Chapter III: Special metric spaces

In: Eduard Čech (author); Miroslav Katětov (author); Aleš Pultr (translator): Point Sets. (English). Praha: Academia, Publishing House of the Czechoslovak Academy of Sciences, 1969. pp. [92]–136.

Persistent URL: http://dml.cz/dmlcz/402650

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

<u>Chapter III</u> SPECIAL METRIC SPACES

§ 15. Complete spaces

15.1. Let P be a metric space. Let $\{x_n\}$ be a sequence of points of P. We say that $\{x_n\}$ is a *Cauchy sequence* if, for every $\varepsilon > 0$, there is an index $p(\varepsilon)$ such that

$$m > p(\varepsilon), n > p(\varepsilon) \Rightarrow \varrho(x_m, x_n) < \varepsilon.$$

The notion of a Cauchy sequence is metric, not topological.

15.1.1. Any convergent sequence is a Cauchy sequence.

Proof: Let $x_n \to x$. Let $\varepsilon > 0$. There is an index $p(\varepsilon)$ such that $n > p(\varepsilon)$ implies $\varrho(x_n, x) < \varepsilon/2$. Then

$$m > p(\varepsilon), \ n > p(\varepsilon) \Rightarrow \varrho(x_m, x_n) \le \varrho(x_m, x) + \varrho(x, x_n) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

P is said to be a *complete space* if *P* is a metric space such that every Cauchy sequence of points of *P* is convergent in *P*. Evidently, every finite metric space (e.g. \emptyset) is complete. Completeness is also a metric notion and not a topological one.

15.1.2. If P and Q are complete spaces, then $P \times Q$ is a complete space.

Proof: Let $\{(x_n, y_n)\}$ be a Cauchy sequence of points of $P \times Q$. As

 $\varrho(x_m, x_n) \leq \varrho[(x_m, y_m), (x_n, y_n)],$

 $\{x_n\}$ is evidently also a Cauchy sequence. Since P is complete, there exists $\lim x_n = x \in P$; and analogously $\lim y_n = y \in Q$. Obviously $(x_n, y_n) \to (x, y)$.

15.1.3. The euclidean space \mathbf{E}_m is complete.

Proof: I. E_1 is complete by the well-known Bolzano-Cauchy theorem from the calculus.

II. If \mathbf{E}_m is complete, $\mathbf{E}_{m+1} = \mathbf{E}_m \times \mathbf{E}_1$ is complete by 15.1.2.

15.1.4. The Hilbert space H is complete.

Proof: Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence of points $x_n = \{x_{ni}\}_{i=1}^{\infty} \in \mathbf{H}$. As $\varrho(x_{mi}, x_{ni}) \leq \varrho(x_m, x_n)$, for every $i \{x_{ni}\}_{n=1}^{\infty}$ is a Cauchy sequence. Since the space \mathbf{E}_1

is complete, $y_i = \lim_{n \to \infty} x_{ni}$ exists for every *i*. Put $y = \{y_i\}_{i=1}^{\infty}$. Let us choose an $\varepsilon > 0$. Since $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, there is an index $p(\varepsilon)$ such that

$$m > p(\varepsilon), \quad n > p(\varepsilon) \Rightarrow \varrho(x_m, x_n) < \varepsilon.$$

We have, for k = 1, 2, 3, ...,

$$\sum_{i=1}^{k} (x_{mi} - x_{ni})^2 \leq \sum_{i=1}^{\infty} (x_{mi} - x_{ni})^2 = [\varrho(x_m, x_n)]^2,$$

and hence

$$m > p(\varepsilon), n > p(\varepsilon) \Rightarrow \sum_{i=1}^{\infty} (x_{mi} - x_{ni})^2 < \varepsilon^2$$

On the other hand

$$\sum_{i=1}^{k} (y_i - x_{ni})^2 = \lim_{m \to \infty} \sum_{i=1}^{k} (x_{mi} - x_{ni})^2,$$

and therefore

$$n > p(\varepsilon) \Rightarrow \sum_{i=1}^{k} (y_i - x_{ni})^2 \leq \varepsilon^2.$$

Hence, the series $\sum_{i=1}^{\infty} (y_i - x_{ni})^2$ converges, and, by formula (2) in 6.1, the series $\sum_{i=1}^{\infty} y_i^2$ also converges, i.e. $y \in \mathbf{H}$. Moreover

$$[\varrho(y, x_n)]^2 = \lim_{k \to \infty} \sum_{i=1}^{k} (y_i - x_{ni})^2,$$

and hence $n > p(\varepsilon)$ implies $\varrho(y, x_n) \leq \varepsilon$. Hence $y = \lim x_n$.

15.2. Let Q be a point set embedded into a metric space P; hence Q is also a metric space. If $\{x_n\}$ is a sequence of points of Q, then $\{x_n\}$ is a Cauchy sequence in the space Q if and only if it is a Cauchy sequence in the space P. On the other hand, a sequence may be convergent in the space P without being convergent in the space Q.

15.2.1. Let $Q \subset P$. Let Q be a complete space. Then Q is closed in P.

Proof: Let $\{x_n\}$ be a sequence of points of Q. Let there exist $x = \lim x_n \in P$. By 8.3.3, it suffices to show that $x \in Q$. But $\{x_n\}$ is a Cauchy sequence by 15.1.1. Since the space Q is complete, there exists $\lim x_n \in Q$. Hence, $x \in Q$.

15.2.2. Let P be a complete space, let $Q \subset P$ be closed. Then Q is a complete space.

Proof: Let $\{x_n\}$ be a Cauchy sequence of points of Q. Since P is a complete space, there exists $x = \lim x_n \in P$. As Q is closed, $x \in Q$ by 8.3.3. Hence, the sequence $\{x_n\}$ is convergent in Q.

15.3. Let *P* be an *arbitrary* space. Let **C** be the set of all *Cauchy sequences* of points of *P*, which are *not convergent* in *P*. If $\{x_n\}$ and $\{y_n\}$ are elements of **C**, we shall call them (in this section only) *equivalent* if $\varrho(x_n, y_n) \to 0$ (ϱ denotes the distance function in *P*, of course). It is easy to prove that the set **C** may be divided into classes such that: [1] every sequence $\{x_n\} \in \mathbf{C}$ belongs to exactly one class, [2] two sequences $\{x_n\} \in \mathbf{C}$ and $\{y_n\} \in \mathbf{C}$ are equivalent if and only if they belong to the same class. Let us choose a subset *Q* of **C** containing exactly one element from any class. (Of course, if the space *P* is complete, $\mathbf{C} = Q = \emptyset$.)

In what follows, for convenience, lower case Latin letters denote the elements of P, lower case Greek letters denote the elements of Q.

We define a function ϱ_0 in the range $(P \cup Q) \times (P \cup Q)$ as follows:

[1] if $a \in P$, $b \in P$, then $\varrho_0(a, b) = \varrho(a, b)$;

[2] if $\alpha = \{a_n\} \in Q$, $b \in P$, then $\varrho_0(\alpha, b) = \varrho_0(b, \alpha) = \lim \varrho(a_n, b)$. Certainly we must prove that $\{\varrho(a_n, b)\}$ converges in \mathbf{E}_1 . Since \mathbf{E}_1 is complete, it suffices to prove that $\{\varrho(a_n, b)\}$ is a Cauchy sequence. Let $\varepsilon > 0$. As $\{a_n\}$ is a Cauchy sequence, there is an index p such that m > p, n > p imply $\varrho(a_m, a_n) < \varepsilon$. Let m > p, n > p; then $\varrho(a_m, b) \leq \varrho(a_m, a_n) + \varrho(a_n, b) < \varrho(a_n, b) + \varepsilon$ and similarly $\varrho(a_n, b) < \varrho(a_m, b) + \varepsilon$. Consequently m > p, n > p imply $|\varrho(a_m, b) - \varrho(a_n, b)| < \varepsilon$ and hence $\{\varrho(a_n, b)\}$ is indeed a Cauchy sequence.

[3] if $\alpha = \{a_n\} \in Q$, $\beta = \{b_n\} \in Q$, then $\varrho_0(\alpha, \beta) = \lim \varrho(a_n, b_n)$. Again, we have to prove that $\{\varrho(a_n, b_n)\}$ is convergent in \mathbf{E}_1 and again it suffices to prove that it is a Cauchy sequence. Let $\varepsilon > 0$. As $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences, there is an index p such that m > p, n > p imply $\varrho(a_m, a_n) < \varepsilon/2$ and $\varrho(b_m, b_n) < \varepsilon/2$. Let m > p, n > p; then $\varrho(a_m, b_m) \leq \varrho(a_m, a_n) + \varrho(a_n, b_n) + \varrho(b_n, b_m) < \varrho(a_n, b_n) + \varepsilon$, and similarly $\varrho(a_n, b_n) < \varrho(a_m, b_m) + \varepsilon$. Consequently m > p, n > p implies $|\varrho(a_m, b_m) - \varrho(a_n, b_n)| < \varepsilon$, and hence $\{\varrho(a_n, b_n)\}$ is indeed a Cauchy sequence.

We shall prove that ρ_0 is a distance function in $P \cup Q$, i.e. that it possesses the properties [1], [2], [3] exhibited in section 6.1.

I. Evidently $\varrho_0(a, a) = 0$, $\varrho_0(\alpha, \alpha) = 0$ and also $\varrho_0(a, b) > 0$ for $a \neq b$. If $\alpha \neq \beta$, then $\varrho_0(\alpha, \beta) = \lim \varrho(a_n, b_n) \neq 0$ (and hence > 0), since, by the definition of the set Q, the sequences $\alpha = \{a_n\}$ and $\beta = \{b_n\}$ are not equivalent. Also $\varrho_0(\alpha, b) = \varrho_0(b, \alpha) = \lim \varrho(a_n, b) \neq 0$ (and hence > 0); the equality $\lim a_n = b$ cannot hold, as $\alpha = \{a_n\} \in Q \subset C$ is not convergent in P.

II. $\varrho_0(a, b) = \varrho_0(b, a), \ \varrho_0(\alpha, b) = \varrho_0(b, \alpha), \ \varrho_0(\alpha, \beta) = \varrho_0(\beta, \alpha)$ is evident.

III. Let α , β , γ be three elements of $P \cup Q$. If $\alpha \in Q$, then $\alpha = \{a_n\}$, where $\{a_n\}$ is a sequence of points of P; if $\alpha \in P$, put $a_n = \alpha$ for every n. The sequences $\{b_n\}$, $\{c_n\}$ are defined analogously. Then $\varrho_0(\alpha, \beta) = \lim \varrho(a_n, b_n)$ and similarly for $\varrho_0(\alpha, \gamma)$, $\varrho_0(\beta, \gamma)$. However, $\varrho(a_n, c_n) \leq \varrho(a_n, b_n) + \varrho(b_n, c_n)$ and hence $\lim \varrho(a_n, c_n) \leq$ $\leq \lim \varrho(a_n, b_n) + \lim \varrho(b_n, c_n)$, i.e. $\varrho_0(\alpha, \gamma) \leq \varrho_0(\alpha, \beta) + \varrho_0(\beta, \gamma)$.

Consequently, the set $P \cup Q$ endowed with the distance function ϱ_0 is a metric

space. Since the partial distance function $(\varrho_0)_{P \times P}$ coincides with ϱ , the space $P = (P, \varrho)$ is a point set, embedded into $P \cup Q = (P \cup Q, \varrho_0)$.

Let $\alpha = \{a_n\} \in Q$, then $\varrho_0(\alpha, a_n) = \lim_{k \to \infty} \varrho(a_k, a_n)$. Let $\varepsilon > 0$. Then there is an index p such that k > p, n > p imply $\varrho(a_k, a_n) < \varepsilon$. Hence n > p implies $\lim_{k \to \infty} \varrho(a_k, a_n) \leq \varepsilon$, i.e. n > p implies $\varrho_0(\alpha, a_n) \leq \varepsilon$. Hence $\varrho_0(\alpha, a_n) \to 0$, i.e. $a_n \to \alpha$. Consequently, by exercise 12.2, the set P is dense in the space $P \cup Q$.

The space $P \cup Q$ is complete. Let $\{\alpha_n\}$ be a Cauchy sequence in $P \cup Q$. Since the set P is dense in $P \cup Q$, there are points $a_n \in P$ such that $\varrho_0(\alpha_n, a_n) < 1/n$. For every $\varepsilon > 0$ there is an index $p(\varepsilon)$ such that $m > p(\varepsilon)$, $n > p(\varepsilon)$ imply $\varrho(\alpha_m, \alpha_n) < \varepsilon/3$; obviously, we may assume $p(\varepsilon) > 3/\varepsilon$. For $m > p(\varepsilon)$, $n > p(\varepsilon)$ we have $\varrho(a_m, a_n) =$ $= \varrho_0(a_m, a_n) \leq \varrho_0(a_m, \alpha_m) + \varrho_0(\alpha_m, \alpha_n) + \varrho_0(\alpha_n, a_n) < 1/m + \varepsilon/3 + 1/n < \varepsilon$. Thus, $\{a_n\}$ is a Cauchy sequence of points of P. Now, it suffices to prove that $\{a_n\}$ converges in $P \cup Q$, since if $a_n \to \beta$ then $\varrho_0(\alpha_n, \beta) \leq \varrho_0(\alpha_n, a_n) + \varrho_0(a_n, \beta) < \varrho_0(a_n, \beta) + 1/n$ and thus also $\alpha_n \to \beta$. In the case that $\{a_n\}$ is convergent in P there remains nothing to prove. In the other case $\{a_n\} \in \mathbf{C}$, and hence there is a $\beta = \{b_n\} \in Q$ equivalent with $\{a_n\}$. We know (see above) that $\varrho_0(b_n, \beta) \to 0$; as $\{a_n\}$ and $\{b_n\}$ are equivalent, we have $\varrho_0(a_n, b_n) = \varrho(a_n, b_n) \to 0$; as $\varrho_0(a_n, \beta) \leq \varrho_0(a_n, b_n) + \varrho_0(b_n, \beta)$, there is $\varrho_0(a_n, \beta) \to 0$, i.e. $a_n \to \beta$, and hence $\{a_n\}$ is convergent in $P \cup Q$.

15.4. A metric space P_0 is called a *completion* of a metric space P if: [1] P is a point set embedded into P_0 , [2] P_0 is complete, [3] P is dense in P_0 . If $P = P_0$, then the space P is complete. On the other hand, if P is complete, then $P = \overline{P}$ by 15.2.1 (\overline{P} denotes the closure of the set P in P_0). But $\overline{P} = P_0$ by [3] and hence $P = P_0$.

15.4.1. Every metric space has a completion. If P_1 and P_2 are two completions of a space P, then there exists an isometric mapping f of P_1 onto P_2 such that f(x) = x for every $x \in P$.

Proof: In section 15.3 we constructed the metric space $P \cup Q$, which is obviously a completion of the metric space P. Let P_1 and P_2 be two completions of a metric space P, let ϱ , ϱ_1 and ϱ_2 be distance functions in P, P_1 and P_2 respectively; hence, $\varrho = (\varrho_1)_{P \times P}$. If $x \in P_1$ then by exercise 12.2 there is a sequence $\{a_n\}$ such that $a_n \in P$, $\varrho_1(a_n, x) \to 0$. The sequence $\{a_n\}$ is a Cauchy sequence by 15.1.1. Since the space P_2 is complete, there is a point $y \in P_2$ such that $\varrho_2(a_n, y) \to 0$. Preserving the original point $x \in P_1$, let us replace the sequence $\{a_n\}$ by a sequence $\{b_n\}$ having the same properties, i.e. $b_n \in P$, $\varrho_1(b_n, x) \to 0$. Instead of y we obtain some point $z \in P_2$ such that $\varrho_2(b_n, z) \to 0$. Then $\varrho_2(y, z) \leq \varrho_2(y, a_n) + \varrho_2(a_n, b_n) + \varrho_2(b_n, z)$. But $\varrho_2(a_n, b_n) = \varrho(a_n, b_n) = \varrho_1(a_n, b_n) \leq \varrho_1(a_n, x) + \varrho_1(b_n, x)$. Since $\varrho_2(y, a_n) \to 0$, $\varrho_2(b_n, z) \to 0$, $\varrho_1(a_n, x) \to 0$, $\varrho_1(b_n, x) \to 0$, we have $\varrho_2(y, z) = 0$ and hence z = y; i.e., the point $y \in P_2$ is uniquely determined by the point $x \in P_1$. On putting y = f(x)we obtain a mapping f of the space P_1 into the space P_2 . If $x \in P$, we may choose $a_n = x$ for every *n*, and hence f(x) = x for $x \in P$. If $x \in P_1$, $x' \in P_1$, we choose sequences $\{a_n\}$, $\{a'_n\}$ such that $a_n \in P$, $a'_n \in P$, $\varrho_1(a_n, x) \to 0$, $\varrho_1(a'_n, x') \to 0$. By definition of *f*, we have $\varrho_2[a_n, f(x)] \to 0$, $\varrho_2[a'_n, f(x')] \to 0$. Consequently $a_n \to x$, $a'_n \to x'$ in P_1 and $a_n \to f(x)$, $a'_n \to f(x')$ in P_2 and hence, by exercise 9.12, $\varrho_1(a_n, a'_n) \to$ $\to \varrho_1(x, x')$, $\varrho_2(a_n, a'_n) \to \varrho_2[f(x), f(x')]$. Since $\varrho_1(a_n, a'_n) = \varrho(a_n, a'_n) = \varrho_2(a_n, a'_n)$, we have $\varrho_1(x, x') = \varrho_2[f(x), f(x')]$. Hence, the mapping *f* is isometric. It remains to show that *f* is a mapping of P_1 onto P_2 , i.e. that for every $y \in P_2$ there is an $x \in P_1$ such that f(x) = y. Let $y \in P_2$. By exercise 12.2 there is a sequence $\{a_n\}$ such that $a_n \in P$, $\varrho_2(a_n, y) \to 0$. The sequence $\{a_n\}$ is a Cauchy sequence by 15.1.1. Since the space P_1 is complete, there is a point $x \in P_1$ such that $\varrho_1(a_n, x) \to 0$. Evidently f(x) = y.

15.5. A metric space P is said to be *absolutely closed*, if it has the following property: If P is embedded into any space P_0 , then P is a closed subset of P_0 .

15.5.1. A metric space is absolutely closed if and only if it is complete.

Proof: I. Let P be absolutely closed. Let P_0 be its completion. (cf. 15.1.1). By 15.2.2 P is complete.

II. Let P be complete. Then it is absolutely closed by 15.2.1.

A metric space P is said to be an *absolute* \mathbf{G}_{δ} -space, if it possesses the following property: if P is embedded into any metric space P_0 , then P is always a \mathbf{G}_{δ} -set in P_0 . For reasons which will be evident immediately (cf. 15.6.3), we shall use the term *topologically complete space* instead of absolute \mathbf{G}_{δ} -space.

15.5.2. A metric space P is topologically complete if and only if there is a complete space Q such that P is a G_{δ} -set in Q.

Proof: I. Let P be an absolute \mathbf{G}_{δ} -space. Let P_0 be its completion (cf. 15.4.1). Evidently P is a \mathbf{G}_{δ} -set in P_0 and P_0 is complete.

II. Let there exist a complete space Q such that P is a G_{δ} -set in Q. Let R be a metric space into which P is embedded. We have to prove that P is a G_{δ} -set in R. Let R_0 be a completion of the space R (cf. 15.4.1). Hence Q and R_0 are complete spaces and P is embedded into both of them. Let $\overline{P}(Q)$ and $\overline{P}(R_0)$ be closures of the set Pin Q and R_0 respectively. By 15.2.2 $\overline{P}(Q)$ and $\overline{P}(R_0)$ are complete spaces and Pis embedded into both. Obviously, P is dense in both $\overline{P}(Q)$ and $\overline{P}(R_0)$, and hence $\overline{P}(Q)$ and $\overline{P}(R_0)$ are two completions of the space P. Hence, by 15.4.1, there exists an isometric mapping f of the space $\overline{P}(Q)$ onto the space $\overline{P}(R_0)$ such that f(x) = xfor $x \in P$. As P is a G_{δ} -set in Q and $P \subset \overline{P}(Q) \subset Q$, P is a G_{δ} -set in $\overline{P}(Q)$ by 13.6.1. Since the concept of a G_{δ} -set is metric (even topological), we conclude from the existence of the mapping f that P is a G_{δ} -set in $\overline{P}(R_0)$ too. By 13.2, $\overline{P}(R_0)$ is a G_{δ} -set in R_0 and hence, by exercise 13.10, P is a \mathbf{G}_{δ} -set in R_0 . As $P \subset R \subset R_0$, P is a \mathbf{G}_{δ} -set in R by 13.6.1.

15.5.3. Let P be a topologically complete space. Let A be a G_{δ} -set in P. Then A is a topologically complete space.

Proof: By 15.5.2 there is a complete space Q such that P is a G_{δ} -set in Q. By exercise 13.10, A is a G_{δ} -set in Q and hence A is topologically complete by 15.5.2.

15.6. 15.6.1. Let f be a homeomorphism of a metric space P onto a metric space Q. Then there exist topologically complete spaces P_0 and Q_0 such that: [1] P is embedded into P_0 , [2] Q is embedded into Q_0 , [3] there exists a homeomorphism φ of the space P_0 onto the space Q_0 such that $\varphi(x) = f(x)$ for $x \in P$.

Proof: Let P_1 and Q_1 be completions of P and Q respectively (cf. 15.4.1). Denote by P_2 the set of all $x \in P_1$ such that for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$a \in P, a' \in P, \varrho(a, x) < \delta, \varrho(a', x) < \delta \Rightarrow \varrho[f(a), f(a')] \leq \varepsilon.$$
 (1)

Let Q_2 denote the set of all elements $y \in Q_1$ such that for every $\varepsilon > 0$ there is a $\delta > 0$ with

$$b \in Q$$
, $b' \in Q$, $\varrho(b, y) < \delta$, $\varrho(b', y) < \delta \Rightarrow \varrho[f_{-1}(b), f_{-1}(b')] \leq \varepsilon$

For positive integers m, n let A_{mn} be the set of all $x \in P_1$ satisfying

$$a \in P$$
, $a' \in P$, $\varrho(a, x) < \frac{1}{n}$, $\varrho(a', x) < \frac{1}{n} \Rightarrow \varrho[f(a), f(a')] \le \frac{1}{m}$

It is easy to see that

$$P_2 = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} A_{mn}.$$
 (2)

If $x \in \bigcup_{n=1}^{\infty} A_{mn}$, there is an index *n* such that $x \in A_{mn}$; if $x' \in P_1$ and $\varrho(x, x') < 1/2n$, then obviously $x' \in A_{m,2n}$ and hence $x' \in \bigcup_{n=1}^{\infty} A_{mn}$. Consequently, for every $x \in \bigcup_{n=1}^{\infty} A_{mn}$ there is a $\delta > 0$ such that $\Omega_{P_1}(x, \delta) \subset \bigcup_{m=1}^{\infty} A_{mn}$ and hence, by (2), P_2 is a \mathbf{G}_{δ} -set in P_1 . Similarly, Q_2 is a \mathbf{G}_{δ} -set in Q_1 .

The mapping f is continuous, since it is a homeomorphism. Hence, given a point $x \in P$, to every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$a \in P, \quad \varrho(a, x) < \delta \Rightarrow \varrho[f(a), f(x)] \leq \frac{\varepsilon}{2}.$$
 (3)

However, from (3) there follows (1), i.e. $x \in P_2$. Hence $P \subset P_2$. As the inverse mapping f_{-1} is also continuous, we obtain similarly that $Q \subset Q_2$.

Choose a point $x \in P_2$. As P_1 is the completion of P, the set P is dense in P_1 and P_1 contains P_2 ; hence, by exercise 12.2, there is a sequence $\{a_n\}$ such that $a_n \in P$ and $a_n \to x$. Let $\varepsilon > 0$. Since $x \in P_2$, there is a $\delta > 0$ such that (1) holds. Since $a_n \to x$, there is an index p such that n > p implies $\varrho(a_n, x) < \delta$. By (1) m > pand n > p imply $\varrho[f(a_m), f(a_n)] \leq \varepsilon$. Hence, $\{f(a_n)\}$ is a Cauchy sequence. Since $f(a_n) \in Q \subset Q_1$ and Q_1 is a complete space, there is a point $y \in Q_1$ such that $f(a_n) \to y$. Preserving the point x, we replace the sequence $\{a_n\}$ by another sequence $\{a'_n\}$ with the same properties, i.e. $a'_n \in P$, $a'_n \to x$. Put $a''_{2n-1} = a_n$, $a''_{2n} = a'_n$; since $a''_n \in P$, $a''_n \to x \in P_2$, there is $\lim f(a''_n) \in Q_1$. By 7.1.2 $\lim f(a_n) = \lim f(a''_n)$, $\lim f(a'_n) =$ $= \lim f(a''_n)$ and consequently $\lim f(a_n) = \lim f(a'_n)$. Hence, the point $y = \lim f(a_n)$ depends on the point $x \in P_2$ only, and not on the choice of the sequence $\{a_n\}$. Hence, we may put $y = \varphi_1(x)$. If $x \in P$, we may choose $a_n = x$ for all n; consequently $\varphi_1(x) = f(x)$. Hence, φ_1 is a mapping of P_2 into Q_1 such that $\varphi_1(x) = f(x)$ for $x \in P$. Similarly we construct a mapping φ_2 of the set Q_2 into the set P_1 such that $y \in Q$ implies $\varphi_2(y) = f_{-1}(y)$.

Let $x_n \in P_2$, $x \in P_2$, $x_n \to x$. For every *n* there is a sequence $\{a_{ni}\}_{i=1}^{\infty}$ such that $a_{ni} \in P$, $\lim_{t \to \infty} a_{ni} = x_n$; hence, $\lim_{t \to \infty} f(a_{ni}) = \varphi_1(x_n)$. With every *n* we may associate an index *i*(*n*) such that for $b_n = a_{n,i(n)}$ we have $\varrho(b_n, x_n) < 1/n$, $\varrho[f(b_n), \varphi_1(x_n)] < 1/n$. Now $b_n \in P$, $b_n \to x$ and hence $f(b_n) \to \varphi_1(x)$. As $\varrho[f(b_n), \varphi_1(x_n)] < 1/n$, we also have $\varphi_1(x_n) \to \varphi_1(x)$. This proves that the mapping φ_1 of P_2 into Q_1 is continuous. The continuity of the mapping φ_2 of Q_2 into P_1 may be proved in a similar manner.

Put $P_0 = \mathop{\rm E}[x \in P_2, \varphi_1(x) \in Q_2], Q_0 = \mathop{\rm E}[y \in Q_2, \varphi_2(y) \in P_2]$. Evidently $P \subset P_0$, $Q \subset Q_0$. As Q_2 is a \mathbf{G}_{δ} -set in Q_1 and as φ_1 is a continuous mapping of P_2 into Q_1 , by exercise 13.7 the set P_0 is a \mathbf{G}_{δ} -set in P_2 . Since P_2 is a \mathbf{G}_{δ} -set in P_1 , the set P_0 is a \mathbf{G}_{δ} -set in P_1 by exercise 13.10. As P_1 is a complete space, P_0 is topologically complete by 15.5.2. Similarly Q_0 is topologically complete.

Put $\varphi = (\varphi_1)_{P_0}$, $\psi = (\varphi_2)_{Q_0}$ (cf. 2.4). If $x \in P_0$, there is a sequence $\{a_n\}$ such that $a_n \in P$, $a_n \to x$, $f(a_n) \to \varphi_1(x) = \varphi(x)$. Since $x \in P_0$, we have $\varphi(x) \in Q_2$. Since $f(a_n) \in Q$, $f(a_n) \to \varphi(x)$, we have $a_n = f_{-1}[f(a_n)] \to \varphi_2[\varphi(x)]$ and hence $\varphi_2[\varphi(x)] = x$. Since $\varphi(x) \in Q_2$, $x \in P_2$, we have $\varphi(x) \in Q_0$. Hence $\varphi(P_0) \subset Q_0$. Since $\varphi(x) \in Q_0$, we have $\varphi_2[\varphi(x)] = \psi[\varphi(x)]$, hence $\psi[\varphi(x)] = x$ and consequently $\psi(Q_0) \supset P_0$. Similarly we prove that $\psi(Q_0) \subset P_0$, $\varphi(P_0) \supset Q_0$. Hence, $\varphi(P_0) = Q_0$, $\psi(Q_0) = P_0$, i.e. φ is a continuous mapping of P_0 onto Q_0 and ψ is a continuous mapping of Q_0 onto P_0 . We have also seen that $\psi[\varphi(x)] = x$ for $x \in P_0$, and hence $\psi = \varphi_{-1}$ and φ is a homeomorphic mapping of P_0 onto Q_0 . Of course $x \in P$ implies $\varphi(x) = f(x)$.

15.6.2. Let P and Q be homeomorphic spaces. If P is topologically complete, then Q is also topologically complete.

Thus, topological completeness is not only a metric property (which was obvious from the definition), but, moreover, a topological property.

Proof: Let f be a homeomorphism of a topologically complete space P onto a metric space Q. By 15.6.1 there are topologically complete spaces P_0 , Q_0 containing P, Q respectively, and a homeomorphic mapping φ of Q_0 onto P_0 such that $\varphi(Q) = P$. As P is topologically complete and $P \subset P_0$, P is a \mathbf{G}_{δ} -set in P_0 . Since φ is a continuous mapping of the space Q_0 onto the space P_0 and $Q = \varphi_{-1}(P)$, Q is a \mathbf{G}_{δ} -set in Q_0 by exercise 13.7. Let Q_1 be a completion of Q_0 (cf. 15.4.1). Since Q_0 is topologically complete, Q_0 is a \mathbf{G}_{δ} -set in Q_1 . Hence, by exercise 13.10, Q is a \mathbf{G}_{δ} -set in Q_1 and consequently, by 15.5.2, Q is topologically complete.

15.6.3. A metric space P is topologically complete if and only if there is a complete space homeomorphic to P.

Proof: I. By 13.2, 15.5.1 and by the definition of topologically complete spaces, any complete space is topologically complete. Hence by 15.6.2, a space homeomorphic with a complete space is topologically complete.

II. Let $P = (P, \varrho)$ be a topologically complete space with the distance function ϱ . It suffices to prove (cf. 9.3) that there is a distance function ϱ_0 in P equivalent with the distance function ϱ and such that (P, ϱ_0) is complete. By 15.4.1, the space $P = (P, \varrho)$ may be embedded into a complete space Q. Without danger of misunderstanding, we may denote the distance function in Q by ϱ just as the previously given distance function in P. Since P is topologically complete, there exist open sets G_n in Q such that $P = \bigcap_{n=1}^{\infty} G_n$. If P = Q, the space (P, ϱ) is complete and there is nothing to prove. Hence we may suppose $P \neq Q$ and then, of course, we may suppose $G_n \neq Q$ for every n.*) For $x \in P$, $y \in P$, n = 1, 2, ... put

$$f_n(x, y) = \varrho(x, y) + \varrho(x, Q - G_n) + \varrho(y, Q - G_n),$$
(1)

$$g_n(x, y) = \frac{\varrho(x, y)}{f_n(x, y)}, \qquad (2)$$

$$\varrho_0(x, y) = \varrho(x, y) + \sum_{n=1}^{\infty} \frac{1}{2^n} g_n(x, y).$$
(3)

As $x \in P \subset G_n$, $Q - G_n = \overline{Q - G_n}$ (where the right hand side denotes, of course, the closure in Q), we have $\varrho(x, Q - G_n) > 0$, and similarly $\varrho(y, Q - G_n) > 0$. Hence $0 \leq \varrho(x, y) < f_n(x, y)$, and consequently

$$0 \leq g_n(x, y) < 1; \tag{4}$$

thus the series on the right hand side of (3) is convergent. Moreover,

$$0 \leq \varrho(x, y) \leq \varrho_0(x, y). \tag{5}$$

*) There is an $a \in Q - P$ and hence $P = \bigcap_{n=1}^{\infty} [G_n - (a)]$ where $G_n - (a) \neq Q$ are open; consequently, we could take $G_n - (a)$ instead of G_n .

Evidently $\varrho_0(x, x) = 0$ and $\varrho_0(x, y) > 0$ for $x \neq y$. Obviously $\varrho_0(x, y) = \varrho_0(y, x)$. Since for any numbers c > 0, $t_1 \ge 0$, $t_2 \ge t_1$ one has the evident relation

$$\frac{t_1}{c+t_1} \le \frac{t_2}{c+t_2}$$

and since for $x \in P$, $y \in P$, $z \in P$ we have $\varrho(x, z) \leq \varrho(x, y) + \varrho(y, z)$, we obtain

$$g_n(x,z) \leq \frac{\varrho(x,y) + \varrho(y,z)}{\varrho(x,y) + \varrho(x,Q-G_n) + \varrho(y,z) + \varrho(z,Q-G_n)}.$$
 (6)

By exercise 6.6,

$$\begin{aligned} \varrho(y, Q - G_n) &\leq \varrho(x, y) + \varrho(x, Q - G_n), \\ \varrho(y, Q - G_n) &\leq \varrho(y, z) + \varrho(z, Q - G_n), \end{aligned}$$

and hence the denominator on the right-hand side in (6) is not less then either of the two following numbers

$$\varrho(x, y) + \varrho(x, Q - G_n) + \varrho(y, Q - G_n),$$

$$\varrho(y, z) + \varrho(y, Q - G_n) + \varrho(z, Q - G_n).$$

Hence, by (6), it follows that

$$g_n(x, z) \leq g_n(x, y) + g_n(y, z)$$

and consequently, by (3), we obtain $\varrho_0(x, z) \leq \varrho_0(x, y) + \varrho_0(y, z)$.

We have proved that ρ_0 is a distance function in *P*. We shall show that the distance functions ρ_0 and ρ in *P* are equivalent, i.e. that for $x_n \in P$, $x \in P$ there is

$$\varrho(x_n, x) \to 0 \Leftrightarrow \varrho_0(x_n, x) \to 0$$
.

If $\varrho_0(x_n, x) \to 0$ then $\varrho(x_n, x) \to 0$ by (5). Now let $\varrho(x_n, x) \to 0$. Choose an $\varepsilon > 0$. Find an index k such that $1/2^k < \varepsilon/2$. By (4), for every n there is

$$\sum_{i=k+1}^{\infty} \frac{1}{2^{i}} g_{i}(x_{n}, x) \leq \sum_{i=k+1}^{\infty} \frac{1}{2^{i}} = \frac{1}{2^{k}} < \frac{\varepsilon}{2},$$

hence

$$\varrho_0(x_n, x) < \varrho(x_n, x) + \sum_{i=1}^k \frac{1}{2^i} g_i(x_n, x) + \frac{\varepsilon}{2},$$

and thus, by (1) and (2),

$$\varrho_0(x_n,x) < \varrho(x_n,x) + \sum_{i=1}^k \frac{1}{2^i} \frac{\varrho(x_n,x)}{\varrho(x_n,x) + \varrho(x,Q-G_i)} + \frac{\varepsilon}{2}.$$

Putting

$$f(t) = t + \sum_{i=1}^{k} \frac{1}{2^{i}} \frac{t}{t + \varrho(x, Q - G_{i})},$$

we obtain a continuous function f with domain $\mathop{\mathrm{E}}_{x}[t \mid t \ge 0]$ such that f(0) = 0. Hence there is a $\delta > 0$ such that $0 \le t < \delta$ implies $f(t) < \varepsilon/2$. Since $\varrho(x_n, x) \to 0$, there is an index p such that the following sequence of implications holds:

$$n > p \Rightarrow 0 \leq \varrho(x_n, x) < \delta \Rightarrow f[\varrho(x_n, x)] < \frac{\varepsilon}{2} \Rightarrow \varrho_0(x_n, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence indeed $\rho_0(x_n, x) \to 0$.

It remains to prove that the space (P, ϱ_0) is complete. Let $\{x_n\}$ be a Cauchy sequence in this space. We have to show that there is a point $x \in P$ such that $\varrho_0(x_n, x) \to 0$; of course, it suffices to prove $\varrho(x_n, x) \to 0$, since the distance functions ϱ_0 and ϱ are equivalent. Since $\{x_n\}$ is a Cauchy sequence with respect to the distance function ϱ_0 , it is, by (5), a Cauchy sequence with respect to the distance function ϱ . As (Q, ϱ) is complete, there is a point $x \in Q$ such that $\varrho(x_n, x) \to 0$. We are to

prove that $x \in P$. Assume the contrary, that $x \in Q - P$. Since $P = \bigcap_{n=1}^{\infty} G_n$, there is an index k such that $x \in Q - G_k$. Hence $\varrho(x_n, Q - G_k) \leq \varrho(x_n, x)$. Since $\varrho(x_n, x) \rightarrow 0$, we have

$$\varrho(x_n, Q - G_k) \to 0. \tag{7}$$

By (3),

$$\varrho_0(x_m, x_n) \geq \frac{1}{2^k} g_k(x_m, x_n) .$$

Hence, by (1) and (2),

$$\varrho_0(x_m, x_n) \geq \frac{1}{2^k} \frac{\varrho(x_m, x_n)}{\varrho(x_m, x_n) + \varrho(x_m, Q - G_k) + \varrho(x_n, Q - G_k)}.$$

By exercise 6.6 we have

$$\varrho(x_m, Q - G_k) \leq \varrho(x_m, x_n) + \varrho(x_n, Q - G_k);$$

hence,

$$\varrho_0(x_m, x_n) \geq \frac{1}{2^{k+1}} \frac{\varrho(x_m, x_n)}{\varrho(x_m, x_n) + \varrho(x_n, Q - G_k)}$$

Since $\{x_n\}$ is a Cauchy sequence with respect to ϱ_0 , there is an index p such that m > p, n > p imply $\varrho_0(x_m, x_n) < 1/2^{k+2}$. Hence the following implications hold

$$m > p, \quad n > p \Rightarrow \frac{\varrho(x_m, x_n)}{\varrho(x_m, x_n) + \varrho(x_n, Q - G_k)} < \frac{1}{2} \Rightarrow \varrho(x_m, x_n) < \varrho(x_m, Q - G_k).$$

Consequently

$$m > p \Rightarrow \lim_{n \to \infty} \varrho(x_m, x_n) \leq \lim_{n \to \infty} \varrho(x_n, Q - G_k)$$

and hence by (7) and by exercise 9.10 it follows that

$$m > p \Rightarrow g(x_m, x) \leq 0 \Rightarrow \varrho(x_m, x) = 0 \Rightarrow x_m = x$$
,

which is a contradiction, since $x_m \in P$ and $x \in Q - P$.

15.7. 15.7.1. Let P be a complete space. Let A_n (n = 1, 2, 3, ...) be point sets embedded into P, such that $A_n \neq \emptyset$, $d(A_n) \rightarrow 0$, $A_n \supset \overline{A}_{n+1}$. Then the set $\bigcap_{n=1}^{\infty} A_n$ consists of exactly one point.

Proof: Let us choose $a_n \in A_n$. If $\varepsilon > 0$, there is an index p such that $d(A_p) < \varepsilon$. For n > p we have $a_n \in A_n \subset A_p$. Consequently, m > p and n > p imply $\varrho(a_m, a_n) \leq d(A_p) < \varepsilon$. Hence, $\{a_n\}$ is a Cauchy sequence. As the space P is complete, there is a point x_0 such that $a_n \to x_0$. Given a positive integer $n, a_i \in A_{n+1}$ for $i \geq n+1$; hence, by 8.2.1, $x_0 \in \overline{A}_{n+1} \subset A_n$. Consequently $x_0 \in \bigcap_{n=1}^{\infty} A_n$. Let $x \in \bigcap_{n=1}^{\infty} A_n$. For every n there is $\varrho(x, x_0) \leq d(A_n)$. Since $d(A_n) \to 0$, we obtain $\varrho(x, x_0) = 0$, and hence $x = x_0$.

The theorem just proved is a (particularly important) special case of the following more general theorem:

15.7.2. Let P be a complete space. For $n = 1, 2, 3, ..., let <math>\delta_n > 0$ with $\delta_n \to 0$, $A_n \subset P, A_n \neq \emptyset, A_n \supset \overline{A}_{n+1}$. Let there exist finite sets $K_n \subset P, K_n \neq \emptyset$ such that $x \in A_n$ implies $\varrho(x, K_n) < \delta_n$. Then $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Proof: I. Let us choose $a_n \in A_n$. We shall prove that the sequence $\{a_n\}$ contains a convergent subsequence. For every n, $a_n \in A_n \subset A_1$, and hence there is a point $x \in K_1$ such that $\varrho(a_n, x) < \delta_1$. Since the set K_1 is finite, there is a point $x_1 \in K_1$ such that there is a subsequence $\{a_{1n}\}_{n=1}^{\infty}$ of $\{a_n\}$ with $\varrho(a_{1n}, x) < \delta_1$ for every n; as $A_n \supset A_{n+1}$, evidently $a_{1n} \in A_n$ for every n.

Now, suppose that for a given i (= 1, 2, 3, ...) the same construction has been carried out as for i = 1; namely, that we have determined a point $x_i \in K_i$ and a sequence $\{a_{in}\}_{n=1}^{\infty}$ such that, for every n, $a_{in} \in A_n$, $\varrho(a_{in}, x_i) < \delta_i$. For n > i we have $a_{in} \in A_n \subset A_{i+1}$ and hence, for every n > i, there is a point $x \in K_{i+1}$ such that $\varrho(a_{in}, x) < \delta_{i+1}$. As the set K_{i+1} is finite, there is a point $x_{i+1} \in K_{i+1}$ and a subsequence $\{a_{i+1,n}\}_{n=1}^{\infty}$ of $\{a_{in}\}_{n=1}^{\infty}$ such that $\varrho(a_{i+1,n}, x_i) < \delta_{i+1}$ for every n. Evidently, $a_{i+1,n} \in A_n$. Hence, we may construct recursively the sequences $\{a_{in}\}_{n=1}^{\infty}$ for i = 1, 2, 3, ...

Put $b_n = a_{nn}$; hence $\{b_n\}$ is a subsequence of the sequence $\{a_n\}$. We have to prove that $\{b_n\}$ is convergent; since the space P is complete, it suffices to prove that $\{b_n\}$ is a Cauchy sequence. The sequence $\{b_n\}_{n=i}^{\infty}$ is a subsequence of $\{a_{in}\}_{n=1}^{\infty}$. Hence $n \ge i$ implies $\varrho(b_n, x_i) < \delta_i$ and consequently $m \ge i$, $n \ge i$ imply $\varrho(b_m, b_n) < 2\delta_i$.

Since $\delta_i \to 0$, $\{b_n\}$ is a Cauchy sequence. Since P is complete, $\{b_n\}$ is convergent.

II. By I., there is a convergent sequence $\{a_n\}$ such that $a_n \in A_n$. Let $a_n \to x_0$. If *n* is given and $i \ge n + 1$ then $a_i \in A_{n+1}$, and hence, by 8.2.1, $x_0 \in \overline{A}_{n+1} \subset A_n$. Consequently $x_0 \in \bigcap_{n=1}^{\infty} A_n$, and hence $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

15.8. 15.8.1.*) Let $P \neq (1)$ be a topologically complete space. Let $G_n \subset P$ be open sets, G_n dense in P. Then $\bigcap_{n=1}^{\infty} G_n \neq (1)$; moreover, the set $\bigcap_{n=1}^{\infty} G_n$ is dense in P.

Proof: I. First show that $\bigcap_{n=1}^{r} G_n \neq \emptyset$. From 15.6.3 it follows easily that it suffices to prove this under the assumption that P is complete. Choose a point $a_1 \in G_1$. Since the set G_1 is open, there is a real number δ_1 such that $0 < \delta_1 < 1/2$ and $E[\varrho(a_1, x) \leq \delta_1] \subset G_1$. More generally, for any given n (=1, 2, 3, ...) assume there have been found a point a_n and a number δ_n such that $a_n \in G_n$, $0 < \delta_n < 1/2^n$, $E[\varrho(a_n, x) \leq \delta_n] \subset G_n$. As the set G_{n+1} is dense, there is a point $a_{n+1} \in G_{n+1}$ such that $\varrho(a_n, a_{n+1}) < \delta_n$. As G_{n+1} and $E[\varrho(a_n, x) < \delta_n]$ are open sets, there is a number δ_{n+1} such that $0 < \delta_{n+1} < 1/2^{n+1}$, $E[\varrho(a_{n+1}, x) \leq \delta_{n+1}] \subset G_{n+1} \cap E[\varrho(a_n, x) \leq \delta_n]$. Hence, the points a_n and the numbers δ_n may be constructed recursively. Put $S_n = E[\varrho(a_n, x) \leq \delta_n]$. Then $S_n \subset G_n$, $S_n \supset S_{n+1}$, $d(S_n) \leq 2\delta_n \to 0$, $S_n \neq \emptyset$. Moreover, $S_n = \overline{S}_n$ (e.g. by 9.5 and exercise 9.10). Hence, by 15.7.1, $\bigcap_{n=1}^{\infty} S_n \neq \emptyset$.

II. Let $\Gamma \neq \emptyset$ be an open set. By 12.1.2, it suffices to show that $\Gamma \cap \bigcap_{n=1}^{\infty} G_n \neq \emptyset$. By 13.1.1 and 15.5.3, Γ is a topologically complete space. The sets $\Gamma \cap G_n$ are open by 8.7.5, and dense in Γ by exercise 12.3. Hence, by I, $\bigcap_{n=1}^{\infty} (\Gamma \cap G_n) \neq \emptyset$, i.e. $\Gamma \cap \cap \bigcap_{n=1}^{\infty} G_n \neq \emptyset$.

15.8.2. Let $P \neq \emptyset$ be a topologically complete space. Let A be a set of the first category in P. Then $P - A \neq \emptyset$; moreover, the set P - A is dense in P.

Proof: We have $A = \bigcup_{n=1}^{\infty} A_n$, where A_n are nowhere dense sets, i.e. the (open) sets $G_n = P - \overline{A}_n$ are dense. Hence, by 15.8.1, the set $\bigcap_{n=1}^{\infty} G_n = P - \bigcup_{n=1}^{\infty} \overline{A}_n$ is dense. By 12.1.1 also the set $P - A \supset P - \bigcup_{n=1}^{\infty} \overline{A}_n$ is dense.

^{*) 15.8.1 (15.8.2,} resp.) is sometimes called Baire's theorem.

15.8.3. Let $P \neq \emptyset$ be a topologically complete space. Let f be a function of the first class with domain P. Let C be the set of all $x \in P$ at which f is continuous. The set C is dense in P.

Proof: By 14.5.2, P - C is a set of the first category. Hence, by 15.8.2, the set C is dense.

15.8.4. The set R of all rational numbers is not a G_{s} -set in E_{1} .

Proof: If $a \in R$, then the set (a) is nowhere dense in R by exercise 12.5. Hence, by exercise 3.1, the set R is a set of the first category in R. Consequently, the space R is not topologically complete by 15.8.2. Hence, R is not a G_{δ} -set in E_1 by 15.1.3 and 15.5.2.

Exercises

- 15.1. Let $P = A \cup B$. Let A and B be complete spaces. Then P is a complete space.
- Let $P = A \cup B$. Let A and B be topologically complete spaces. Then P is a topologically 15.2. complete space.
- Let **C** be a non-void set. Let P be a metric space. For each $z \in \mathbf{C}$ let A(z) be a complete space 15.3. embedded into P. Then $\bigcap_{z \in C} A(z)$ is a complete space.
- Let P be a metric space. For n = 1, 2, 3, ... let A_n be topologically complete spaces embedded 15.4. into P. Then $\prod_{n=1}^{\infty} A_n$ is a topologically complete space.
- 15.5. Let P and Q be topologically complete spaces. Then $P \times Q$ is a topologically complete space.
- 15.6. Every absolutely open space (cf. analogous definitions in section 15.5) is void.
- **15.7.** Let P be a complete space. Let $Q \subseteq P$. Then \overline{Q} is a completion of the space Q.
- 15.8. Let P be a topologically complete space. Let A be a closed set of the first category in P. Then A is nowhere dense in P.
- 15.9. Let P be a topologically complete space. Let A_n (n = 1, 2, 3, ...) be dense G_{δ} -sets in P. Then the set $\bigcap_{n=1}^{\infty} A_n$ is dense in *P*.

- 15.10. The spaces in exercises 6.5, 7.2, and 7.4 are complete.
- 15.11. In the proof of theorem 15.6.1 the following equalities hold: $P_0 = P_2 \cap \varphi_2(Q_2), Q_0 =$ $= Q_2 \cap \varphi_1(P_2).$
- 15.12. In theorem 15.6.1 we may put $P = E[0 < t < 1] \cup E[1 < t < 2] \cup E[2 < t < 3] = Q$, f(t) = 1 - t for 0 < t < 1, f(t) = 3 - t for 1 < t < 2, f(t) = t for 2 < t < 3, $P_1 = t$ $= Q_1 = P \cup (0) \cup (1) \cup (2) \cup (3)$. In the proof of the quoted theorem we have $P_2 =$ $= P \cup (0) \cup (3) = Q_2, P_0 = P \cup (3) = Q_0.$
- 15.13. Let P be a topologically complete space. Let f be a function of the first class with domain P. Let Q be a non-void \mathbf{G}_{δ} -set in P. Then there is a point $x \in Q$ such that the partial function f_Q is continuous at x.
- **15.14.** Let f be a function with domain E_1 . Let C be the set of all points $x \in E_1$ such that f is continuous at x. Then C is not the set of all rational numbers. (This may be proved using 13.4.) Compare with the result of exercise 9.2.

15.15. For $x \in \mathbf{E}_1$ put $f(x) = \lim_{m \to \infty} \lim_{n \to \infty} \cos^{2n} m! \pi x$. The function f is nowhere continuous. Hence it is not a function of the first class.

15.16.* The set of all members of a Cauchy sequence is bounded.

§ 16. Separable spaces

16.1. An open basis of a metric space P is a system \mathfrak{B} of open subsets of P such that for every neighborhood U of any point $x \in P$ there is a neighborhood V of the point x with $V \in \mathfrak{B}$ and $V \subset U$.

16.1.1. Let \mathfrak{B} be a system of subsets of a metric space P. \mathfrak{B} is an open basis of P if and only if: [1] every set from \mathfrak{B} is open; [2] for every open $G \subset P$, $G \neq \emptyset$, there is a system $\mathfrak{A} \subset \mathfrak{B}$, $\mathfrak{A} \neq \emptyset$, such that $G = \bigcup_{X \in \mathfrak{A}} X$.

Proof: I. Let the system \mathfrak{B} have the properties [1] and [2]. Let U be a neighborhood of a point $x \in P$. Then there is a system $\mathfrak{A} \subset \mathfrak{B}$, $\mathfrak{A} \neq \emptyset$, such that $U = \bigcup_{x \in \mathfrak{A}}^{\infty} X$. Since $x \in U$, there is a $V \in \mathfrak{A}$ with $x \in V$. The set V is a neighborhood of x and we have $V \subset U$.

II. Let \mathfrak{B} be an open basis of the space *P*. Let $G \subset P$ be a non-void open set. As $G \neq \emptyset$, there is a point $a \in G$. *G* is a neighborhood of the point *a* and hence there is a set $H \in \mathfrak{B}$ with $a \in H \subset G$. Thus, the system \mathfrak{A} of all the $X \in \mathfrak{B}$ such that $X \subset G$ is non-void. Evidently $\bigcup_{X \in \mathfrak{A}} X \subset G$. If $x \in G$, *G* is a neighborhood of the point *a*, so that there is a set $U \in \mathfrak{B}$ with $x \in U \subset G$; thus, $U \in \mathfrak{A}$ and consequently $x \in \bigcup_{X \in \mathfrak{A}} X$. Thus, $G \subset \bigcup_{X \in \mathfrak{A}} X$, i.e. $G = \bigcup_{X \in \mathfrak{A}} X$.

A separable space is a metric space which has (at least one) countable open basis. This is obviously a topological property.

16.1.2. Let **P** be a separable space. Let $Q \subset P$. Then Q is separable.

Proof: If \mathfrak{B} is an open basis of P and if we replace every set $X \in \mathfrak{B}$ by the set $Q \cap X$, we obtain a system \mathfrak{B}_0 . 8.7.5 yields that \mathfrak{B}_0 is an open basis of the space Q. If \mathfrak{B} is countable, the system \mathfrak{B}_0 is evidently also countable.

16.1.3. A metric space P is separable if and only if there is a countable $A \subset P$ dense in P.

Proof: I. Let \mathfrak{B} be a countable open basis of the space P. Let us choose one point in each non-void $X \in \mathfrak{B}$. Let A be the set of all chosen points. Then A is a countable set. If G is non-void and open, choose an $x \in G$. As \mathfrak{B} is a basis, there exists a $U \in \mathfrak{B}$

with $x \in U \subset G$. If $a \in A$ is the point chosen in U, we have $a \in A \cap U \subset A \cap G$. Thus, $A \cap G \neq \emptyset$ for every non-void open G, so that the set A is dense by 12.1.2.

II. Let A be a dense countable subset of P. Let \mathfrak{B} be the system of all $\Omega(a, r)$, where a varies over all the points of A and r varies over all the positive rational numbers. By 3.5.2 and 3.6 we see easily that the system \mathfrak{B} is countable. By 8.6.1 we see easily that \mathfrak{B} is an open basis of P.

16.1.4. The Hilbert space **H** is separable.

Proof: Let A be the set of all $r = \{r_n\}_1^\infty$ such that: [1] every r_n is a rational number; [2] there exists an index p such that $r_n = 0$ for every n > p. Evidently $A \subset \mathbf{H}$. Let $x = \{x_n\}_1^\infty \in \mathbf{H}$. Choose an $\varepsilon > 0$. There exists an index p such that $\sum_{\substack{n=p+1 \ n=1}}^\infty x_n^2 < \varepsilon^2/2$. For $1 \le n \le p$ there are rational numbers r_n such that $\sum_{\substack{n=1 \ n=1}}^p (x_n - r_n)^2 < \varepsilon^2/2$. For n > p put $r_n = 0$. If $r = \{r_n\}_1^\infty$, we have $r \in A$, $\varrho(x, r) < \varepsilon$. Thus, $\varrho(x, A) < \varepsilon$. As $\varepsilon > 0$ was arbitrary, we have $\varrho(x, A) = 0$, i.e. $x \in \overline{A}$. Thus, $\overline{A} = \mathbf{H}$, i.e. the set A is dense in \mathbf{H} . The set A is countable by ex. 3.1 and 3.14.

16.1.5. The euclidean space \mathbf{E}_m (m = 1, 2, 3, ...) is separable.

Proof: Let Q_m be the set of all points $x = \{x_n\}_1^\infty \in \mathbf{H}$ with $x_n = 0$ for n > m. Q_m is separable by 16.1.2 and 16.1.4. The spaces \mathbf{E}_m and Q_m are evidently isometric, so that \mathbf{E}_m is also separable.

16.1.6. Let P be a metric space. For every $\delta > 0$ let there be a countable set $A(\delta) \subset P$ such that $\varrho[x, A(\delta)] < \delta$ for every $x \in P$. Then P is separable.

Proof: Put $B = \bigcup_{n=1}^{\infty} A(1/n)$. The set *B* is countable by 3.6. For every point $x \in P$ we have $\varrho(x, B) \leq \varrho[x, A(1/n)] < 1/n$, hence $\varrho(x, B) = 0$, i.e. $x \in \overline{B}$. Thus, $\overline{B} = P$, i.e. the set *B* is dense, so that *P* is separable by 16.1.3.

16.1.7. Let P be a metric space. Let there exist a number $\delta > 0$ and an uncountable set $A \subset P$ such that

 $x \in A$, $y \in A$, $x \neq y$ imply $\varrho(x, y) > \delta$.

Then P is not separable.

Remark: This theorem is a useful criterion for proving that a given space is not separable. Its converse is valid; however, it cannot be prowed without a use of the theorem that the set P may be well ordered. (Which is not proved in this book; see 4.3.)

Proof: Let \mathfrak{B} be an open basis of the space *P*. For every $x \in A$ there is a set $B(x) \in \mathfrak{B}$ with $x \in B(x) \subset \Omega(x, \delta)$. If $x \in A$, $y \in A$, $x \neq y$, we have $y \in B(y)$, while x is not

in B(y), hence, $B(x) \neq B(y)$. As the set A is uncountable, the system of all the B(x) is uncountable. Thus, the system \mathfrak{B} is uncountable.

16.2. 16.2.1. Let P be a separable space. Let \mathfrak{A} be a disjoint system of open subsets of P. Then the system \mathfrak{A} is countable.

Proof: By 16.1.3 there is a countable dense subset A. By 12.1.2, we may choose in every $G \in \mathfrak{A}$ — with the exception of $G = \emptyset$, which may be also an element of $\mathfrak{A} - a$ point $\varphi(G) \in A \cap G$. The set of all points $\varphi(G)$ is countable by 3.4.1. Since the system \mathfrak{A} is disjoint, we have $\varphi(G_1) \neq \varphi(G_2)$ for $G_1 \neq G_2$. Thus, the system \mathfrak{A} is also countable.

16.2.2. A necessary and sufficient condition for P to be a separable space is the following: For every system \mathfrak{A} of open sets with $\bigcup_{X \in \mathfrak{A}} X = P$ there is a countable system $\mathfrak{A}_0 \subset \mathfrak{A}$

such that $\bigcup_{X \in \mathfrak{A}_0} X = P$.

Proof: I. Let the condition be satisfied. For n = 1, 2, 3, ... denote by \mathfrak{S}_n the system of all $\Omega(x, 1/n)$ with $x \in P$. There is a countable $\mathfrak{T}_n \subset \mathfrak{S}_n$ such that $\bigcup_{X \in \mathfrak{T}_n} X = P$. Put $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{T}_n$. Then \mathfrak{B} is a countable (see 3.6) system of open sets. It suffices to prove that \mathfrak{B} is an open basis of the space P, i.e. that for any given neighborhood U of a given point $a \in P$ there is a set $V \in \mathfrak{B}$ with $a \in V \subset U$. There is a number r > 0 with $\Omega(a, r) \subset U$. Choose an index n > 2/r. Since $\mathfrak{T}_n \subset \mathfrak{S}_n$, $\bigcup_{X \in \mathfrak{T}_n} X = P$, there is a point $b \in P$ such that $\Omega(b, 1/n) \in \mathfrak{T}_n \subset \mathfrak{B}$ and $a \in \Omega(b, 1/n)$. Then the following sequence of implications holds

$$\begin{aligned} x \in \Omega(b, 1/n) \Rightarrow \varrho(b, x) < 1/n \Rightarrow \varrho(a, x) &\leq \varrho(a, b) + \\ &+ \varrho(b, x) \leq 2/n < r \Rightarrow x \in \Omega(a, r) \subset U, \end{aligned}$$

hence $\Omega(b, 1/n) \subset U$. This $\Omega(b, 1/n)$ is an element of \mathfrak{B} .

II. Let P be separable. Let \mathfrak{A} be a system of open sets with $\bigcup_{x \in \mathfrak{A}} X = P$. Let \mathfrak{B} be a countable basis of the space P. With every $x \in P$ we may associate a set $A_x \in \mathfrak{A}$ such that $x \in A_x$; then we choose a set $B_x \in \mathfrak{B}$ such that $x \in B_x \subset A_x$. Evidently $\bigcup_{x \in P} B_x = P$. Since the system \mathfrak{B} is countable, there is a countable $C \subset P$ such that $\bigcup_{x \in P} B_x$ i.e. $\bigcup_{x \in C} B_x = P$. As $A_x \supset B_x$, we also have $\bigcup_{x \in C} A_x = P$. Thus, the system \mathfrak{A}_0 of all A_x with $x \in C$ is countable and such that $\mathfrak{A}_0 \subset \mathfrak{A}$, $\bigcup_{x \in \mathfrak{A}_0} X = P$.

16.2.3. A necessary and sufficient condition for P to be separable is the following: Every open basis contains a countable open basis.

Proof: I. Let the condition be satisfied. Since there is at least one open basis (namely the system of all the open sets), there is a countable open basis, i.e. P is separable.

II. Let P be separable. Let \mathfrak{B} be a countable open basis. Let \mathfrak{A} be an arbitrary open basis. If there is given a point $x \in P$ and an index $n = 1, 2, 3, \ldots$, there is a set $A_n(x) \in \mathfrak{A}$ such that $x \in A_n(x) \subset \Omega(x, 1/n)$; further, there is a set $B_n(x) \in \mathfrak{B}$ such that $x \in B_n(x) \subset A_n(x)$. Since the system \mathfrak{B} is countable, there is, for every n, a countable set $C_n \subset P$ such that $\bigcup_{x \in C_n} B_n(x) = \bigcup_{x \in P} B_n(x)$, i.e. $\bigcup_{x \in C_n} B_n(x) = P$. Since $B_n(x) \subset A_n(x)$, we have $\bigcup_{x \in C_n} A_n(x) = P$. Let \mathfrak{A}_0 be the system of all $A_n(x)$ ($n = 1, 2, 3, \ldots$..., $x \in C_n$). Then $\mathfrak{A}_0 \subset \mathfrak{A}$ and the system \mathfrak{A}_0 is countable by 3.4.1 and 3.6. It suffices to prove that the system \mathfrak{A}_0 is an open basis, i.e. that for every neighborhood U of any point $a \in P$ there is a set $V \in \mathfrak{A}_0$ with $a \in V \subset U$. There is a number r > 0 such that $\Omega(a, r) \subset U$. Choose an index n > 2/r. Since $\bigcup_{x \in C_n} A_n(x) = P$, there is a point $b \in C_n$ with $a \in A_n(b)$. We have $A_n(b) \subset \Omega(b, 1/n)$, hence $\varrho(a, b) < 1/n$; thus $x \in \Omega(b, 1/n)$ implies $\varrho(b, x) < 1/n$ which implies $\varrho(a, x) \leq \varrho(a, b) + \varrho(b, x) < 2/n < r$, hence $\Omega(b, 1/n) \subset \Omega(a, r) \subset U$. Hence $a \in A_n(b) \subset U$. Since $b \in C_n$, we have $A_n(b) \in \mathfrak{A}_n(b) \in \mathfrak{A}_n(c) = \mathfrak{A}_n(c)$.

16.3. 16.3.1. Let P be an uncountable separable space. Let Q be the set of all the $x \in P$ such that every neighborhood of x is uncountable. Then: [1] P - Q is countable, hence, the set Q is uncountable, [2] the set Q is dense-in-itself.

Proof: I. With every $x \in P - Q$ we may associate a countable neighborhood U(x). The sets U(x) - Q are (see 8.7.5) open in P - Q and we have $\bigcup_{x \in P - Q} (U(x) - Q) = P - Q$. P - Q is a separable space by 16.1.2. Thus, by 16.2.2, there is a countable $A \subset P - Q$ such that $\bigcup_{x \in P - Q} [U(x) - Q] = \bigcup_{x \in A} [U(x) - Q]$, i.e. $\bigcup_{x \in A} [U(x) - Q] = P - Q$. Hence, the set P - Q is countable by 3.6. Q is uncountable, since otherwise the set $P = (P - Q) \cup Q$ would be also countable.

II. If $x \in Q$ and $\varepsilon > 0$, the set $\Omega(x, \varepsilon)$ is a neighborhood of the point x and it is, consequently, uncountable. Since P - Q is countable, the set $Q \cap \Omega(x, \varepsilon) = \Omega(x, \varepsilon) - (P - Q)$ is uncountable. Hence, there is a $y \in Q$, $y \neq x$ with $\varrho(x, y) < \varepsilon$. Thus, x is not an isolated point of the set Q. Hence, Q is dense-in-itself.

16.3.2. Every dispersed separable space P is countable.

Proof: If P were uncountable, it would contain, by 16.3.1, a dense-in-itself set Q.

16.4. Let P be a separable space. Let a non-void system \mathfrak{A} of closed subsets of P have the following property: If, for $p = 1, 2, 3, ..., A_n \in \mathfrak{A}, A_n \supset A_{n+1}$, then $\bigcap_{n=1}^{\infty} A_n \in \mathfrak{A}$.

Then there is at least one minimal set $M \in \mathfrak{A}$, i.e. a set M such that $A \in \mathfrak{A}$, $A \subset M$ imply A = M.

Proof: Let $\{B_n\}_1^\infty$ be a sequence the members of which are exactly all the elements of a (countable) open basis \mathfrak{B} of the space P. Choose arbitrarily a set $A_1 \in \mathfrak{A}$. If (for n = 1, 2, 3, ...) the set $A_n \in \mathfrak{A}$ is chosen, choose, if it is possible, an $A_{n+1} \in \mathfrak{A}$ with $A_{n+1} \subset A_n - B_n$; if it is not possible, put $A_{n+1} = A_n$. Then we always have $A_n \in \mathfrak{A}, A_{n+1} \subset A_n$ and hence $M = \bigcap_{n=1}^{\infty} A_n \in \mathfrak{A}$. Let us prove that M is minimal in \mathfrak{A} . Let there be, on the contrary, a set $C \in \mathfrak{A}$ with $C \subset M \neq C$. Choose a point $a \in M - C$. The set P - C is a neighborhood of the point a. Since \mathfrak{B} is an open basis, there is an index n such that $a \in B_n \subset P - C$. We have $C \in \mathfrak{A}, C \subset M - B_n \subset$ $\subset A_n - B_n$. Hence, $A_{n+1} \subset A_n - B_n$, so that $a \in P - A_{n+1}$ for $a \in B_n$. This is a contradiction, since $a \in M \subset A_{n+1}$. (The theorem just proved is called the *Brouwer reduction theorem.*)

16.5. A metric space P is separable if and only if there is a point set Q embedded into the Urysohn space U which is homeomorphic with P.

Proof: I. Since $U \subset H$, the space Q embedded into U is, by 16.1.2, and 16.1.4, separable; thus, a space P homeomorphic with Q is also separable.

II. Let P be separable. We may assume that $P \neq \emptyset$. By 16.1.3 there is a countable set A dense in P. Let T be the set of all the triples (a, r, s) where $a \in A$ and r, s are rational numbers such that 0 < r < s. Evidently (see 3.5.2 and 3.6) T is a non-void countable set, so that we may form a one-to-one sequence $\{(a_n, r_n, s_n)\}_{1}^{\infty}$ consisting exactly of all the elements of T. For $x \in P$, n = 1, 2, 3, ... put

$$f_n(x) = \frac{\varrho[x, \Omega(a_n, r_n)]}{\varrho[x, \Omega(a_n, r_n)] + \varrho[x, P - \Omega(a_n, s_n)]}$$
(1)
if $\Omega(a_n, s_n) \neq P$,
$$f_n(x) = 0 \quad \text{if} \quad \Omega(a_n, s_n) = P.$$

The denominator on the right-hand side in (1) could be zero only in the case of $x \in \overline{\Omega}(a_n, r_n) - \Omega(a_n, s_n)$; in such a case we would have simultaneously $\varrho(a_n, x) \leq r_n$ and $\varrho(a_n, x) \geq s_n$, which is impossible, as $r_n < s_n$. Thus, f_n is a finite continuous function (see ex. 9.3) on *P*. Evidently: [1] for $x \in P$ we have $0 \leq f_n(x) \leq 1$, so that $\{(1/n) f_n(x)\}_1^\infty \in \mathbf{U}; [2] \ \varrho(a_n, x) < r_n \text{ implies } f_n(x) = 0, [3] \ \varrho(a_n, x) > s_n \text{ implies } f_n(x) = 1$. Put

$$F(x) = \left\{\frac{1}{n}f_n(x)\right\}_1^{\infty} \text{ and } Q = F(P).$$

Then F is a mapping of the space P onto the space Q. We shall prove that F is a homeomorphic mapping, i.e. that: [1] F is one-to-one, [2] F is continuous, [3] F_{-1} is continuous.

Let $x \in P$, $y \in P$, $x \neq y$. Since A is dense in P, there is an $a \in A$ such that $\varrho(a, x) < \frac{1}{2}\varrho(x, y)$. Since $\varrho(x, y) \leq \varrho(a, x) + \varrho(a, y)$, we have $\varrho(a, y) > \varrho(a, x)$. Hence there exist rational numbers r, s with $0 \leq \varrho(a, x) < r < s < \varrho(a, y)$. There is an index n such that $a = a_n$, $r = r_n$, $s = s_n$. We have $f_n(x) = 0$, $f_n(y) = 1$, hence $f_n(x) \neq f_n(y)$, hence $F(x) \neq F(y)$. Thus, the mapping F is one-to-one.

Let $x_i \in P$, $x \in P$, $x_i \to x$. Since the functions f_n are continuous, we have, for every n, $\lim_{i \to \infty} f_n(x_i) = f_n(x)$ so that, by 7.3.1, $\lim_{i \to \infty} F(x_i) = F(x)$. Thus, the mapping F is continuous.

Let $x_i \in P$, $x \in P$, $\lim_{i \to \infty} F(x_i) = F(x)$. By 7.3.1, $\lim_{i \to \infty} f_n(x_i) = f_n(x)$ for every index *n*. Let us assume that $\lim_{i \to \infty} x_i \neq x$. Then there is a number $\varepsilon > 0$ and an infinite set *M* of indices *i* such that $i \in M$ implies $\varrho(x_i, x) > \varepsilon$. As *A* is dense in *P*, there is an $a \in A$ with $\varrho(a, x) < \varepsilon/2$. There are rational numbers *r*, *s* with $0 \leq \varrho(a, x) < r < s < \varepsilon/2$. There is an index *n* such that $a = a_n$, $r = r_n$, $s = s_n$. Then $\varrho(a_n, x) < r_n$ and, for $i \in M$, $\varrho(a_n, \cdot x_i) > s_n$, so that $f_n(x) = 0$ and, for $i \in M$, $f_n(x_i) = 1$. Since the set *M* is infinite, $f_n(x_i)$ does not converge to $f_n(x)$; this is a contradiction. Thus, $\lim_{i \to \infty} x_i = x$. Hence, the mapping F_{-1} is continuous.

16.6. 16.6.1. Let P be a separable space. Let ε be a positive number. Let f be a finite function on P. For every $a \in P$ let there be a number $\delta^{(a)} > 0$ and a finite function $\varphi^{(a)}$ of the first class on $\Omega(a, \delta^{(a)})$ such that $|\varphi^{(a)}(x) - f(x)| < \varepsilon$ for every $x \in \Omega(a, \delta^{(a)})$. Then there is a finite function φ of the first class on P such that $|\varphi(x) - f(x)| < \varepsilon$ for every $x \in P$.

Proof: The sets $\Omega(a, \delta^{(a)})$ are open and we have $\bigcup_{a \in P} \Omega(a, \delta^{(a)}) = P$. Hence, by 16.2.2, there are (with the exception of the trivial case of $P = \emptyset$) sequences $\{a_n\}_1^{\alpha}$ and $\{\delta_n\}_1^{\alpha}$ such that $a_n \in P$, $\delta_n = \delta^{(a_n)}, \bigcup_{n=1}^{\infty} \Omega(a_n, \delta_n) = P$. Put $\varphi_n = \varphi^{(a_n)},$ $A_1 = \Omega(a_1, \delta_1), A_{n+1} = \Omega(a_{n+1}, \delta_{n+1}) - \bigcup_{i=1}^{\omega} \Omega(a_i, \delta_i)$ (n = 1, 2, 3, ...). The sets A_n are \mathbf{F}_{σ} (see 13.3.2, 13.3.4 and 13.3.5) and we have $P = \bigcup_{n=1}^{\infty} A_n$ with disjoint summands. Hence there is a finite function φ on P such that $x \in A_n$ implies $\varphi(x) =$ $= \varphi_n(x)$. Evidently $|\varphi(x) - f(x)| < \varepsilon$ for every $x \in P$. Thus it suffices to prove that φ is a function of the first class.

Let $c \in \mathbf{E}_1$. We have

$$\operatorname{E}_{x}[\varphi(x) > c] = \bigcup_{n=1}^{\infty} A_{n} \cap \operatorname{E}_{x}[x \in \Omega(a_{n}, \delta_{n}), \varphi_{n}(x) > c].$$

Since φ_n is a function of the first class on $\Omega(a_n, \delta_n)$, the set $B_n = \mathop{\mathrm{E}}_x [x \in \Omega(a_n, \delta_n), \varphi_n(x) > c]$ is, by 14.3.1, $\mathbf{F}_{\sigma}[\Omega(a_n, \delta_n)]$. The set $\Omega(a_n, \delta_n)$ is open in P and hence

it is $\mathbf{F}_{\sigma}(P)$ by 13.3.5. Hence, B_n is $\mathbf{F}_{\sigma}(P)$ by ex. 13.10. Thus, $A_n \cap B_n$ is $\mathbf{F}_{\sigma}(P)$ by 13.3.4, so that $\mathop{\mathrm{E}}_{x}[\varphi(x) > c] = \bigcup_{n=1}^{\infty} (A_n \cap B_n)$ is $\mathbf{F}_{\sigma}(P)$ by 13.3.3. Similarly we may prove that $\mathop{\mathrm{E}}_{x}[\varphi(x) < c]$ is $\mathbf{F}_{\sigma}(P)$. Thus, φ is a function of the first class by 14.3.1.

16.6.2. Let P be a separable space. Let f be a function on P with the following property: in every non-void closed set $A \subset P$ there is at least one point at which the partial function f_A is continuous. Then f is a function of the first class.

Proof: I. First, let us assume that the function f is finite. It suffices to prove that for every $\varepsilon > 0$ there is a finite function F_{ε} of the first class such that $|f(x) - F_{\varepsilon}(x)| < \varepsilon$. Then f is the uniform limit of the sequence $\{F_{1/n}\}$, so that, by 14.2.1, f is a function of the first class. Let us assume that the function F_{ε} does not exist for some $\varepsilon > 0$. Let us denote by G the set of all the $a \in P$ for which there is a number $\delta^{(a)} > 0$ and a finite function $\varphi^{(a)}$ of the first class on $\Omega(a, \delta^{(a)})$ such that $|f(x) - \varphi^{(a)}(x)| < \varepsilon$ for every $x \in \Omega(a, \delta^{(a)})$. If $a \in G$ we see easily that $\Omega(a, \delta^{(a)}) \subset$ $\subset G$. Hence $G = \bigcup_{a \in G} \Omega(a, \delta^{(a)})$, so that the set G is open. Since we assume that F_{ε} does not exist, we have, by 16.6.1, $G \neq P$. Thus, P - G is a non-void closed set, so that, by the assumed property of the function f there is a point $a \in P - G$ in which the partial function $(f)_{P-Q}$ is continuous. Since the function $(f)_{P-Q}$ is finite and continuous at the point a, there is a $\delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ for every $x \in (P - G) \cap \Omega(a, \delta)$.

By 16.1.2, G is a separable space. $(f)_G$ is a finite function on G. By the definition of the set G and by theorem 16.6.1, where we replace P by G, there is a finite function ψ of the first class on G such that $|f(x) - \psi(x)| < \varepsilon$ for every $x \in G$.

Let us define a finite function φ on $\Omega(a, \delta)$ as follows: For $x \in G \cap \Omega(a, \delta)$ put $\varphi(x) = \psi(x)$, for $x \in (P - G) \cap \Omega(a, \delta)$ put $\varphi(x) = f(a)$. Thus, $x \in \Omega(a, \delta)$ implies $|\varphi(x) - f(x)| < \varepsilon$. It suffices to prove that φ is a function of the first class on $\Omega(a, \delta)$, as then it follows from the definition of the set G that $a \in G$, which is a contradiction.

Let $c \in \mathbf{E}_1$. Since ψ is a function of the first class on G, the partial function $(\psi)_{G \cap \Omega(a,\delta)}$ is of the first class on $G \cap \Omega(a, \delta)$, so that, by 14.3.1, the set

$$\operatorname{E}_{x}[x \in G \cap \Omega(a, \delta), \psi(x) > c]$$
⁽¹⁾

is $\mathbf{F}_{\sigma}[G \cap \Omega(a, \delta)]$. The set $G \cap \Omega(a, \delta)$ is open in $\Omega(a, \delta)$ and hence it is $\mathbf{F}_{\sigma}[\Omega(a, \delta)]$ by 13.3.5, so that the set (1) is also $\mathbf{F}_{\sigma}[\Omega(a, \delta)]$ by ex. 13.10.

If $c \ge f(a)$, we have

$$\mathop{\mathrm{E}}_{x}[x \in \Omega(a, \delta), \varphi(x) > c] = \mathop{\mathrm{E}}_{x}[x \in G \cap \Omega(a, \delta), \psi(x) > c]$$

so that $E[x \in \Omega(a, \delta), \varphi(x) > c]$ is $\mathbf{F}_{\sigma}[\Omega(a, \delta)]$. If c < f(a), we have

$$E[x \in \Omega(a, \delta), \varphi(x) > c] =$$

$$= E[x \in G \cap \Omega(a, \delta), \psi(x) > c] \cup [(P - G) \cap \Omega(a, \delta)]$$
(2)

and the first summand is $\mathbf{F}_{\sigma}[\Omega(a, \delta)]$. The set $(P - G) \cap \Omega(a, \delta)$ is closed in $\Omega(a, \delta)$, hence, by 13.3.2, it is $\mathbf{F}_{\sigma}[\Omega(a, \delta)]$. Thus, by (2) and 13.3.3, the set $\mathop{\mathrm{E}}_{x}[x \in \Omega(a, \delta), \varphi(x) > c]$ is $\mathbf{F}_{\sigma}[\Omega(a, \delta)]$.

Similarly we can prove that, for every $c \in \mathbf{E}_1$, the set $\mathop{\mathrm{E}}_x[x \in \Omega(a, \delta), \varphi(x) < c]$ is $\mathbf{F}_c[\Omega(a, \delta)]$. Hence, by 14.3.1, φ is a function of the first class on $\Omega(a, \delta)$.

II. There remains the case of f which is not finite. By ex. 9.18, there is a homeomorphic mapping φ of the set **R** onto the interval $E[-1 \leq t \leq 1]$. Put $F(x) = \varphi[f(x)]$. Then F is a finite function on P. If a set $A \subset P$, $A \neq \emptyset$ is closed, there is a point $a \in A$ such that the partial function f_A is continuous at a. Evidently the function F_A is also continuous at a. By I, F is a function of the first class. As $f(x) = \varphi_{-1}[F(x)]$, f is also a function of the first class.

16.6.3. Let P be a topologically complete separable space. A nesessary and sufficient condition for a function f on P to be of the first class is the following: In every non-void closed set $A \subset P$ there is at least one point such that the partial function f_A is continuous at it.*)

Proof: I. The condition is sufficient by 16.6.2.

II. Let f be a function of the first class on P. Let $A \subset P$ by a non-void closed set. By 13.2 and 15.5.3 A is a topologically complete space. Let C be the set of all $x \in A$ at which the function f_A is continuous. f_A is a function of the first class on P, so that, by 15.8.3, the set C is dense in A. Since $A \neq \emptyset$, we have $C \neq \emptyset$.

[4] For every $A \subseteq P$, D_A is of the first category in A.

^{*)} This necessary and sufficient condition may be replaced by several others. Let P be a topologically complete separable space. Let f be a function on P. For $A \subset P$ let S_A be the set of all $x \in A$ at which the partial function f_A is continuous; put $D_A = A - S_A$. Then every one of the following conditions [1], [2], [3], [4] is a necessary and sufficient condition for f to be of the first class:

^[1] For every non-void closed $A \subseteq P$, $S_A \neq \emptyset$.

^[2] For every non-void closed $A \subseteq P$, S_A is dense in A.

^[3] For every non-void closed $A \subseteq P$, D_A is of the first category in A.

Proof: By 16.6.3 it suffices to prove that conditions [1], [2], [3], [4] are equivalent, i.e. that [1] \Rightarrow \Rightarrow [4] \Rightarrow [3] \Rightarrow [2] \Rightarrow [1]. If [1] holds, f is of the first class by 16.6.3 and hence, by 14.5.3 (see the footnote to theorem 14.5.2), [4] holds. Evidently [4] \Rightarrow [3]. If [3] holds, [2] holds by 13.2, 15.5.3, 15.8.2. Finally, obviously [2] \Rightarrow [1].

16.6.4. Countable metric spaces are topologically complete if and only if they are dispersed.

Proof: I. Let P be a countable topologically complete space. Let us assume that P is not dispersed. Let Q be its kernel (see 11.1). Then $Q \neq (\emptyset, Q = \overline{Q} \text{ and } Q$ is dense-in-itself, i.e. it has no isolated points. By 13.2 and 15.5.3, Q is a topologically complete space. Since Q is countable and has no isolated points, Q is, by ex. 12.13, of the first category in Q, in contradiction with 15.8.2.

II. Let P be a countable dispersed space. Let P_0 be its completion (see 15.4.1). As P is dense in P_0 , P_0 is separable by 16.13. Let us define a function f on P_0 as follows: f(x) = 1 for $x \in P$, f(x) = 0 for $x \in P_0 - P$. Let A be a non-void closed subset of P_0 . If $A \cap P = \emptyset$, the partial function f_A is continuous (since it is a constant). As P is dispersed, if $A \cap P \neq \emptyset$, there exists an isolated point a of the set $A \cap P$. There is a $\delta > 0$ such that $x \in A \cap P$, $\varrho(a, x) < 2\delta$ imply x = a. If a is an isolated point of the set A, then f_A is obviously continuous at the point a. In the converse case there is a point $b \in A$ such that $a \neq b$, $\varrho(a, b) = \delta_1 < \delta$. If $x \in A$ and $\varrho(b, x) < \varrho(a, b)$, we have $\varrho(a, x) \leq \varrho(a, b) + \varrho(b, x) < 2\varrho(a, b) < 2\delta$ and, moreover, $x \neq a$, so that, by the choice of the number δ , x is not an element of $A \cap P$. Thus, $A \cap \Omega(b, \delta_1) \subset P_0 - P$, so that $x \in A \cap \Omega(b, \delta_1)$ implies f(x) = 0, and hence f_A is continuous at the point b. Thus, in all cases, there is a point $a \in A$ at which f_A is continuous. Since P_0 is separable, f is, by 16.6.2, of the first class, so that, by 14.3, the set $P = \mathbb{E}[f(x) \ge 1]$ is $\mathbf{G}_{\delta}(P_0)$. As P_0 is complete, P is topologically complete by 15.5.2.

16.7. Let P be a separable space. Let $A_n \subset P$ (n = 1, 2, 3, ...). Then there is a subsequence $\{C_n\}$ of $\{A_n\}$ such that $\lim C_n$ (see 8.8) exists.

Proof: As P is separable, there is a sequence $\{B_n\}_{n=1}^{\infty}$ such that its terms form an open basis of the space P. Put $A_n^{(0)} = A_n$. If, for some i (= 1, 2, 3, ...), the sequence $\{A_n^{(i-1)}\}_{1}^{\infty}$ is chosen, we choose, *if it is possible*, some subsequence $\{A_n^{(i)}\}_{1}^{\infty}$ for which $B_i \cap \overline{\lim_{n \to \infty} A_n^{(i)}} = \emptyset$; if it is not possible, put $A_n^{(i)} = A_n^{(i-1)}$ for every n. Put $C_n = A_n^{(n)}$, so that the sequence $\{C_n\}$ is a subsequence of $\{A_n\}$. We have to prove that $\lim_{n \to \infty} C_n$ exists. Let us assume the contrary. Hence, $\lim_{n \to \infty} C_n \neq \overline{\lim_{n \to \infty} C_n}$, so that there exists a point

$$x \in \overline{\operatorname{Lim}} C_n - \operatorname{Lim} C_n$$
.

By ex. 8.16, $\varrho(x, C_n)$ does not converge to zero. Thus, there is a number $\delta > 0$ and indices $j_1 < j_2 < j_3 < \ldots$ such that $\varrho(x, C_{j_n}) > \delta$ for every *n*. If $\varrho(x, y) < \delta$, by ex. 6.6 we have $\varrho(y, C_{j_n}) > \delta - \varrho(x, y) > 0$ for every *n*, so that, by ex. 8.16, *y* is not an element of Lim C_{j_n} . Thus, $\Omega(x, \delta) \cap \text{Lim } C_{j_n} = \emptyset$. Since $\Omega(x, \delta)$ is a neighbourhood of *x*, there is, by definition of the sequence $\{B_n\}$, an index *i* such that

 $x \in B_i \subset \Omega(x, \delta)$, hence, $B_i \cap \overline{\text{Lim}} C_{j_n} = \emptyset$. For $n \ge i - 1$ we have $j_n \ge i - 1$, so that $C_{j_n} = A_{j_n}^{(j_n)}$ is a term of the sequence $\{A_n^{(i-1)}\}_1^\infty$. Hence, there is a subsequence $\{C_{j_n}\}_{n=1}^\infty$ of $\{A_n^{(i-1)}\}$ such that the set B_i contains no point of the upper limit of the subsequence. Thus, $B_i \cap \overline{\text{Lim}} A_n^{(i)} = \emptyset$. Since $\{C_n\}_{n=1}^\infty$ is a subsequence of $\{A_n^{(i)}\}$, we have, by ex. 8.20, $\overline{\text{Lim}} C_n \subset \overline{\text{Lim}} A_n^{(i)}$ and hence $B_i \cap \overline{\text{Lim}} C_n = \emptyset$. This is a contradiction, as $x \in B_i \cap \overline{\text{Lim}} C_n$.

Exercises

- 16.1. Let A be a dense subset of a metric space P. Let A be a separable space. Then P is separable.
- 16.2. Let A_n (n = 1, 2, 3, ...) be separable spaces embedded into a metric space P. Let $\bigcup_{n=1}^{n} A_n = P$. Then P is separable.
- 16.3. Let A be a separable space embedded into a metric space P. Then the closure \overline{A} and the derived set A' of A are separable spaces.
- 16.4. Let P and Q be separable spaces. Then $P \times Q$ is a separable space.
- 16.5. The spaces from exercises 7.2 and 7.4 are separable.
- **16.6.** The space from exercise 6.5 is not separable.
- 16.7. A system \mathfrak{B} of open subsets of a metric space P is an open basis of the space P if and only if for every $\varepsilon > 0$

$$\bigcup_{X \in \mathfrak{B}_{\varepsilon}} X = P \quad \text{where} \quad \mathfrak{B}_{\varepsilon} = \mathbb{E}[X \in \mathfrak{B}, d(X) < \varepsilon] \,.$$

16.8.* Let \mathfrak{B}_1 be an open basis of a metric space *P*. Let \mathfrak{B}_2 be an open basis of a metric space *Q*. Let \mathfrak{B}_{12} be the system of all the sets of form $G_1 \times G_2$ where $G_1 \in \mathfrak{B}_1$, $G_2 \in \mathfrak{B}_2$. Then \mathfrak{B}_{12} is an open basis of the space $P \times Q$.

§ 17. Compact spaces

17.1. A totally bounded space is a metric space P such that every sequence of points of P has a Cauchy subsequence. This is obviously a *metric property*; however, it is not a topological property (see 17.2.5). Since a point set embedded into a metric space is a metric space, we need not define the notion of totally bounded point set. Evidently:

17.1.1. Point sets embedded into a totally bounded space are totally bounded.

17.1.2. Each totally bounded space P is bounded.

Proof: If $d(P) = \infty$, there is a sequence $\{x_n\}$ such that $x_n \in P$, $\varrho(x_i, x_n) > n$ for i < n. $\{x_n\}$ has no bounded subsequence, while every Cauchy sequence is bounded (ex. 15.16).

17.1.3. Let P be a metric space. Let there be an infinite set $A \subset P$ and a number $\delta > 0$ such that

 $x \in A, y \in A, x \neq y \text{ imply } \varrho(x, y) \ge \delta$.

Then P is not totally bounded.

Proof: There is a one-to-one sequence $\{x_n\}$, $x_n \in A$. $\{x_n\}$ has no Cauchy subsequence.

17.1.4. A metric space P is totally bounded if and only if for every $\delta > 0$ there is a finite set $A(\delta) \subset P$ such that $\varrho[x, A(\delta)] < \delta$ for every $x \in P$.

Proof: 1. Let the sets $A(\delta)$ exist. Let $x_n \in P$ (n = 1, 2, 3, ...). Put $x_n^{(0)} = x_n$ and construct recursively sequences $[x_n^{(i)}]_{n=1}^{\infty}$ (i = 0, 1, 2, ...) as follows: Since A(1/i) is finite and is less than 1/i in distance from every $x_n^{(i-1)}$, there is a point $y_i \in A(1/i)$ and a subsequence $\{x_n^{(i)}\}_{n=1}^{\infty}$ of $\{x_n^{(i-1)}\}_{n=1}^{\infty}$ such that $\varrho(y_i, x_n^{(i)}) < 1/i$ for every n. Put $z_n = x_n^{(n)}$. Then $\{z_n\}_{n=1}^{\infty}$ is a subsequence of $\{x_n\}_1^{\infty}$. It suffices to prove that $\{z_n\}$ is a Cauchy sequence. Let $\varepsilon > 0$. Choose an index i such that $1/i < \varepsilon/2$. Then $\{z_n\}_{n=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$. Hence

$$m > i, n > i \Rightarrow \varrho(y_i, z_m) < 1/i, \quad \varrho(y_i, z_n) < 1/i \Rightarrow \varrho(z_m, z_n) < \varepsilon$$

II. Let P be totally bounded. Let $\delta > 0$. Choose an arbitrary $x_1 \in P$. If points x_i $(1 \leq i \leq n)$ are chosen, choose a point $x_{n+1} \in P$, if it is possible, such that $\varrho(x_i, x_{i+1}) \geq \delta$. By 17.1.3 there is an index n such that $x_1, x_2, ..., x_n$ exist, while there is no x_{n+1} . The points $x_1, ..., x_n$ form a finite set $A(\delta) \subset P$ such that $\varrho[x, A(\delta)] < \delta$ for every $x \in P$.

17.1.5. A point set Q embedded into the euclidean E_m is totally bounded if and only if it is bounded.

Proof: I. Totally bounded Q is bounded by 17.1.2.

II. Let Q be bounded. There exists a c = 1, 2, 3, ... such that $Q \subset R$ where

$$R = \mathop{\rm E}_{(x_1,...,x_n)} [|x_1| \le c, ..., |x_m| \le c].$$

If $\delta > 0$ is given, choose an index k such that $\sqrt{m/k} < \delta$ and denote by $A(\delta)$ the set of all $(x_1, ..., x_m)$ with $kx_i = \gamma_i$ $(1 \le i \le m)$, where γ_i are integers and $|\gamma_i| \le \le ck$. Then $A(\delta)$ is a finite set, $A(\delta) \subset R$ and $\varrho[x, A(\delta)] < \delta$ for every $x \in R$. Thus, R is totally bounded by 17.1.4. Thus, Q is totally bounded by 17.1.1.

17.1.6. Every totally bounded point set Q embedded into the Hilbert space H is nowhere dense in H.

Proof: Let Q not be nowhere dense. By 12.2.3 there is an open $G \neq \emptyset$ such that $Q \cap \Gamma \neq \emptyset$ for every open Γ such that $\emptyset \neq \Gamma \subset G$. Choose an $a = \{a_n\}_1^\infty \in G$.

There is a $\delta > 0$ such that $\Omega(a, \delta) \subset G$. Put $b_{in} = a_n$ for $i \neq n$, $b_{nn} = a_n + \delta/2$, $b_i = \{b_{in}\}_{n=1}^{\infty}$. Then $\varrho(a, b_i) = \delta/2$ so that $\Omega(b_i, \delta/4) \subset \Omega(a, \delta) \subset G$. Since the set $\Gamma_i = \Omega(b_i, \delta/4)$ is open and $\emptyset \neq \Gamma_i \subset G$, there is a point $c_i \in Q \cap \Gamma_i$. For $i \neq k$ we have

$$\delta \frac{\sqrt{2}}{2} = \varrho(b_i, b_k) \leq \varrho(b_i, c_i) + \varrho(c_i, c_k) + \varrho(c_k, b_k) < \frac{\delta}{4} + \varrho(c_i, c_k) + \frac{\delta}{4},$$

hence,

$$\varrho(c_i, c_k) > \frac{\sqrt{2-1}}{\sqrt{2}} \, \delta > 0 \quad \text{for} \quad i \neq k$$

Thus, Q is not totally bounded by 17.1.3.

17.2. A compact space is a metric space such that every sequence of its points has a convergent subsequence. This is evidently a topological property. As a point set Q embedded into a metric space P is a metric space, we need not define the notion of compact point set.

Many authors use the term compact for every point set embedded into a compact (in our sense) space, and, for compact (in our sense) point sets, use the term compact in itself.

17.2.1. A metric space P is compact if and only if it is complete and totally bounded.

Proof: I. Every compact space is complete. Let P be a compact space embedded into a metric space Q. Let $x_n \in P$, $x \in Q$, $x_n \to x$. As P is compact, we may find a subsequence $\{y_n\}$ of $\{x_n\}$ such that $\lim y_n \in P$ exists. By 7.1.2, we have $\lim y_n = x$. Thus, $x \in P$. Hence, by 8.3.1, P is a closed subset of Q. Thus, P is complete by 15.5.1.

II. Every compact space is totally bounded by 15.1.1.

III. Let P be a complete totally bounded space. If $x_n \in P$, $\{x_n\}$ has a Cauchy subsequence. Any Cauchy sequence in P is convergent. Thus, P is compact.

17.2.2. A point set Q embedded into a compact space P is compact if and only if it is closed in P.

Proof: I. Let Q be compact. Q is closed in P by 15.2.1 and 17.2.1.

II. Let Q be closed in P. By 17.1.1 and 17.2.1 Q is totally bounded. By 15.2.2 and 17.2.1, Q is a complete space. Thus, Q is compact by 17.2.1.

17.2.3. A point set Q embedded into the euclidean E_m is compact if and only if it is bounded and closed in E_m .

Proof: I. Let Q be compact. Q is bounded by 17.1.5 and 17.2.1. Q is closed in E_m by 15.5.1 and 17.2.1.

II. Let Q be bounded and closed in \mathbf{E}_m . Q is totally bounded by 17.1.5. Q is a complete space by 15.1.3 and 15.2.2. Thus, Q is compact by 17.2.1.

17.2.4. The Urysohn space U is compact.

Proof: Let n = 1, 2, 3, ... Denote by A_n the set of all the sequences $\{x_i\}_{i=1}^{\infty}$ such that: for i > n, $x_i = 0$; for $1 \le i \le n$, $x_i = \gamma_i/in$, where γ_i is an integer with $|\gamma_i| \le n$. We have $A_n \subset \mathbf{U}$ and A_n is a finite set.

If $\delta > 0$ is given, choose an *n* such that $\sum_{i=n+1}^{\infty} 1/i^2 < \delta^2/2$, $\sum_{i=1}^{\infty} 1/i^2 < n^2(\delta^2/2)$. Then we prove easily that $\varrho(x, A_n) < \delta$ for every $x \in U$. Thus, **U** is totally bounded by 17.1.4. It follows easily by 7.3.1 and 8.3.3 that **U** is a closed subset of **H**, so that **U** is a complete space by 15.1.4 and 15.2.2. Thus, **U** is compact by 17.2.1.

17.2.5. A metric space P is separable if and only if there is a totally bounded space Q homeomorphic with P.

Proof: I. Let Q be totally bounded. Since every finite set is countable, Q is separable by 16.1.6 and 17.1.4. Since separability is a topological property, the space P homeomorphic with Q is also separable.

II. Let P be separable. By 16.5 there is a point set $Q \subset U$ homeomorphic with P. Q is totally bounded by 17.1.1, 17.2.1 and 17.2.4.

17.2.6. Every compact space is separable.

This is an important corollary of theorem 17.2.5.

17.3. 17.3.1. Let P be a metric space. Let $A \subset P$, $B \subset P$, $A \neq \emptyset \neq B$. Let A be compact. Then there are points $y \in A$, $z \in A$ such that

$$\varrho(y, B) = \min_{\substack{x \in A}} \varrho(x, B) = \varrho(A, B),$$
$$\varrho(z, B) = \max_{\substack{x \in A}} \varrho(x, B).$$

If $d(B) < \infty$, there are points $u \in A$, $v \in A$ such that

$$d(u, B) = \min_{\substack{x \in A}} d(x, B),$$

$$d(v, B) = \max_{\substack{x \in A}} d(x, B) = d(A, B).$$

Proof: There exist sequences $\{y_n\}$ and $\{z_n\}$ such that

$$y_n \in A, \ z_n \in A, \ \varrho(y_n, B) \to \inf_{\substack{x \in A}} \varrho(x, B), \ \varrho(z_n, B) \to \sup_{\substack{x \in A}} \varrho(x, B)$$

As A is compact, there are subsequences $\{y'_n\}$ of $\{y_n\}$, $\{z'_n\}$ of $\{z_n\}$ and points $y \in A$, $z \in A$ such that $y'_n \to y$, $z'_n \to z$, so that, by ex. 9.10, $\varrho(y'_n, B) \to \varrho(y, B)$, $\varrho(z'_n, B) \to \varphi(z, B)$. By 7.1.2 we have $\lim \varrho(y'_n, B) = \lim \varrho(y_n, B)$, $\lim \varrho(z'_n, B) = \lim \varrho(z_n, B)$. Hence, $\varrho(y, B) = \inf_{\substack{x \in A}} \varrho(x, B) = \min_{\substack{x \in A}} \varrho(x, B)$, $\varrho(z, B) = \sup_{\substack{x \in A}} \varrho(x, B) = \max_{\substack{x \in A}} \varrho(x, B)$. The existence of the points u and v can be proved similarly, using d(x, B) instead of $\varrho(x, B)$ and ex. 9.11 instead of ex. 9.10.

17.3.2. Let P be a metric space. Let $A \subset P$, $B \subset P$, $A \neq \emptyset \neq B$. Let A and B be compact. Then there are points $y_1 \in A$, $y_2 \in B$, $z_1 \in A$, $z_2 \in B$ such that

$$\varrho(y_1, y_2) = \min_{\substack{x_1 \in A \\ x_2 \in B}} \varrho(x_1, x_2) = \varrho(A, B) ,$$

$$\varrho(z_1, z_2) = \max_{\substack{x_1 \in A \\ x_2 \in B}} \varrho(x_1, x_2) = d(A, B) .$$

Proof: By 17.3.1 (see also 17.1.2) there are points $y_1 \in A$, $z_1 \in A$ such that

$$\varrho(y_1, B) = \varrho(A, B), \quad d(z_1, B) = d(A, B).$$

By 17.3.1 there are points $y_2 \in B$, $z_2 \in B$ such that $\varrho(y_1, y_2) = \varrho(y_1, B)$, $\varrho(z_1, z_2) = d[z_1, (z_2)] = d(z_1, B)$.

17.3.3. Let P be a compact space. There exist points $y \in P$, $z \in P$ such that

$$\varrho(y, z) = \max_{\substack{x_1 \in P \\ x_2 \in P}} \varrho(x_1, x_2) = d(P) \,.$$

This is a particular case of theorem 17.3.2, as d(P) = d(P, P).

17.3.4. Let P be a metric space. Let $A \subset P$, $B \subset P$, $A \neq \emptyset \neq B$, $A \cap B = \emptyset$. Let A be compact and let B be closed in P. Then $\varrho(A, B) > 0$.

Proof: Let, on the contrary, $\varrho(A, B) = 0$. By 17.3.1 there is a point $y \in A$ such that $\varrho(y, B) = 0$ and hence $y \in \overline{B}$. This is a contradiction, since $y \in A$, $B = \overline{B}$, $A \cap B = 0$.

17.4. 17.4.1. Let $A \subset \mathbf{E}_1$ be a non-void bounded and closed set. Then there exist numbers min A and max A.

Proof: Choose a number $c \in \mathbf{E}_1$ such that $A \subset \mathbf{E}[x > c]$. By 17.2.3 and 17.3.1 there exists a number $y \in A$ such that $\varrho(c, y) = \min_{\substack{x \in A}} \varrho(c, x)$. We have $\varrho(c, x) = x - c$, $\varrho(c, y) = y - c$. Hence, $y - c = \min_{\substack{x \in A}} (x - c)$, and hence $y = \min_{\substack{x \in A}} x$. Similarly for the maximum.

17.4.2. Let f be a continuous mapping of a compact space P onto a metric space Q. Then Q is compact.

Proof: Let $y_n \in Q$ (n = 1, 2, 3, ...). There exist points $x_n \in P$ such that $f(x_n) = y_n$. Since P is compact, there are indices $i_1 < i_2 < i_3 < ...$ such that $\lim_{n \to \infty} x_{i_n} = x$ exists. Since f is continuous, we have $\lim_{n \to \infty} y_{i_n} = f(x) \in Q$. Hence, $\{y_n\}$ has a convergent subsequence $\{y_{i_n}\}$.

17.4.3. Let P be a compact space. Let f be a finite continuous function on P. The set f(P) is bounded and closed. There exist numbers min f(A) and max f(A).

Proof: f(P) is compact by 17.4.2. Hence, the statement follows from 17.2.3 and 17.4.1.

17.4.4. Let f be a continuous mapping of a compact space P into a metric space Q. Then f is uniformly continuous.

Proof: Let $x_n \in P$, $y_n \in P$, $\varrho(x_n, y_n) \to 0$. We have to prove that $\varrho[f(x_n), f(y_n)] \to 0$. Let us assume the contrary. Then there is a number $\delta > 0$ and indices $i_1 < i_2 < i_3 < \ldots$ such that $\varrho[f(x_{i_n}), f(y_{i_n})] > \delta$ for every *n*. Since *P* is compact, there is a subsequence $\{j_n\}$ of the sequence $\{i_n\}$ such that $\lim x_{j_n} = z \in P$ exists. Since $\varrho(x_n, y_n) \to 0$, we also have $\lim y_{j_n} = z$. Since the mapping *f* is continuous, we have $\lim f(x_{j_n}) = f(z)$, $\lim f(y_{j_n}) = f(z)$, hence (see ex. 9.12) $\lim \varrho[f(x_{j_n}), f(y_{j_n})] = 0$, which is a contradiction.

17.4.5. Let P be a compact space. Let f be a finite continuous function on P. Then f is uniformly continuous.

This is a particular case of theorem 17.4.4.

17.4.6. Let f be a one-to-one continuous mapping of a compact space P onto a metric space Q. Then the inverse mapping f_{-1} is continuous, i.e. f is a homeomorphic mapping.

Proof: If A is a closed set in P, it is compact by 17.2.2. Hence, the set f(A) is compact by 17.4.2. Thus, f(A) is closed in Q by 15.5.1 and 17.2.1. Thus, for every A closed in P, f(A) is closed in Q so that f_{-1} is continuous by 9.2.

17.5. 17.5.1. Let P be a compact space. Let, for $n = 1, 2, 3, ..., A_n \subset P, A_n \neq 0$, $A_n \supset \overline{A}_{n+1}$. Then $\bigcap_{n=1}^{\infty} A_n \neq 0$.

Proof: For n = 1, 2, 3, ... there is, by 17.1.4, a finite set $K_n \subset P$ such that $\varrho(x, K_n) < 1/n$ for every $x \in P$. Thus, $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$ by 15.7.2 and 17.2.1.

17.5.2. The statement of theorem 15.7.2 may be supplemented by the proposition that $\bigcap_{n=1}^{\infty} A_n$ is compact.*)

Proof: Let $a_n \in \bigcap_{i=1}^{\infty} A_i$ (n = 1, 2, 3, ...). Then $a_n \in A_n$, so that, by the proof of theorem 15.7.2, we may find a convergent subsequence $\{b_n\}$ of $\{a_n\}$. If $n \ge i + 1$ we have $b_n \in A_{i+1}$, hence $\lim b_n \in \overline{A}_{i+1} \subset A_i$, hence $\lim b_n \in \bigcap_{i=1}^{\infty} A_i$. Hence, for every sequence $\{a_n\}$ in the space $\bigcap_{i=1}^{\infty} A_i$ there is a subsequence $\{b_n\}$ which has a limit in $\bigcap_{i=1}^{\infty} A_i$.

17.5.3. Let a metric space P not be compact. Then there exist closed sets $A_n \subset P$ (n = 1, 2, 3, ...) such that $A_n \neq (\emptyset, A_n \supset A_{n+1}, \bigcap_{n=1}^{\infty} A_n = \emptyset$.

Proof: There is a sequence $\{x_n\}_{n=1}^{\infty}$ of points of P which has no convergent subsequence. By 8.3.3 we conclude easily that the sets $A_n = \bigcup_{i=n}^{\infty} (x_i)$ are closed. Evidently $A_n \neq \emptyset$, $A_n \supset A_{n+1}$, $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

17.5.4. A necessary and sufficient condition for a metric space P to be compact is the following: For every system \mathfrak{A} of open sets such that $\bigcup_{X \in \mathfrak{A}} X = P$ there is a finite system $\mathfrak{A}_0 \subset \mathfrak{A}$ such that $\bigcup_{X \in \mathfrak{A}_0} X = P$.

Proof: I. Let P be compact. By 16.2.2 and 17.2.6 there is a sequence $\{X_n\}$ such that $X_n \in \mathfrak{A}$, $\bigcup_{n=1}^{\infty} X_n = P$. Put $A_n = P - \bigcup_{i=1}^n X_i$. We have $A_n = \overline{A}_n$, $A_n \supset A_{n+1}$. We have $\bigcap_{n=1}^{\infty} A_n = P - \bigcup_{n=1}^{\infty} X_n = \emptyset$, so that by 17.5.1 there exists an index n such that $A_n = \emptyset$, hence, $\bigcup_{i=1}^{\omega} X_i = P$.

II. Let P not be compact. By 17.5.3 there are closed sets $A_n \subset P$ such that $A_n \neq \emptyset$, $A_n \supset A_{n+1}$, $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Put $G_n = P - A_n$. Then the sets G_n are open and we have $\bigcup_{n=1}^{\infty} G_n = P - \bigcap_{n=1}^{\infty} A_n = P$, while, for $m = 1, 2, 3, ..., \bigcup_{n=1}^{m} G_n = P - \bigcap_{n=1}^{m} A_n = P - A_m \neq P$.

^{*)} We do not assume that the space is compact. Similarly as in 15.7.2, we assume the completeness of *P* only.

17.6. Let P be an arbitrary metric space. Let us denote by P^* the system of all compact subsets of P with the exception of the set \emptyset . If $A \in P^*$, $B \in P^*$, there exist (see 17.3.1) real numbers

$$u(A, B) = \max_{\substack{x \in A}} \varrho(x, B),$$

$$u(B, A) = \max_{\substack{y \in B}} \varrho(y, A).$$

Put

$$\varrho^*(A, B) = \max \left[u(A, B), u(B, A) \right].$$

If A = B, evidently $\varrho^*(A, B) = 0$. If $A \neq B$, we have either $A - B \neq \emptyset$, so that u(A, B) > 0 (as $B = \overline{B}$ by 15.2.1 and 17.2.1) or $B - A = \emptyset$ so that u(B, A) > 0. Thus, for $A \neq B$ we always have $\varrho^*(A, B) > 0$. Obviously always $\varrho^*(A, B) = \varrho^*(B, A)$. If also $C \in P^*$, then by ex. 6.6 we have for $x \in A$ and $y \in B$:

$$\varrho(x, C) \leq \varrho(x, y) + \varrho(y, C) \leq \varrho(x, y) + u(B, C)$$

hence

$$\varrho(x, C) \leq \min_{y \in B} \varrho(x, y) + u(B, C) = \varrho(x, B) + u(B, C) \leq u(A, B) + u(B, C) \leq \varrho^*(A, B) + \varrho^*(B, C),$$

hence

$$u(A, C) \leq \varrho^*(A, B) + \varrho^*(B, C)$$

and similarly

$$u(C, A) \leq \varrho^*(A, B) + \varrho^*(B, C);$$

thus

$$\varrho^*(A, C) \leq \varrho^*(A, B) + \varrho^*(B, C)$$

Thus, ϱ^* is a distance function in P^* . The metric space (P^*, ϱ^*) is called the *Hausdorff hyperspace* of the space P.

17.6.1. If
$$A_n \in P^*$$
 $(n = 1, 2, 3, ...)$, $A \in P^*$, then
 $u(A, A_n) \to 0$ if and only if $A \subset \text{Lim } A_n$.

Proof: 1. Let $u(A, A_n) \to 0$. Let $a \in A$. We shall prove that $a \in \lim A_n$. We have $\varrho(a, A_n) \leq \max_{x \in A} \varrho(x, A_n) = u(A, A_n)$, hence $\varrho(a, A_n) \to 0$. By 17.3.1 there is a point $a_n \in A_n$ such that $\varrho(a, a_n) = \varrho(a, A_n)$. We have $\varrho(a, a_n) \to 0$, hence $a_n \to a$. As $a_n \in A_n$, we have $a \in \lim A_n$.

II. Let $A \subset \underline{\text{Lim}} A_n$. We shall prove that $u(A, A_n) \to 0$. Let us assume the contrary. Then there are a number $\delta > 0$ and indices $i_1 < i_2 < i_3 < \ldots$ such that $u(A, A_{i_n}) > \delta$ for every *n*. There are points $b_n \in A$ with $\varrho(b_n, A_n) = \max_{\substack{x \in A}} \varrho(x, A_n) = u(A, A_n)$. Since *A* is compact, there is a subsequence $\{j_n\}$ of $\{i_n\}$ such that $\lim b_{j_n} = a \in A$ exists. Since $A \subset \lim A_n$, there are points $a_n \in A_n$ such that $a_n \to a$. As $b_{j_n} \to a$, $a_n \to a$, we have $\varrho(b_{j_n}, a_{j_n}) \to 0$. Hence, there is an index *m* such that $\varrho(b_{j_m}, a_{j_m}) < \delta$. We have $u(A, A_{j_m}) = \varrho(b_{j_m}, A_{j_m}) = \min_{x \in A_{j_m}} \varrho(b_{j_m}, x) \leq \varrho(b_{j_m}, a_{j_m}) < \delta$. This is a contradiction as $u(A, A_{j_m}) > \delta$, since j_m is a member of the sequence $\{i_n\}$.

17.6.2. Let $A_n \in P^*$ $(n = 1, 2, 3, ...), A \in P^*$. Then always

 $u(A_n, A) \to 0$ implies $\overline{\lim} A_n \subset A$

and if P is compact, also

 $\operatorname{Lim} A_n \subset A \quad implies \quad u(A_n, A) \to 0.$

Proof: I. Let $u(A_n, A) \to 0$. Let $a \in \text{Lim } A_n$; we shall prove that $a \in A$. Since $a \in \overline{\text{Lim }} A_n$, there exist indices $i_1 < i_2 < i_3 < \dots$ and points $a_n \in A_{i_n}$ such that $a_n \to a$. We have $\varrho(a_n, A) \leq \max_{x \in A_{i_n}} \varrho(x, A) = u(A_{i_n}, A)$, hence $\varrho(a_n, A) \to 0$, so that, by ex. 9.10, $\varrho(a, A) = 0$, i.e. $a \in \overline{A}$. By 15.2.1 and 17.2.1, $\overline{A} = A$.

II. Let P be compact and let $\lim A_n \subset A$. We shall prove that $u(A_n, A) \to 0$. Let us assume the contrary. Then there are a number $\delta > 0$ and indices $i_1 < i_2 < i_3 < \ldots$ such that $u(A_{i_n}, A) > \delta$ for every n. There exist points $a_n \in A_n$ such that $\varrho(a_n, A) = \max_{x \in A_n} \varrho(x, A) = u(A_n, A)$. Since P is compact, there is a subsequence $\{j_n\}$ of $\{i_n\}$ such that $\lim_{x \in A} a$ exists. Since $a_{j_n} \in A_{j_n}$, $\lim_{x \in A} A_n \subset A$, we have $a \in A$ and hence $\varrho(a, A) = 0$, so that, by ex. 9.10, $\varrho(a_{j_n}, A) \to 0$ i.e. $u(A_{j_n}, A) \to 0$. This is a contradiction, since $\{j_n\}$ is a subsequence of $\{i_n\}$ and $u(A_{i_n}, A) > \delta > 0$ for every n.

17.6.3. Let $A_n \in P^*$ $(n = 1, 2, 3, ...) A \in P^*$. If the space P is compact, then $A_n \to A$ (with respect to the distance function ϱ^*) if and only if $\lim A_n = A$ (in the sense of section 8.8). If P is an arbitrary metric space, then $A_n \to A$ if and only if: [1] $\lim A_n = A$, [2] the set $A \cup \bigcup_{n=1}^{\infty} A_n$ is compact.

Proof: I. Let $A_n \to A$. Then $\varrho^*(A_n, A) \to 0$, hence on the one hand $u(A, A_n) \to 0$, so that, by 17.6.1, $A \subset \underline{\text{Lim}} A_n$, on the other hand $u(A_n, A) \to 0$, so that, by 17.6.2, $\overline{\text{Lim}} A_n \subset A$. Since always $\underline{\text{Lim}} A_n \subset \overline{\text{Lim}} A_n$, $\underline{\text{Lim}} A_n = A$.

II. Let $A_n \to A$. Let $x_n \in A \cup \bigcup_{i=1}^{\infty} A_i$. If $x_n \in A$ for infinitely many indices n, or if there exists an index i such that $x_n \in A_i$ for infinitely many indices n, then there is a subsequence of $\{x_n\}$, which has a limit in $A \cup \bigcup_{i=1}^{\infty} A_i$, as the sets A and A_i are compact. If none of the cases occur, there are indices $i_1 < i_2 < i_3 < \ldots$ such that there exists a subsequence $\{y_n\}$ of $\{x_n\}$ with $y_n \in A_{i_n}$ for every n. We have

 $\varrho(y_n, A) \leq \max_{x \in A_{i_n}} \varrho(x, A) = u(A_{i_n}, A) \leq \varrho^*(A_{i_n}, A)$. Since $A_n \to A$, we have $\varrho(y_n, A) \to 0$. By 17.3.1 there exist points $z_n \in A$ such that $\varrho(y_n, z_n) = \varrho(y_n, A)$, hence $\varrho(y_n, z_n) \to 0$. Since A is compact, there are indices $n_1 < n_2 < n_3 < \dots$ and a point $a \in A$ such that $\lim_{k \to \infty} z_{n_k} = a$. Since $\varrho(y_n, z_n) \to 0$, we have $\lim_{k \to \infty} y_{n_k} = a$. Hence there is a subsequence $\{y_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}$, which has a limit in $A \subset A \cup \bigcup_{i=1}^{\infty} A_i$. Thus, the set $A \cup \bigcup_{i=1}^{\infty} A_i$ is compact.

III. Let $\lim A_n = A$ and let either P or $A \cup \bigcup_{i=1}^{\infty} A_i$ be compact. By 17.6.1, $u(A, A_n) \to 0$. In the proof of theorem 17.6.2 we used the assumption of compact P only in the assertion that a sequence $\{a_n\}$ with $a_n \in A_n$ has a convergent subsequence; this, however, follows from the assumption that $A \cup \bigcup_{n=1}^{\infty} A_n$ is compact. Hence, $u(A_n, A) \to 0$. Since $u(A, A_n) \to 0$, $u(A_n, A) \to 0$, we have $\varrho^*(A_n, A) \to 0$, i.e. $A_n \to A$.

17.6.4. Let metric spaces P and Q be homeomorphic. Then their Hausdorff hyperspaces P^* and Q^* are homeomorphic. More precisely: Let f be a homeomorphic mapping of the space P onto the space Q. For $X \in P^*$ put $\varphi(X) = f(X)$; then φ is a homeomorphic mapping of P^* onto Q^* .

This is a corollary of theorem 17.6.3 (see also ex. 9.21 and theorem 17.4.2).

17.6.5. If P is a complete space, then P^* is also a complete space.

Proof: Let $\{A_n\}_{n=1}^{\infty}$ be a Cauchy sequence with respect to the distance function ϱ^* . Put $B_n = \bigcup_{i=n}^{\infty} A_i$. Then $B_n \neq \emptyset$, $B_n \supset B_{n+1}$, $B_n = \overline{B}_n$. Choose an index *m* and a number $\delta > 0$. Since the sets A_i are compact, there is, by 17.1.4, for every *i* a finite set K_i such that $x \in A_i$ implies $\varrho(x, K_i) < \frac{1}{2}\delta$. Since $\{A_n\}$ is a Cauchy sequence, there is an index p > m such that for n > p we have $u(A_n, A_p) < \frac{1}{2}\delta$. If $x \in A_n$, n > p, we have $\varrho(x, A_p) \leq u(A_n, A_p) < \frac{1}{2}\delta$, hence there is a point $y \in A_p$ with $\varrho(x, y) < \frac{1}{2}\delta$. We obtain easily that $\varrho(x, \bigcup_{i=m}^{p} K_i) \leq \delta$ for every $x \in B_m$. Hence, by 15.7.2 the set $A = \bigcap_{n=1}^{\infty} B_n$ is non-void. By 17.5.2 A is compact. Hence, $A \in P^*$. Choose an $\varepsilon > 0$. Since $\{A_n\}$ is a Cauchy sequence, there is an index q such that for i > q, j > q we have $u(A_i, A_j) < \frac{1}{2}\varepsilon$.

Choose an n > q. If $x \in A$, we have $x \in B_n = \bigcup_{i=n}^{\infty} A_i$ so that there is a point $x' \in \bigcup_{i=n}^{\infty} A_i$ such that $\varrho(x, x') < \frac{1}{2}\varepsilon$. There exists an index $i \ge n > q$ with $x' \in A_i$. We have $\varrho(x', A_n) \le u(A_i, A_n) < \frac{1}{2}\varepsilon$, so that, by ex. 6.6, $\varrho(x, A_n) < \varrho(x, x') + \varepsilon$ $+ \varrho(x', A_n) < \varepsilon$. Thus, for n > q and $x \in A$ we have $\varrho(x, A_n) < \varepsilon$, so that, for n > q, $u(A, A_n) \leq \varepsilon$, i.e. $u(A, A_n) \to 0$. Choose again an n > q. If $x \in A_n$ then, for every $i \geq n$, $\varrho(x, A_i) \leq u(A_n, A_i) < \frac{1}{2}\varepsilon$, so that for every $i \geq n$ there is a point $y_i \in A_i \subset B_i$ with $\varrho(x, y_i) < \frac{1}{2}\varepsilon$. By the assertion expressed (and then proved) at the beginning of the proof of theorem 15.7.2 we may choose a subsequence of $\{y_i\}_n^\infty$ which has a limit $z \in A$. As $\varrho(x, y_i) < \frac{1}{2}\varepsilon$, we have, by ex. 9.12, $\varrho(x, z) < \varepsilon$, hence $\varrho(x, A) < \varepsilon$. Thus, n > q, $x \in A_n$ imply $\varrho(x, A) < \varepsilon$, so that for n > q we have $u(A_n, A) \leq \varepsilon$, i.e. $u(A_n, A) \to 0$. Since also $u(A, A_n) \to 0$, we have $\varrho^*(A_n, A) \to 0$, i.e. $A_n \to A$, so that the sequence $\{A_n\}$ is convergent (with respect to the distance function ϱ^*).

17.6.6. If P is a totally bounded space, then P^* is also totally bounded.

Proof: Choose a number $\delta > 0$. By 17.1.4 there is a finite set $K \subset P$ such that $\varrho(x, K) < \delta$ for every $x \in P$. Denote by \Re the system of all the subsets of K, with the exception of the set \emptyset . Evidently \Re is a finite subset of P^* . Choose an $A \in P^*$. Put $B = \mathop{\mathrm{E}}_{x} [x \in K, \varrho(x, A) < \delta]$. We may prove easily that $B \in \Re$ and that $\varrho^*(A, B) < \delta$. Hence, the space P^* is totally bounded by 17.1.4.

17.6.7. If P is a separable space, then P^* is also separable.

This is a corollary of theorems 17.2.5, 17.6.4 and 17.6.6.

17.6.8. If P is a compact space, then P^* is also compact.

This is a corollary of theorems 17.2.1, 17.6.5 and 17.6.6.

17.7. Let $K \neq \emptyset$ be a given compact space. Let P be a given metric space. Let us denote by P^{K} the set of all continuous mappings f of K into P.

If $f \in P^{K}$, $g \in P^{K}$, put $\varphi(x) = \varrho[f(x), g(x)]$ for $x \in K$. By ex. 9.12 we deduce easily that φ is a finite continuous function on K. By 17.4.3 there exists a number max $\varrho[f(x), g(x)]$; denote this number by $\varrho^{+}(f, g)$. If f = g, evidently $\varrho^{+}(f, g) = 0$; if $f \neq g$, evidently $\varrho^{+}(f, g) > 0$. Obviously we always have $\varrho^{+}(f, g) = \varrho^{+}(g, f)$. If also $h \in P^{K}$, then, for every $x \in K$, $\varrho[f(x), h(x)] \leq \varrho[f(x), g(x)] + \varrho[g(x), h(x)] \leq$ $\leq \varrho^{+}(f, g) + \varrho^{+}(g, h)$, hence $\varrho^{+}(f, h) \leq \varrho^{+}(f, g) + \varrho^{+}(g, h)$. Hence, ϱ^{+} is a distance function in P^{K} . Whenever we speak about P^{K} , we shall mean the metric space (P^{K}, ϱ^{+}) . The following three theorems are evident:

17.7.1. If K consists of a single point, then the spaces P and P^{K} are isometric.

17.7.2. If compact spaces $K \neq \emptyset$ and L are homeomorphic, then the spaces P^{K} and P^{L} are isometric.

17.7.3. If spaces P and Q are isometric, then the spaces P^{K} and Q^{K} are isometric.

17.7.4. If spaces P and Q are homeomorphic, then the spaces P^{K} and Q^{K} are homeomorphic.

Proof: Let φ be a homeomorphic mapping of P onto Q. Let us associate, with every $f \in P^K$, a mapping $\Phi(f)$ of K into Q as follows: the image of a point $x \in K$ under the mapping $\Phi(f)$ is the point $\varphi[f(x)]$. We see easily that Φ is a one-to-one mapping of P^K onto Q^K . We have to prove that both the mappings Φ and Φ_{-1} are continuous. Thus, let $f_n \in P^K$, $f \in P^K$; we have to prove that

$$f_n \to f$$
 if and only if $\Phi(f_n) \to \Phi(f)$.

Denote by H_1 and H_2 , respectively, the Hausdorff hyperspaces of $K \times P$ and $K \times Q$. For $x \in K$, $y \in P$ put $\psi(x, y) = [x, \varphi(y)]$. It is easy to see that ψ is a homeomorphic mapping of $K \times P$ onto $K \times Q$. For $Z \in H_1$ put $\Psi(Z) = \psi(Z)$. By 17.6.4, Ψ is a homeomorphic mapping of H_1 onto H_2 . Put

$$F_{n} = \mathop{\mathrm{E}}_{(x,y)} [x \in K, \ y = f_{n}(x)], \qquad F = \mathop{\mathrm{E}}_{(x,y)} [x \in K, \ y = f(x)],$$
$$G_{n} = \mathop{\mathrm{E}}_{(x,y)} \{x \in K, \ z = \varphi[f_{n}(x)]\}, \qquad G = \mathop{\mathrm{E}}_{(x,z)} \{x \in K, \ z = \varphi[f(x)]\}$$

We can prove easily (see 17.4.2) that $F_n \in H_1$, $F \in H_1$, $G_n \in H_2$, $G \in H_2$, and that $\Psi(F_n) = G_n$, $\Psi(F) = G$. Since Ψ is a homeomorphic mapping, we have $F_n \to F$ if and only if $G_n \to G$. We shall prove that $f_n \to f$ if and only if $F_n \to F$. Similarly we may prove that $\Phi(f_n) \to \Phi(f)$ if and only if $G_n \to G$, hence, we prove in fact that $f_n \to f$ if and only if $\Phi(f_n) \to \Phi(f)$.

First, let $f_n \to f$ in P^K . Choose an $\varepsilon > 0$. There is an index p such that, for n > p, $\varrho^+(f_n, f) < \varepsilon$, hence $\varrho[f_n(x), f(x)] < \varepsilon$ for every $x \in K$. If $x \in K$, we have $[x, f_n(x)] \in \varepsilon F_n$ and $[x, f(x)] \in F$, and the distance of the points $[x, f_n(x)], [x, f(x)]$ in the space $K \times P$ is equal to $\varrho[f_n(x), f(x)]$. Hence, for n > p: $z \in F_n$ implies $\varrho(z, F) < \varepsilon$, $z \in F$ implies $\varrho(z, F_n) < \varepsilon$, so that for n > p the distance of F_n from F in H_1 is less than ε . Thus, $F_n \to F$ in H_1 .

Secondly, let $F_n \to F$ in H_1 . Choose an $\varepsilon > 0$. By 9.6.1 and 17.4.4 there is a $\delta > 0$ such that

$$x \in K$$
, $y \in K$, $\varrho(x, y) < \delta$ imply $\varrho[f(x), f(y)] < \varepsilon/2$.

We may suppose that $\delta < \varepsilon/4$. There exists an index p such that for n > p the distance of F_n from F in P^K is less than δ . Let n > p, $x \in K$. Then $[x, f_n(x)] \in F_n$, so that there is a point $[y, f(y)] \in F$ (hence, $y \in K$) such that

$$\varrho\{[x, f_n(x)], [y, f(y)]\} = \sqrt{\{[\varrho(x, y)]^2 + \varrho[f_n(x), f(y)]^2\}} < \delta < \varepsilon/4,$$
(1)

so that $\varrho(x, y) < \delta$, hence $\varrho[f(x), f(y)] < \varepsilon/2$ and hence

$$\varrho\{[x, f(x)], [y, f(y)]\} \leq \sqrt{\{[\varrho(x, y)]^2 + [\varrho(f(x), f(y)]^2\}} < \\ < \sqrt{[\delta^2 + (\varepsilon/2)^2]} < \sqrt{[(\varepsilon/4)^2 + (\varepsilon/2)^2]} < 3\varepsilon/4.$$
(2)

By (1) and (2) we obtain

 $\varrho[f_n(x), f(y)] < \varepsilon/4, \quad \varrho[f(x), f(y)] < 3\varepsilon/4$

and hence $\varrho[f_n(x), f(x)] < \varepsilon$. Thus, for n > p we have $\varrho^+(f_n, f) < \varepsilon$ so that $f_n \to f$ in P^K .

17.7.5. If $K \neq \emptyset$ is a compact space and if P is a complete space, then P^{K} is a complete space.

Proof: Let $\{f_n\}$ be a Cauchy sequence in P^K . For every $\varepsilon > 0$ there is an index $p(\varepsilon)$ such that for $m > p(\varepsilon)$, $n > p(\varepsilon)$ we have max $\varrho[f_m(x), f_n(x)] < \varepsilon$. Consequently, for every $x \in K$, $\{f_n(x)\}$ is a Cauchy sequence in P. As the space P is complete, we obtain, for every $x \in K$, a point $f(x) \in P$ such that $f_n(x) \to f(x)$. Thus, f is a mapping of K into P. For every $\varepsilon > 0$

 $x \in K$, $m > p(\varepsilon)$, $n > p(\varepsilon)$ imply $\varrho[f_m(x), f_n(x)] < \varepsilon$,

hence, by ex. 9.12

 $x \in K$, $m > p(\varepsilon)$ imply $\varrho[f_m(x), f(x)] \leq \varepsilon$.

Choose an index $m > p(\varepsilon/3)$. By 9.6.1 and 17.4.4, there is a $\delta > 0$ such that

$$x \in K$$
, $y \in K$, $\varrho(x, y) < \delta$ imply $\varrho[f_m(x), f_m(y)] < \varepsilon/3$.

Let $x \in K$, $y \in K$, $\varrho(x, y) < \delta$. Then

$$\varrho[f(x), f(y)] \leq \varrho[f(x), f_m(x)] + \varrho[f_m(x), f_m(y)] + \\ + \varrho[f_m(y), f(y)] < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Hence, the mapping f is continuous, so that $f \in P^{K}$. Moreover, $n > p(\varepsilon)$ implies $\varrho^{+}(f_{n}, f) \leq \varepsilon$, hence $f_{n} \to f$, i.e. the sequence $\{f_{n}\}$ is convergent in P^{K} .

17.7.6. If $K \neq \emptyset$ is a compact space and if P is a separable space, then P^{K} is a separable space.

Proof: By 16.1.3 there is a countable set A dense in P. Choose a $\delta > 0$. For n = 1, 2, 3, ... denote by Φ_n the set of all $f \in P^{\kappa}$ such that

$$x \in K$$
, $y \in K$, $\varrho(x, y) < 1/n$ imply $\varrho[f(x), f(y)] < \frac{1}{4}\delta$.

By 9.6.1 and 17.4.4, $\bigcup_{n=1}^{\infty} \Phi_n = P^K$. By 17.1.4, for every *n* there is a finite sequence $\{c_i\}_{i=1}^m$ (the points c_i and the number *m* depend on *n*) of points of *K* such that for every $x \in K$ there is an index *i* such that $\varrho(x, c_i) < 1/n$. Let us denote by \mathfrak{A}_n the set of all the sequences $\{a_i\}_{i=1}^m$ with $a_i \in A$. By ex. 3.14, the set \mathfrak{A}_n is countable. Let us associate with every $\{a_i\}_{i=1}^m \in \mathfrak{A}_n$ exactly one mapping $f \in \Phi_n$, where, if it is possible,

this f is chosen in such a way that $\varrho[f(c_i), a_i] < \frac{1}{4}\delta$ for $1 \leq i \leq m$. Let Ψ_n be the set of all the mappings associated with the sequences $\{a_i\}_{i=1}^m \in \mathfrak{A}_n$. The set Ψ_n is countable.

by 3.4.1, hence, by 3.6, the set $\Psi = \bigcup_{n=1}^{\infty} \Psi_n$ is also countable.

Now, let $f \in P^{K}$ be arbitrary. There is an index n such that $f \in \Phi_{n}$. Since A is dense in P, there is a sequence $\{a_i\}_{i=1}^m$ such that $\varrho[f(c_i), a_i] < \frac{1}{4}\delta$ for $1 \leq i \leq m$. Let $g \in \Psi_n$ be the mapping which is associated with the sequence $\{a_i\}_{i=1}^m$. For $1 \leq i \leq n$ $\leq i \leq m$ we have $\varrho[g(c_i), a_i] < \frac{1}{4}\delta$, hence $\varrho[f(c_i), g(c_i)] < \frac{1}{2}\delta$. If x is an arbitrary point of the space K, there is an index i with $\varrho(x, c_i) < 1/n$. Since $f \in \Phi_n, g \in \Psi_n \subset \Phi_n$. we have $\varrho[f(x), f(c_i)] < \frac{1}{4}\delta$, $\varrho[g(x), g(c_i)] < \frac{1}{4}\delta$, hence $\varrho[f(x), g(x)] \leq \varrho[f(x), f(c_i)] + \varrho[f(x), f(c_i)]$ $+ \varrho[f(c_i), g(c_i)] + \varrho[g(x), g(c_i)] < \delta;$ thus, $\varrho^+(f, g) < \delta$. Hence, for every $f \in P^K$ there is a $g \in \Psi$ with $\varrho^+(f, g) < \delta$. Since Ψ is countable, P^K is separable by 16.1.6.

If P is compact, P^{K} need not be compact (see ex. 17.17).

17.8. Let K be a compact point set embedded into the space \mathbf{E}_1 . Let us assume that K contains at least two distinct points. By 17.2.3 and 17.4.1 there exist points

$$a = \min K$$
, $b = \max K$.

We have a < b. Put $J = E[a \le t \le b]$. Evidently $K \subset J$; we may have K = J. A contiguous interval of the set K is any interval S = E[u < t < v] $(u \in E_1,$ $v \in \mathbf{E}_1, u < v$ such that [1] $S \cap K = \emptyset$, [2] $u \in K, v \in K$.

17.8.1. J - K is a disjoint union of all the contiguous intervals of the set K.

Proof: I. Let S = E[u < t < v] be a contiguous interval. Evidently $a \leq u < v$ $> v \leq b$. hence, $S \subset J$. As $S \cap K = \emptyset$, we have $S \subset J - K$.

II. Let $S_1 = E[u_1 < t < v_1]$, $S_2 = E[u_2 < t < v_2]$ be two contiguous intervals. Let $c \in S_1 \cap S_2$. Since $S_1 \cap K = \emptyset$, $v_1 \in K$, we have $v_1 = \min K \cap E[t > c]$. Since $S_2 \cap K = \emptyset$, $v_2 \in K$, we have $v_2 = \min K \cap E[t > c]$. Hence, $v_1 = v_2$ and similarly we may prove that $u_1 = u_2$. Thus, $S_1 = S_2$. Hence, the system of contiguous intervals is disjoint.

III. Let $c \in J - K$. The sets $K' = K \cap E[t \ge c]$ and $K'' = K \cap E[t \le c]$ are compact (see 17.2.3). We have $b \in K'$, $a \in K''$, hence $K' \neq \emptyset \neq K''$. By 17.4.1 there exist $v = \min K'$, $u = \max K''$. We have $u \leq c \leq v$. Since $c \in J - K$, $u \in K$, $v \in K$, we have u < c < v, i.e. $c \in S = E[u < t < v]$. Obviously S is a contiguous interval,

17.8.2. Systems of contiguous intervals are countable.

This follows by 16.1.5, 16.2.1 and 17.8.1.

17.8.3. Let $a \in \mathbf{E}_1$, $b \in \mathbf{E}_1$, a < b. Let \mathfrak{M} be a disjoint (possibly void) system of intervals of the form $\operatorname{E}[u < t < v]$, where $a \leq u < v \leq b$. Then there is exactly one compact set $K \subset \mathbf{E}_1$ with $a = \min K$, $b = \max K$, such that \mathfrak{M} is the system of all its contiguous intervals.

Proof: Put $J = \underset{t}{\mathbb{E}}[a \leq t \leq b]$, $M = \bigcup_{X \in \mathfrak{M}} X$. Evidently $M \subset J$. If the required set exists, it must be identical with J - M by 17.8.1. Thus, put K = J - M. The set M is (see 8.5.3) open in \mathbf{E}_1 , so that K is closed in \mathbf{E}_1 and bounded, and hence compact. Obviously $a = \min K$, $b = \max K$. It remains to be shown that \mathfrak{M} is the system of all contiguous intervals of K.

Let $S = E[u < t < v] \in \mathfrak{M}$. We have $S \subset M$, hence $S \cap K = \emptyset$. If there were t a $v \in M$, there would be an interval $S_1 \in \mathfrak{M}$, $v \in S_1$. We see easily that $S_1 \cap S \neq \emptyset$, $S \neq S_1$, which is a contradiction. Thus, $v \in K$, and similarly $u \in K$. Hence, every $S \in \mathfrak{M}$ is a contiguous interval. Since, by 17.8.1, M is the disjoint union of all contiguous intervals, we deduce easily that every contiguous interval is in \mathfrak{M} .

For a moment, let us denote by M_3 the set of all the sequences $\{j_n\}_{n=1}^{\infty}$ such that their terms are 0, 1 or 2, and by M_2 the set of all $\{i_n\}_{n=1}^{\infty}$ such that their terms are either 0 or 2. It is well-known that: [1] if $\{j_n\} \in M_3$, then $\sum_{n=1}^{\infty} j_n/3^n \in J$, where J = $= E[0 \leq t \leq 1]$; [2] if $t \in J$, $t \neq 0$, $t \neq 1$, and if there is an index *m* such that $t \cdot 3^m$ is an integer, then there are exactly two sequences $\{j_m\} \in M_3$ with $\sum_{n=1}^{\infty} j_n/3^n = t$ (if we find the least possible *m*, then exactly one from the two numbers j_m is equal to 1, and for n > m there is always in one sequence a $j_n = 0$ and in the other always a $j_n = 2$); [3] if $t \in J$ and if no number $t \cdot 3^m$ is an integer, then there is exactly one sequence $\{j_n\} \in M_3$ with $\sum_{n=1}^{\infty} j_n/3^n = t$ (and there is infinitely many *n* such that $j_n \neq 0$ and infinitely many *n* such that $j_n \neq 2$). Denote by *D* the set of all the numbers $\sum_{n=1}^{\infty} i_n/3^n$ with $\{i_n\} \in M_2$. The set *D* is called the (*Cantor*) discontinuum. Put S = E[1/3 < t < 2/3]; (1)

if n = 1, 2, 3, ... and if every one of the indices $i_1, i_2, ..., i_n$ has either the value 0 or the value 2, put

$$S_{l_1 l_2 \dots l_n} = \mathbb{E}\left[\sum_{k=1}^n \frac{i_k}{3^k} + \frac{1}{3^{n+1}} < t < \sum_{k=1}^n \frac{i_k}{3^k} + \frac{2}{3^{n+1}}\right].$$
 (2)

Denote by \mathfrak{M} the system consisting of the interval (1) and all the intervals (2). We see easily (see 17.8.3) that the set D is compact, min D = 0, max D = 1, and that \mathfrak{M} is the system of all the contiguous intervals of the set D. Put

$$H_0 = \mathop{\mathrm{E}}_t [0 \le t \le \frac{1}{3}], \quad H_2 = \mathop{\mathrm{E}}_t [\frac{2}{3} \le t \le 1];$$

if n = 2, 3, 4, ... and if every one of the indices $i_1, i_2, ..., i_n$ has either the value 0 or the value 2, put

$$H_{i_1i_2...i_n} = \mathbb{E}\left[\sum_{k=1}^n \frac{i_k}{3^k} \le t \le \sum_{k=1}^{n-1} \frac{i_k}{3^k} + \frac{i_n+1}{3^n}\right].$$

Then we have

 $J-S=H_0\cup H_2$

with disjoint summands on the right-hand side, and, for n = 1, 2, 3, ...

$$J - (S \cup \bigcup S_{i_1} \cup -S_{i_1i_2} \cup \ldots \cup \bigcup S_{i_1i_2\ldots i_n}) = \bigcup H_{i_1i_2\ldots i_ni_{n+1}},$$

hence

$$D=\bigcap_{n=1}^{\infty}\bigcup H_{i_1i_2\ldots i_n}.$$

For every $x \in D$ there is exactly one sequence $\{i_n\} \in M_2$ such that $x = \sum_{n=1}^{\infty} i_n/3^n$. We see easily that then

$$x = \sum_{n=1}^{\infty} \frac{i_n}{3^n} = \bigcap H_{i_1 i_2 \dots i_n}.$$

17.8.4. Let $P \neq \emptyset$ be a compact space. Then there exists a continuous mapping f of the discontinuum D onto P.

Proof: I. Choose a $\delta > 0$. By 17.1.4 there exists a finite number of points $a_k \in P$ $(1 \leq k \leq m)$ such that

$$P=\bigcup_{k=1}^{m}\overline{\Omega}(a_{k},\delta).$$

Choose a h = 1, 2, 3, ... with $m \leq 2^h$ (the number h may be chosen greater than a prescribed number) and put $a_k = a_m$ for $m + 1 \leq k \leq 2^h$. Then

$$P = \bigcup_{k=1}^{2^h} \overline{\Omega}(a_k, \delta) \, .$$

The points a_k $(1 \le k \le 2^h)$ may be denoted by $b_{i_1 i_2 \dots i_h}$ where each one of the indices i_1, i_2, \dots, i_h has either the value 0 or the value 2. Put

$$\Omega(b_{i_1i_2\ldots i_h},\delta)=P_{i_1i_2\ldots i_h}.$$

Then

$$P = \bigcup P_{i_1 i_2 \dots i_h}, \qquad d(P_{i_1 i_2 \dots i_h}) < 2\delta$$

and the sets $P_{i_1i_2...i_h}$ are non-void and compact (see 17.2.2).

II. Let us carry out the construction just described with the given space P and $\delta = 1/2^2$. Let us denote the number h by h_1 . Now, let us carry out the construction again with any one from the 2^{h_1} spaces $P_{i_1i_2...i_n}$ and $\delta = 1/2^3$; we may assume that

the number h has in all 2^{h_1} cases the same value, which we denote by $h_2 - h_1$. For every $P_{i_1i_2...i_{h_1}}$ we obtain $2^{h_2-h_1}$ spaces $P_{i_1i_2...i_{h_2}}$. With any $P_{i_1i_2...i_{h_2}}$ and $\delta = 1/2^4$ we again carry out the construction, choosing always the same value $h_3 - h_2$ for h. Proceeding this way we obtain natural numbers $h_1 < h_2 < h_3 < ...$ and compact sets $P_{i_1i_2...i_{h_2}}$ (every index has the value 0 or 2) such that

$$d(P_{i_1i_2...i_{h_n}}) < 1/2^n, \tag{1}$$

$$P = \bigcup P_{i_1 i_2 \dots i_{h_1}},\tag{2}$$

$$P_{i_1 i_2 \dots i_{h_n}} = \bigcup P_{i_1 i_2 \dots i_{h_{n+1}}}$$
(3)

where, on the right-hand sides, the summation indices are $i_{h_n+1}, i_{h_n+2}, \ldots, i_{h_{n+1}}$.

For every point $t \in D$ there is exactly one sequence $\{i_n\} \in M_2$ with $t = \sum_{n=1}^{\infty} i_n/3^n$. The set

$$\bigcap_{n=1}^{\infty} P_{i_1 i_2 \dots i_{h_n}} \tag{4}$$

consists, by (1) and (3), of exactly one point (see 15.7.1, 17.2.1 and 17.2.2), which we denote by f(t). In this way we obtain a mapping f of D into P.

For every $x \in P$ there is, by (2) and (3), at least one sequence $\{i_n\} \in M_2$ such that x belongs to the set (4). Thus, f is a mapping of D onto P.

Choose a point $t_0 = \sum_{n=1}^{\infty} i_n^{(0)}/3^n \in D$; hence $\{i_n^{(0)}\} \in M_2$. Let $\varepsilon > 0$. Determine an *m* with $2^{-m} < \varepsilon$. We may prove easily that [1] $t_0 \in H_{i_1^{(0)}i_2^{(0)}\dots i_{h_m}^{(0)}}$, [2] if $(i_1, i_2, \dots, i_{h_m}) \neq (i_1^{(0)}, i_2^{(0)}, \dots, i_{h_m}^{(0)})$ then $\varrho(t_0, H_{i_1i_2\dots i_{h_m}}) \ge 1/3^{h_m}$. Hence, for $t \in D$, $|t - t_0| < 1/3^{h_m}$, we have $t \in H_{i_1^{(0)}i_2^{(0)}\dots i_{h_m}^{(0)}}$; hence, for $t \in D$, $|t - t_0| < 1/3^{h_m}$, $t = \sum_{n=1}^{\infty} i_n/3^n$, $\{i_n\} \in M_2$ we have $f(t) \in P_{i_1^{(0)}i_2^{(0)}\dots i_{h_m}^{(0)}}$, hence $\varrho[f(t), f(t_0)] \le d(P_{i_1^{(0)}i_2^{(0)}\dots i_{h_m}^{(0)}}) < 2^{-m} < \varepsilon$. Thus, the mapping f is continuous.

17.9. We say that P is a *locally compact* space, if P is a metric space and if for every $x \in P$ there is a neighborhood U such that its closure \overline{U} is compact. Local compactness is obviously a topological property.

17.9.1. A metric space is separable and locally compact if and only if it is homeomorphic with an open subset of a compact space.

Proof: I. Let G be an open subset of a compact space Q. Let P be homeomorphic with G. We have to prove that P is separable and locally compact. Since both properties are topological ones, it suffices to deduce this for G (instead of P). G is separable by 16.1.2 and 17.2.6. Let $x \in G$. Then G is a neighborhood of the point x (in the space Q), so that, by 10.1.2, there is a neighborhood U of x such that $\overline{U} \subset G$. The set \overline{U} is compact by 17.2.2. Since $\overline{U} \subset G$, we have $U = G \cap U$, $\overline{U} =$ $= G \cap \overline{U}$, i.e., U is a neighborhood of x in G and \overline{U} is the closure of U in G. Thus, G is locally compact.

11. Let P be separable and locally compact. Since P is separable, there is, by 16.5. a subset G of the Urysohn space U homeomorphic with P and hence locally compact. The closure \overline{G} of the set G in U is compact by 17.2.2 and 17.2.4. It remains to show that the set G is open in \overline{G} , hence, that $\overline{G} - G$ is closed in \overline{G} . Let us assume the contrary. Then (see 8.3.3) there is a sequence $\{x_n\}$ with $x_n \in \overline{G} - G$ such that $\lim x_n =$ $= x \in \overline{G}$ exists and does not belong to $\overline{G} - G$, so that $x \in G$. Since G is locally compact, there is a set V open in G, containing the point x and such that its closure in G, V_0 , is compact. By 8.7.1, $V_0 = G \cap \overline{V}$, where (similarly as in the following) the bar denotes the closure in U. By 8.7.5, $V = G \cap W$, where W is open in U. We have $G = (G \cap V) \cup (G - V) = (G \cap V) \cup (G - W) \subset (G \cap \overline{V}) \cup (U - W)$. i.e.,

$$G \subset V_0 \cup (\mathbf{U} - W). \tag{1}$$

The set V_0 is closed in **U** by 17.2.2. The set $\mathbf{U} - W$ is also closed in **U** as W is open in **U**. Hence, the set on the right-hand side in (1) is closed in **U**, so that (see 8.4) $\tilde{G} \subset V_0 \cup (\mathbf{U} - W)$, hence $\bar{G} \cap W \subset V_0 \subset G$. Since $x_n \to x \in W$ and since W is open in **U**, there is an index p such that for $n \ge p$ we have $x_n \in W$, i.e. $x_n \in \bar{G} \cap W$, hence $x_n \in G$. This is a contradiction.

17.9.2. A metric space P is separable and locally compact if and only if there is a compact space Q and a point $a \in Q$ such that the set Q - (a) is homeomorphic with P.

Proof: I. Let Q be a compact space. Let $a \in Q$. Let Q - (a) be homeomorphic with P. The set Q - (a) is open in Q. Thus, P is separable and locally compact by 17.9.1.

II. Let P be separable and locally compact. By 17.9.1 there exists a compact space $K = (K, \varrho)$ and an open $G \subset K$ homeomorphic with P. Denote by Q the set consisting of all points of the set G and one new element, which will be denoted by a. Let us distinguish two cases:

II α . Let P be compact so that G is also compact. By 17.1.2, $d(G) < \infty$. Let us define a finite function ϱ_0 on $Q \times Q$ as follows: for $x \in G$, $y \in G$ put $\varrho_0(x, y) = \varrho(x, y)$, for $x \in G$ put $\varrho_0(a, x) = \varrho_0(x, a) = 1 + d(G)$, finally, put $\varrho_0(a, a) = 0$. We see easily that ϱ_0 is a distance function in Q and that the space (Q, ϱ_0) is compact. Since the partial distance functions in G determined on the one hand by the distance function ϱ_0 on $K \supset G$, on the other hand by the distance function ϱ_0 in $Q \supset G$ coincide, P is homeomorphic (moreover, identical) with the set Q - (a) embedded into Q.

II β . Let P not be compact, so that G is not compact either. By 17.2.2. $G \neq G$ so that $K - G \neq 0$; since G is open in K, K - G is closed in K and hence compact by 17.2.2.

Let us define a finite function ϱ_0 on $Q \times Q$ as follows: for $x \in G$, $y \in G$ put

$$\varrho_0(x, y) = \min \left[\varrho(x, y), \varrho(x, K - G) + \varrho(y, K - G) \right], \tag{1}$$

for $x \in G$ put $\varrho_0(x, a) = \varrho_0(a, x) = \varrho(x, K - G)$; finally, put $\varrho_0(a, a) = 0$. For $x \in Q$, $y \in Q$, evidently $\varrho_0(x, y) = \varrho_0(y, x)$. Further, $\varrho_0(x, y) = 0$ if x = y and $\varrho_0(x, y) > 0$ if $x \neq y$, since $\varrho(x, K - G) > 0$ for $x \in G$ and since $K - G = \overline{K - G}$.

Let us define a finite function ϱ_1 on $K \times K$ as follows: for $x \in G$, $y \in G$ put $\varrho_1(x, y) = \varrho(x, y)$; for $x \in G$, $y \in K - G$ put $\varrho_1(x, y) = \varrho_1(y, x) = \varrho(x, K - G)$; for $x \in K - G$, $y \in K - G$ put $\varrho_1(x, y) = 0$. For $x \in Q$, $y \in Q$ we define, for the moment, a chain from x to y to be every finite sequence $\{u_i\}_{i=1}^m$ such that: [1] $u_i \in K$ for $1 \leq i \leq m$, [2] $u_1 = x$ if $x \in G$ and $u_1 \in K - G$ if x = a, [3] $u_m = y$ if $y \in G$ and $u_m \in K - G$ if y = a. The number

$$\sum_{i=1}^{m-1} \varrho_1(u_i, u_{i+1}) \quad \text{(equal to 0 for } m = 1)$$

is called the length of the chain $\{u_i\}_{i=1}^m$. We may prove easily that for $x \in Q$, $y \in Q$ there are chains from x to y and that the number $\varrho_0(x, y)$ is the least length of such chains.

Let $x \in Q$, $y \in Q$, $z \in Q$. There is a chain $\{u_i\}_{i=1}^m$ from x to y with length $\varrho_0(x, y)$. There is a chain $\{u_i\}_{i=m+1}^{m+n}$ from y to z with length $\varrho_0(y, z)$. Then $\{u_i\}_{i=1}^{m+n}$ is a chain from x to z with length on the one hand greater than or equal to $\varrho_0(x, z)$, on the other hand equal to $\varrho_0(x, y) + \varrho_0(y, z)$. Thus, $\varrho_0(x, y) + \varrho_0(y, z) \ge \varrho_0(x, z)$.

This proves that ϱ_0 is a distance function in Q. Let us prove that the space (Q, ϱ_0) is compact. Thus, let $\{x_n\}_1^\infty$ be a point sequence in Q. We have to prove that there is a subsequence of $\{x_n\}$ convergent with respect to the distance function ϱ_0 . This is evident if $x_n = a$ for infinitely many indices n. In the contrary case we may find a subsequence $\{x'_n\}_1^\infty$ of $\{x_n\}$ such that $x'_n \in G$ for every n. It may occur that there is a number $\varepsilon > 0$ such that, for infinitely many indices $n_1 < n_2 < n_3 < \ldots, \varrho(x'_{n_i}, K - G) \ge \varepsilon$. Then we have for every i

$$x'_{n_i} \in K - \Omega_K(K - G, \varepsilon) = L.$$

The set $\Omega_K(K - G, \varepsilon)$ is open in K. Hence, L is closed in K. Hence, by 17.2.2 L is a compact space (with respect to the partial distance function determined in L by the distance function ϱ of the space K). Thus, there is a subsequence $\{y_n\}_1^\infty$ of $\{x'_n\}_{i=1}^\infty$ such that there is a point $y \in L$ with $\varrho(y_n, y) \to 0$. As $\varrho_0(y_n, y) \leq \varrho(y_n, y)$, we also have $\varrho_0(y_n, y) \to 0$, i.e. the sequence $\{y_n\}$ is convergent with respect to the distance function ϱ_0 . There remains the case where for every $\varepsilon > 0$ there is an index p such that for $n \geq p$ we always have $\varrho(x'_n, K - G) < \varepsilon$. Then $\varrho_0(x'_n, a) =$ $= \varrho(x'_n, K - G) \to 0$; hence, $x'_n \to a$ with respect to the distance function ϱ_0 .

It remains to be shown that both the partial distance functions determined in G, on the one hand by the distance function ρ in $K \supset G$ and on the other hand by the

distance function ϱ_0 in $Q \supset G$, are equivalent, i.e. that, for $x_n \in G$, $x \in G$ we have

 $\varrho(x_n, x) \to 0$ if and only if $\varrho_0(x_n, x) \to 0$.

First, if $\varrho(x_n, x) \to 0$, we have $\varrho_0(x_n, x) \to 0$, since $\varrho_0(x_n, x) \leq \varrho(x_n, x)$. Let, secondly, $\varrho_0(x_n, x) \to 0$. As $x \in G$ and $K - G = \overline{K - G}$, we have $\varrho(x, K - G) > 0$, so that there is an index p such that, for $n \geq p$, $\varrho_0(x_n, x) < \varrho(x, K - G) \leq \varrho(x_n, K - G) +$ $+ \varrho(x, K - G)$. By (1), for $n \geq p$ we have $\varrho_0(x_n, x) = \varrho(x_n, x)$, so that $\varrho(x_n, x) \to 0$.

17.10. 16.1.5 and 17.2.3 yield:

17.10.1. The euclidean space \mathbf{E}_m (m = 1, 2, 3, ...) is separable and locally compact: however, it is not compact.

By 17.9.2 there is a compact space Q and a point $a \in Q$ such that \mathbf{E}_m is homeomorphic with Q - (a). We are going to construct such a space by means of the elementary calculus.

The set of all points $x = (x_0, x_1, ..., x_m)$ of the euclidean space \mathbf{E}_{m+1} with $\sum_{i=0}^{\infty} x_i^2 = 1$ will be called the *m*-dimensional spherical space (m = 0, 1, 2, 3, ...) and denoted by \mathbf{S}_m . The distance function in \mathbf{S}_m is certainly the partial distance function of the usual one in \mathbf{E}_{m+1} . The space \mathbf{S}_0 consists of exactly two points, while the spaces \mathbf{S}_m (m = 1, 2, 3, ...) are infinite.

9.5 and 17.2.3 yield:

17.10.2. The spherical space S_m (m = 0, 1, 2, ...) is compact.

17.10.3. Let $a \in S_m$, $b \in S_m$ (m = 0, 1, 2, ...). There exists an isometrical mapping f of S_m onto S_m such that f(a) = b.

Proof: I. We shall prove that, for $-1 \leq i \leq m-1$ there is an isometrical mapping f_i of \mathbf{S}_m onto \mathbf{S}_m such that if $f_i(a) = c_i = (c_{i0}, c_{i1}, \dots, c_{im})$, then, for $0 \leq j \leq i$, $c_{ij} = 0$. This statement is trivial for i = -1. Let it hold for some $i (-1 \leq i \leq m-2)$. It suffices to prove that then it also holds for i + 1. This is evident if $c_{i,i+1} = 0$. In the contrary case put, for $(x_0, x_1, \dots, x_m) \in \mathbf{S}_m : \varphi(x_0, x_1, \dots, x_m) = (x'_0, x'_1, \dots, x'_m)$, where

$$\begin{aligned} x'_{i+1} &= \frac{c_{i,i+2}x_{i+1} + c_{i,i+1}x_{i+2}}{\sqrt{(c_{i,i+1}^2 + c_{i,i+2}^2)}}, \\ x'_{i+2} &= \frac{-c_{i,i+1}x_{i+1} + c_{i,i+2}x_{i+2}}{\sqrt{(c_{i,i+1}^2 + c_{i,i+2}^2)}}, \\ x'_j &= x_j, \quad 0 \leq j \leq m, \quad i+1 \neq j \neq i+2. \end{aligned}$$

If we put $c_{i+1} = (c_{i+1,0}, c_{i+1,1}, \dots, c_{i+1,m})$, where $c_{i+1,i+1} = 0$, $c_{i+1,i+2} = \sqrt{(c_{i,i+1}^2 + c_{i,i+2}^2)}$, $c_{i+1,j} = c_{ij}$ for $0 \le j \le m$, $i+1 \ne j \ne i+2$, we see easily that $c_{i+1} \in \mathbf{S}_m$, that $c_{i+1,j} = 0$ for $0 \le j \le i+1$, that φ is an isometrical mapping of \mathbf{S}_m onto \mathbf{S}_m and that $\varphi(c_{i+1}) = c_i$. The required isometrical mapping f_{i+1} will be evidently obtained putting $f_{i+1}(x) = \varphi_{-1}[f_i(x)]$ for $x \in \mathbf{S}_m$.

II. By I (where we put i = m - 1) there is an isometrical mapping f' of \mathbf{S}_m onto \mathbf{S}_m with either f'(a) = (0, ..., 0, 1) or f'(a) = (0, ..., 0, -1). Since there is an isometrical mapping h of \mathbf{S}_m onto \mathbf{S}_m such that h(0, ..., 0, -1) = (0, ..., 0, 1) [it suffices to put $h(x_0, x_1, ..., x_m) = (-x_0, -x_1, ..., -x_m)$], we may assume that f'(a) = (0, ..., 0, 1). Similarly, there is an isometrical mapping f'' of \mathbf{S}_m onto \mathbf{S}_m such that f''(b) = (0, ..., 0, 1). Putting $f(x) = f''_{-1}[f'(x)]$ we obtain an isometrical mapping f such that f(a) = b.

17.10.4. Let $a \in S_m$ (m = 1, 2, 3, ...). The spaces E_m and $S_m - (a)$ are homeomorphic.

Proof: By 17.10.3 we may assume that a = (1, 0, ..., 0). For $(x_0, x_1, ..., x_m) \in \mathbf{S}_m - (a)$ put $f(x_0, x_1, ..., x_m) = (y_1, y_2, ..., y_m)$ where

$$y_i = \frac{x_i}{1 - x_0}, \quad (1 \le i \le m).$$
 (1)

We calculate easily that equations (1) are equivalent to the equations

$$x_{0} = \frac{\sum_{i=1}^{m} y_{i}^{2} - 1}{\sum_{i=1}^{m} y_{i}^{2} + 1}, \quad x_{j} = \frac{2y_{j}}{\sum_{i=1}^{m} y_{i}^{2} + 1}, \quad (1 \le j \le m).$$
(2)

It follows easily that f is a one-to-one mapping of $S_m - (a)$ onto E_m and that both the mappings f and f_{-1} are continuous.

Exercises

- 17.1. If P and Q are totally bounded spaces, then $P \times Q$ is a totally bounded space.
- 17.2.* If P and Q are compact spaces, then $P \times Q$ is compact.
- 17.3. If sets $A \subseteq P$ and $B \subseteq P$ are totally bounded, then $A \cup B$ is totally bounded.
- 17.4.* If $A \subseteq P$ and $B \subseteq P$ are compact sets, then $A \cup B$ is compact.
- 17.5. Let $A \subseteq P$. The closure \overline{A} is compact if and only if every point sequence $\{x_n\}$ in A has a convergent subsequence (in P; the limit need not belong to A).
- 17.6. Let P be a compact space. Let $A_n \subseteq P$, $A_n \supset \overline{A}_{n+1}$. Let G be a neighborhood of the set

 $\bigcap_{n=1}^{n} A_n$. Then there is an index *m* such that $A_n \subset G$ for every n > m.

17.7. Let Q be the completion of a metric space P. P is totally bounded if and only if Q is compact.

A metric space is said to be σ -compact, if $P = \bigcup_{n=1}^{\infty} A_n$, where every summand is compact.

- **17.8.** Let P be a σ -compact space. A point set $A \subseteq P$ is σ -compact if and only if it is $\mathbf{F}_{\sigma}(P)$.
- 17.9. An isolated metric space is compact if and only if it is finite.
- 17.10. Let $A \subset \mathbf{E}_m$, $B \subset \mathbf{E}_m$. Let $A \neq 0 \neq B$. Let A be closed and B bounded. Then there exists a point $y \in A$ such that

$$\varrho(y, B) = \min_{x \in A} \varrho(x, B) = \varrho(A, B).$$

17.11. Let $A \subset \mathbf{E}_m$, $B \subset \mathbf{E}_m$. Let $A \neq \emptyset \neq B$. Let A and B be closed; let A be bounded. Then there exist points $y_1 \in A$, $y_2 \in B$ such that

$$\varrho(y_1, y_2) = \min_{\substack{x_1 \in A \\ x_2 \in B}} \varrho(x_1, x_2) = \varrho(A, B).$$

17.12. Let f be a continuous mapping of a metric space P into a metric space Q. Let $A \subseteq P$ be compact. Let $\varepsilon > 0$. Then there is a $\delta > 0$ such that

$$x \in A, y \in P, \varrho(x, y) < \delta \Rightarrow \varrho[f(x), f(y)] < \varepsilon.$$

In the exercises 17.13-17.16, P* is the Hausdorff hyperspace of P.

- 17.13. If P is not complete, then P^* is not complete.
- 17.14. If P is not totally bounded, then P^* is not totally bounded.
- 17.15. If P is not separable, then P^* is not separable.
- 17.16. If P is not compact, then P^* is not compact.
- 17.17. If $P = K = E[0 \le t \le 1]$ and if $f_n(t) = t^n$, then there is no subsequence of $\{f_n\}$ convergent in P^K . Thus, P^K is not compact, while K and P are compact.
 - In P^{-1} . Thus, P^{-1} is not compact, while K and P are compact.
- 17.18. Deduce theorem 17.6.7 directly, without use of theorems 17.2.5, 17.6.4 and 17.6.6.
- 17.19. Deduce theorem 16.7 from theorems 16.5, 17.2.4 and 17.6.8.
- 17.20.* Every open subset of a locally compact space is a locally compact space.
- 17.21. A locally compact space is σ -compact if and only if it is separable.
- 17.22. Let the assumptions and notation of 17.9.2 be preserved. Let f be a homeomorphic mapping of P onto Q (a). Let $\{x_n\}$ be a point sequence in P. We have $f(x_n) \rightarrow a$ if and only if there is no convergent subsequence of $\{x_n\}$.
- 17.23.* R (see 9.4) is a compact space.
- 17.24. Let $a \in \mathbf{E}_1$, $b \in \mathbf{E}_1$, a < b, $P = \mathbf{E}[a \le t \le b]$. If c > 0, $\alpha > 0$, denote by $\Psi(\alpha, c)$ the system

of all the finite functions f on P such that

$$x \in P$$
, $y \in P$ imply $|f(x) - f(y)| \leq c |x - y|^{\alpha}$.

If $\alpha > 0$, put $\Phi(\alpha) = \bigcup_{c>0} \Psi(\alpha, c)$. We say that a function f on P satisfies the Lipschitz condition of the order α if $f \in \Phi(\alpha)$. If $f \in \Phi(\alpha)$, $\alpha > 1$, then f is a constant. Let $0 < \alpha < \beta \leq 1$, so that $\Phi(\alpha) \supset \Phi(\beta)$. Let c > 0. If $f_1 \in \Psi(\alpha, c)$, $f_2 \in \Psi(\alpha, c)$, put

$$\varrho(f_1, f_2) = \max_{x \in P} |f_1(x) - f_2(x)|.$$

Then $\Psi(\alpha, c) = [\Psi(\alpha, c), \varrho]$ is a complete space. The set

$$\Phi(\beta) \cap \Psi(\alpha, c)$$

is of the first category in $\Psi(\alpha, c)$. Thus, by 15.8.2, there is a function $f \in \Phi(\alpha)$ such that $f \in \Phi(\beta)$ for no $\beta > \alpha$. Moreover, it may be shown that there is a function which satisfies the Lipschitz condition of order α while for no $\beta > \alpha$ and no interval $Q = E[a_1 \le t \le b_1] \subseteq P$

does the partial function f_Q satisfy the Lipschitz condition of order β .

17.25. State the so called Borel (Heine-Borel) theorem. This is obtained from theorem 17.2.3 interpreting the word "compact" in the sense of theorem 17.5.4.