are isometric.
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17.7.4. If spaces P and Q are homeomorphic, then the spaces P* and Q* are homeo-
morphic.

Proof: Let ¢ be a homeomorphic mapping of P onto Q. Let us associate, with
every fe PX, a mapping ¢(f) of K into Q as follows: the image of a point xe K
under the mapping &(f) is the point ¢[f(x)]. We see easily that @ is a one-to-one
mapping of PX onto QX. We have to prove that both the mappings ¢ and &_,
are continuous. Thus, let f, € PX, fe PX; we have to prove that

f, — £ if and only if &(f,) > &(f).

Denote by H, and H,, respectively, the Hausdorff hyperspaces of Kx P and Kx Q.
For x € K, y € P put y(x, y) = [x, (»)]. It is easy to see that i is a homeomorphic
mapping of Kx P onto Kx Q. For Ze H, put ¥(Z) = Y(Z). By 17.6.4, ¥ is a homeo-
morphic mapping of H, onto H,.
Put
F,= ExeK y=f®], F=E ek y=/0),
(x,y) (x,)
G, = E){xeK, z=olf®)}, G = E){xeK, z = o[f(N]}.

(x,y x,z
We can prove easily (see 17.4.2) that F,e H,, Fe H,G,€ H,, Ge H,, and that
Y(F,) = G,,?Y(F) = G. Since ¥ is a homeomorphic mapping, we have F, —» F
if and only if G, —» G. We shall prove that f, — f if and only if F, — F. Similarly
we may prove that &(f,) = &(f) if and only if G, — G, hence, we prove in fact
that £, — fif and only if @(f;) - &(f).

First, let f, — fin P, Choose an ¢ > 0. There is an index p such that, for n > Ds
o*(f,,f) < &, hence g[f,(x), f(x)] < ¢ for every x e K. If x €K, we have [x, f,(x)] €
€ F, and [x, f(x)] € F, and the distance of the points [x, f,(x)], [x, f(x)] in the space
Kx P is equal to g[f(x), f(x)]. Hence, for n > p: z€ F, implies ¢(z, F) < ¢, ze F
implies ¢(z, F,) < &, so that for n > p the distance of F, from Fin H, is less than &.
Thus, F,—» Fin H,.

Secondly, let F, - Fin H,. Choose an ¢ > 0. By 9.6.1 and 17.4.4 thereisa é > 0
such that

xekK, yekK, o(x,y)<d imply o[f(x),f(M] < ¢/2.

We may suppose that 6 < &/4. There exists an index p such that for n > p the dis-
tance of F, from F in P® is less than 6. Let » > p, xe K. Then [x, f,(x)] € F,, so
that there is a point [y, f(¥)] € F (hence, y € K) such that

o{lx, X)), I SO} = J{leCx, M1 + ol i), SDI*} < & < £/4, M
so that o(x, ) < 8, hence g[f(x), f(»)] < ¢/2 and hence

o{lx, S, 1 SO S VoG, DI + (), fOR) <
< VI8 + (/2] < JIe/4)? + (5/2)%] < 3e/d. @
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By (1) and (2) We obtain
e, fO] < ¢4, elf(x), /()] < 3¢/4

and hence o[f,(%), f(x)] < &. Thus, for n > p we have ¢*(f,,f) < & so that f, - f
in PX,

17.7.5. If K #+ 0 is a compact space and if P is a complete space, then PX is a complete
space.

Proof: Let {f,} be a Cauchy sequence in PX. For every & > O there is an index
p(e) such that for m > p(e), n > p(e) we have max g[f,.(x), f,(x)] < &. Consequently,
for every x € K, {/,(x)} is a Cauchy sequence in P. As the space P is complete, we
obtain, for every x € K, a point f(x) € P such that f,(x) - f(x). Thus, f is a mapping
of K into P. For every ¢ > 0

xeK, “m>p(e), n>pe) imply o[f(x),/i(¥)] <e,

hence, by ex. 9.12
xeK, m>p(e) imply o[f (%), f(X)] = ¢.

Choose an index m > p(e/3). By 9.6.1 and 17.4.4, there is a 6 > 0 such that

xeK, yeK, o(x,y)<d imply o[fnu(x),/u(1)] < ¢f3.
Let xe K, ye K, o(x,y) < 6. Then

elf(x), f)] £ olf (%), £u¥)] + elfn(x), [u(P)] +
+ olfu0) M) < /3 + ¢3 + g3 =s.

Hence, the mapping f is continuous, so that fe PX. Moreover, n > p(¢) implies
e*(f,f) £ & hence f, - f, ie. the sequence {f;} is convergent in PX,

17.7.6. If K =% () is a compact space and if P is a separable space, then PX is a separable
space.

Proof: By 16.1.3 there is a countable set 4 dense in P, Choose a 6 > 0. For n =
=1,2,3,... denote by &, the set of all fe P such that

xeK, yeK, oy <l/n imply o[f(x),f(M] < 9.

By 9.6.1 and 17.4.4, U &, = PX. By 17.1.4, for every n there is a finite sequence
n=1

{e;}i= (the points ¢; and the number m depend on n) of points of K such that for

every x € K there is an index i such that g(x, ¢;) < 1/n. Let us denote by U, the set

of all the sequences {a;};~, with a;€ A. By ex. 3.14, the set 2, is countable. Let us
associate with every {a;}iL, e U, exactly one mapping fe ®b,, where, if it is possible,
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this £ is chosen in such a way that g[f(c)), @] < $6 for 1 <i < m. Let ¥, be the set
of all the mappings associated with the sequences {a;}{- € ?,. The set ¥, is countable-
by 3.4.1, hence, by 3.6, the set ¥ = Ul'I’,, is also countable.

Now, let fe PX be arbitrary. There is an index n such that fe &,. Since 4 is dense-
in P, there is a sequence {@;}7-, such that o[f(c),a] < %6 for 1 £ i< m. Let
ge ¥, be the mapping which is associated with the sequence {a;}/~,. For 1 <
< i < m we have g[g(cy), a;]] < }J, hence ¢[f(c)), g(c)] < 19. If x is an arbitrary
point of the space K, there is an index i with o(x, ¢;) < 1/n. Since fe &,,ge ¥, = &,
we have o[f(x), f(c)] < 19, elg(x), g(c)] < 10, hence o[f(x), g(x)] = e [f(x), f(c))] +
+ e[f(c), g(c)] + elg(x), glc)] < 85 thus, ¢*(f,g) < 6. Hence, for every fe P¥
there is a g € ¥ with ¢*(f, g) < 6. Since ¥ is countable, P¥ is separable by 16.1.6.

If P is compact, PX need not be compact (see ex. 17.17).

17.8. Let K be a compact point set embedded into the space E,. Let us assume that K
contains at least two distinct points. By 17.2.3 and 17.4.1 there exist points
a=minkK, b =max K.
We have a < b. Put J = E[a <t £ b). Evidently K = J; we may have K = J.
A contiguous interval of ‘the set K is any interval S = E[u <t <v] (ueE,,
'

veE,,u<v)suchthat [1] SN K=, 2]l uek, ve K.

17.8.1. J — K is a disjoint union of all the contiguous intervals of the set K.

Proof: 1. Let § = E[u <t < v] be a contiguous interval. Evidently a S u <
>v§b.hence,S<:.;. As SN K=(, wehave Sc J - K.

II. Let S; = E[u; <t <v,], S, = E[u, <t <v,] be two contiguous intervals.
Let ce S, n Sz.'Since S nK=4(, vlte K, we have v, = min K n E[t > ¢]. Since
S, n K =0, v, e K, we have v, = min K n 1‘3[1 > c]. Hence, v, = v; and similarly

we may prove that u; = u,. Thus, S; = S,. Hence, the system of contiguous
intervals is disjoint.
III. Let ceJ — K. The sets K'=KnE[t=c] and K" = Kn E[t £ ¢] are
t t
compact (see 17.2.3). We have be K’, ae K", hence K’ + (J = K". By 17.4.1 there

exist v = min K’, 4 = max K”. We have u < ¢ < v. Since ce J — K, ueK, veKk,
we have u < ¢ < v,i.e. ce S = E[u < t < v]. Obviously S is a contiguous interval,
t

17.8.2. Systems of contiguous intervals are countable.
This follows by 16.1.5, 16.2.1 and 17.8.1.
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17.83.Letac E,,be E,,a < b. Let M be a disjoint (possibly void) system of intervals
of the form E[u < t < v], where a £ u < » £ b. Then there is exactly one compact
. .

set K < E, witha = min K, b = max K, such that M is the system of all its contiguous
intervals.

Proof: Put J = E[a <t<bl, M= U X. Evidently M < J. If the required
XeM

set exists, it must be identical with J — M by 17.8.1. Thus, put K = J — M. The
set M is (see 8.5.3) open in E,, so that K is closed in E; and bounded, and hence
compact. Obviously a = min K, b = max K. It remains to be shown that M is
the system of all contiguous intervals of K.

Let S = E[u<t<v]leM. We have S ¢ M, hence S n K = ¢J. If there were

t
a v e M, there would be an interval S; e M, ve S;. We see easily that S; N S =+ (J,
S #+ S,, which is a contradiction. Thus, ve K, and similarly u € K. Hence, every
S e M is a contiguous interval. Since, by 17.8.1, M is the disjoint union of all conti-
guous intervals, we deduce easily that every contiguous interval is in 9.

For a moment, let us denote by M, the set of all the sequences {j,},= such that
their terms are 0, 1 or 2, and by M, the set of all {i,},~, such that their terms are

either 0 or 2. It is well-known that: [1] if {j,} € M;, then Zj,,/3" € J, where J =
= E[O St=21;2]ifted, t 0, t &1, and if there is an index m such that
t. 3"' is an integer, then there are exactly two sequences {j,} € M; with Z Juf3 =t

(if we find the least possible m, then exactly one from the twe numbers Jm 15 equal
to 1, and for n > m there is always in one sequence a j, = 0 and in the other always
a j, = 2); [3] if t € J and if no number ¢.3" is an integer, then there is exactly one

sequence {j,} € M, with i Ja/3" =t (and there is infinitely many n such that
Ja*0 and infinitely many :1=sluch that j, % 2). Denote by D the set of all the numbers
i i,/3" with {i,} € M,. The set D is called the (Cantor) discontinuum. Put

" S = ]'3[1/3 <t<2/3; (0))
if n=1,2,3,... and if every one of the indices i,, i,, ..., i, has either the value 0
or the value 2, put

- ) l - ik 2
St =E + <t< — + . 2
hiz...i [k=l 3k 3n+1 k;I 3k g+l ] ( )

Denote by 9 the system consisting of the interval (1) and all the intervals (2). We
see easily (see 17.8.3) that the set D is compact, min D = 0, max D = 1, and that M
is the system of all the contiguous intervals of the set D. Put

Hy=El0=sts3], H,=Eis:ts1];
t t
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if n=2,3,4,... and if every one of the indices i,, i,, ..., i, has either the value 0
or the value 2, put

n i n—1 i i + l]
Hyi,.i,=E —~ <1< SR
e [k;l 3* L 3k

IIA

k=1 3"
Then we have
J - S = Ho v H2

with disjoint summands on the right-hand side, and, for n == 1,2, 3, ...

J - (SU U Si] v - Siliz V... U Siu'z...i,.) = U Hl']iz...i,.i,.+|9
hence

D = 01 U Hiniz...i,.'

For every xe D there is exactly one sequence {i,} € M, such that x = i,/3".
=1

n

We see easily that then

™Ms

X =

i
”31,, = ﬂ Hiu'z..‘i,.'

n=1
17.84. Let P + (J be a compact space. Then there exists a continuous mapping f of
the discontinuum D onto P.

Proof: 1. Choose a 6 > 0. By 17.1.4 there exists a finite number of points a, € P
(1 £ k £ m) such that

m

P = U QAa,, 9).
k=1

Choose a h = 1,2,3,... with m < 2" (the number # may be chosen greater than
a prescribed number) and put a;, = a, for m + 1 £ k < 2" Then

2h

P =\ Qa, 9).
k=1

The points a; (1 £ k < 2") may be denoted by b, ;, _;, Where each one of the indices
iy, 105, ..., I, has either the value O or the value 2. Put
Qb 8) =P,

igiz ... ip 1iznin

Then
P=UPy,. i APy, ..i) < 26

and the sets P;;, ; are non-void and compact (see 17.2.2).

11'1’..

II. Let us carry out the construction just described with the given space P and
& = 1/2%. Let us denote the number / by /&,. Now, let us carry out the construction
again with any one from the 2" spaces P,,..:;, and 6 = 1/2%; we may assume that
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the number 4 has in all 2" cases the same value, which we denote by h, — h,.
For every P, , We obtain 2" 7" spaces Pii,..i,,- With any P; ,andd = 124
we again carry out the construction, choosing always the same value h; — 5, for A.
Proceeding this way we obtain natural numbers 4, < h, < h; < ... and compact
sets Piu‘z...ih" (every index has the value O or 2) such that

1z i 12 iy

d(Pi,iz...i,,’_) < 12, )
P = U Piniz...ihl’ @
Pixiz...l'hn = U Piliz...ih"‘l (3)

where, on the right-hand sides, the summation indices are iy, 41, ih,+25--+s ipnyy-

For every point 7€ D there is exactly one sequence {i,} € M, with t =} i,/3"
The set ° n=1
0 P, @
consists, by (1) and (3), of exactly one point (see 15.7.1, 17.2.1 and 17.2.2), which
we denote by f(¢). In this way we obtain a mapping f of D into P.
For every x € P there is, by (2) and (3), at least one sequence {i,} € M, such that x
belongs to the set (4). Thus, fis a mapping of D onto P.

o0
Choose a point 1o = Y. i{”/3"€ D; hence {i{”’} e M,. Let &> 0. Determine
n=1

an m with 27" < &. We may prove easily that [1] to € Hj ;.. @, [2]if (iy, 15, ...
oo ) G0, 1, L, 152) then o(t, H, ) = 1/3"" Hence, forte D, |t — 1| <

ti2dp I

< 1/3" we have 1€ H; @iy@..i, ; hence, forteD, |t —t,] < 13"t =Y i,/3",

n=1
{i.} € M, we have f(f) € Pi,,0..i,_«, hence o[f(1), J(1)] £ d(Py iy, o) <
< 2™™ < ¢. Thus, the mapping f is continuous.

17.9. We say that P is a locally compact space, if P is a metric space and if for every
x € P there is a neighborhood U such that its closure U is compact. Local compact-
ness is obviously a topological property.

17.9.1. A metric space is separable and locally compact if and only if it is homeomorphic
with an open subset of a compact space.

Proof: 1. Let G be an open subset of a compact space Q. Let P be homeomorphic
with G. We have to prove that P is separable and locally compact. Since both pro-
perties are topological ones, it suffices to deduce this for G (instead of P). G is sepa-
rable by 16.1.2 and 17.2.6. Let x e G. Then G is a neighborhood of the point x
(in the space Q), so that, by 10.1.2, there is a neighborhood U of x such that
U < G. The set U is compact by 17.2.2. Since U =« G, we have U= G U, U =
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= Gn U, i.e., U is a neighborhood of xin G and U is the closure of U in G. Thus.
G is locally compact.

1I. Let P be separable and locally compact. Since P is separable, there is, by 16.5.
a subset G of the Urysohn space U homeomorphic with P and hence locally compact.
The closure G of the set G in U is compact by 17.2.2 and 17.2.4. It remains to show
that the set G is open in G, hence, that G — G is closed in G. Let us assume the
contrary. Then (see 8.3.3) there is a sequence {x,} with x, € G — G such that lim x, =
= x € G exists and does not belong to G — G, so that x e G. Since G is locally
compact, there is a set ¥ open in G, containing the point x and such that its closure
in G, V,, is compact. By 8.7.1, ¥, = G n ¥, where (similarly as in the following)
the bar denotes the closure in U. By 8.7.5, V = G n W, where W is open in U.
We have G=(Gn VUG-V =(GnV)U(G—-W)c(GAnV)uU - W).
ie.,
GcVyu(U - W) )

The set V, is closed in U by 17.2.2. The set U — W is also closed in U as W is
open in U. Hence, the set on the right-hand side in (1) is closed in U, so that (see 8.4)
GcVou(U — W), hence Gn W < Vy < G. Since x, > xe W and since W is
open in U, there is an index p such that for n = p we have x, e W, ie. x,€ G n W,
hence x, € G. This is a contradiction.

17.9.2. A metric space P is separable and locally comract if and only if there is a compact
space Q and a point a € Q such that the set Q — (a) is homecmorphic with P.

Proof: 1. Let Q te a ccmpact space. Let ae Q. Let Q — (@) te hcmeomorghic
with P. The set Q — (a) is cren in Q. Thus, P is serarable and-lccally compact
by 17.9.1.

II. Let P be separable and Iccally ccmpact. By 17.9.1 there exists a compact space
K = (K, ¢) and an open G = K hcmeomorphic with P. Denote by Q the set con-
sisting of all points of the set G and one new element, which will be denoted by «.
Let us distinguish two cases:

IIa. Let P be compact so that G is also ccmpact. By 17.1.2, d(G) < . Let us
define a finite function g, on Q% Q as follows: for xe G, ye G put gq(x,y) =
= o(x,y), for x e G put g¢(a, x) = g¢(x,a) = 1 + d(G), finally, put gy(a, a) = 0.
We see easily that g, is a distance function in Q and that the space (Q, o) is compact.
Since the partial distance functions in G determined on the one hand by the distance
function ¢ on K © G, on the other hand by the distance function ¢, in Q o G
coincide, P is homeomorphic (moreover, identical) with the set Q — (a) embedded
into Q.

I1B. Let P not te compact, so that G is not compact either. By 17.2.2. G + G
so that K — G = (); since G is open in K, K — G is closed in K and hence compact
by 17.2.2.
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Let us define a finite function g, on Q x Q as follows: for xe G, y € G put
Qo(x, y) = min [o(x, y), o(x, K — G) + ¢(y, K — G)], )

for xe G put go(x, a) = go(a, x) = o(x, K — G); finally, put gy(a, @) = 0. For
x€Q, yeQ, evidently go(x,y) = ¢o(y, x). Further, go(x,y) =0 if x =y _and
9o(x,y) > 0if x & y, since o(x, K — G) > 0 for xe G and since K - G =K — G.

Let us define a finite function ¢, on K x K as follows: for x € G, y € G put ¢,(x, ») =
= o(x,y); for xe @G, yeK— G put 9,(x,») = ¢,(y, x) = o(x, K — G); for xe
eK—G,ye K— G put g,(x,y) =0. For xe Q, ye Q we define, for the moment,
a chain from x to y to be every finite sequence {u;};=, such that: [1] 4;e K for 1 <
<igm [QQu=xif xeGand u,e K- Gif x=a, [3] u, =y if yeG and
u, € K — G if y = a. The number

m—1
Y, 0, tiny) (equal to 0 for m = 1)
i=1

is called the length of the chain {u;}/*,. We may prove easily that for xe Q, y€ Q0
there are chains from x to y and that the number g,(x; ) is the least length of such
chains.

Let xe O, ye Q, z€ Q. There is a chain {&;}]=, from x to y with length go(x, »).
There is a chain {4}/, from y to z with length @o(p, 2). Then {u;}7-}" is a chain
from x to z with length on the one hand greater than or equal to g(x, z), on the
other hand equal to go(x, ») + 0o(», 2). Thus, go(x, ¥) + 0o(¥, 2) = @o(x, 2).

This proves that g, is a distance function in Q. Let us prove that the space (Q, ¢,)
is compact. Thus, let {x,} be a point sequence in Q. We have to prove that there
is a subsequence of {x,} convergent with respect to the distance function g,. This
is evident if x, = a for infinitely many indices #. In the contrary case we may find
a subsequence {x,}{ of {x,} such that x, e G for every n. It may occur that there is
a number & > 0 such that, for infinitely many indices n, < n, < n3 < ..., o(xn,,
K — G) = ¢. Then we have for every i

x, €K — QK- G,e) = L.

The set Qx(K — G, ¢) is open in K. Hence, L is closed in K. Hence, by 17.2.2 L is
a compact space (with respect to the partial distance function determined in L
by the distance function ¢ of the space K). Thus, there is a subsequence {y,}7" of
{xn}i=1 such that there is a point y € L with ¢(y,, y) = 0. As ¢o(¥s, ») £ ¢(¥s» ¥),
we also have go(y,, ¥) — 0, i.e. the sequence {y,} is convergent with respect to the
distance function g,. There remains the case where for every & > 0 there is an
index p such that for n = p we always have ¢(x,, K — G) < ¢. Then gy(x,, a) =
= g(x,, K — G) = 0; hence, x, — a with respect to the distance function g,.

It remains to be shown that both the partial distance functions determined in G,
on the one hand by the distance function ¢ in K > G and on the other hand by the
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distance function ¢, in Q o G, are equivalent, i.e. that, for x, € G, x € G we have
o(x,, x) > 0 ifand only if g4(x,,x) = 0.

First, if g(x,, x) - 0, we have gy(x,, x) = 0, since go(x,, x) < o(x,, x). Let, secondly,
0o(x,,x) > 0. As xeGand K— G = K =G, we have o(x, K — G) > 0, so that
there is an index p such that, for n 2 p, g¢(x,, X) < ¢(x, K — G) = ¢(»,, K — G) +
+ o(x, K — G). By (1), for n = p we have go(x,, X) = o(x,, X), so that g(x,, x) - 0.

17.10. 16.1.5 and 17.2.3 yield:

17.10.1. The euclidean space E,, (m = 1,2, 3, ...) is separable and locally compact:
however, it is not compact.

By 17.9.2 there is a compact space Q and a point a € Q such that E,, is homeo-
morphic with O — (a). We are going to construct such a space by means of the
elementary calculus.

The set of all points x = (xg, x,, ..., X,) of the euclidean space E,., with
Z x? = 1 will be called the m-dimensional spherical space (m = 0, 1,2, 3, ...) and
i=0

denoted by S,,. The distance function in S,, is certainly the partial distance function
of the usual one in E,,, ;. The space S, consists of exactly two points, while the spaces
S, (m=1,2,3,...) are infinite.

9.5 and 17.2.3 yield:

17.10.2. The spherical space S,, (m = 0, 1, 2, ...) is compact.

17.10.3. Let a€S,,, beS, (n =0,1,2,...). There exists an isometrical mapping f
of S,, onto S, such that f(a) = b.

Proof: 1. We shall prove that, for —1 < i £ m — 1 there is an isometrical mapping
f; of S, onto S, such that if fi(@) = ¢; = (Cigs Ci1s --+» Cim), then, for 0 < j < i,

c;; = 0. This statement is trivial for i = —1. Let it hold for some i (-1 i £
< m — 2). It suffices to prove that then it also holds for i + 1. This is evident if
¢ i1+1 = 0. In the contrary case put, for (xo, Xy, ..., Xn) €S, ¢ @(Xg, Xy, .... 0 Np) =

= (x0, X1, ..., Xm), Where
Ci,i+2Xi+1 T Cpi+v1Xi+2
JEiir + ckiva)
¢ TG i+t Xie1 T CivaXit2
\/(ci2,i+l + Ci2,i+2)

Xita =
Xj=x;, O0=Zj=m, i+1%j+i+2.

’ —_—
Xi+1 = >

b
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If we DUt cyy = (Cipq 00 Cittrrs-res Citt,m)s WHEI® Ciyy yuq =0, Ciyq,iv2 =
= J@iri +ciis) cuyqy=cyfor 0= 7S m i+ 1%j+i+2, we see easily
that ¢;+1 €S, that ¢;,, ; = 0 for 0 £ j < i + 1, that ¢ is an isometrical mapping
of S,, onto S, and that ¢(c;+1) = ¢;. The required isometrical mapping f;,, will
be evidently obtained putting fi4,(x) = @ [f(x)] for x€S,,.

II. By I (where we put i = m — 1) there is an isometrical mapping f’ of S,, onto
S,, with either f"(a@) = (0,...,0,1) or f'@ = (,...,0, —1). Since there is an iso-

strical mapping A of S,, onto S,, such that 4(0,...,0, —1) = (O, ..., 0, 1) [it suf-
fices to put A(xg, X;,...» Xm) = (—Xg, —=X{,..., —X,,)], we may assume that
f'@) = (0,...,0,1). Similarly, there is an isometrical mapping f” of S,, onto S,
such that f"(b) = (0, ..., 0, 1). Putting f(x) = fZ ,[f'(x)] we obtain an isometrical
mapping f such that f(a) = b.

17.104. Let ae€ S, (m = 1,2, 3, ...). The spaces E,, and S,, — (a) are homeomorphic.

Proof: By 17.10.3 we may assume that a = (1,0, ..., 0). For (xg, X;, ..., X)) €
€S, — (a) put f(xg, Xys o0y Xp) = (P1s V25 --+» V) Where

Xi

Tox o (Isism). 1)

Yi=

We calculate easily that equations (1) are equivalent to the equations

Z.Viz"l 2

we S -, asiEm. O
Y yi+1 L+l
i=1 i=1

It follows easily that f is a one-to-one mapping of S,, — (a) onto E,, and that both
the mappings f and f_, are continuous.

Exercises

17.1. 1f P and Q are totally bounded spaces, then P X Q is a totally bounded space.

17.2.* If P and Q are compact spaces, then P X Q is compact.

17.3. Ifsets A < P and B < P are totally bounded, then 4 U B is totally bounded.

174.* If A = P and B < P are compact sets, then 4 U B is compact.

17.5. Let A < P. The closure A4 is compact if and only if every point sequence {x,,} in A4 has a con-
vergent subsequence (in P; the limit need not belong to A).

17.6. Let P be a compact space. Let A, < P, A, @ A4,;. Let G be a neighborhood of the set

oC

() A4,. Then there is an index m such that 4, < G for every n > m.
n=1
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17.7. Let Q be the completion of a metric space P. P is totally bounded if and only if Q is compact.

[ o)
A metric space is said to be o-compact, if P = U A,, where every summand is compact.
n=1

17.8. Let P be a o-compact space. A point set 4 < P is o-compact if and only if it is F (P).

17.9. An isolated metric space is compact if and only if it is finite.

17.10. Let A < E,, B< E, . Let 4 + 0 + B. Let A be closed and B bourded. Then there exists
a point y € A such that

o(y, B) = min g(x, B) = o(4, B).
xeA

17.11. Let A < E,, B< E,_.Let 4 + 0 + B. Let A and B be closed; let 4 be bounded. Then there
exist points y, € 4, y, € B such that

o(yy, ¥3) = min o(x,, x;) = o(4, B).
x1€d
x2eB

17.12. Let f be a continuous mapping of a metric space P into a metric space Q. Let A < P be
compact. Let € > 0. Then there is a > 0 such that

x€A, yeP, olx,) <d = olf(x), /) <e

In the exercises 17.13—17.16, P* is the HausdorfT hyperspace of P.

17.13. If P is not complete, then P* is not complete.

17.14. If P is not totally bounded, then P* is not totally bounded.

17.15. If P is not separable, then P* is not separable.

17.16. If P is not compact, then P* is not compact.

17.17. If P = K = E[0 = ¢ = 1] and if f,(t) = t", then there is no subsequence of {f;,} convergent

t
in PX. Thus, PX is not compact, while X and P are compact.

17.18. Deduce theorem 17.6.7 directly, without use of theorems 17.2.5, 17.6.4 and 17.6.6.

17.19. Deduce theorem 16.7 from theorems 16.5, 17.2.4 and 17.6.8.

17.20.* Every open subset of a locally compact space is a locally compact space.

17.21. A locally compact space is o-compact if and only if it is separable.

17.22. Let the assumptions and notation of 17.9.2 be preserved. Let f be a homeomorphic mapping
of P onto Q — (a). Let {x,} be a point sequence in P. We have f(x,) —a if and only if there
is no convergent subsequence of {.\',,}.

17.23.* R (see 9.4) is a compact space.

17.24. LetacE;,beE;,a< b P=Ela=t =] Ifc >0, x> 0, denote by ¥(«, c) the system

t

of all the finite functions f on P such that
xeP, yebP imply if(xX)—fO)I=clx—yi%
If « > 0, put P(a) = U ¥(«, ). We say that a function f on P satisfies the Lipschitz
c>0

condition of the order « if f€ P(a). If feP(x), « > 1, then fis a constant. Let 0 <
< a < f £ 1, so that D(x) 2 P(B). Let ¢ > 0. If f; € V(w, o), f, € ¥(=, ¢), put

ofi, ) = ma;( A —f,0 1.
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17.25.
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Then ¥(a, ¢) == [P(«, c), 0] is a complete space. The set
D(B) N ¥(e, 0

is of the first category in ¥(«, c). Thus, by 15.8.2, there is a function f € @(«) such that
SeP(P) for no § > «. Moreover, it may be shown that there is a function which satisfies
the Lipschitz condition of order « while forno # > xandnointerval Q = Elay <t < b)] < P

t

does the partial function fj, satisfy the Lipschitz condition of order B.

State the so called Borel (Heine-Borel) theorem. This is obtained from theorem 17.2.3 inter-
preting the word “compact” in the sense of theorem 17.5.4.
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