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Chapter IV 

CONNECTEDNESS 

§ 18. General theorems concerning connectedness 

18.1. A metric space P is said to be connected if [1] P 4= 0, [2] if P = A u B with 
separated (see 10.2) summands, we have either A = 0 or B — 0. Since every point 
set Q embedded into a metric space P is (see 6.3) a metric space, we need not define 
the notion of connected point set. Connectedness is a topological notion (see 9.3). 

The following theorem is evident: 

18.1.1. Every one-point space is connected. 

18.1.2. Let P = A u B with separated summands. Let S c= P be connected. Then either 
S a A (and hence S n B = 0), or S Œ B (and hence S n A = 0). 

Proof: We have S = (S n A) u (S n B) with separated (see 10.2.4) summands. 
Hence, either S n A = 0 and then S<=B or SnB=0 and then S a A. 

18.1.3. Let P 4= 0. For every couple a, b of distinct points aeP, bePt let there be 
a connected S(a, b) c P with a e S(a, b), b e S(a, b). Then P is connected. 

Proof: Let P = Au B with separated A, B. We have to prove that either A = 0 
or B = 0. Let, on the contrary, a G A, be B. Then A n S(a, + S(a, b), 
so that, by 18.1.2, S(a, 6) is not connected. This is a contradiction. 

18.1.4. Let S, c P . ^ c P be connected sets and let St n S2 * 0. Then S^ U S2  

/s a connected set. 

Proof: We have and hence 0. Let SxvS2 = 
= A \J B with separated A, We have to prove that either A = 0 or i? = 0. Let, 
on the contrary, ,4 4= 0 + By 18.1.2, either ^ n yl = 0 or St n B = 0; similarly 
either S2 n A = 0 or S2 n B = 0. Hence, one of the following cases occurs: [1] 
St n A = S2 n A = 0, [2] ^ n £ = S2 n 2? = 0, [3] S, n A = S2 nB = 0, 
[4] S ^ B = S2nA = 0. In case [1] we have A = (St u S2) n A = 0, which 
is a contradiction. Similarly we obtain B = 0 in case [2]. In cases [3] and [4] we 
have n S2 = St n S2 n (A u B) = 0. This is also a contradiction. 
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18.1.5. Let aeP. Let <5 4= 0 ¿>e a system of connected subsets of P such that every 
Se& containts the point a. Then the set 

T= \JS 
is connected. 

Proof: Evidently T 4= 0 . Let a e T, e T. Then there are sets ^ e 5 2 G S 
such that < x e S 1 , p e S 2 . Put S(a, /?) = 5X u S2 • We have S(a, cz T, aeS(a, /?), 
peS(a,P). Moreover, the set S(<x, P) is connected by 18.1.4, as n 52 4=0, 
since a e ^ n Thus, the set Tis connected by 18.1.3. 

18.1.6. Let a set S c: P be connected. Then S is also connected. 

Proof: We have S <z S, hence 5 4= 0. Let S = A u B with separated summands. 
We have to prove that either A = 0 or B = 0. The set A is closed in A u B = S, 
and S is closed in P; hence (see 8.7.4), A is closed in P, i.e. A = A. Similarly B = B. 
Since £ cz 5, we have, by 18.1.2, either S A or S cz B, hence, either S cz A = A 
or S c B = B. We have S = A u B and B are (separated, hence) disjoint. Thus, 
either B = 0 or A = 0. 

18.1.7. Let a set S c P be connected. Let S a T cz S. Then T is also connected. 

Proof: This follows from 18.1.6, as T= TnS, i.e. (see 8.7.1) it is the closure 
of the set S in T. 

18.1.8. Let A cz P, S a P. Let S be connected. Let A n S 4= 0 4= S - A. Then 
S N B(A) 4= 0 . 

Proof: We have P = A u (P - A) = A u P~^A and hence S = (S n A) u 
u (S n P — A). The sets S n A, S n P — /I are nonvoid. Since S is connected, they 
are not separated, hence (see 10.2.1) they are not disjoint, hence 0 4= S n A n 
n P — A = S n 

18.1.9. L /̂ fl connected space P contain two distinct points. Then P is uncountable. 

Proof: Let a e ? , b eP, a 4= b9 hence g(a, b) > 0. It suffices to prove that for 
every e > 0, e < q(a, b) there is an xeP with g(a, x) = e. Let 0 < e < g(a, b), 
A = E [Q(a, x) < e]. Then AnP±0*P-A and hence B(A) + 0 by 18.1.8. 

X 

Evidently B(A) cz E[a(a, x) = s]. 
X 

18.1.10. Let f be a continuous mapping of a connected space P onto a metric space Q. 
Then Q is a connected space. 

Proof: Since P 4= 0 we also have Q 4= 0. Let Q = AvB with separated A, B. We 
have to prove that either A = 0 or B = 0. We have P = f-y(Q) = /- X(A) U /_ ^JB). 
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We have A n B = 0, so that f-x(A) n f-x(B) = 0. Moreover, /I, 5 are closed in 
AKJB = Q, so that (see 9 . 2 ) f . l ( A ) , f - 1 ( B ) are closed in P. Thus, f-x(A)9 f-x{B) 
are separated. Since P = f-i(A) u f~i(B) is connected, we have either f-i(A) = 0 
and hence = 0 or f~i(B) = 0 and hence i? = 0. 

18.1.11. Le/ P be a connected space. Le/ a set Q <=. P be either connected or void. 
Let P — Q = A kj B with separated A> B .Then each of the two sets Q u A, Q u B 
is either connected or void. 

Proof will be done e.g. for Q u A. Let Q u A = H u K with separated //, K. 
We have to prove that either H = 0 or K = 0. Since Q cz / / c K we have, by 
18.1.2, either Q cz H OT Q cz K. E.g. let Q c= / / so that ^ c /L Thus, K and P 
are separated by 10.2.4, so that K and H KJ B are separated by 10.2.5. We have 
Ku(Hu B) = (Hkj K)KJ B = (g u ,4) u J5 = Qu (A u B) = Qu (P - Q) = P 
and P is connected, so that either K = 0 or H u Z? = 0, which implies H = 0. 

18.1.12. Let A cz P, B a P be non-void closed sets. Let AKJB be connected; let A N B 

be connected. Then A, B are also connected. 

Proof: We have (A — B) n (B — A) = 0. Moreover, A — B cz A = A, and hence 
- B n(B - A) = 0 and similarly 5 - X n (^ - j5) = 0. Hence, the sets 

A — B9 B — A are (see 10.2.3) separated. Thus, all the assumptions of theorem 
18.1.11, where we put AKJ B, An B9 A — B9 B — A instead of P, Q, Af B respect-
ively, are satisfied. Hence, A = (A n B) u (A — B)9 B = (A n B) KJ (B - A) are 
connected (since they are non-void). 

18.1.13. Le/ P ¿md Q be connected spaces. P x Q w a connected space. 

Proof: We have P =t= 0 4= G an(* hence P x Q 4= 0. Choose an a = (ai, a2) e 
ePxQ and & = (bl9b2)ePxQ. By 18.1.3 it suffices to show that there exists 
a connected S PxQ such that a e S, ¿ e ^ . The set St = Px (a2) is homeo-
morphic with P. Since connectedness is a topological property, S t is connected. 
Similarly, S2 = x Q homeomorphic with 2 and hence connected. We have 
aeSl9beS2 and hence (a) u (6) c S = u ^ <= P x 0. As , a2) e ^ n ^ + O , 
5 is connected by 18.1.4. 

18.2. Let P be a metric space. A set K c P is said to be a component of the space P 
if it is a maximal connected subset of P, i.e., if [1] K is connected, [2] A c P connected 
and A ZD K implies A = K. Since every set Q c P is a metric space, we need not 
define the notion of component of a point set. The notion of component is a topo-
logical notion (see 9.3). 

Obviously, 0 has no components. 
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18.2.1. Every point aeP belongs to exactly one component of the space P. 

Proof: Denote by S the system of all connected parts of the space P containing 
the point a. By 18.1.1 (a) e 6 , hence 6 4= 0. The union T of all sets of the system ® 
is conntected by 18.1.5. Evidently T is a component of the space P containing the 
point a. Let K also be a component of P containing a. We have K e 6 , hence, 
K <z T. As K is a component and T is connected, we obtain AT = T. 

18.2.2. Components of any space P are closed sets. 

Proof: Let K be a component of a space P. Then K is connected (by 18.1.5) and 
K cz R. Since A!" is a component, we have K = K. 

The following theorem is evident: 

18.2.3. A space P is connected if and only if it has exactly one component. 

18.2.4. Let Kt, K2 be two distinct components of a space P. Then Kt, K2 are 
separated sets. 

Proof: The sets Klt K2 are closed in P by 18.2.2 and hence they are closed in 
K X K J K 2 . Moreover, KT n K2 = 0 by 18.2.1. 

18.2.5. Let S cz P be a connected set. Then there is exactly one component K of P 
such that S c AT. 

Proof: By 18.2.1 there is at most one such component, as S 4= 0. Choose ae S. 
By 18.2.1 P has a component AT containing the point a. The set S u K is connected 
(by 18.1.4) and contains the component K. Hence, S u K — K, i.e. S cz K. 

18.3. Let P be a metric space. Let aeP, be P. We say that P is connected between 
the points a and b, if in every decomposition P = A u B with separated summands 
both a and b belong to the same summand A or B. This always holds if a = b. 

18.3.1. A space P 4= 0 is connected if and only if it is connected between a and b 
for every choice of the points aeP, be P. 

Proof: I. Let P be connected and let aeP9 be P. If P = A u B with separated 
summands, then one of the summands is void, so that the other contains both 
the points a, b. 

II. Let P be not connected. Then P = A u B with separated non-void A, B. 
Choose ae Ay beB. Obviously P is not connected between a and b. 

18.3.2. Let aeP, be P, ceP. Let P be connected between a and b. Let P be connected 
between b and c. Then P is connected between a and c. 
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Proof: Let P = A u B with separated summands and let, e.g., ae A. We have 
to prove that also ce A. Since ae A and since P is connected between a and b we 
have be A. Since be A and since P is connected between b and c, we also have 
ceA. 

18.3.3. Let S <=. P be a connected set. Let aeS9 be S. Then P is connected bztween 
a and b. 

Proof: Let P = A u B with disjoint summands and let, e.g., ae A. We have to 
prove that also be A. 

By 18.1.2 we have either S c A or S cz B. Since aeS belongs to A, we have 
S c A and hence also be A. 

A set Q cz P is termed a quasicomponent of the space P, if [I] Q 4s 0, [2] P is 
connected between points a and b whenever aeQ9 beQ, [3] P is not connected 
between a and b whenever ae 0 , beP - 0 . Evidently, 0 has no quasicomponents. 

18.3.4. Every point aeP is contained in exactly one quasicomponent of the space P. 

Proof: I. Denote by 0 the set of all xeP such that P is connected between a 
and x. We have ae Q and hence 0 4= 0. If x e 0 , y e 0 , then P is connected between 
x and a and also between a and y. Thus, P is connected between x and y by 18.3.2. 
If x e 0, yeP— 0 then P is not connected between x and y. But P is connected 
between a and x; if it were connected between x and y, it would be connected 
between a and y by 18.3.2, i.e. y would belong to 0, which is a contradiction. Thus, 
0 is a quasicomponent of P. 

II. Let Qt and 0 2 be quasicomponents of P, containing the point a. If xeQl9 

thenPis connected between a and x, so that xe Q2. Hence, Qx c Q2 and similarly 
0 2 <= fii- Hence Qt = Q2. 

18.3.5. Points aeP, beP belong to the same quasicomponent of P if and only if P 
is connected between a and b. 

Proof: Let Q be the quasicomponent of P (see 18.3.4) containing the point a. 
By part I of the previous proof, be Q i f and only if P is connected between a and b. 

18.3.6. Quasicomponents of any space P are closed sets. 

Proof: Let, on the contrary, a quasicomponent Q of a space P be not closed. 
Then we may choose a point aeQ and a point be Q — Q. Then P is not connected 
between a and b so that P = A u B with disjoint summands, a e A, b e B. As A, B 
are separated, they are closed in A u B = P and hence A = A. If x e Q, thzn P 
is connected between a and x. Since P = A u B with separated A9 B and sinse 
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a e A we have xeA. Thus, xeQ implies x e A, i.e. Q c A, so that Q c A = A 
and hence be A. This is a contradiction. 

From 18.3.1 and 18.3.5 we obtain 

18.3.7. A space P is connected if and only if it has exactly one quasi component. 

18.3.8. Let Ql9 Q2 be two distinct quasicomponents of a space P. Then Ql9 Q2 are 
separated sets. 

Proof: The sets Ql9 Q2 are closed in P by 18.3.6; hence, they are also closed in 
Qiu Q2. Moreover, Qx n Q2 = 0 by 18.3.4. 

18.3.3 and 18.3.5 yield 

18.3.9. Every component of any space P is a subset of some quasicomponent of P. 

18.3.10. A quasicomponent Q of a space P is a component of P if and only if it is 
connected. 

Proof: I. If Q is not connected, it is not a component, since every component 
is connected. 

II. If Q is connected, then (see 18.2.5) Q is a subset of some component K9 

and K is (see 18.3.9) a subset of a quasicomponent Q'. Then 0 4= Q K a Qf 

so that Q = Q' by 18.3.4. Thus, O = K. 

18.3.11. Let P have a finite number of quasicomponents. Then every quasicomponent 
is connected. 

Proof: Let, on the contrary, a quasicomponent Qx not be connected, so tha) 
QX = A u B with separated non-void A9 B. Choose ae A, b e B. Let Qx (2 ^ / ^ nt 
be all the other quasicomponents of P. (We have n ^ 2, i.e. Qt #=P, since Qx is not 
connected between a and b and P is connected between a and b.) The sets A and B 
are separated. A and Q{ (2 ^ / g n) also are separated (see 18.3.8 and 10.2.4). 

n n 
Hence (see 10.2.5), A and B u \J Qi are separated. We have >4U(JBU U Qt) = 

i=2 i=2 

= (AuB)u U Qi= U Qi = p, aeA, beBvUQi. 
i = 2 ¿=1 ¿ = 2 

Thus, P is not connected between a e Qx and b e Qx which is a contradiction. 

18.4. Let aeP9 be P. A set chain from a to b is a finite sebuence t of point 
sets such that [1] aeMX9[2]be Mm9 [3] n Mi+X 4= 0 for 1 ^ i g m - 1. 

18.4.1. Let a e P9 b e P. For every finite system % of open sets with U X = P assume 
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that we may choose a set chain from a to b out of 91. Then P is connected between 
a and b. 

Proof: Let, on the contrary, P not be connected between a and b. Then P = 
= A u B with separated summands, a e A, b e B. Denote by 9t the system 
consisting of the sets A and B. Then 91 is a finite system of open sets witli U X = P. 

Hence, there is a set chain from a to b such that Mt e9l. Thus, for every i 
either Mt = A or Mx = B. As A n B = 0, a e A, ae Mx, we have Mx = A. As 
M{ n Mt 

+ i + 0 (1 ^ i ^ m — 1) we obtain by induction that Mx = A for every i 
(1 ^ i ^ m). Hence, Mm = A, so that be A, which is a contradiction. 
18.4.2. Let P be connected between aeP and be P. Let 91 be a system of open sets 
with (J X — P. Then we may choose a set chain from a to b out of 91. 

XeK 
Proof: Choose an AeW with aeA. Denote by 91 x the system of all the Xes2\ 

such that there is a finite sequence {/4f}]"=1 with [1] At e9l (1 ^ / ^ m), [2] Ax = A, 
[3] Am = X9 [4] Ai n Ai+1 * 0 (1 ^ / ^ m - 1). 

Put 9i2 = 91 - 9^ . If ^ G 9ti, 7 e 91, X n Y ± 0, we have, obviously, r e 9 i , . 
Hence, 

Xe1tl9 Ye 9l2 => X n Y = 0 . (1) 

Choose a i?e9l with If jBeSli, we obviously may choose a set chain from 
a to b out of 91. Thus, let Be 9l2. Put St = \J X9 S2 = (J X. Then the sets St 

XeSii XeKi 
and S2 are open and u S2 = P. Moreover, St n S2 = 0 by (1). Hence, Si and 
S2 are separated. Evidently a e Sx, b e S2 so that P is not connected between a and b. 

18.5. Let Q cz P9 a e P9 b e P. We say that the set Q separates the point a from the 
point b in P if a eP — Q9 beP — Q and if the set P — Q is not connected between 
a and b9 hence, if P — Q = A u B with separated summands such that ae A, 
be B. If Q = {q) is a one-point set separating a from b in P9 we also say that the 
point q separates the point a from the point b in P. 

18.5.1. Let a set Q cz P separate a point a from a point b in the space P. Then there 
is a set F cz Q closed in P which also separates a from b in P. 

Proof: We have P — Q = A u B with separated summands, aeA, be B. By 
10.2.7 there are open U, V such that U n V = 0, U z> A, V z> B. Put F = 
= P - (C/ u V). Then F is a closed set, F c Q and P - F = U u V with separated 
summands, ae U, be V. 

18.5.2. Let QaP, aeQ - B(Q), beP-Q. Then the set B(Q) separates the 
point a from the point b in the space P. 
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Proof: We have B(Q) = Q n P - ß , henceP - B(Q) = (P - Q) v (P - P - Q) 
with separated summands. As beP - ß while neither a e B(Q) nor a eP - Q, 
we have a e P — (P — Q). 

18.5.3. Lei ß C: P fo AW open set and let aeQ, beP - Q. Then the set B(Q) 
separates the point a from the point b in P. 

This is a particular case of theorem 18.5.2, since Q = Q — B(Q) (see 10.3.2). 

We say that a set QaP separates the space P, if P is connected and P — Q is not 
connected. If a one-point set (q) separates P, we also say that the point q separates 
the space P. 

We say that a set Q cz P is an irreducible cut of the space P between points a, b, 
if [1] ß separates a from 6 in P, [2] if M <z ß separates the point a from the point b 
in P, then M = Q. 

18.5.4. If Q a P is an irreducible cut of P between points a, b then Q is a closed set. 

This follows from 18.5.1. 

Exercises 

18.1. Connected spaces are either one-point or dense-in-itself. 
18.2. Let P = A\J B with connected summands. P is connccted if and only if A, B are not se-

parated. 
18.3. Let S 4= 0 be a system of connected parts of a space P. Let there be no separated sets A e 6 , 

B g 3 . Then the set J J S is connected. 
Se© 

18.4. A space P is connected if and only if for every X P 

0 4= * * P implies B(X) * 0. 

18.5. Let P be a connected space. Let Q c P. Let P — Q = A KJ B with separated non-void 
summands. Let for X Q * X the set P — X be connected. Then the sets A u Qy B U Q 
are connected. 

18.6. In theorem 18.1.12 we may replace the word "closed" by the word "open". 
18.7. If P x Q is a connected space, then both spaces P, Q are connected. 
18.8. Let P, Q be infinite connected spaces. Let a ePxQ. Then the set P x Q — (a) is connected. 
18.9. Let a set M be dense in a space P. Let M have a finite number of components. Then P has 

at most as many components as M. 
18.10. The components of a space P x Q are identical with the sets MxN where A/, N varies over 

the components of P, Q respectively. 
n 

18.11.* We may write P = ( J A{ with separated non-void summands if and only if P h a s at least n 
i= 1 

components. 
18.12. Let P be a connected space. Let a set Q P have a finite number of components. Let P — Q = 

— A U B with separated Ay B. Then QUA has at most as many components as Q. 
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18.13. Let A <= py B <= p be closed sets. Let A u B be connected; let A n B have a finite number 
of components. Then A has at most as many components as A n B. 

18.14. In exercise 18.13 we may replace the word "closed" by the word "open". 
18.15. Let a, by c be three distinct points of a connected space P. Let the point a separate the point b 

from the point c. Then the point b does not separate the point a from the point c. 
18.16. Let a> b> c be three distinct points of a connected space P. Let no x e P separate a either from b 

or from c. Then no x e P — (a) separates the point b from the point c. 
18.17. Let ay b be two distinct points of a connected space P. Let M be the set of all x e P separating 

the point a from the point b. Then we may define an ordering of M as follows: If x e A/, 
y E M then precedes y" means that the point x separates the point a from the point v. 

18.18. The ordering defined in exercise 18.17 turns to its inverse, if we interchange the points ay b. 
18.19. Let P be a connected separable space. Let M ^ P be an uncountable set; let every x e M 

separate the space P. Then there exist two points ay b and an uncountable N c M such that 
every x e N separates the point a from the point b. 

In exercises 18.20—18.23, the proposition **P is a(a, by means that a, b are two distinct points of 
a connccted space P and that no connected closed M =1= P contains both the points ay b. 

18.20. Let P be <x(a, b). Let a set M c p — [(a) u (6)] separate P. Then the points a, b belong to 
distinct components of P — M. 

18.21. Let P be a(ay b). Let a set M =1= P be closed and connected. Then P — M has at most two 
components. 

18.22. If in ex. 18.21 a e A/, then P— M is connected. 
18.23. Let a * b + c * a. Let P be simultaneously o(a, b)y o(ay c)y a(by c). Let P = A U B with 

closed connected summands. Then either A -= P or B ------ P. 

§ 19. Connectedness of compact spaces 

19.1. A continuum is a connected compact space containing more than one point. 
The notion of continuum is a topological notion (see 9.3). Some authors use the 
term continuum also for one-point sets. 

19.1.1. Let Q be a component of a compact space P. Then Q is either a one-point 
set or a continuum. 

Proof: Q is connected. By 18.2.2 and 17.2.2 Q is compact. 

Let £ > 0. Let ae P, b eP. An e-chain from the point a to the point b in the 
space P is a finite point sequence {«,})= i s u c h that [1] a{ = a, [2] am = by 

[3] g(ai9 ai+l) < e for 1 ^ / ^ m - 1. 

19.1.2. Let a metric space P be connected between ae P and b e P. Let E > 0. Then 
there is an E-chain from a to b in P. 

Proof: Let 91 be the system of all sets Q{x, \ e) where x varies over P. The sets 
Q(X, ^e) are (see 8.6) open and (J £>(x, -\E) = P, so that, by 18.4.2, there may be 

xep 

chosen a set chain {A^ILi from a to b out of 9t. Put A-t = Q(xi9 i e) (1 ^ / g m). 
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Let x0 = + i = b. Then {x j^o 1 is an e-chain from a to b. We have, first, 
x0 = aeAx = Q(X19\E)9 hence e(x0>*i) < < e. Secondy *M + 1 = be A = 
= Q(xm,ie), hence Q(xm,xm+l) < ie < e. Finally, let 1 ^ i ^ m - 1; then there 
is a point z e Ax n Ai+1 = Q(xhie) n G(x i + 1 , ie)9 hence g(xi9 z) < \B9Q(Z9 xl + L)< 

< and hence < e. 

19.1.3. Let P be a compact space. Let aeP, be P. For every s > 0, let there be an 
e-chain from a to b in P. Then P is connected between a and b. 

Proof: Let, on the contrary, P not be connected between a and b. Then P = 
= A u B with separated A, B such that a e A, be B. The sets A and B are closed 
in P, hence (see 17.2.2), they are compact. As A N B = 0, we have, by 17.3.4, 
Q(A9 B) > 0. Let 0 < e < Q(A9 B). Let {a^=x be an £-chain from a to b. We have 
ax = aeA. Since g(ai9ai+1) < e < q(A9 B) (1 ^ i ^ m — 1) we can prove by 
induction that ate A (1 ^ / ^ m). Thus, b = am e A, which is a contradiction. 

19.1.4. Let Q be a quas¿component of a compact space P. Let U be a neighborhood 
of the set Q. Then P = A u B with separated summands such that Q c= A c U. 

Proof: The case U = P is trivial (A = P, B = 0). Hence, let P - { 7 * 0 . Choose 
an a e Q. If xeP — U9 then (see 18.3.5), P is not connected between a and x so 
that there exist separated sets H(x) and K(x) such that a e H(x), x e K(x)9 P = 
= H(x) u K(x). If yeQ, then P is connected between a and y9 so that y e H(x). 
Thus, Q c= H(x). The sets H(x) and K(x) are open in P so that the sets K(x) - U9 

H(x) — U are open in P — U. Since P — U is compact (see 17.2.2) and 
U (K(x) — U) = P — U9 we may, by 17.5.4, find a finite number of points 

.v t P - U m m 
XieP - U ( l g i g m ) such that (J (K(Xi) - U) = P - U, i.e. U K(Xi) => 

i = 1 m m i = 1 
z>P - U. Since //(*,) = P - K(xJ9 we have f | H(xt) = P - \J K(x^9 hence 
m m m i = 1 i = 1 
f | H(xs) C U. Put A = f | B = u so that Q c: A a U9 A u B = 

1=1 i=l i= 1 
= P. Since //(JC,) and K(x¡) are separated, A and K(xf) are also separated, by 
10.2.4, so that A and 2? are separated by 10.2.5. 

19.1.5. In compact spaces the quasicomponents are identical with the components. 

Proof: By 18.2.1,18.3.4 and 18.3.10 it suffices to show that every quasicomponent Q 
of a compact space P is connected. Let, on the contrary, Q not be connected. As 
£? 4= 0, we have Q = A u B with non-void separated A9 B. The sets A9 B are closed 
by 8.7.4 and 18.3.6; hence, they are compact by 17.2.2. Moreover, A n B = 0, 
so that Q(A9 B) > 0 by 17.3.4. Let 0 < 2c < Q(A9 B)9 so that Q(A9 e) n Q(B9 a) = 0. 
The set Q(A, e) u Q(B, e) is a neighborhood of the set Q = A \J B. Hence, by 
19.1.4, P = H u K with separated summands such that Q c= H a Q(A9 e) u Q(B9 &); 
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hence, H = Hx u H29 where Hx = H n Q(A, e), H2 = H n Q(B9 e). Evidently 
A a Hl9 B = H2. The sets i / j and AT are separated by 10.2.4; the sets Hy and H2 

are separated by 10.2.7; hence, Hx and H2 u A'are separated by 10.2.5. Moreover, 
P = Ht u (H2 u X), A cz Hl9 B cz H2 KJ K. Thus, P is not connected between 
a and b whenever we choose ae A, b e B. This is a contradiction (see 18.3.5), as 
aeQ, be Q. 

19.1.6. Let be a sequence of continua. Let An ZD An+1 for n= 1 ,2 ,3 , . . . 
oc 

Then An is either a one-point set or a continuum. 
n= 1 

00 

Proof: We may assume that Ax = P, so that P is compact. Put C = f ) An. 
n = 1 

By 17.5.1, C 4=0. Moreover, the set C is closed and hence compact (see 17.2.2). 
It remains to prove that C is connected. Let, on the contrary. C = Cx u C2 with 
non-void separated C,, C2 . By 10.2.7 there exist open sets , U2 such that 
UinU2 = 0, UxZD Ci9 U2 => C2. If AnaUx u C/2, then = n C^) u 
u n U2) with separated summands and An n Ux o Cj 4= 0, n i/2 3 C2 4̂  0 
which is impossible, since is connected. Hence, An — ( ^ u t/2) 4= () for every n. 
Since An - (Ux u U2) => - (C^ u i/2), we have by 17.5.1 

0 4= 0 [Ah - (Ux u i/2)] = C - ( i / , u , 
n = 1 

which is a contradiction. 

19.1.7. Let P be a compact space. Let {Anbe a sequence of connected sets such 
that Lim An 4= 0. Then Lim An is either a one-point set or a continuum. 

Proof: Let ae\JimAn. Then [see 8.8.(1)] tf e L i m ^ , so that Lim An 4= 0. We 
see easily (ex. 8.18), that the set Lim An is closed. Hence, Lim An is compact by 
17.2.2. It remains to show that Lim An is connected. Let us assume the contrary. 
Then there are separated sets H, K such that Lim An = H u K9 ae H9 K 4= 0.  
By 10.2.7 there exist open U, V with U n V = 0, U => H, V ZD K. AS a e Lim An9 

there is a sequence {a„} such that an a, ane An for every n. Choose a be K a 
c Lim An. There exist indices < i2 < i3 < ... and a sequence {Z?in}®=1 such 
that £>/„-> b9 bineAin for every n. Since U is a neighborhood of the point a = 
= lim an and V is a neighborhood of the point b = lim bin there is an index p such 
that n > p implies ain e U9 bin e V9 which implies Ain n U 4= 0 4= Ain N V. Since 
the sets Ain n U9 Ain n V are separated and since Ain is connected, there exists 
a cin e Afn u (U u V) for n > p. As P is compact, there is a subsequence {/„} of {/„} 
such that lim cJn = c exists. As cJn eP — (U u V) and as P — (U u V) is closed, 
we have c e P — (U u V). This is a contradiction, as ceLim An = H u K c 
c C/u V. 
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19.1.8. Let f be a continuous mapping of a compact space P onto a metric space Q. 
Let /_ !(>') cz P be connected for every y e Q. IfScz Q is connected, then f-x(S) c P 
is also connected. 

Proof: Let /_ t (S) not be connected. Obviously f-i(S) 4= 0, so that there exist 
non-void separated A cz P9 B cz P with f-x(S) = A u B. Evidently S = f(A) u 
uf(B)9 f(A) 4= 0 4= f(B). Since S is connected, f(A) and f(B) are not separated, 
so that, by 10.2.3, we have either f(A) nf(B) 4= 0 or f(A) nf(B) 4= 0. Let, e.g., 
f(A) nf(B) 4= 0. B is compact by 17.2.2. Hence,/(5)js_compact by 17.4.2. Thus, 
f(B) is closed in Q by 15.2.1 and 17.2.1. Hence, f{B) cz f(B) by 8.4, so that 
f(A) nf(B) 4= 0. Hence there are points xxe A, x2eB9 ye f(A) cz S with f(x{) = 
= f(x2) = y. We have (xj) u (x2) cz f_ {(y) cz f_ ¿S) = A u B. As A n B = () 
by 10.2.3, x2 does not belong to A; thus, x2 e B. Thus, f-x(y) = (f-x(y) n A) u 
u (f-i(y) n B) with non-void separated (see 10.2.4) summands, i.e. f-i(y) is not 
connected, which is a contradiction. 

19.2. 19.2.1. Let ae Ej, be EM a < b. Then J = E[a ^ x b] is a continuum. 
X 

Proof: The set J is compact (see 17.2.3) and it contains more than one point. 
It remains to prove that it is connected. This follows easily from 18.3.1 and 19.1.3. 

We call an interval every part of Ej containing more than one point and such 
that it contains every z with x < z < y whenever it contains x and y. 

19.2.2. Let M cz Ex. M is connected if and only if it is either a one-point set or 
an interval. 

Proof: I. Every one-point set is connected by 18.1.1. The connectedness of 
intervals may be easily proved by 18.1.5 and 19.2.1. 

II. Let M be neither a one-point set nor an interval. If M 4= 0, there are numbers 
x, >', z with x e M9 y e M, z e Et — M. Evidently M = (M n E[7 < z]) u 

t 
u (M n E[7 > z]) with non-void separated summands so that M is not connected. 

X 

19.2.3. Let P be a connected space. Let f be a finite continuous function on P. Then 
either f is a constant functio?i or f(P) is an interval. 

This follows easily from 18.1.10 and 19.2.2. 

19.2.4. The euclidean space Em (m = 1, 2, 3, ...) is connected. 

Proof: E, is connected by 19.2.2. Since E„I+i = E,„xE,, the connectedness of 
every Em follows by induction from 18.1.13. 
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19.2.5. The spherical space (see Chapter III, 17.10) S<M (m = 1, 2, 3, ...) is connected. 

Proof: Choose an ae Sm. Evidently S,„ — (a) = S,„. S;/J — (tf) is connected by 
17.10.4 and 19.2.4. Hence, S,„ is connected by 18.1.6. 

19.3. 19.3.1. Let P be a continuum. Let a set F cz P be closed and let U 4= F 4= P. 
Let K be a component of F. Then K n B(F) 4= 0. 

Proof: Let, on the contrary, K c G, where G = F - B(F) = F - P - F. Then G 
is a neighborhood of K in F. As K is (see 19.1.5) a quasicomponent of a compact 
(see 17.2.2) space F, by 19.1.4 we obtain that F = A KJ B with separated 
summands such that K cz A cz G. We have A n B = 0 and the sets A, B are closed 
in P by 8.7.4. As F = A u i? we have 

P= Au(B u P~^~F) (1) 

with closed summands. We have A n B = 0 and also A n P — F - 0, as A cz G = 
= F — P—F. Thus, the summands in (1) are separated; as P is a continuum, 
one of them is void. We have 0 4= K cz A. Hence, B P— F = 0, hence P — 
— F = 0 i.e. F = P, which is a contradiction. 

19.3.2. Let P be a continuum. Let G cz P be an open set such that 0 4= G 4= P. Let K 
be a component of the set G. Then K n B(G) 4= 0. 

_ Proof: Suppose that K n B{G) = K n (G - G) = 0._We have K c G, hence 
X c (7. As K n (G - tf) = 0, we have X_c= G. Hence, K n (P - G) = 0 so that, 
by 17.3.4 (see also 17.2.2) we have E = Q(K, P - G) > 0. Let F = E [ Q ( X , P - G) ^ 

X 
^ ¿6]. Then F is a closed set. We have F c G, hence F 4= P and K c P, hence 
F 4= 0. The set K is connected (see 18.1.6), hence (see 18.2.5), K cz L where L is 
a component of the set F. Since F cz G, we have, by 18.2.5, L cz M, where M is 
a component of G. Thus, 0 4= K cz K cz L cz M, where K and M are components 
of the set G, so that (see 18.2.1) K = M. Hence, K = Lisa component of the set F. 
Hence, by 19.3.1, K n B(F) 4= 0. Evidently B(F) cz E[e(x, P - G) = ±e]. Hence, 

X 

for every ae K n B(F), P - G ) = i e < e = <?(K, P - G). This is a contra-
diction. 

19.3.3. Let P be a continuum. Let ae P. Let e > 0. there is a continuum 
K cz P such that a e K cz Q(a, e). 

Frew/: Let F = i2(a, ie). We have ae F cz Q(a, e), hence F 4= 0 and Fis a closed 
set. If F = P, we may choose K = F. Thus, let F 4= P and let K be the component 
of F containing the point a. We have ae K cz Q(a, s) and the set K is connected. 
Moreover, K is closed by 8.7.4 and 18.2.2, hence (see 17.2.2), K is compact. Thus, 
K is a continuum, if K 4= (a). By 19.3.1 0 4= K n B(F) cz K - (a\ so that K 4= {a). 
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19.4. We say that P is an irreducible continuum between points a an I b, if: [1] P is 
a continuum, [2] a e P, be P, [3] if K c P is a continuum and if ae Ky be AT, then 
K = P. By 19.3.3 necessarily a 4= b. 

19.4.1. Let P be a continuum. Let ae P, b e P, a 4= b. Then P contains at least one 
irreducible continuum between the points a and b. 

Proof: Let be the system of all continui A cz P such that ae A, b e A. We 
X 

have P e S2T and hence 4= 0. If e % An ZD An+l(n = 1, 2, 3,...), then f | A e St 
»1=1 

by 19.1.6. Hence, by 16.4 (see also 17.2.6) there is at least one minimal set K in St. 
K is obviously an irreducible continuum between the points a and b. 

19.4.2. Let P be an irreducible continuum between aeP and be P. Then the sets 
P - [(<a) u (b)]9 P - (rt), P - (b) are con tacted. 

Proof: I. Put Q = P - [(a) u (6)]. Then Q = P, i.e. both a and b belong to Q; 
Indeed, Q 4= 0 by 18.1.9, and P = Q u (P - Q) with closed (see 8.3.4), hence 
separated, summands, so that P — Q = 0. 

II. By I and 18.1.7 it suffices to show that the set Q is connected. 
Let us assume that Q is not connec ted. As Q 3= 0, Q = Akj B with non-void 

separated summands. By I, P = A u B . By 10.2.3 AnB = 0 = AnB and hence 
A * P 4= B. As P is connected and P = A u 5 , A 4= 0 4= 5, we have A u B 4= 0. 
We have A n B n Q = (A r\B) u (^ n B) = 0. Thus 0 M n 5 c ( f l ) u (6), so 
that we may assume that aeAc\B. Moreover, beP = A u B, so that we may 
assume A e A. First, let A be connected between the points a and b. Then a and b 
belong to the same quasicomponent K of the space A (see 18.3.5). A is compact 
(see 17.2.2), so that (see 19.1.5) K is a component of A. As a e K, b e K, a 4= b, 
Kis a continuum (see 19.1.1). P is an irreducible continuum between the points a, b, 
so that K = P. This is a contradiction, since K c: A 4= P. 

It remains to investigate the case that A is not connected between a and b. Then 
A = CI U DL with separated summands such tha t aeCl9 beDx. If b does not 
belong to B, we have P = 3 u B = D 1 u (Cx u B) with separated non-void DL9 

CLu B which is a contradiction. Thus, both the points a, b belong to B. If B is 
connected between a and b9 we obtain a similar contradiction as we did above. 
If B is not connected between a and b9 then B = C2 u D2 with disjoint summands 
such that ae C29 b e D2. Then P = A u B = (Cl u C2) u (D t u Z)2) with separated 
disjoint CiKj Cl9 Z>! u Z)2, which is a contradiction. 

19.5. semicontinuum is a non-void metric space P such that for every aeP9beP9 

a * b9 there is a continuum K cz P such that a e K, be K. The notion of semi-
continuum is a topological notion (see 9.3). 
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19.5.1 Every one-point space is a semicontinuum. This is evident. 

19.5.2. Every continuum is a semicontinuum. This is also evident. 

19.5.3. Every semicontinuum is connected. This follows from 18.1.3. 

19.5.4. A compact semicontinuum is either a one-point space or a continuum. This 
follows from 19.5.3. 

Let P be a metric space. A set S a P is said to be a constituant of the space P 
if it is a maximal semicontinuum in P, i.e. if: [1] S is a scmicontinuum, [2] A c Pt 

A semicontinuum, A => S imply A = S. The notion of constituant is a topological 
notion (see 9.3). 

Obviously, 0 has no constituants. 

19.5.5. Every point aeP belongs to exactly one constituant of P. 

Proof: Denote by ® the system containing the one-point set (a) and all the continua 
K a P such that ae K. If Kl e K2 e 3 , then ae u K2 and the set Kt u K2 

is connected by 18.1.4. Moreover, it is easy to prove (see ex. 17.4) that Kv u K2 

is compact. Thus, K2e& imply Kt u K2e Denote by S the union of 
all the sets of <5. Then a e S c P. If xeS, y eS there are i ^ S , K2 e S with 
x G , yeK2. We have (x) U (y) c Ky U K2e S . Hence, S is a semicontinuum. 
Let T a P also be a semicontinuum and let S c T and hence a e T. If x e T, x =|= a, 
there is a continuum K c T with (a) u (x) c T. We have hence, K c S, 
x G S. Thus, Ta S, so that T = S. Hence, S is a constituant. Let S* be another 
constituant with a e S*. If x G 5*, then either x — a or there is a continuum 
Kcz S* with (a) u (x) c K, so that xeS. Hence, S* cz S and similarly 5 c S * . 
Thus, S* = S. 

The following theorem is evident. 

19.5.6. A space P is a semicontinuum if and only if it has exactly one constituant. 

18.2.5 and 19.5.3 yield 

19.5.7. Every constituant of P is contained in a component of P. 

The following theorem is evident. 

19.5.8. A component K of P is a constituant of P if and only if K is a semicontinuum. 

19.5.9. In compact spaces, the constituants are identical with the components. 

Proof: Let K be a component of a compact space P. K is connected. By 18.2.2, 
K is closed in P, so that K is compact by 17.2.2. Hence, K is a semicontinuum by 
19.5.1 and 19.5.2. Thus, K is a constituant of P by 19.5.8. 
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Let P be a metric space. Let Q a P. We say that Q cuts P between points a and by 

if aeP — Q, beP — Q, a 4= 6 and if, for every continuum K a P such that a e K, 
be K we have K n Q 4= 0. The following theorem is evident. 

19.5.10. Let Q c= P, aeP, b e P. Q cuts P between the points a, b if and only if the 
points a, b belong to distinct constituants of P — Q. 

19.5.11. Let Q c P separate a point a from a point b in P. Then Q cuts P between 
the points a, b. 

Proof: We have P — Q = A u B with separated summands, a e A, be B. Let K 
be the component of P — Q containing the point a. By 18.1.2, K a A. Let H be 
the constituant of P containing the point a. By 19.5.7, H c K. Hence, H c A, 
so that be(P - Q) - H. Thus, Q cuts P between a, b by 19.5.10. 

19.5.12. Let a compact set Q c P cut P between points a, b. Then there is a compact 
set M c= Q such that [1] M cuts P between a, b, [2] if H c M is compact and if H 
cuts P between a, b then H = M. 

Proof: Let us denote by SI the system of all compact A c Q cutting P between a, b. 
We have QeW and hence 91 * 0. Let Ane*\, An ID An+i (n = 1 ,2 ,3, . . . ) ; put 

QO 
A = n Am. The sets An are closed in Q by 17.2.2, so that A is also closed in Q 

n= 1 
and consequently A is compact by 17.2.2. Let us assume that A does not cut P 
between a, b. Since Q ZD A cuts P between a, b, we have aeP — A, b eP - A. 
Hence, there is a continuum K c P such that a e K, be K, K n A = 0. As An e 31, 
we have K n An 4= 0 for every n. The sets K n An are closed in K and K n An => 

00 

3 K r\ An + i. Hence, by 17.5.1, P ^ n An = K o A 4= 0> which is a contradiction. 
N = i 

Hence the required set M exists by 16.4 (see also 17.2.6). 

Exercises 

First, we describe twelve examples of metric spaces P{, P 2 , P i 2 \ all of them are subspaces 
of E 2 . We shall use the following abbreviation in order to simplify the description. If a = {a{y 

a2) £ E 2 , b -•= (Aj, 6 2 ) e E 2 , then S(a, 6) denotes the set of all x = (xx, AT2) G E2 such that 

x , = aA\ — t) 4- V 1 1 1 (0 ̂  / ̂  1) 
x2 = a2( 1 — 0 4- b2t. 

(S is, of course, the initial of the word "segment".) 
Put a0 = (0, 0), b0 = (0, 1) and, for n = 1, 2, 3 , . . . put an ••= ( / z - 1 , 0), bn = (n~\ 1). Put 

= Û [ % P K) V s("o» «i) u Wo. M -
n = 0 
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Preserve the meaning of the symbols an (n — 0, 1 ,2 , . . . ) and b0. Put 

Pi - \JS(aH9b0). 
n = 0 

Denote by D the Cantor discontinuum (see 17.8). Put b0 = (0, 1). Put 
/>3 = U S ^ ) > £ = <*.<>), xeD. 

sc 

Put ax = (0,0), a2 = (1,0). For /i - 1 , 2 , 3 , . . . , 1 ^ / ^ 2" — 1 put bni - ( / . 2~ n ,0) , cni -
- ( / . 2~~", 2~"). Put 

00 2" — 1 
PA = S(al9a2) U ( J U ^ I . Ü -

M=1 1=1 
Put ¿7j = ( 0 ; 0 ) , a2 — (0, 1) and, for / ; = 1 , 2 , 3 , . . . put bn == (n~ \ 0), = ( / i~ l , 1). Put 

P5 =- S(ax, a2) U ( J [S(6„, cn) U S(cn> bH + i)]. 
M = 1 

Putfl! = (0 ,0) ,a 2 - (1,0) and, for n - 1, 2, 3 , . . . , 1 g / ^ 2"'1 put bni - [(2/ — 1). 2~\ 
2~n)]. Put 

Po = S(aifa2) U (J (J [S(bni1bn + i 2i_,) 
n = 1 i = 1 

Put a - (0,0); for if = 1, 2, 3 , . . . put - ( " _ 1 , 0 ) ; for /i = 1, 2, 3, . . . , / = 1, 2, 3 , . . . put 
= [(« + I)"1,/»"1 . r 1 ] . Put 

n = 1 ¿=1 
Denote by Ax the set of all (x, y) with A* = —1, y ^ 0; denote by A2 the set of all (xy y) with 

x = Uy ^ 0. For n - 1 , 2 , 3 , . . . put 

"4„-3 = (1 -2~ 2 n + 1 ,0 ) , a2n - (0, n), = ( -1 + 2"2n,0). 
Put 

OO 

Pü= Ax^ A2v\JS{anyan + l). «=1 
For n = 1 , 2 , 3 , . . . denote by An the set of all (xyy) with * = n~ \ y ^ 0; Bn is the set of all (A,J> 

such that n2(x2 + y2) = 1 and either x ^ 0 or y ^ 0. Put 

P 9 = \ J ( A N V B N ) . 
n= 1 

For « = 0 , 1 , 2 , . . . denote by An the set of all Cr, j ) with x = ny y arbitrary. Denote by Bn the 
set of all (xy y) with x2 + y2 + 2nx — \y + n2 = 0. Denote by Cn the set of all (xy y) with x 2 + 
+ y2 + 2nx + iy + n2 = 0. Moreover, denote by A* the set of all (xy y) with * = 0, y ^ 0 
and by D the set of all (xy y) with v — 0 and x arbitrary. Put 

U u Ü<*« u c»> u ^ 
n = 0 n =- 1 oc 

Pn - A% U C0 u ( J (An U Bn U Cn) KJ D. 
n = l 

Let D be the Cantor discontinuum. For a e E j , r > 0 denote by K{(ayr) the set of all (*,.>•) 
with (* — a)2 + y2 = r2

y y > 0; by K2(ay r) the set of all (xy y) with (x — a)2 + y2 = r2
yy ^ 0. 

Denote by § the system of all Kx(ay r) with a = a + r e D. For n 1, 2, 3, . . . denote by 
OO 

the system of all K2(ay r) with a = * . 3~", r \ . 3"" , a + r e D. Put R = § U ( J § n . Put 
n = 1 

P12 = \JX = (\JX)U(\J (J X). 
Xeili A eft n = l Xe$n 
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19.1. Px, P2, P3, P5, » p i » p i 2 a r e continua. 
19.2. P 8 , P^ »-^10» ^11 a r c connected spaces. 
19.3. Put a = (0, 0), b = (0,1). Let M be the set of all (x, y) with JC = 0, 0 < y < 1; let AT be the 

set of all (x,y) such that either 0 < * ^ 1, = 0, or 0 < x ^ 1, y =--- 1. Then (a) u (b) 
is a quasicomponent of Px — {M U N). 

19.4. The point (1,0) separates P 9 . 
19.5. Let a, bn (n — 1, 2, 3 , . . . ) have the same meaning as in the description of P 7 . The set Q = 

00 
= [P7 — S(tf, Z^)] U (a) V ( J (bn) is connected. Every point bn (n = 1, 2, 3 , . . . ) separates Q. 

n = 1 
The symbol a in exercises 19.6—19.8 is used in the same sense as it was in exercises 18.20—18.23. 

19.6. Let aJbi,Q have the same meaning as in ex. 19.5. Let M <= Q. Then M is not a(ay b{). 
19.7. Put al = (0, 0), a2 = (0, 1), bx = (1, 0). Let 0 * Af c , a2). Let Q = [P5 — S( f l l , a2)] u 

VJ M. Then Q is o{bl, for every x e M. 
19.8. Let Ai, A2 have the same meaning as in the description of the space P 8 . Let — ( J, 0), 

zx e Aj, z2 e A2. Then P 8 is cr(a1, r t ) and P 8 is cr(a1, z2). If M c P 8 , then M i s not o(zl, z2). 
19.9. There exists a one-to-one continuous mapping of P 1 0 onto P n . There exists a one-to-one 

continuous mapping of P n onto P 1 0 . 
19.10. The point a — (0, 0) of P u has the following property. If U is a neighborhood of a and if 

d(U) < J, then the set B((J) contains at least five points; for every e > 0 there exists a neigh-
borhood U of a with d(U) < e such that B(U) contains exactly five points. 

19.11. Considering ex. 19.10 we may prove that P 1 0 and P n are not homeomorphic. 
19.12. Let Dy Si have the same meaning as in the description of P 1 2 . For every X e Si there are 

exactly two points of the form (x , 0) in X; in both cases x e D. There is exactly one set X e St 
with (0, 0) G X. If AT 6 D, x 4= 0, there are exactly two sets X e Si with 0) e X. 

There may be determined in exactly one way*) numbers fl„eD(« = 0 , l , 2 , . . . ) and sets 
Xn eSi (n = 0, 1, 2 , . . . ) such that a 0 = 0, an 4= an + i , (a„, 0) e Xn, (an + l , 0) e Xn (n = 
= 0,1 , 2 , . . . ) and that Xm 4= Xn for m, n = 0,1, 2 , . . . , m 4= n. We have Xn n Xtl + 1 = 
= [(an + 1 , 0 ) ] for n = 0, 1, 2 , . . . , while Xm n Xn = 0 for m, n = 0 , 1 , 2 , . . . , | m — n | ^ 2. 

Put 5(0) = [ j 
n = 0 

If JC eD and if (x, 0) e 5(0), put S(x) = 5(0). 
Let x e D and (x, 0) let not belong to 5(0). There may be determined in exactly one way 
numbers an e D (n = 0, ± 1, ± 2 , . . . ) and sets Xn e Si (n = 0, ± 1, ± 2 , . . . ) such that a0 = x, 
« n * a n + u ( a n t 0 ) e X n , ( f l „ + 1 , 0 ) G J N (n = 0, ± 1 , ± 2 , . . . ) and that for m, 
n = 0 , ± 1 , ± 2 , . . . , m 4= n. We have Xn n Xn + 1 = [(an + 1 , 0 ) ] for n = 0, ± 1 , ± 2 , . . . , 
while Xm n Xn = 0 for m,n = 0, ± 1 , ± 2 , . . . , | m — n \ ^ 2. Put 

S(x) = \ J X r u ( J X,n. 
n=0 n=1 

Thus, the set 5(x) is defined for every JC G D. If x e D, y E £>, we have either S(x) = 5Cv), 
or 5(jf) n 5(.y) = 0. The system of all the sets 5(*) is uncountable and the space P 1 2 is the 
union of all the 5(*) (x e D). 
Every S(x) (x e D) is connected and dense in P l 2 . 

19.13. Let / b e a continuous function on a connected domain P. Let A E P not separate P. Let there 
exist points bt e P, b2eP with /(¿>A) < f(a) < fib2). Then there exists a point c e P such 
that c 4= a a n d / ( c ) = / ( a ) . 

*) With the trivial exception of the interchange of an, a-n in = 1, 2, 3 , . . . ) . 
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19.14. Let P, Q be infinite connected spaces. Let / b e a continuous function on P x Q. Then there 
are at most two points a ePxQ such that 

xePxQs x±a f{x) * f(a). 

19.15. Let P 4= 0 not be connected. Then there exists a finite continuous function / o n P such that / 
is not a constant and / ( P ) is not an interval. 

19.16. A space P has a finite number of components if and only if there is no finite continuous function 
f on P such that / ( P ) is an infinite countable set. 

19.17. Let P be a compact space. Let 0 + M c p. An f-chain in M between any a e M and any 
b e M with any e > 0 exists if and only if A? is connected. Thus, M itself need not be con-
nected. 

19.18. Which properties must have spaces P, Q that the space PxQ may be [1] a continuum, [2] 
a semicontinuum? 

19.19. A continuous image of a continuum is a continuum or a one-point set. A continuous image 
of a semicontinuum is a semicontinuum. 

19.20. Let / be a finite function on E1# The set E [>' = /(*)] E2 contains a continuum if and 

only if there is an interval J such that the partial function f j is continuous. 
19.21. Theorem 19.1.4 remains valid, if the assumption that P is compact is replaced by the assumption 

that P c E1# 

19.22. One cannot omit in theorem 19.1.4 the assumption that P is compact. This may be shown 
using as an example P -- Px — (M u N) where My N have the same meaning as in ex. 19.3. 

19.23. One cannot replace in theorem 19.1.4 the assumption of compact P by the assumption that P 
is locally compact and P E 2 . 

19.24. One cannot replace in theorem 19.3.1 the assumption that P is a continuum by the assumption 
that P is connected. This may be shown by means of an example with P c p x . 

19.25. One cannot replace in theorem 19.3.2 the assumption that P is a continuum by the assumption 
that P is a connected space. 

19.26. Let P be a continuum. Let a £ P. Let M be the set of all the x e P such that there is a continuum 
K 4= P containing both the points a, x. Then the set M is dense. 

19.27. Let P be a connected space. Let H P, K P be continua. For any x e Hy y e Ky let there 
be a point z separating x from y. Then there is a point a such that P — (a) = A u B with 
separated summands such that H Ay K <= B. 

19.28. Let P be a continuum. Let A <= P, B p be non-void disjoint closed sets. Then there exists 
a continuum K <= P such that: [1] K n A 4= 0 4= K u By [2] if H c K is a continuum and 
if HnA±0±Hr\By then H = K. 

19.29. Let P be a continuum. Let a set M p contain at least two points. Then there exists a conti-
nuum K ci P such that: [1] M <= Ky [2] if H K is a continuum and if M <= H then H = K. 

19.30. Let P be a continuum. Let a e Pyb e P, a 4= b. Let a set M c P be connected between points a 
and b. Then M contains an irreducible continuum between the points ay b. 

19.31. If a = (1, 0), b = (0, x)y 0 ^ x ^ 1, then P 5 is an irreducible continuum between the points 
a, b. 

19.32. Let Ani Bn have the same meaning as in the description of P 9 . Then ^ ^ ^ ( « = 1 , 2 , 3 , . . . ) 
are constituants of P 9 . 

19.33. One cannot replace in theorem 19.5.12 cutting of the space between points ay b by separating 
the point a from the point b. This may be shown by means of an example with P = P 2 , 

00 
choosing a = (0, 0), b = (0, 1), Q = (c) U ( J (c„), where c = (0, \)y cn = (1/2«, 

n = 1 

(ft = 1,2, 3 , . . . ) . 
19.34. One cannot omit in theorem 19.1.8 the assumption that P is compact. E.g., one cannot put 

P = E x , not even under the assumption that / i s one-to-one. 
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§ 20. Simple arc 

20.1. Let J = E[0 ^ t ^ 1]. A metric space P is said to be a simple arc, if it is 
i 

homeomorphic with J. The notion of a simple arc is a topological notion (see 9.3). 

20.1.1. Any simple arc is a continuum. 

Proof: J is a continuum by 19.2.1. Thus, by 17.4.2 and 18.1.10, P is a continuum. 

20.1.2. A simple arc contains exactly two points which do not separate it. These two 
points are called the end points of a simple arc. The notion of an end point is 
a topological notion. 

Proof: Let / be a homeomorphic mapping of J onto P. The sets J — (0), 
J - (1) are connected by 19.2.2. Thus, the sets P -/(0), P - / ( 1 ) are connected 
by 18.1.10. Let teJ and let P - / ( f ) be connected. By 18.1.10 the set (r) is 
connected so that either t = 0 or t = 1 by 19.2.2. 

20.1.3. Let P be a simple arc with end points a, b. Then there is a homeomorphic 
mapping f of J = E[0 g t <; 1] onto P such that f{0) = a,f{ 1) = b. 

t 

Proof: There exists a homeomorphic mapping cp of J onto P. By the previous 
proof the points cp(0), <p(\) do not separate P so that either <p(0) = a, cp( 1) = b, 
or <p(0) = b, (p(l) = a. In the first case p u t / = q>. In the second one we may define/ 
by f(t) = <p( 1 - 0-

20.1.4. A simple arc P is an irreducible continuum between its end points. 

Proof: If K c P is a continuum, then f-i(K) c J is and interval by 18.1.10 and 
19.2.2. If, moreover,/(0) e K,f( 1) e K, then 0 g / . ^ / Q , 1 ef^x{K\ hence f.^K) = J 
and hence K = P. 

20.1.5. Let P be a simple arc with end points a, b. Then P — [(a) u (6)] is connected. 

Proof: J — [(0) u (1)] is connected by 19.2.2; thus, P — [(a) u (6)] is connected 
by 18.1.10. 

Another proof follows by 19.4.2 and 20.1.4. 

20.1.6. Let P be a simple arc with end points a9 b. Let c e P, a 4= c + b. Then the 
set P — (c) has exactly two components, one of them containing a and the other 
containing b. 

Proof: Let a = f{0), b = / ( l ) , C =/(R), hence 0 < T < 1. The sets A = 
= E[0 / < T], B = E[T < t ^ 1] are connected by 19.2.2 and we have 0 e A, 

t t 
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1 E P, Av B = J - (T). Hence, the sets f(A), f(B) are connected by 18.1.10 and 
we have a e/(A), b e f(B)y f(A) u f(B) = P - (c). Let Kx be the component of 
P — (c) containing a (see 18.2.1); let K2 be the component of P - (c) containing b. 
By 18.2.5 f(A) c Kl9 f(B) c K2 and hence Kx KJ K2 = P - (c) so that P has no 
components except Kx and K2. If there were Kx = K2, Kx = K2 — P — (c) 
would be connected. This is a contradiction (see 20.1.2). 

20.1.7. Let P be a simple arc with end points a, b. Let c e P9 a 4= c 4= b. Then c 
separates a from b in P. 

Proof: Let us preserve the notation of the previous proof. The sets A, B are open 
in J. Since/_ t is continuous, J(A)9f(B) are open in P by 9.2. Moreover, A n B = 0, 
so that f(A) n f(B) = 0. Hence, the sets f(A)9 f(B) are separated. Thus, P - (c) = 
= f(A) u f(B) with separated summands and a e f(A), b e f(B). 

20.1.8. Let P be a simple arc, a e P, ß e P, a 4= ß. Then there is exactly one simple 
arc Q c= P with end points a, ß. This simple arc Q will be denoted by either ß) 
or P(ß9 a). 

Proof: I. Let / be a homeomorphic mapping of J onto P. Let u e 7, v e J, a = 
= f(u), ß = f{v) and let, e.g., u < v. We see easily that f(E[u ^ / ^ v]) a P is 

t 
a simple arc with end points a, ß. 

II. On the other hand, let Q <=. P be a simple arc with end points a, ß, By 18.1.10, 
f-I(Q) ci J is a connected set. As UEJ\.X(Q), y e / _ , ( 0 , we have, by 19.2.2, 
E [u^ t ^ v] c /_!(Q), hence, f(E[u ^ t ^ v]) c Q. The set f(E[u ^ / g u]) is 
t t t 

a simple arc with end points a, ß, hence, it is a continuum containing a and ß so that 
f(E[u ¿t^v]) = Qb y 20.1.4. 

t 

20.1.9. Let P be a simple arc with end points a, b and let c e P, a 4= c 4= b. Then 

P = P(a, c) u P(c, b\ P(a, c) n P(c9 b) = (c). 

Proof: Let a = f(0), 6 = / ( ! ) , c = / ( t ) , hence 0 < t < 1. Then P(a, c) = 
= / ( E [ 0 ^ / G T]), P(C, = / ( E [ T ^ / ^ 1]) and the statement is obvious. 

t t 

20.1.10. Let P be a metric space. Let A a P be a simple arc with end points a, b. 
Let B <= P be a simple arc with end points b, c. Let A n B = (b). Then A u B is 
a simple arc with end points a, c. 

Proof: Let fx be a homeomorphic mapping of J onto A. Let a =/ i(0) , b = / i ( l) . 
Let f2 be a homeomorphic mapping of J onto B. Let b —/2(0), c = / 2( 1). Define 
a mapping / o f 7 into P as follows: First, f(\) = Z>, secondly, / ( / ) = /x(20 for 
0 ^ t < i , thirdly, / ( f ) =/2(2f - 1)) for J < t ^ 1. We verify easily that / 
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is a one-to-one continuous (and hence, by 17.4.6, homeomorphic) mapping of J 
onto A u B and that /(0) = a, / ( l ) = c. 

20.1.11. Let P be a metric space. For n = 1, 2, 3, ... let Cn cz P be a simple arc with 
end points a., aH + i . Let [1] C„ n C„ + 1 = (an+1) (n = 1, 2, 3,...), [2] d(Cn) -> 0, 

oo 

[3] an-+beP - (J [4] Cn n Cm = 0 for \n - m | ^ 2. Ptewote iy ß 
ao n = 1 

(6) u (J Cn c P. 77*?« Q is a simple arc with end points alib. 
n= 1 

Proof: For n = 1, 2, 3 , . . . let/„ be a homeomorphic mapping of J onto Cn such 
that /„(0) = fl„+i, /„(l) = an. Define a mapping cp of J onto P as follows: First, 
put <p(0) = b. Further, put <p(2~(n"1)) = an (n = 1, 2, 3,.. .). If t is another number 
in there is exactly one n (=1, 2, 3, . . .) with 2~n <t < 2" ( n _ 1 ) ; then put <p(t) = 
= /„(2n/ — 1). It is easy to prove (in exercise 20.12) that cp is a homeomorphic 
mapping of J onto Q and that cp(0) = b, <p(l) = ^ . 

20.1.12. Le/ Pbe a simple arc with end points a, Lei s > 0. Then there is a one-to-one 
finite point sequence {cj?L0 and a finite sequence of point sets {CJ^ such that [1] 

m 
c0 — a, cm = b, [2] Ci is a simple arc with end points , ct (1 g i g m), [3] (J Cx = 

= P, [4] Ci n Ci+l = (cf) (1 g / g m - 1), [5] C{ n C,- = 0 (1 £ i g m , 1 ^ 
rg; g m, 11 - y | ^ 2), [6] ¿(C,) < e (1 rg i g m). 

Proof: Let / be a homeomorphic mapping of the interval J onto P such that 
/(0) = a,f( 1) = b. By 9.6.1 and 17.4.4 there is a <5 > 0 such that 

txe J, t2eJ, \tx — t2 \ < Ö => eL/Xii),/(/2)l < e-

Evidently, it suffices to choose an m such that m~l < S and to put cx = / ( / . l) 
(0 g i S m), Cx =/(E[(i - 1 )m'1 im'1]), 

t 

20.1.13. Let P be a simple arc. Let Q cz P be a continuum. Then Q is a simple arc. 

This may be easily proved by theorem 19.2.2. 

20.2. If P is an ordered set (see § 4) and if a e P, ß e P, a =# ß, denote by M(a, ß) 
the set of all xeP which are between a and ß (see 4.1). Thus, M(ß, a) = M(x, ß). 

An orientation of a simple arc P is an ordering of the set P such that (a) u (/?) u 
u M(a, /?) is a simple arc whenever a e P, ß e P, a =j= ß. 

The following theorem is evident. 

20.2.1. Let P be an oriented (i.e. endowed by an orientation) simple arc. Let Q c P 
be a simple arc. The given orientation of P determines an ordering of Q (see 4.1). 
This ordering of the simple arc Q is an orientation. 
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If simple arcs P and Q c P are oriented by 20.2.1, we say that they are coherently 
oriented. 

20.2.2. Let P be an oriented simple arc. Then the oriented set P has both first and 
last elements. These two points are the end points of the simple arc P, 

The end point which is the first element in the given orientation is called the 
initial point, the other end point is called the terminal point of the oriented simple 
arc P. 

Proof: Let a, b be the end points of the simple arc P, and let, e.g. a precede b. 
By the definition of orientation, the set Q = {a) u (b) u M(a, b) is a simple arc, 
hence (see 20.1.1), Q a P is a continuum containing both a and b, so that (see 20.1.4) 
Q = P. Thus, every xeP — [(a) u (¿?)] is between a and b, hence, it follows a and 
precedes b, i.e. a is the first element and b is the last one in P. 

20.2.3. Let P be an oriented simple arc and let a e P, P e P, a 4= P> Then (a) u (/i) u 
u M{a, P) = P(a, 13) (see 20.1.8). 

Proof: The set Q = (a) u (/?) u M(a, P) c P is a simple arc. In the given ordering a 
is the first and P the last element in Q so that, by 20. 2.1 and 20.2.2, a and P are the 
end points of the simple arc Q; thus, Q = P(a, P). 

20.2.4. Let a be an end point of a simple arc P. Then there is exactly one orientation 
of P such that a is the initial point. 

Proof: I. Let (see 20.1.3) / be a homeomorphic mapping of the interval J = 
= E[0 g t ^ 1] onto P such that /(0) = a. Define an ordering of P as follows: 

t 
"x precedes y" if and only if f-i(x) < f~i(y). Thus, we obtain an orientation of P 
with a as the initial point. 

II. On the other hand, let P be oriented in such a way that a = /(0) is the initial 
point and let x e P , yeP, x precede y. Hence, x = /(w), y = J'(v)9 1, 
0 < v ^ 1. We have to prove that u < v. Obviously /(E[0 g t <: v]) = P(a, y) 

t 
(see 20.18) so that, by 20.2.3,/(E[0 g t < v]) = {a) u M(a,y). On the other hand, 

r 

x = /(") e (a) u M(a, y), so that 0 ^ u < v. 

20.2.5. Let P be a simple arc with end points a, b. Then P has exactly two orientations. 
In one of them a is the initial and b the terminal point, in the other one, a is the terminal 
and b the initial point. These two orientations are mutually inverse. 

Proof: In any orientation either a or b is the initial point by 20.2.2 and for any 
of these cases there is exactly one orientation by 20.2.4. Moreover, the inverse 
ordering to an orientation is evidently also an orientation. 
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20.2.6 . Let P be an oriented simple arc and let a e P precede ft e P. Let the simple 
arc P(a, /?) c: P (see 20.1.8) be oriented in such a way that a is the initial point. Then P 
and P(a, ft) are coherently oriented. 

Proof: If P(a, p) is coherently oriented with P, the condition that a is the initial 
point is evidently satisfied. On the other hand, by 20.2.4, this condition determines 
uniquely an orientation of the simple arc P(a, /?). 

20.2.7. Let P be a metric space. Let C a P be an oriented simple arc. Let F c P 
be a closed set. Let C n F 4= 0. Then there are both first and last elements in the 
ordered set C n F a C. 

Proof: Let / be a homeomorphic mapping of J = E[0 g t g 1] onto C such 
t 

that /(0) is the initial point. The set C n F is closed in C (see 8.7.2) and hence (see 
9.2) the set / . , ( C n F) is closed in J. Of course, it is non-void and bounded, so 
that (see 17.4.1) there exist numbers u = min/_ t (C n P), v = max/_ {(C n F). 
Evidently, f(u) is the first and f(v) the last point of C n F. 

20.3. (Converse of theorem 20.1.7.) Let P be a continuum. Let a e P, b e P. Let every 
xeP — [(a) u (6)] separate the point a from the point b in P (so that a 4= b). Then P 
is a simple arc and a, b are its end points. 

Proof: I. Put Q = P - [(a) u (6)]. By 18.1.9 the set Q is uncountable. 

II. For every x e Q there are sets A(x), B(x) such that [1] A(x) u B(x) = P — (*), 
[2] ^4(.v), B(x) are separated, [3] a e A(x), b e B(x). The sets A(x), B(x) are open 
in P — (x) and hence (see 8 7.7) they are open in P. 

III. Let S c= P be a connected set and let a e S, b e S. Then S = P. On the other 
hand, let x e P — 5 and hence x e Q. We have S c A(x) KJ B(X), ae S n A(x) 4= 0, 
be S n P(a) 4= 0. This is a contradiction (see 18.1.2). 

IV. If x e Q then (x) u A(x), (x) u B(x) are connected sets. This follows from 
18.1.11. 

V. If x e Q, then A(x), B(x) are connected sets. Suppose, on the contrary, e.g. 
i4(x) not to be connected. We have aeA(x) 4= 0, hence A(x) = At u A2 with 
separated summands, ae Ay, A2 4= 0. Then P — (x) = A{ u [A2 u B(x)] with 
separated summands. The sets (x) u B(x), (x)uA{ are connected (see 18.1.11), 
hence S = (x) u Ax u B(x) is connected by 18.1.4. On the other hand, a e At <= S> 
b e B(x) c= S and hence S = P by III. Thus, A2 ci S which is not possible. 

VI. For every x e Q, P — (x) has exactly two components, namely A(x) and B(x). 
(Thus, the sets A(x), B(x) are uniquely determined by the point x.) Actually by 
18.1.2, each component of P — (x) is a part of either A(x) or B(x); by V and 18.2.5 
each one of A(x), B(x) is a part of one component of P — (x). 
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VII. Let x e Q, y e Q, x 4= y> Then exactly one of the following relations holds 

A(x) cz A(y), A(y) cz A(x). 

The sets (y) u A(y), (>>) u B(y) are connected (see IV) and one of them is contained 
in P — (x); hence (see VI and 18.2.5), one of them is a part of one of the sets /l(x), 
B(x). Since a e A(y) - J?(x), b G £(>') - A(x), we have either (>') u A(y) cz A(x), 
and hence A(y) cz A(x) 4= A(y) [as y does not belong to A(y)], or (>>) u B(y) cz B{x), 
and hence P - B(x) cz P - [(y) u B(y)], i.e. (x) u A(x) cz A(y) and hence A(x) cz 
<= A{y) 4= A(x). 

VIII. Let us define an ordering U of P as follows: If xePyyeP then "x precedes 
means that x 4= y and moreover either x = a or y = b, or, finally, x G Q, y e Q, 
A(x) cz A(y). It is easy to verify that U is an ordering, i.e. that the properties [I], 
[2], [3] pronounced in 4.1 are satisfied. Moreover, a is the first and b the last element. 
Finally, for x e Q, A(x) is the set of all points preceding x and B(x) is the set of all 
points following x. 

Remark: If we interchange points a and b, we evidently have to replace the orde-
ring U by its inverse ordering. 

IX. Q is an infinite separable space (see 16.1.2 and 17.2.6), so that (see 16.1.3) 
there is an infinite countable set M cz Q dense in Q. Let x eP,y e Pand let x precedey, 
so that x 4= by y 4= a. We shall prove that there is a point z e M between x and y. 
We have to distinguish four cases: [1] x = a, y = b, [2] x = a, ye Q, [3] xe Q, 
y = by [4] x G Q, y e Q. In case [1] we may choose ze M arbitrarily. Secondly, let 
x = a, y e Q. We have a e A(y) and (a) 4= A(y), as (see IV) (>>) u A(y) is connected 
and hence A(y) — (a) is a non-void open subset of Q, (see II) so that (see 12.1.2) 
there exists a z e M n A(y). As z e A(y), z precedes y and hence z is between a 
and y. Thirdly, let x e Q, y = b. Now, i?(x) — (b) is a non-void open subset of Q 
so that there is a point ze M n B(x), which is between x and b. Finally, if we have 
x G Qy y e Q and if x precedes y, we obtain (x) u A(x) cz A(y), hence P — B(x) cz 
CZ A(y)y i.e. [P - B(x)] n [P - A(y)] = 0. If B(x) n A(y) = 0 thenP = [P - B(x)] u 
VJ [P — A(y)] with non-void separated summands, which is a contradiction. Thus, 
B(x) n A(y) is a non-void open subset of Q, so that (see 12.1.2) there exists a ze M n 
n B(x) n A(y). Evidently, z is between x and y. 

X. The ordering U of P determines an ordering of M. If x e Af, then, by IX, 
there are points zYe Af, z2 G M such that zx is between a and x, and z2 is between x 
and b. Thus, x is neither first nor last in M. If x e M, y e M and if x precedes y, 
then, by IX, there is a ze M between x and y. Thus, M is densely ordered. Let R 
be the set of all rational numbers t such that 0 < t < 1. By 4.7 there is a mapping </> 
of M onto R such that 

xe M, ye M, x precedes y => cp(x) < (p(y). 



162 V. Local connectedness 

XI. Let us define a mapping/of P into the interval J = E[0 g t g 1] as follows: 
t 

First, f(a) = 0, f(b) = 1. Secondly, let xeQ. Denote by Mx(x) the set of all zeM 
which precede x and by M2(x) the set of all z e M which follow x. By IX, Mx(x) 4= 
4= 0 4= M2(X). If zx e Mx(x), z2 e M2(x), then zY precedes z2, hence, 0 < (p(zx) < 
< cp(z2) < 1. Hence 

0 < sup cp(z) g inf (p(z) < 1 (1) 
2 e Af I(JC) zeM2(x) 

We shall prove that 
sup cp(z) = inf <p(z). (2) 

zeMi(x) ze\f2( <) 

If this were not true, there would exist rational numbers tx, t2 such that 

zx e Mx(x\ z2 G M2(X) => (p(zx) <T{ <t2< <p(z2). (3) 

There would exist points yxeM, y2e M with (p(yx) = tl9 cp(y2) = t2. By (3), 
yx would belong neither to Mx(x) nor to M2(x) so that we would have yt = x 
and similarly y2 = x. Hence yx = y29 rt = t2 which would be a contradiction. 
Thus, (2) holds and we denote the common value of both sides by f(x). By (1), 
0 < / (* ) < 1. 

XII. If x g P precedes yeP, then f(x) < f(y). This is obvious whenever at least 
one of x, y does not belong to Q. If x e Q> y e Q, then, by IX, there is a zY e M 
between x and y, and a z2e M between zx and y. By X, cp(zx) < cp(z2). Moreover, 
Zj e M2(X), Z2 e Mx(y\ hence f(x) g (p(zx) < <p(z2) g f(y), so that/(x) </(>>). 

XIII. The mapping / is continuous. Let xneP, xeP, xn -> x. We have to prove 
that f(xn) f(x). Let us assume the contrary. Then there is an e > 0 such that 
| f(xn) — f(x) | > c for infinitely many indices n. As /(*„) e J and as J is compact, 
there is a subsequence {jn} of {xn} such that lim f(yn) = x exists, 0 g T ^ 1, and 
such that 1 / 0 0 — f(x) | > e for every /?, so that t 4= f(x). E.g. let t > f(x). There 
exist numbers tx e R, t2eR with f(x) < t{ < t2 < t. There exist points zx e Af, 
z2 e Af with tx = (^(zj), t2 = (p{z2). As tx < t2, zx precedes z2 by X. Since f(x) < 
< tx = <p(zZj does not precede x, so that jc precedes z2, i.e. xeA(z2). Since 
A(Z2) is an open set, thre is a S > 0 such that S) c A(z). On the other hand, 
yn-+ x by 7.1.2 so that there exists an index p such that n > p implies yn e Q(x, <5) c 
c= y4(z2). Thus, if n > p z2 follows yn9 so that f(yn) g (p(z2) = t2. Hence also r = 
= lim f(yn) g t2 < T, which is a contradiction. 

XIV. / (P) is connected by XIII and 18.1.10. It is contained in / = E[0 g t g 1] 
t 

and contains both 0 = f(a) and 1 = f(b). Thus, /(P) = J by 19.2.2. Hence, / is 
a mapping of P onto the interval J. The mapping/is one-to-one by XII and continuous 
by XIII; hence, it is homeomorphic by 17.4.6. Thus, P is a simple arc and a = /- i(0), 
b = / - ^ l ) are its end points. 
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20.4. (Converse of theorem 20.1.2.) Every continuum P contains at least two points 
which do not seaparate P. If P contains only two such points, then P is a simple arc. 

Proof: I. Let P be a continuum, let aeP, beP9 a 4= b. Let every x e P — [(a) u 
u (6)] separate P. We shall deduce that then P is a simple arc with end points a, b. 
It is easy to see that this yields a proof of the stated theorem. 

II. By 20.3 it suffices to prove that every x e P, a =t= x 4= b, separates a from b. 
Assume the contrary, i.e. the existence of a c0 e P, a 4= c0 4-- b such that it does not 
separate a from b in P. As a 4= c0 4= b, c0 separates P, so that P — (c0) = A0 u B0 

with non-void separated summands. As c0 does not separate a from b we may assume 
a e A0y b e A0. 

III. Since P is a continuum, it is, by 18.1.9 and 17.2.6, an infinite separable space. 
Hence (see 16.1.3) there is an infinite countable set M dense in P. Let {xk}™ be a se-
quence containing exactly the points of M. 

IV. For some n (= 0, 1, 2,...), let a point cneP and non-void separated sets 
A„, Bn with P - (cn) = Anu Bn, a e An, b e Bn be given. Bn is open in P (c„) 
and hence in P, so that, by 12.1.2, there is an index k with xkeBn. Let kn+i be the 
least index k with xkeBn. Put cn + 1 = x n + 1. Thus, cn+ieBn. Moreover, a 4= 
4= cn+1 4= by so that (see I) cn+l separates P and hence P - (c„+1) = An+l u 
with non-void separated summands. 

We may assume that aeAn+ j . The cct (cn) u An is connected by 18.1.11. Sincc 
cn+l eBny we have (cn) u An c p - (cn+1), so that, by 18.1.2, (c„) u An is contained 
in one of Aa+1, Bn+i. As a e A„ - Bn+1 4= 0, we have (¿-J u An a An+1. As beAn> 

we obtain be An + 1. 
V. It follows, by II and IV, that we may construct a point sequence {c„}o and set 

sequences {An}£y {£„}? such that: [1] An> Bn are separated (n = 0, 1, 2,...), [2] 
aeAny beAny Bn * 0 (« = 0,1,2, . . . ) , [3] An u Bn = P - (cn) (« = 0,1,2, . . . ) , 
[4] cn = xkn (n = 1, 2, 3,...) where kn is the least index k with xkeBn-1, so that 
cneBn^l (n = 1,2,3,. . .), [5] (c„) u An c= An+l (n = 0, 1,2,...). 

VI. The sequences {cn} and {&„} are one-to-one. Let m < n. By V [51, cm e Am+X c= 
c A„y by V [3], cneP - An9 hence cm 4= so that km 4= kn by V [4]. 

OO 

VII. We have H * 0. By V [1] and 10.2.3, ANR\BN= 0, and hence, by V [3], 

B„ c (c„) u B„. By V [3] and V [5], BN = P - [(c„) u AN] o P - AN+I = (c„+1) u 
OO 

u Bn+l and hence Bn Bn + 1 . Thus, by V [2] and 17.5.1, f | Bn 4= 0. 
n = 1 

OO 
VIII. By VII there is a point z e f | 4 By V [1] and V [2], a e A n < = P - B n , 

n = 1 

hence z 4= a and similarly z 4= b. Thus (see I), z separates P, i.e. P - (z) H KJ K 
with separated summands, a e H, K 4= 0. The sets (c„) u are connected by V [1], 
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00 
V [3] and 18.1.11, and they contain the point a by V [2], so that U [(<•„) u An] is 

n=l 
CO 

c o n n e c t e d by 18.1.5. Since z e Bn = P - [(c) u An], we have U KO u An\ <= 
00 n = 1 

c P - (z) and hence U [(c„) u An] is contained (see 18.1.2) in one of H, K. Con-
oo n = 1 

sequently U KO u ^ J c H> as a e H. K is open in P — (z) and hence in P (see 
n= 1 

8.7.7). Since K 4= 0, there is, by 12.1.2, an index i with e K. By VI there is an index 
m with km+l > i. As ( c j u Am cz H, we have Bm = P - [ ( c j u ¿ J => P - H => A:. 
Thus, xte K cz Bmy so that, by V [3], i g /:m+l which is a contradiction. 

Exercises 

Pl, P 2 , P i 2 a r e the spaces from exercises to § 19. 

20.1. If P x Q is a simple arc, then one of P, Q is a simple arc and the other is a one-point space. 
20.2. If C c E2 is a simple arc, then E2 — C is dense in E 2 . 
20.3. Let M c E2 be the set of all (jc, y) with * ^ 0, y ^ 0, * + y ^ 1. Then there exists a disjoint 

system (5 of simple arcs such that ( J X = M. That system 3 cannot be countable. 
XeS 

20.4. If a simple arc P is a union of a disjoint system S of simple arcs, then 6 contains only one 
element. 

20.5. Let P be one of P2t P3i P^, P-j- Let a e P, b e P, a 4= There is exactly one continuum 
K cz P irreducible between the points a, b. K is a simple arc. 

20.6. Let a eP{9 b e P x , a * b. There exist infinitely many simple arcs C <=: pt with the end 
points a, b. 

20.7. Let P = P 4 or P = P 6 . Let S be a disjoint system of simple arcs in P. Let e > 0. The system 
of all C e S with diameter greater than e is finite. 

20.8. Let P be one of P 9 , P 1 0 , P n . Let C c p be a simple arc. The set P — C is not dense in P. 
20.9. The following theorem may be deduced from 20.4 (see also 18.1.11). Let P be a continuum. 

If 5 c p is a connected set, S 4= P, then there is a point a e P — 5 which does not separate P . 
20.10. A space P is the image under a one-to-one continuous mapping of some of the three spaces 

E[t ^ 0], E[0 < / ^ 1], 
t t 

0O 
if and only if P = ( J Cn where Cn are simple arcs such that Cn C„ + 1 (« = 1,2, 3, 

n= 1 
20.11. Let the symbol S(x) (* e £>) have the same meaning as it had in ex. 19.12. There exists a one-

to-one continuous mapping of E[t ^ 0] onto S(0); the inverse mapping is nowhere continuous. 
t 

If *S(AT) 4= 5"(0) there exists a one-to-one continuous mapping of Ej onto S(x); the inverse 
mapping is nowhere continuous. 

20.12.* Complete the proof of theorem 20.1.11! 
20.13. In theorem 20.4 we cannot replace the words "two points which do not separate P " 

by "two points x such that P — (x) is a semicontinuum". In fact, P 5 contains only one 
such point x and it is easy to construct a similar space which contains no such point .v. 
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§ 21. Simple loop 

21.1. A metric space P is said to be a simple loop, if there exists a continuous mapping/ 
of Et onto P such that 

f{u) = f(v) o u — v is an integer. (*) 

21.1.1. Simple loops are continua. 

Proof: Evidently P = /(E[0 ^ t ^ 1]). The set E[0 <; t ^ 1]) is a continuum 
t t 

by 19.2.1 and hence P is a continuum by 17.4.2 and 18.L10. 

21.1.2. Let P be a simple loop. Let aeP, beP, a 4= b. Then P contains exactly two 
simple arcs with end points a, b. If A, B are these simple arcs, we have 

Av B = P, AnB = (a) u (b). 

Proof: I. Let a = /(«), b = f(v). By (*) we may assume that u < v < u 4- 1. 
Put Jv = E[w g t ^ v], J2 = E[v ^ t g u + 1], A =f(Ji), B =f(J2). The partial 

r t 
mappings fJi and fj2 are continuous; moreover, by (*) they are one-to-one, so that 
they are, by 17.4.6, homeomorphic. Thus, A and B are simple arcs with end points 
a, b [since J\u + 1) = a by (*)]. Moreover, we have, by (*), 

Au B = P, A nB = (a) u (b). 

II. Let C c P be a simple arc with end points a, b and let C 4= A. We have to prove 
that C = B. As A and C are two different simple arcs with end points a, b, we obtain, 
by 20.1.1 and 20.1.4, A — C 4= 0. Choose an a e A — C and a number z with 
a = / (z) . Obviously a eP - Band P = / (E[z ^ t ^z + 1]). By 17.3.4, g(a, B) > 0, 

t 
i?(a, C) > 0, so that, by 9.1.1, there is an e > 0 such that 

\t - z\ < e=> elf0)9 a] < min [(?(«, *)> <?(<*> Ql*) 

Therefore 5 u C c /(M), where M = E[z + s ^ t g z + 1 - e]. Evidently / (M) 
t 

is a simple arc. As B and C are simple arcs with common end points and as B u C c: 
c / ( M ) , we have B = C by 20.1.8. 

21.1.3. P be a metric space. Let A a P and B c P be two simple arcs with common 
end points a, b. Let 

AkjB = P, AnB = (a) v (b). 
Then P is a simple loop. 

*) This e has to be less than i . 
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Proof: Let fx be a homeomorphic mapping of the interval J = E[0 g t g 1] 
t 

onto A; let a = /i(0), b = /i(l) . Let /2 be a homeomorphic mapping of J onto B\ 
let b = /2(0), a = /2(1). Define a mapping cp of / into P as follows: First, <p( 1/2) = Z>; 
secondly, (?(0 = / i(20 for 0 g t < 1/2, hence <p(0) = a; thirdly, <p(0 = /2(2f - 1) 
for 1/2 < f g 1 and hence <p(l) = a = <p(0). Evidently, <p is a continuous mapping 
of J onto Au B and, for 0 <; tt < t2 < 1, cpit^) = (p(t2) only if tx = 0, t2 = 1. 
If t e Ex, then there exists exactly one integer n with 0 g t - n < 1; put /(/) = q>(t). 
It is easy to verify that / is a continuous mapping of P onto A u B such that (*) 
holds. 

21.1.4. Let P be a simple loop. Then no point ae P separates P. 

Proof: Let / b e a continuous mapping of Ex onto P such that (*) holds and let 
a = /(z). Then P - (a) = /(E[z < / < z + 1]) so that P - (a) is connected by 

t 
18.1.10 and 19.2.2. 

21.1.5. Let P be a simple loop. Let aeP, beP, a #= b. Then (a) u (b) separates P. 

Proof: By 21.1.2 there are simple arcs A c P, B cz P such that A u B = P, 
>4 n 5 = (J) u (6). The sets J? are closed by 17.2.2. Thus, P - [(a) u (6)] = 
= (P — A) KJ (P — B) with non-void separated (see 10.2.2) summands. 

21.1.6. Let P be a simple loop. Let G ^ P be an open set. Lei P — G contain at least 
two points. Ler T be a component of G. Then T is a simple arc and its end points form 
the setT - T =T - G. 

The reader can prove this without difficulties (see ex. 21.6). 

21.1.7. Let P be a simple loop. Let G be a system of simple arcs C c P . If Cve{i, 
C 2 e C , Ct 4= C2, x 6 Ci n C2, let x be an end point of both simple arcs C t , C2. 
Let 5 > 0. Then (£ contains only a finite number of simple arcs with diameter greater 
than <5. 

Proof: Let there be, on the contrary, a one-to-one sequence {Cn}J° with ¿/(C„) > 5 
for every n. Denote by ani bn the end points of the simple arc Cn. As Cn is connected 
and as aneCn, bneCni d(CH) > <5, it is easy to prove that there is a point cn e Cn 

with g(an9 cn) > £<5, q(bn9 cn) > As P is compact, there are indices it < i2 < 
< i3 < ... and a point ceP such that cin c. It is easy to prove that there exist 
simple arcs A9 B such that P = A u B, c E A — B, d(A) < <̂5. Evidently there is 
an index p such that n > p=> clne A=> A n Cin =# 0. Evidently neither aln nor bin 

belongs to A. On the other hand, it is easy to prove that B(Cin) = (a J u (bin). 
Thus, A n Cin 4= 0 = n B(Cit). Since ^ is connected, we have, by 18.1.8, /i c= Cin 

for every n > p and this is evidently impossible. 
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21.2. Orientation of a simple loop P is a cyclical ordering C (see § 5) of P such that 
(a) u (b) u J(a, b) (see 5.3) is a simple arc whenever aeP9 beP9 a ^ b. A simple 
loop endowed by an orientation is said to be oriented. 

21.2.1. Let P be an oriented simple loop. Let a e P, b e P, a 4= b so that Q = (a) u 
VJ (b) U J (a, b) is a simple arc. Then a, b are the end points of the simple arc Q. If Q 
is oriented (see 20.2.4) in such a way that a is the initial point, then the ordering of 
J{a, b) determined, (see 4.1,) by the orientation of Q coincides with the ordering of 
J{a, b) determined (see 5.3) by the given orientation of P. We say then that P and Q 
are coherently oriented. 

Proof: I. (a) u (b) u J(a, b) is a simple arc, so that J(b, a) 4= 0. Choose a c e J(b, a). 

II. The cyclical ordering C of P determines by 5.2 an ordering U(c) of P — (c). 
If xeP - (c), y e P - (c), zeP - (c)9 then (see Chapter I, 5.2.1) (x,y,z)e C 
if and only if either 

x precedes y, and y precedes z in U(c) 
or 

y precedes z, and z precedes x in U(c) 
or 

z precedes x, and A: precedes y in U(c). 

III. By 5.3, Q cz P — (c) so that the ordering U(c) of P - (c) determines an 
ordering V of Q = (a) u (b) u J(a, b). As c e J(b9 a)9 we have (see 5.3) (b9 c, a) e C, 
so that, by 5.1 [1], (c, a9b)e C; further, by 5.2 a precedes b in U(c) and hence in V. 
If x e J(a> b), then (a, xyb)e C so that, by II, x is between a and b in U(c) and 
hence in V. Thus, a is the initial point and b the terminal one of Q (in the ordering V). 

IV. Since (<c, a9b)e C (see III), we have (see 5.1 [1] and 5.3) (a, b9 c) e C, i.e. 
beJ(a,c\ so that, by 5.5.1, J(a, b) cz J(a9 c). By 5.3, U(c) and U(a) determine 
identical orderings of J(a, c) and hence also of J(a9 b) cz J(a9 c). Consequently, 
the ordering of J(a9 b) determined by the ordering V of Q coincides with the ordering 
U(<7, b)9 i.e. with the ordering of J(a9 b) determined (see 5.3) by the cyclical ordering C 
of the simple loop P. 

V. Now, we are going to prove that V is an orientation of the simple arc Q. Let 
x e ¡2, y e Q, x 4= y, hence, e.g., let x precede y in V [and hence in U(c)]. We have 
to prove that (x) u (j>) u M(x, y) is a simple arc, if M(x9 y) is the set of all the 
zeQ which are between x and y in V. Since C is an orientation of the simple loop P, 
(x) u (y) u J(x9 y) is a simple arc, so that it suffices to prove that M(x, y) = J(x9 y). 
First, let z e M(x, y). Then x precedes z and z precedes y in V and hence in U(c), 
so that, by II, (x, z9y)e C and hence z e J(x9 y). Secondly, let z e 7(x, y). Then 
(x, z, y) e C, so that, by 5.1 [2], (z, x, y) does not belong to C. Since, on the other 
hand, x precedes y in U(c), we have (c, x, y) e C. Thus, z 4= c and, of course, x + 
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4= c 4= J. Since (x,z,y)e C and since X precedes y in U(c), by II x precedes z 
and z precedes y in U(c). On the other hand, by III, either x = a, or a precedes 
JC in V and hence in U(c); moreover, either y = b or y precedes b in V and hence in 
U(c). Thus, a precedes z and z precedes b in U(c) so that, by II, (a, z,b)eC and 
hence z e J(a, b) a Q. Moreover, x e Q, y e Q and x precedes z and z precedes y 
in U(c) and hence in V. Thus, T e M(x, v). 

VI. Since V is an orientation of the simple arc Q and since, by III, a is the initial 
point and b is the terminal point in V, a and b are, by 20.2.2, the end points of the 
simple arc Q. 

21.2.2. Let P be an oriented simple loop. Let a e P, b e P, a 4= b, so that, by 21.1.2, 
P contains exactly two simple arcs with end points a, b. Let the two simple arcs be 
oriented coherently with the given orientation of the simple loop P (see 21.2.1). Then 
one of these simple arcs has initial point a and the other one has initial point b. 

We shall denote by P(a, b) that one of the two simple arcs which has initial point a, 
so that the other will be denoted by P(b, a). 

Proof: Both simple arcs are evidently (a) u (b) u J(a, b)9 (b) u (a) u J(b, a). The 
validity of the statement follows by 21.2.1. 

21.2.3. Every simple loop P has exactly two orientations which are mutually inverse. 

Proof: I. For every couple (<a, b) of distinct points there are in P, by 21.1.2, exactly 
two simple arcs A, B with end points a, b. Associate the sets A* = A — [(a) u (6)], 
B* = B - [(a) vj (6)] with the couple (a, b). By 21.1.2, A* u B* = P - [(a) u 
u (6)], A* n B* = 0. An orientation of the simple loop P i s a cyclical ordering such 
that, for every couple (a, b) the sets A*, B* associated with this pair are identical with 
the sets J(a, b), J(bt a). 

II. Thus, by 5.5.2, it suffices to prove the following: If A* and B* are associated 
with a couple (a, b) and if ceA* (thus, ceA, a 4= c =j= b), then one of the two 
sets associated with (a, c) — denote it by — and one of the two sets associated 
with (c, b) — denote it by C2 — are such that A* = (c) u Ct u C2 with disjoint 
summands. 

III. The statement, which has to be proved, may also be stated as follows: Let 
aeP, bePy a 4= b. Let A <=. P be a simple arc with end points a,b. Let ceA, 
a 4= c 41 b. Then there exists a simple arc C c P with end points a, c and a simple 
arc C' c P with end points c, b such that A - [(a) u (6)] = (c) u {C' —. [(a) u 
u (c)]} u {C" - [(c) u (&)]} with disjoint summands. This follows by 20.1.9. 

Remark: If P is a simple loop and if a e P, b e P, a 4= b, then the notation P(a, b), 
P(b, a) for the pair of simple arcs with end points ay b contained in P is meaningful 
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only if an orientation of P is chosen. Under a change of orientation the simple 
arcs P(a, b), P(b, a) interchange. 

21.3. Let P be a continuum. Let C cz P be a simple loop. Let K be the set of all x e C 
separating P. Then K is a countable set. 

Proof: I. By 18.1.9 and 17.2.6, P is an infinite separable space, so that, by 16.1.3, 
there is an infinite countable subset M dense in P. Let {zn} be a one-to-one sequence 
containing exactly the points of M. 

II. Let x e A. Then xe C and P — (x) = A(x) u i?(x) with non-void separated 
summands. The set C — (x) is connected by 21.2.7, so that, by 18.1.2, we may 
assume C — (x) c= A(x), hence C n £(x) = 0. Since P — (x) is open, B(x) is also 
open by 8.7.7. As B(x) 4= 0, by 12.1.2 there is an index n(x) with zn(x)eB(x). 

III. Obviously if suffices to prove that n(x) 4= n(y) for x e A', y e A, x 4= y. Let, 
on the contrary, n(x) = n(y). Then B(x) n B(y) 4= 0. We have j e C - ^ c A(x) 
and similarly x e A(y). The set O) u B(y) is a connected (see 18.1.11) subset of 
P - (*) = A(x) v B(x) and hence (see 18.1.2) it is a subset of one of the two sets 
A(x), B(x). As y e A(x), we have 0>) u B(y) c A(x). This is a contradiction, since 
B(y) n B(x) 4= 0 = A(x) n B(x). 

21.4. (Converse of theorem 21.1.5.) Let P be a continuum. If every two-point set 
M a P separates P, then P is a simple loop. 

Proof: I. Choose aeP9beP9a 4= b. Then P - [(a) u (6)] = A u B with non-void 
separated summands. The sets A, B are open (see 8.7.7), and hence Qx = A u 
u (a) u (b) = P — B and Q2 = B u (a) u (b) = P - A are closed and hence 
(see 17.2.2) compact. Moreover, Qt u Q2 = P, Qi n Q2 = (a) u (b). 

II. Qx and Q2 are continua. Let, on the contrary, e.g. not be a continuum. 
Qx contains more than one point and it is compact. Thus, Qx = H u AT with non-void 
separated summands. We may assume that a e H. If b e H, we have K cz A, so that 
(see 10.2.4) K and B are separated. Consequently (see 10.2.5), K and H u B are 
separated, so that we have P = K u (H u B) with non-void separated summands, 
which is a contradiction. Thus, be K. If H were not connected, we would have 
H = Hy u H2 with separated summands, a e / / , , H2 4= 0. We would have H2 a A, 
so that (see 10.2.4) H2 and B would be separated. H2 and A would be also separated 
(again by 10.2.4), so that (see 10.2.5) H2 and Hy\J KKJ B would be separated. Thus, 
we would have P = H2KJ (Hy u K u B) with non-void separated summands, which 
would be a contradiction. Thus, H is connected. Similarly we can prove that K is 
connected. As Qy = H u K with separated summands and as Qy is compact (and 
hence closed), the sets //, K are closed and hence compact. Thus, each of //, K 
is either a one-point set or a continuum. More precisely, either H = (a) or H is 
a continuum and similarly either K = (b) or A is a continuum. If Q2 = B u (a) u (b> 
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is not connected, we have Q2 = H' u K' with separated summands, a c H\ K' 4= 0. 
H' and K' are closed. The point b cannot belong to H\ since this yields P = K' u 
u (#' u A) with non-void separated summands, so that b e K'. This is also a con-
tradiction, since then P = (H u PT) u (K u K') with non-void separated summands. 
Thus, Q2 is connected. 

We know that either H = (a), or H is a continuum. Analogously either K = (6) 
or Â  is a continuum. We cannot have simultaneously H = (a) and K = (b) since 
this yields A = Qx - [(d) u (6)] = [H - (¿7)] u [A: - (6)] = 0 and ^ 4= 0 by 
I. Hence, we have either 

[1] both H and K are continua, or: 
[2] H = (a), AT is a continuum, or: 
[3] H is a continuum, K = (b). 

In the first case there is an x e H, x 4= a and a ye K, y 4= b such that H — (x) 
and K — (;>) are connected sets (this follows by 20.4). Then P — [(x) u 0>)] = 
= Qz u \H ~~ (*)] u [K — 001- Q2 is connected and contains both points a and b. 
H — (x) is connected and contains point a,K— (>>) is connected and contains point b. 
Thus, by 18.1.4, P — [(x) u (>>)] is connected, i.e. the two-point set (x) u (y) does 
not separate P, which is a contradiction. 

In the second case choose an xe Q2, x 4= b such that Q2 — (x) is connected 
(this is possible by 20.4, as Q2 is a continuum); then choose a ye AT, y 4= b such 
that K - (y) is connected (this is possible by 20.4). Then P - [(x) u (y)] = 
= \Qi - (*)] u [K-(y)]. We have beQ2 - (x), beK-(y), Q2 - (x) and 
K — (y) are connected. Thus, by 18.1.4, P— [(x) u (>>)] is connected, which is 
a contradiction. 

The third case may be obtained from the second one by interchanging simultane-
ously a with b and H with K; this also yields a contradiction. Thus, Qt is connected. 

III. Thus, there are continua Qx cz P, Q2 cz P such that Qx u Q2 = P, n 
n g 2 = (0) u (6). By 21.1.3 it remains to prove that Qx and Q2 are simple arcs 
with end points a, b. Assume that this is not true e.g. for Qt. Then, by 20.1.2 and 
20.4 there is a point ce Qlf a 4= c 4= b, such that Qx — (c) is connected. Choose 
an x « Q2, a 4= x 4= b, hence, x 4= c. If Q2 — (x) is connected, then, by 18.1.4, also 
P — [(c) u (x)] = [Q1 — (c)] u [Q2 — (x)] is connected, and hence the two-point 
set (c) u (x) does not separate P, which is a contradiction. Thus, Q2 — (x) is not 
connected. Hence, each xeQ2 — [(a) u (b)] separates the continuum Q2, so that 
02 is, by 20.4, a simple arc and a, b are, certainly, its end points. Choose a d e Q2 

(hence, d 4= c), a 4= d 4= b. By 20.1.9 we have Q2 = S u T, where S is a simple 
arc with end points a, T is a simple arc with end points d, 6 and S n T = (</). 
The sets 5 — (*/), T — (d) are connected by 20.1.2. Qx — (c) is also connected. 
Moreover, P - [(c) u (rf)] = [<2i - (c)] u [S - (</)] u [P - (</)], a E [QX - (c)] n 
n [S - (d)l b e [Qx — (c)] n [ J - (d)], so that, by 18.1.4, P - [(c) u (-d)] is con-
nected, i.e. the two-point set (c) u (d) does not separate P, which is a contradiction. 
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Exercises 

21.1. A cartesian product PxQ where both P and Q contain more than one point, cannot be 
a simple loop. 

21.2. Let P have the property that every two of its points belong to some simple arc C c P, Let P 
contain no simple loop. If a e P, h e P, a =1= b, there exists exactly one simple arc C <= P 
with end points a, b. If Cx c py c2

 c P are simple arcs, then Cx n C 2 is either void or 
connected. 

21.3. Let P = Px or P = P6 (see exercises to § 19). Let a e Py b e Py a * b. Then there is a simple 
loop C c ? with aeC, b eC. 

21.4. The following more general theorem may be proved in a manner similar to 21.3: Let P 
be a separable connected space. Let C <=• P be a connected set. Let K be the set of all x e C 
which separate P and do not separate C. Then K is countable. 

21.5. Let P be a separable connected space. Let C cz p be a connected set. For n — 1, 2, 3 , . . . 
let An a p — C be connected sets. Let (see 8.8) 

Lim An => C . 

Let K be the set of all x e C which separate P. Then K is countable. 
21.6.* Prove theorem 21.1.6! 
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