Point Sets

Chapter IV: Connectedness

In: Eduard Cech (author); Miroslav Katétov (author); Ale§ Pultr (translator): Point Sets.
(English). Praha: Academia, Publishing House of the Czechoslovak Academy of Sciences,
1969. pp. [137]-171.

Persistent URL: http://dml.cz/dmlcz/402651

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
O and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz


http://dml.cz/dmlcz/402651
http://dml.cz

Chapter IV

CONNECTEDNESS

§ 18. General theorems concerning connectedness

18.1. A metric space P is said to be connected if [1]) P & (§, [2] if P = A U B with
separated (see 10.2) summands, we have either 4 = (J or B = (J. Since every point
set Q embedded into a metric space P is (see 6.3) a metric space, we need not define
the notion of connected point set. Connectedness is a topological notion (see 9.3).

The following theorem is evident:
18.1.1. Every one-point space is connected.

18.1.2. Let P = A v B with separated summands. Let S < P be connected. Then either
S < A (and hence SN B = (), or S = B (and hence S n A = 0).

Proof: We have S = (S n A) U (S n B) with separated (see 10.2.4) summands.
Hence, either SN A = () and then S < Bor Sn B = (J and then S = A.

18.1.3. Let P = (). For every couple a, b of distinct points ae P, be P, let there be
a connected S(a, b) = P with a e S(a, b), b € S(a, b). Then P is connected.

Proof: Let P = 4 u B with separated A, B. We have to prove that either 4 = §
or B = (J. Let, on the contrary, ae 4, be B. Then 4 n S(a, b) + ) + B n S(a, b),
so that, by 18.1.2, S(q, b) is not connected. This is a contradiction.

18.14. Let S, = P, S, = P be connected sets and let S; NS, = (). Then S; U S,
is a connected set.

Pioof: We have (§ = S, < §; U S, and hence S, US, (. Let S, uUS, =
= A u B with separated 4, B. We have to prove that either 4 = () or B = (). Let,
on the contrary, 4 + (J # B. By 18.1.2, either S, n 4 = () or S; n B = (J; similarly
either S, "4 = (0 or S, n B = (). Hence, one of the following cases occurs: [1]
SinA=8S,nAd=0, [2] $nB=S,nB=0, [3] SnA=S,nB=4{,
[4 S;nB=S,nA=0. In case [1] we have 4 = (S; v S,) n 4 = (J, which
is a contradiction. Similarly we obtain B = {J in case [2]. In cases [3] and [4] we
have S, n S, = S; n S, n (4 U B) = (0. This is also a contradiction.
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18.1.5. Let ac P. Let S % (J be a system of connected subsets of P such that every
S € G containts the point a. Then the set
T=yUs

is connected. Ses

Proof: Evidently T + (. Let ae T, fe T. Then there are sets S, €S, S,€S
such that «e S;, € S,. Put S(o, ) = S; U S,. We have S(a, B) = T, e S(a, f3),
feS(a, ). Moreover, the set S(«, f) is connected by 18.14, as S, n S, + 0,
since a € S; N S,. Thus, the set T is connected by 18.1.3.

18.1.6. Let a set S < P be connected. Then S is also connected.

Proof: We have S = S, hence S # (0. Let S = 4 U B with separated summands.
We have to prove that either A = ) or B = {J. The set A4 is closed in AU B = S,
and § is closed in P; hence (see 8.7.4), A4 is closed in P, i.e. A = A. Similarly B = B.
Since S < S, we have, by 18.1.2, either S = 4 or S < B, hence, either S =« 4 = 4
or S ¢ B = B. Wehave S = A U Band 4, B are (separated, hence) disjoint. Thus,
either B=(or 4 = 0.

18.1.7. Let a set S = P be connected. Let S = T = S. Then T is also connected.

Proof: This follows from 18.1.6, as T = T n S, i.e. (see 8.7.1) it is the closure
of the set Sin T.

18.18. Let Ac P, S P. Let S be connected. Let AnS +0 S — A. Then
S B(A) + 0.

Proof: We have P= AU (P — A) = AUP = A4 and hence S = SnAvu
U NP — A). Thesets SN A, SNP — Aare nonvoid. Since S is connected, they
are not separated, hence (see 10.2.1) they are not disjoint, hence 0 &+ S 4 N

NP — A =S5n B(A).

18.1.9. Let a connected space P contain two distinct points. Then P is uncountable.

Proof: Let ae P, be P, a & b, hence g(a, b) > 0. It suffices to prove that for
every ¢ > 0, ¢ < ¢(a, b) there is an xe P with g(a, x) = ¢. Let 0 < ¢ < g(a, b),
A =Efo(a,x) <¢]. Then AnP %) +P— A and hence B(4) +0 by 18.1.8.

Evidently B(4) = E[o(a, x) = ¢].
18.1.10. Let f be a continuous mapping of a connected space P onto a metric space Q.
Then Q is a connected space.

Proof: Since P + () we also have Q #+ (. Let Q = 4 U B with separated 4, B. We
have to prove that either A = (J or B = (). We have P = f_,(Q) = f-(4) v f_(B).
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We have 4 n B = (J, so that f_ (4) nf_(B) = . Moreover, A, B are closed in
A U B = Q, so that (see 9.2) f_,(4), f-,(B) are closed in P. Thus, f_;(4), f-(B)
are separated. Since P = f_,(A4) U f-,(B) is connected, we have either f_,(4) = 0
and hence 4 = (J or f_,(B) = ( and hence B = (J.

18.1.11. Let P be a connected space. Let a set Q = P be either connected or void.
Let P — Q = A v B with separated A, B .Then each of the two sets Q U A, Q U B
is either connected or void.

Proof will be done e.g. for Q U 4. Let Q U 4 = H u K with separated H, K.
We have to prove that either H = (J or K = (J. Since Q =« H = K we have, by
18.1.2, either Q =« H or Q « K. E.g. let Q = H so that K = A. Thus, K and B
are separated by 10.2.4, so that K and H u B are separated by 10.2.5. We have
KuHuUB) =HUK)UB=(QuUAUB=Qu(duB =QuP-Q) =P
and P is connected, so that either K = (# or Hu B = (J, which implies H = 0.

18.1.12. Let A = P, B = P be non-void closed sets. Let A U B be connected; let An B
be connected. Then A, B are also connected.

Proof: We have (4 — B) n (B — A) = . Moreover, A — B =« A = A, and hence
A—-—Bn(B—-A) =0 and similarly B— An (4 — B) = (J. Hence, the sets
A — B, B— A are (see 10.2.3) separated. Thus, all the assumptions of theorem
18.1.11, where we put A U B, A n B, A — B, B — A instead of P, O, A, B respect-
ively, are satisfied. Hence, 4 = (A nB)u (4 — B), B=(AnB)u (B — A) are
connected (since they are non-void).

18.1.13. Let P and Q be connected spaces. Then Px Q is a connected space.

Proof: We have P & (J + Q and hence PxQ = @J. Choose an a = (a;, a,) €
ePxQ and b = (b, b,) ePx Q. By 18.1.3 it suffices to show that there exists
a connected S = PxQ such that ae S, beS. The set S, = Px(a,) is homeo-
morphic with P. Since connectedness is a topological property, S, is connected.
Similarly, S, = (b,) x Q is homeomorphic with Q and hence connected. We have
aeS;,be S, and hence (@u(B)=cS=S,US,=cPxQ.As(b;,a,)eS;nS,+0,
S is connected by 18.1.4.

18.2. Let P be a metric space. A set K < P is said to be a component of the space P
if it is a maximal connected subset of P,i.e., if [1] K is connected, [2] A = P connected
and 4 o K implies 4 = K. Since every set Q — P is a metric space, we need not
define the notion of component of a point set. The notion of component is a topo-
logical notion (see 9.3).

Obviously, # has no components.
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18.2.1. Every point a € P belongs to exactly one component of the space P.

Proof: Denote by © the system of all connected parts of the space P containing
the point a. By 18.1.1 (a) € &, hence S = (. The union T of all sets of the system &
is conntected by 18.1.5. Evidently T is a component of the space P containing the
point a. Let K also be a component of P containing a. We have Ke S, hence,
K < T. As K is a component and T is connected, we obtain K = T.

18.2.2. Components of any space P are closed sets.

Proof: Let K be a component of a space P. Then K is connected (by 18.1.5) and
K c K. Since K is a component, we have K = K.

The following theorem is evident:
18.2.3. A space P is connected if and only if it has exactly one component.

18.2.4. Let K, K, be two distinct components of a space P. Then K, , K, are
separated sets.

Proof: The sets K, K, are closed in P by 18.2.2 and hence they are closed in
K, U K,. Moreover, K, n K, = (J by 18.2.1.

18.2.5. Let S = P be a connected set. Then there is exactly one component K of P
such that S < K.

Proof: By 18.2.1 there is at most one such component, as S # (. Choose a€ S.
By 18.2.1 P has a component K containing the point a. The set S U K is connected
(by 18.1.4) and contains the component K. Hence, SU K = K, i.e. Sc K.

18.3. Let P be a metric space. Let ae P, b € P. We say that P is connected between
the points a and b, if in every decomposition P = 4 U B with separated summands
both a and b belong to the same summand A4 or B. This always holds if a = b.

18.3.1. A4 space P = (J is connected if and only if it is connected between a and b
for every choice of the points ae P, b e P.

Proof: 1. Let P be connected and let ae P, be P. If P = 4 U B with separated
summands, then one of the summands is void, so that the other contains both
the points a, b.

II. Let P be not connected. Then P = 4 U B with separated non-void 4, B.
Choose a€ A, b e B. Obviously P is not connected between a and b.

18.3.2. Letae P,be P, ce P. Let P be connected between a and b. Let P be connected
between b and c. Then P is connected between a and c.
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Proof: Let P = A u B with separated summands and let, e.g., ae€ 4. We have
to prove that also ¢ € 4. Since a € 4 and since P is connected between a and b we
have b e A. Since b e A and since P is connected between b and ¢, we also have
ce A.

18.3.3. Let S = P be a connected set. Let ac S, be S. Then P is coanzcted bztwzen
a and b.

Proof: Let P = A u B with disjoint summands and let, e.g., ae A. We have to-
prove that also b € 4.

By 18.1.2 we have either S = 4 or S = B. Since a€ S bzlongs to A, we have
S < A and hence also b € 4.

A set Q = P is termed a quasicomponent of the space P, if [I] Q %= U, [2] P is
connected between points a and b whenever ae Q, be Q, [3] P is not connected
batween a and b whenever ae Q. be P — Q. Evidently,  has no quasicomponents.

18.3.4. Every point a € P is contained in exactly one quasicomponent of the space P.

Proof: 1. Denote by Q the set of all x € P such that P is connzcted bzstwzen a
and x. We have a € Q and hence Q + . If x e Q, y € Q, then P is connected between
x and a and also between a and y. Thus, P is connected between x and y by 18.3.2,
If xe Q, ye P — Q then P is not connected between x and y. But P is connected
between a and x; if it were connected between x and y, it would be connected
between a and y by 18.3.2, i.e. y would belong to Q, which is a contradiction. Thus,
Q is a quasicomponent of P.

II. Let Q, and Q, be quasicomponents of P, containing the point a. If xe Q,,
then P is connected between a and x, so that x € @,. Hence, @, = Q, and similarly

0, = Q,. Hence 0, = Q,.

18.3.5. Points ac P, b e P belong to the same quasicomponent of P if and only if P
is connected between a and b.

Proof: Let Q be the quasicomponent of P (see 18.3.4) containing the point a.
By part I of the previous proof, b € Q if and only if P is connected between a and b.

18.3.6. Quasicomponents of any space P are closed sets.

Proof: Let, on the contrary, a quasicomponent @ of a space P bs not closed.
Then we may choose a point 2 € Q and a point b€ 9 — Q. Then P is not connzcted
between a and b so that P = 4 u B with disjoint summands, ac 4, b B. As A, B
are separated, they are closed in 4 U B =P and hencz A = 4. If x&Q, thza P
is connected between a and x. Since P = 4 u B with separated 4, B and since
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ae A we have xe€ A. Thus, xe Q implies xe 4, i.e. Q = A, sothat 0 = 4 = 4
and hence b € A. This is a contradiction.

From 18.3.1 and 18.3.5 we obtain
18.3.7. A space P is connected if and only if it has exactly one quasicomponent.

18.3.8. Let Q,, Q, be two distinct quasicomponents of a space P. Then Q,, Q, are
separated sets.

Proof: The sets Q;, Q, are closed in P by 18.3.6; hence, they are also closed in
0, v Q,. Moreover, Q; n 0, = (J by 18.3.4.

18.3.3 and 18.3.5 yield
18.3.9. Every component of any space P is a subset of some quasicomponent of P.

18.3.10. A quasicomponent Q of a space P is a component of P if and only if it is
connected.

Proof: 1. If Q is not connected, it is not a component, since every component
is connected.

II. If Q is connected, then (see 18.2.5) Q is a subset of some component K,
and K is (see 18.3.9) a subset of a quasicomponent Q'. Then § + Q =« K< Q'
so that O = Q' by 18.3.4. Thus, QO = K.

18.3.11. Let P have a finite number of quasicomponents. Then every quasicomponent
is connected.

Proof: Let, on the contrary, a quasicomponent Q, not be connected, so tha)
0, = A U B with separated non-void 4, B. Choosc ac A,be B. Let ;2 < i < nt
be all the other quasicomponents of P. (We have n > 2, i.e. Q, % P, since Q, is not
connected between a and b and P is connected between a and b.) The sets 4 and B
are separated. 4 and Q; (2 £i < n) also are separated (see 18.3.8 and 1024)

Hence (see 10.2.5), 4 and Bu U Q; are separated. We have 4 U (B u U 0)=

=(AuUB)uU U Q; = U 0, =P, aeA,beBuUQi.
i=2 i=1 i=2

Thus, P is not connected between ae @, and b e Q; which is a contradiction.

18.4. Let ae P, b e P. A set chain from a to b is a finite sebuence {M}]_, of point
sets such that [lJae M,, Rl beM,,, BIM;An My, £0forl £is<m-—1,

18.4.1. Let ae P, b € P. For every finite system U of open sets with U X = P assume
Xe¥
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that we may choose a set chain from a to b out of . Then P is connected between
a and b.

Proof: Let, on the contrary, P not be connected between a and b. Then P =
= A u B with separated summands, ae 4, be B. Denote by U the system
consisting of the sets 4 and B. Then 2 is a finite system of open sets with |J X = P.

Xen
Hence, there is a set chain {M,}i=, from a to b such that M; e . Thus, for every i
either M;=A or M;=B. As AnB=(,aecd, ae M,, we have M, = A. As
M;aM;,, #0(0 £i<m~— 1) we obtain by induction that M; = A for every i
(1 £i £ m). Hence, M,, = A, so that b e A, which is a contradiction.

18.4.2. Let P be connected between ae P and be P. Let U be a system of open sels
with |J X = P. Then we may choose a set chain from a to b out of .
XeA

Proof: Choose an A4 € A with a e A. Denote by U, the system of all the X e
such that there is a finite sequence {4,}j=; with [1] 4, e A (L Li<m), [21 4, = 4,
Bld, =X, M And,, £0(05ism—1).

Put A, =A —-A,. If XeU,, YeA, XY +(J, we have, obviously, Y e¥,.
Hence,

Xeq,, Yel, = XnY=0. )]

Choose a Be U with be B. If Be,, we obviously may choose a set chain from
a to b out of A. Thus, let BeA,. Put S, = Y X, S, = U X. Then the sets S,

XeUy Xed:
and S, are open and S; U S, = P. Moreover, S; n S, = ¢ by (1). Hence, S, and

S, are separated. Evidently ae S, b € S, so that P is not connected between a and b.

18.5. Let Q = P, ae P, b e P. We say that the set Q separates the point a from the
pointbinPifacP — Q,beP — Q and if the set P — Q is not connected between
a and b, hence, if P — Q = A U B with separated summands such that ae 4,
beB. If Q = (q) is a one-point set separating a from b in P, we also say that the
point q separates the point a from the point b in P.

18.5.1. Let a set Q < P separate a point a from a point b in the space P. Then there
is a set F = Q closed in P which also separates a from b in P.

Proof: We have P — Q = A U B with separated summands, a€ 4, be B. By
10.2.7 there are open U, V such that Un¥V =(), Uo 4, V> B Put F=
=P~ (UuV).Then Fisaclosedset, Fc Qand P — F = U u V with separated
summands, ae U, be V.

18.5.2. Let Q c P, aeQ - B(Q), beP — Q_. Then the set B(Q) Separates the
point a from the point b in the space P.
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Proof: We have B(Q) = 0nP -0, hence P — B(Q) = (P — Q) u P-pP - _Q)
with separated summands. As beP — Q while neither ae B(Q) nor ae P — o,
we have ae P — (P — Q).

18.53. Let Q = P be an open set and let ac Q, be P — Q. Then the set B(Q)
separates the point a from the point b in P.

This is a particular case of theorem 18.5.2, since Q = Q — B(Q) (see 10.3.2).

We say that a set Q = P separates the space P, if P is connected and P — Q is not
connected. If a one-point set (¢) separates P, we also say that the point q separates
the space P.

We say that a set Q = P is an irreducible cut of the space P between points a, b,
if [1] Q separates a from b in P, [2] if M < Q separates the point a from the point b
in P, then M = Q.

18.5.4. If Q < P is an irreducible cut of P between points a, b then Q is a closed set.
This follows from 18.5.1.

Exercises

18.1. Connected spaces are either one-point or dense-in-itself.

18.2. Let P = A U B with connected summands. P is connected if and only if 4, B are not se-
parated.

18.3. Let G + ¢ be a system of connected parts of a space P. Let there be no separated sets 4 € G,

B € G. Then the set | ] S is connected.
Se
18.4. A space P is connected if and only if for every X < P

0+ X+ P implies B(X) + 0.

18.5. Let P be a connected space. Let Q < P. Let P— Q = A U B with separated non-void
summands. Let for X © Q + X the set P — X be connected. Then the sets A U Q, BU Q
are connected.

18.6. In theorem 18.1.12 we may replace the word “closed” by the word “open”.

18.7. If PXxQ is a connected space, then both spaces P, Q are connected.

18.8. Let P, Q be infinite connected spaces. Let a € P X Q. Then the set P X Q — (a) is connected.

189. Let a set M be dense in a space P. Let M have a finite number of components. Then P has
at most as many components as M.

18.10. The components of a space P X Q are identical with the sets M X N where M, N varies over
the components of P, Q respectively.

n
18.11.* We may write P = U A; with separated non-void summands if and only if P has at least n
i=1

components.
18.12. Let P be a connected space. Let a set Q < P have a finite number of components. Let P — Q =
= A U B with scparated 4, B. Then Q U A4 has at most as many componcnts as Q.
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18.13. Let A < P, B < P be closed sets. Let A U B be connected; let 4 N B have a finite number
of components. Then 4 has at most as many components as 4 N B.

18.14. In exercise 18.13 we may replace the word *‘closed” by the word “open™.

18.15. Let a, b, c be three distinct points of a connected space P. Let the point a separate the point b
from the point ¢. Then the point b does not separate the point a from the point c.

18.16. Let a, b, c be three distinct points of a connected space P. Let no x € P separate a ¢ither from b
or from ¢. Then no x € P — (a) separates the point b from the point c.

18.17. Let a, b be two distinct points of a connected space P. Let M be the set of all x € P separating
the point a from the point . Then we may define an ordering of M as follows: If x € M,
y € M then “x precedes y”’ means that the point x separates the point a from the point ».

18.18. The ordering defined in exercise 18.17 turns to its inverse, if we interchange the points a, b.

18.19. Let P be a connected separable space. Let M < P be an uncountable set; let every x € M
separate the space P. Then there exist two points a, b and an uncountable N < M such that
every x € N separates the point @ from the point b.

In exercises 18.20—18.23, the proposition “P is a(a, b)” means that a, b are two distinct points of
a connected space P and that no connected closed M + P contains both the points a, b.

18.20. Let P be o(a, b). Let a set M = P-— [(a) U (b)) separate P. Then the points a, b belong to
distinct components of P — M. )

18.21. Let P be o(a, b). Let a set M =+ P be closed and connected. Then P — M has at most two
components.

18.22. If in ex. 18.21 a € M, then P — M is connected.

18.23. Let a # b + ¢ + a. Let P be simultaneously o(a, b), o(a, ¢), a(b, ¢). Let P = A U B with
closed connected summands. Then either 4 == P or B = P.

§ 19. Connectedness of compact spaces

19.1. A continuum is a connected compact space containing more than one point.
The notion of continuum is a topological notion (see 9.3). Some authors use the
term continuum also for one-point sets.

19.1.1. Let Q be a component of a compact space P. Then Q is either a one-point
set or a continuum.

Proof: Q is connected. By 18.2.2 and 17.2.2 Q is compact.

Let ¢ > 0. Let ae P, beP. An e-chain from the point a to the point b in the
space P is a finite point sequence {a;}i~, such that [I] a, = a, [2] a, =b,
3] e(a;,a;, ) <efor 1 <i<m-—1.

19.1.2. Let a metric space P be connected between ae P and be P. Let ¢ > 0. Then
there is an e-chain from a to b in P.

Proof: Let A be the system of all sets Q(x, &) where x varies over P. The sets

Q(x, L&) are (see 8.6) open and U Q(x, 3¢) = P, so that, by 18.4.2, there may be
xX€epP

chosen a set chain {4;}/=, from a to b out of 9. Put 4; = Q(x;, Le) (1 £ i < m).
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Let xo = a, X,+; = b. Then {x; 1%t is an e-chain from a to b. We have, first,
xo=acd, =x,,%e), hence @g(xo,x;) <}e <e Secondy x,., =bed=
= Q(x,,1¢), hence o(x,,, Xm+1) < & < & Finally, let 1 <i < m — 1; then there
isapointze 4; N A;yy = Qx;,38) 0 Q(xi44, 3e), hence o(x;, 2) < fe, 0(z, x4 () <
< 1e and hence o(x;, x;4+1) < &

19.1.3. Let P be a compact space. Let a€ P, b e P. For every ¢ > 0, let there be an
e-chain from a to b in P. Then P is connected between a and b.

Proof: Let, on the contrary, P not be connected between a and b. Then P =
= A U B with separated A, B such that ae 4, b € B. The sets A and B are closed
in P, hence (see 17.2.2), they are compact As An B =(), we have, by 17.34,
o(A4, B) > 0. Let 0 < ¢ < (4, B). Let {a;}/-, be an e-chain from a to b. We have
a;, =aeA. Since 0(a;,a;,,) <e<o(4,B) (1 £i<m-—1) we can prove by
induction that a;e A (1 £i £ m). Thus, b = a, € A, which is a contradiction.

19.1.4. Let Q be a quasicomponent of a compact space P. Let U be a neighborhood
of the set Q. Then P = A L B with separated summands such that Q =« A < U.

Proof: The case U = P is trivial (4 = P, B = (J). Hence, let P — U # (J. Choose
an ae Q. If xe P — U, then (see 18.3.5), P is not connected between a and x so
that there exist separated sets H(x) and K(x) such that ae H(x), xe K(x), P =
= H(x) u K(x). If y e Q, then P is connected between a and y, so that y e H(x).
Thus, Q = H(x). The sets H(x) and K(x) are open in P so that the sets K(x) —
H(x) — U are open in P— U. Since P— U is compact (see 17.2.2) and

U (Kx)—U)=P— U, we may, by 17.5.4, find a finite number of points

xeP-U
x;eP - U (1 £i<m) such that .U Kx)-U)y=P-1U0, i.e. .U K(x) o

> P — U. Since H(x) = P K(x;), we have n H(x)=P — U K(x;), hence
ﬂ H(x) < U. Put A = n H(x)), B = U K(x) ) thathAc U AuB=

= P. Since H(x;) and K(x,) are separated, A and K(x;) are also separated, by
10.2.4, so that 4 and B are separated by 10.2.5.

19.1.5. In compact spaces the quasicomponents are identical with the components.

Proof: By 18.2.1, 18.3.4 and 18.3.10 it suffices to show that every quasicomponent Q
of a compact space P is connected. Let, on the contrary, Q not be connected. As
0O =+ (, we have @ = A U B with non-void separated A4, B. The sets A4, B are closed
by 8.7.4 and 18.3.6; hence, they are compact by 17.2.2. Moreover, 4 n B =(J,
so that o(4, B) > 0 by 17.3.4. Let 0 < 2¢ < o(4, B), so that Q(4, &) n Q(B, ¢) =
The set Q(4, ¢) U Q(B, €) is a neighborhood of the set Q = 4 U B. Hence, by
19.1.4, P = H v K with separated summands such that Q = H = Q(4, &) U Q(B, ¢);
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hence, H = H, u H,, where H, = Hn Q(A,¢), H, = H ~ Q(B, ¢). Evidently
A < H,, B= H,. The sets H, and K are separated by 10.2.4; the sets H, and H,
are separated by 10.2.7; hence, H, and H, U K are separated by 10.2.5. Moreover,
P=H u(H,uK), Ac H, Bc H,u K. Thus, P is not connected between
a and b whenever we choose g€ A, be B. This is a contradiction (see 18.3.5), as

aeQ, beQ.

19.1.6. Let {A,}7 be a sequence of continua. Let A, > A,,, for n=1,2,3,...

Then ﬂ A, is either a one-point set or a continuum.
n=1

Proof: We may assume that 4; = P, so that P is compact. Put C = ) 4,.
n=1

By 17.5.1, C % (J. Moreover, the set C is closed and hence compact (see 17.2.2).
It remains to prove that C is connected. Let, on the contrary, C = C, u C, with
non-void separated C,, C,. By 10.2.7 there exist open sets U;, U, such that
UnU,=0, U oCy, UyoC,. If A, cU,uU,, then 4,=(A4,nU)u
U (4, n U,) with separated summands and 4, n U, > C, £ 0, 4, n U, o C, & ()
which is impossible, since 4, is connected. Hence, 4, — (U, v U,) + 0 for every n.
Since 4, — (U, v U,) o 4,4y — (U, U U,), we have by 17.5.1

d+N[4,—(U,uU)]=C—-(Uul,),
n=1
which is a contradiction.

19.1.7. Let P be a compact space. Let {A,}T be a sequence of connected sets such
that Lim A, & (0. Then Lim A, is either a one-point set or a continuum.

Proof: Let a€e IinlA,,. Then [see 8.8.(1)] aeLim A4,, so that Lim 4, + ¢J. We

see easily (ex. 8.18), that the set Lim 4, is closed. Hence, Lim A4, is compact by
17.2.2. It remains to show that Lim A, is connected. Let us assume the contrary.
Then there are separated sets H, K such that Lim A,=HUK, aeH, K=+(.
By 10.2.7 there exist open U, V with UnV =0, U> H, V> K. AsaeLim 4,

there is a sequence {a,} such that a, — a, a, € 4, for every n. Choose a be K c
< Lim 4,. There exist indices i; < i, < iy < ... and a sequence {b;}:>, such
that b, — b, b; € A,, for every n. Since U is a neighborhood of the point a =
= lim a, and V is a neighborhood of the point b = lim b;_ there is an index p such
that n > p implies a; € U, b; € V, which implies 4; n U 0 + A4; n V. Since
the sets 4; n U, A; n V are separated and since A4;, is connected, there exists
ac;, €d; O (U uV)forn> p. As P is compact, there is a subsequence {j,} of {i,}
such that lim¢;, = ¢ exists. As ¢; e P — (Uu V) and as P — (U v V) is closed,
we have ceP — (Uu V). This is a contradiction, as ceLimd4, = HuK <
cUvVV.
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19.1.8. Let f be a continuous mapping of a compact space P onto a metric space Q.
Let f_,(¥) = P be connected for every y€ Q. If S = Q is connected, then f_,(S) = P
is also connected.

Proof: Let f_,(S) not be connected. Obviously f_,(S) =+ J, so that there exist
non-void separated 4 =« P, B = P with f_,(S) = A u B. Evidently S = f(4) u
U f(B), f(4) + 0 & f(B). Since S is connected, f(4) and f(B) are not separated,
so that, by 10.2.3, we have either f(4) n]TB_) *+(J or m N f(B) * 0. Let, e.g.,
S(4) 0 f(B) + 0. B is compact by 17.2.2. Hence, f(B) is compact by 17.4.2. Thus,
f(B) is closed in Q by 15.2.1 and 17.2.1. Hence, jTB—) < f(B) by 8.4, so that
S(A) n f(B) + (). Hence there are points x, € 4, x, € B, y e f(4) = § with f(x,) =
=f(x;) =y. We have (x))u(x,)cf () =f_-(S)=AUB As AnB=0
by 10.2.3, x, does not belong to A4; thus, x, € B. Thus, f_,(y) = (/- (y) " A) v
U (f-1(») n B) with non-void separated (see 10.2.4) summands, i.e. f_,(») is not
connected, which is a contradiction.

19.2. 192.1. Let acE,, beE,, a<b. Then J = E[a £ x £ b] is a continuum.
Proof: The set J is compact (see 17.2.3) and it contains more than one point.
It remains to prove that it is connected. This follows easily from 18.3.1 and 19.1.3.

We call an interval every part of E; containing more than one point and such
that it contains every z with x < z < y whenever it contains x and y.

19.2.2. Let M < E,. M is connected if and only if it is either a one-point set or
an interval.

Proof: 1. Every one-point set is connected by 18.1.1. The connectedness of
intervals may be easily proved by 18.1.5 and 19.2.1.

11. Let M be neither a one-point set nor an interval. If M # (J, there are numbers
x, y, z with xeM, yeM, zeE, — M. 'Evidently M =(MAnE[t<z])u
t

U (M n E[t > z]) with non-void separated summands so that M is not connected.
t

19.2.3. Let P be a connected space. Let f be a finite continuous function on P. Then
either f is a constant function or f(P) is an interval.

This follows easily from 18.1.10 and 19.2.2.

19.2.4. The euclidean space E,, (m = 1,2,3,...) is connected.

Proof: E, is connected by 19.2.2. Since E,,, = E, xE,, the connectedness of
every E,, follows by induction from 18.1.13.
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19.2.5. The spherical space (see Chapter 111, 17.10) S,, (m = 1, 2, 3, ...) is connected.

m

Proof: Choose an a€S,,. Evidently S, — (a) = S, .S, - (@) is connected by
17.10.4 and 19.2.4. Hence, S,, is connected by 18.1.6.

19.3. 19.3.1. Let P be a continuum. Let a set F < P be closed and let ) = F + P.
Let K be a component of F. Then K n B(F) =% ().

Prooy: Let, on the contrary, K = G, where G = F — B(F) = F — P — F. Then G
is a neighborhood of Kin F. As K is (see 19.1.5) a quasicomponent of a compact
(see 17.2.2) space F, by 19.1.4 we obtain that F= A u B with separated
summands such that K =« 4 < G. We have 4 n B = (} and the sets A, B are closed
in P by 8.7.4. As F= A U B we have

P=AUBUP-F) )

with closed summands. Wehave An B = (JandalsoAnP — F=(,asAc G =
= F — P=F. Thus, the summands in (1) are separated; as P is a continuum,
one of them is void. We have 0 + K = A. Hence, BUP—F = (J, hence P —
— F =0 i.e. F = P, which is a contradiction.

19.3.2. Let P be a continuum. Let G = P be an open set such that (§ + G + P. Let K
be a component of the set G. Then K n B(G) =+ ().

__Proof: Suppose that Kn B(G) = K n G -6)= #. We have K = G, hence
K =G. As Kn (G — G) = (), we have K = G. Hence, K n (P — G) = () so that,
by 17.3.4 (see also 17.2.2) we have ¢ = o(K, P — G) > 0. Let F= E[o(x,P - G) 2

= L¢]. Then F is a closed set. We have F = G, hence F % P and K < F, hence
F + 0. The set K is connected (see 18.1.6), hence (see 18.2.5), K = L where L is
a component of the set F. Since F < G, we have, by 18.2.5, L « M, where M is
a component of G. Thus, § # K =« K = L = M, where K and M are components
of the set G, so that (see 18.2.1) K = M. Hence, K = L is a component of the set F.
Hence, by 19.3.1, K n B(F) # (). Evidently B(F) = E[¢(x, P — G) = }¢]. Hence,

for every ae K n B(F), o(a,P — G) = ¢ < ¢ = o(K, P — G). This is a contra-
diction.

19.3.3. Let P be a continuum. Let ac P. Let ¢ > 0. Then there is a continuum
K < P such that ae K = Q(a, €).

Proof: Let F = Q(a, 1€). We have ae F = Q(a, €), hence F # () and F is a closed
set. If F = P, we may choose K = F. Thus, let F + P and let K be the component
of F containing the point a. We have ae K = Q(a, ¢) and the set K is connected.
Moreover, K is closed by 8.7.4 and 18.2.2, hence (see 17.2.2), K is compact. Thus,
K is a continuum, if K = (a). By 19.3.1 ¢ + K~ B(F) = K — (a), so that K #* (a).
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19.4. We say that P is an irreducible continuum bztween points a and b, if: [1] P is
a continuum, [2] ae P, be P, [3] if K = P is a continuum and if ae K, b € K, then
K = P. By 19.3.3 necessarily a =+ b.

19.4.1. Let P be a continuum. Let ac P, be P, a £ b. Then P contains at least one
irreducible continuum bztween the points a and b.

Proof: Let A be the system of all coatinua A4 < P such that ae 4, be A. We
have Pe W and hence A + (. If 4, e, 4, o A,y (n=1,2,3,...), then n A, el
n=1

by 19.1.6. Hence, by 16.4 (see also 17.2.6) there is at least one minimal set K in .
K is obviously an irreducible continuum between the points @ and b.

19.4.2. L2t P be an irreducible co:xatiniuam bz2twzen ae P and be P. Then the sets
P — [(@) v (b)), P — (a), P — (b) are conzcted.

Proof: 1. Put Q = P — [(a) v (b)]. Then 0 = P, i.e. both a and b belong to 0
Indeed, Q = (J by 18.1.9, and P =Qu (P — Q) with closed (see 8.3.4), hence

separated, summands, so that P — Q = 0.

II. By I and 18.1.7 it suffices to show that the set Q is connected.

Let us assume that Q is not connected. 4s Q + J, Q = 4 U B with non-void
separated summands. By I, P=A4Au B. By 1023 A n B =0 = A n B and hence
A+P+B. AsPisconnectedand P=A4 U B, 4 + (0 + B, we have AU B + 0.
We have AnBNQ=(ANnB)u(AdnB)=0.Thus § + 4 B < (a) U (b), so
that we may assums that ae 4 n B. Moreover, be P = 4 U B, so that we may
assume b € 4. First, let 4 bz connected between the points a and b. Then a and b
belong to the same quasicomponsnt K of th: space 4 (see 18.3.5). A is compact
(see 17.2.2), so that (see 19.1.5) K is a component of 4. As ac K, beK, a + b,
K is a continuum (see 19.1.1). P is an irredu cible continuum between the points a, b,
so that K = P. This is a contradiction, since K = 4 = P.

It remains to investigate the case that 4 is not connected between a and b. Then
A4 = C, u D, with separated summands such that aeC,, be D,. If b does not
belong to B, we have P = Au B = D, U (C,; u B) with separated non-void D,,
C, U B which is a contradiction. Thus, both the points a, b belong to B. If B is
connected between a and b, we obtain a similar contradiction as we did above.
If B is not connected betwezn a and b, th=n B = C, u D, with disjoint summands
such thatae C,, be D,. Thza P=A4 U B = (C, u C,) u (D, U D,) with separated
disjoint C, U C,, D, u D,, which is a contradiction.

19.5. A semicontinuum is a non-void metric space P such that for every ae P, be P,
a % b, there is a continuum K < P such that ae K, be K. The notion of semi-
continuum is a topological notion (see 9.3).
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19.5.1 Every one-point space is a semicontinuum. This is evident.

19.5.2. Every continuum is a semicontinuum. This is also evident.

19.5.3. Every semicontinuum is connected. This follows from 18.1.3.

19.5.4. A compact semicontinuum is either a one-point space or a continuum. This
follows from 19.5.3.

Let P be a metric space. A set S < P is said to be a constituant of the space P
if it is a maximal semicontinuum in P, i.e. if: [I] S is a scmicontinuum, [2] 4 = P,
A semicontinuum, 4 o S imply 4 = S. The notion of constituant is a topological
notion (see 9.3).

Obviously, 0 has no constituants.

19.5.5. Every point a € P belongs to exactly one constituant of P.

Proof: Denote by & the system containing the one-point set (a) and all the continua
K< Psuch that ae K. If K, €S, K, € €, then ae K; U K, and the set K, U K,
is connected by 18.1.4. Moreover, it is easy to prove (see ex. 17.4) that K, u K,
is compact. Thus, K; € S, K, € S imply K, u K, € S. Denote by S the union of
all the sets of ©. Then ae S < P. If xe S, ye S there are K, €S, K, e S with
xeK;, yeK,. We have (x) U () = K, U K, € S. Hence, S is a semicontinuum.
Let T < P also be a semicontinuum and let S « T and henceae T. If xe T, x + a,
there is a continuum K < T with (@) U (x) =« T. We have Ke &, hence, K < S,
xe€S. Thus, T < S, so that T'= S. Hence, S is a constituant. Let S* be another
constituant with ae S*. If x e S*, then either x = a or there is a continuum
K < S* with (a) U (x) c K, so that xe S. Hence, S* = S and similarly S = S*.
Thus, S* = S.

The following theorem is evident.

19.5.6. A space P is a semicontinuum if and only if it has exactly one constituant.
18.2.5 and 19.5.3 yield

19.5.7. Every constituant of P is contained in a component of P.

The following theorem is evident.
19.5.8. A component K of P is a constituant of P if and only if K is a semicontinuum.

19.5.9. In compact spaces, the constituants are identical with the components.

Proof: Let K be a component of a compact space P. K is connected. By 18.2.2,
K is closed in P, so that K is compact by 17.2.2. Hence, K is a semicontinuum by
19.5.1 and 19.5.2. Thus, K is a constituant of P by 19.5.8.
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Let P be a metric space. Let Q < P. We say that Q cuts P between points a and b,
ifaeP — Q,beP — Q,a + b and if, for every continuum K < P such that a€ X,
be K we have K n Q =+ (§. The following theorem is evident.

19.5.10. Let Q = P, a€ P, be P. Q cuts P between the points a, b if and only if the
points a, b belong to distinct constituants of P — Q.

19.5.11. Let Q < P separate a point a from a point b in P. Then Q cuts P between
the points a, b.

Proof: We have P — Q = A U B with separated summands, ae 4, be B. Let K
be the component of P — Q containing the point a. By 18.1.2, K = 4. Let H be
the constituant of P containing the point a. By 19.5.7, H = K. Hence, H c A4,
so that be (P — Q) — H. Thus, Q cuts P between a, b by 19.5.10.

19.5.12. Let a compact set Q < P cut P between points a, b. Then there is a compact
set M < Q such that [1] M cuts P between a, b, [2] if H =« M is compact and if H
cuts P between a, b then H = M.

Proof: Let us denote by 2 the system of all compact A = Q cutting P between a, b.
We have Qe and hence A +@. Let A,€A, 4, > A,,, (n=1,2,3,..); put

A = () A,. The sets 4, are closed in Q by 17.2.2, so that A4 is also closed in Q

n=1
and consequently 4 is compact by 17.2.2. Let us assume that 4 does not cut P
between a, b. Since Q > A4 cuts P between a, b, we have aeP — A, beP - A.
Hence, there is a continuum K < P such that ae K, be K, Kn A =0. As 4,e ¥,
we have K n A, + 0 for every n. The sets K n 4, are closed in K and Kn 4, o
> KnA,,,.Hence, by 17.5.1, [} Kn A, = Kn A % (3, which is a contradiction.

n=1

Hence the required set M exists by 16.4 (see also 17.2.6).

Exercises

First, we describe twelve examples of metric spaces Py, P,, ..., P;,; all of them are subspaces
of E,. We shall use the following abbreviation in order to simplify the description. If a = (a,,
a,) € E;, b == (b, by) € E,, then S(a, b) denotes the set of all x = (x,, x,) € E, such that

xy =a (1 —1)+ byt

0=r=1
xy = ay(1 —1t) + byt. )

(S is, of course, the initial of the word “segment”.)
Put ay = (0,0), by = (0,1) and, for n =1,2,3,... put g, = n=1,0), b, = (n”1,1). Put
© .

P = 90[5(0"’ b,) Y S(ay, ay) Y S(by, by)].
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Preserve the meaning of the symbols a, (7 — 0, 1, 2,...) and b,. Put
»xz
P, = |J S(a,, bp).
n=0

Denote by D the Cantor discontinuum (see 17.8). Put by = (0, 1). Put
P3=U$(;‘,b), &= (x,0), x€eD.
3

Put a; =(0,0), a;, = (1,0). For n=1,2,3,...,1 =i=<2"—1 put b,; = (i.27",0), c,; =
= (i.27",27". Put

o 2"-1

P, =Sa;,a)) VJ U Sh,,c,).
n=1 i=1

Put a; = (0,0), a = (0,1 and, for n=1,2,3,... put b, = (n=1,0), ¢,= "' 1). Pul
s}

Ps = S(a;,a;) Y U [8(b,, c,) Y S(c,, b4 1)l
n=1

Puta, = (0,0),a, = (1,0) and,for n==1,2,3,...,1 Si= 271 put by [2i—1).27
27M). Put

w0 2n-t
Py = S(ay,ay) v Ul U [S(b,,;, b,,+| 2i-1) Y S(buu bn+1 201
n=1 i=1
Put a = (0, 0) for n=1273,... put b,= ,0), forn=1,2,3,...,i=1,2,3,... put
-1
¢, = [(n + D~4L e T Pt
ao oc
P, =S, b))V U S(b,, ¢,
n=1 i=1
Denote by A, the set of all (x, y) with x = —1, y = 0; denote by A4, the set of all (x, y) with

x=1,y=20 Forn=12,3,... put

Agp_y = (1 —272"+10),  ay, =0,n), a4y =(—1+272"0).
Put

00
Pg=A,94,9 S@,,a,,)).
n=1

For n=1,2,3,... denote by 4, the set of all (x,y) with x=n" tyzo0; B, is the set of all (x,))
such that n?(x? + y2) =1 and either x <0 or y = 0. Put

5 = U (4, Y B,).
n=1

Forn=20,1,2,. denote by A, the set of all (x, ) with x = n, y arbitrary. Denote by B, the
set of all (x, ») wnh x? + o+ Zm — 3y + n? = 0. Denote by C, the set of all (x, y) with x2
+y + 2nx + 3y + n? = 0. Moreover, denote by A the set of all (x,y) with x=0, y =0
and by D the set of all (x,y) with ¥y == 0 and x arbltrary. Put

P,O-—UA uU(B vC)uD,

n=1
Py == Ag U Gy Y UI(A" UB,VC)u D.
ns

Let D be the Cantor discontinuum. For a € E;, r > 0 denote by K,(a, r) the set of all (x, )
with (x—a)2 + y2 =rl y=0; by K,(a, r) the set of all (x, y) with (x—a)2 + y2 = r2,y <0.
Denote by $ the system of all K,(a,r) with a =}, a4+ reD. For n=1,2,3,... denote by 9,

o
the system of all Ky(a,r) witha=3.37"r<}.37" a+reD. PR =90V U 9§, Put

n=1
P12=UX=(UX)U("91 xlle,X)

XeNn Xep
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19.1.
19.2
19.3.

19.4.
19.5.

1V. Connectedness

Py, P,, P53, P4, Ps, Py, Pq, Py, are continua.

Pg, Py, Py, Py, arc connected spaces.

Put a = (0, 0), b = (0, 1). Let M be the set of all (x, y) with x = 0,0 < y < 1; let N be the
set of all (x, ) such that either 0 < x =1, =0, 0or 0 < x £ 1, y == 1. Then (a) U (b)
is a quasicomponent of P, — (M U N).

The point (1, 0) separates Py.

Let a,b, (n = 1,2,3,...) have the same meaning as in the description of P;. The set 0 =

a0
= [P; — S(a, bV (a) Y U (b,) is connected. Every point b, (n = 1, 2, 3, ...) separates Q.
n=1

The symbol o in exercises 19.6—19.8 is used in the same sense as it was in exercises 18.20—18.23.

19.6.
19.7.

19.8.

19.9.

19.10.

19.11.
19.12.

19.13.

Let a, b;, Q have the same meaning as in ex. 19.5. Let M < Q. Then M is not a(a, b,).
Puta; = (0,0),a, = (0,1),6; = (1,0). Let0 + M < S(a;, a,). Let @ = [P5 — S(a;,a,)] U
U M. Then Q is o(b;, x) for every x € M.

Let A, A, have the same meaning as in the description of the space Pg. Let a; = (3, 0),
zy €Ay, 2z, € Ay. Then Py is o(a,, z{) and Pgis o(ay, z,). If M = Pg, then Mis not o(z(, z,).
There exists a one-to-one continuous mapping of P, onto P;,. There exists a one-to-one
continuous mapping of Py, onto Py,.

The point a == (0, 0) of P, has the following property. If U is a neighborhood of a and if
d(U) < 1, then the set B(U) contains at least five points; for every £ > 0 there exists a neigh-
borhood U of a with d(U) < ¢ such that B(U) contains exactly five points.

Considering ex. 19.10 we may prove that P;, and P, are not homeomorphic.

Let D, & have the same meaning as in the description of P;,. For every X € & there are
exactly two points of the form (x, 0) in X; in both cases x € D. There is exactly one set X € &
with (0,0) € X. If x € D, x + 0, there are exactly two sets X € & with (x, 0) € X.

There may be determined in exactly one way*) numbers a, € D(n =0, 1,2,...) and sets
X, eR(n=0,1,2,..) such that ay =0, a, + a,,, ,,0€X,, @,,,0)€X, (n=
=0,1,2,..) and that X,, + X, for m,n=0,1,2,...,m + n. We have X, N X, ,{ =
= [(@,4+1,0)]forn=0,1,2,..., while X,, " X, =0 for myn=0,1,2,...,|m—n| = 2.

@
Put S©) = U X,.
n=0

If x € D and if (x, 0) € S(0), put S(x) = S(0).

Let x € D and (x, 0) let not belong to S(0). There may be determined in exactly one way
numbers a, €D (n =0, £1, £2,...) and sets X, € R (n =0, 41, 42, ...) such that gy = x,
a, * a,44, @,,0€X,, (@4,,00€X, (n=0,41,+2,..)) and that X, = X, for m,
n=0,+41,+2,..., m*+n We have X, N X, =(@,,,0)] for n =0, +1, +2,...,
while X,, N X, =0 for m,n =0, &1, £2,...,|m—n| = 2. Put

© ©
sm=Ux,uUx_,.
n=0 n=1

Thus, the set S(x) is defined for every x € D. If x € D, y € D, we have either S(x) = S(»),
or S(x) N S(y) = 0. The system of all the sets S(x) is uncountable and the space P, is the
union of all the S(x) (x € D).

Every S(x) (x € D) is connected and dense in Py,.

Let f be a continuous function on a connected domain P. Let @ € P not separate P. Let there
exist points b, € P, b, € P with f(b;) < f(a) < f(b,). Then there exists a point ¢ € P such
that ¢ + a and f(c) = f(a).

*) With the trivial exception of the interchange of @,,a_, (# = 1,2,3,...).
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Let P, Q be infinite connected spaces. Let f be a continuous function on P x Q. Then there
are at most two points a € P X Q such that

xePXQ. x*a = f(x)=*f(a).

Let P & 0 not be connected. Then there exists a finite continuous function fon P such that f
is not a constant and f(P) is not an interval.

A space P has a finite number of components if and only if there is no finiie continuous function
S on P such that f(P) is an infinite countable set.

Let P be a compact space. Let 0 = M < P. An ¢-chain in M hetween any a € M and any
b € M with any ¢ > 0 exists if and only if M is connected. Thus, M itself need not be con-
nected.

Which properties must have spaces P, Q that the space P Q may be [l] a continuum, [2]
a semicontinuum?

A continuous image of a continuum is a continuum or a one-point set. A continuous image
of a semicontinuum is a scmicontinuum.

Let f be a finite function on E;. The set E [y = f(x)] < E, ccntains a continuum if and
(x,y)
only if there is an interval J such that the partial function f; is continuous.

Theorem 19.1.4 remains valid, if the assumption that Pis compact is replaced by the assumption
that P < E.

One cannot omit in theorem 19.1.4 the assumption that P is compact. This may be shown
using as an example P == P; — (M U N) where M, N have the same meaning as in ex. 19.3.
One cannot replace in theorem 19.1.4 the assumption of compact P by the assumption that P
is locally compact and P < E,.

One cannot replace in theorem 19.3.1 the assumption that P is a continuum by the assumption
that P is connected. This may be shown by means of an example with P < P, .

One cannot replace in theorem 19.3.2 the assumption that P is a continuum by the assumption
that P is a connected space.

Let P be a continuum. Let a € P. Let M be the set of all the x € P such that there is a continuum
K =+ P containing both the points a, x. Then the set M is dense.

Let P be a connected space. Let H < P, K < P be continua. For any x € H, y € K, let there
be a point z separating x from y. Then there is a point g such that P — (a) = 4 U B with
separated summands such that H < 4, K < B.

Let P be a continuum. Let 4 = P, B < P be non-void disjoint closed sets. Then there exists
a continuum K < Psuch that: [1] KN A +0 + KU B, [2] if H < K is a continuum and
if HNA+ 0 + HN B, then H=K.

Let P be a continuum. Let a set M < P contain at least two points. Then there exists a conti-
nuum K < P such that: [1] M < K, [2] if H < K is a continuum and if M < Hthen H = K.
Let P be a continuum. Leta € P, b € P,a + b. Let a set M < P be connected between points a
and b. Then M contains an irreducible continuum between the points a, b.
Ifa=(1,0),5=(0,x),0 = x = 1, then Py is an irreducible continuum between the points
a, b.

Let A,, B, have the same meaning as in the description of Py. Then 4, U B, (n = 1,2,3,..))
are constituants of Pg.

One cannot replace in theorem 19.5.12 cutting of the space between points a, b by separating
the point a from the point b. This may be shown hy means of an example with P = P,,

choosing a=(0,0), b=(0,1), Q=()V D (c,), where ¢=1(0,%), ¢, =(/2n)
n=1

(n=1,2,3,..).
One cannot omit in theorem 19.1.8 the assumption that P is compact. E.g., one cannot put
P = E,, not even under the assumption that f is one-to-one.
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§ 20. Simple arc

20.1. Let J = E[0 < ¢t £ 1]. A metric space P is said to be a simple arc, if it is
1

homeomorphic with J. The notion of a simple arc is a topological notion (see 9.3).

20.1.1. Any simple arc is a continuum.

Proof: J is a continuum by 19.2.1. Thus, by 17.4.2 and 18.1.10, P is a continuum.

20.1.2. A simple arc contains exactly two points which do not separate it. These two
points are called the end points of a simple arc. The notion of an end point is
a topological notion.

Proof: Let f be a homeomorphic mapping of J onto P. The sets J — (0),
J — (1) are connected by 19.2.2. Thus, the sets P — f(0), P — f(1) are connected
by 18.1.10. Let ¢t € J and let P — f(¢r) be connected. By 18.1.10 the set J — (¢) is
connected so that either t = 0 or ¢ = 1 by 19.2.2.

20.1.3. Let P be a simple arc with end points a, b. Then there is a homeomorphic
mapping f of J = E[0 £ t £ 1] onto P such that f(0) = a, f(1) = b.
A

Proof: There exists a homeomorphic mapping ¢ of J onto P. By the previous
proof the points ¢(0), ¢(1) do not separate P so that either ¢(0) = a, ¢(1) = b,
or ¢(0) = b, (1) = a. In the first case put f = ¢. In the second one we may define f
by f(1) = o(1 = 1).

20.1.4. A simple arc P is an irreducible continuum between its end points.

Proof: If K < P is a continuum, then f_;(K) = J is and interval by 18.1.10 and
19.2.2. If, moreover, f(0) € K, f(1) € K, then 0 € f_(K), 1 e f_,(K), hence f_(K) = J
and hence K = P.

20.1.5. Let P be a simple arc with end points a, b. Then P — [(a) v (b)] is connected.

Proof: J — [(0) u (1)] is connected by 19.2.2; thus, P — [(a) U ()] is connected
by 18.1.10.
Another proof follows by 19.4.2 and 20.1.4.

20.1.6. Let P be a simple arc with end points a, b. Let ce P, a &= ¢ £ b. Then the
set P — (c) has exactly two components, one of them containing a and the other
containing b.

Proof: Let a=f(0), b=f(1), ¢c=/f(x), hence 0 <t < 1. The sets 4 =
=E[0=<t<1], B=E[t <t £ 1] are connected by 19.2.2 and we have O€ 4,
t t
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leB, Au B =J — (1). Hence, the sets f(A), f(B) are connected by 18.1.10 and
we have aef(A4), bef(B), f(A) U f(B) =P — (¢). Let K, be the component of
P — (c) containing a (see 18.2.1); let K, be the component of P — (c) containing b.
By 18.2.5 f(4) = K,, f(B) = K, and hence K, U K, = P — (c¢) so that P has no
components except K, and K,. If there were K, = K,, K, = K, =P — (c)
would be connected. This is a contradiction (see 20.1.2).

20.1.7. Let P be a simple arc with end points a, b. Let ce P, a #+ ¢ + b. Then ¢
separates a from b in P.

Proof: Let us preserve the notation of the previous proof. The sets A4, B are open
in J. Since f_, is continuous, f(A4), f(B) are open in P by 9.2. Moreover, 4 n B = (),
so that f(A4) n f(B) = 0. Hence, the sets f(A4), f(B) are separated. Thus, P — (¢) =
= f(A) v f(B) with separated summands and a € f(4), b € f(B).

20.1.8. Let P be a simple arc, x € P, B€ P, o * B. Then there is exactly one simple
arc Q < P with end points a, f. This simple arc Q will be denoted by either P(2, f3)
or P(f, x).

Proof: 1. Let f be a homeomorphic mapping of J onto P. Let ue J,ve J, a =
= f(u), B = f(v) and let, e.g., u < v. We see easily that f(Eu <t =v)) =P is
t

a simple arc with end points «, f.

I1. On the other hand, let Q = P be a simple arc with end points 2, 8, By 18.1.10,
f-1(Q) = J is a connected set. As uef_,(Q), vef_,(Q), we have, by 19.2.2,
Elu £t v] ef_(Q), hence, f(E[u £t <v]) = Q. The set f(E[u <t L)) is
t t t

a simple arc with end points a, 8, hence, it is a continuum containing « and 8 so that
Sf(E[u £t £v]) = Q by 20.1.4.
t

20.1.9. Let P be a simple arc with end points a, b and let ce P, a = ¢ + b. Then
P = P(a, ¢) v P(c, b), P(a, c) n P(c, b) = (c).

Proof: Let a = f(0), b =f(1), ¢ =f(r), hence 0 <17 < 1. Then P(a,c) =
= f(E[0 £ t £ 1)), P(c, b) = f(E[t £ t £ 1]) and the statement is obvious.
t t

20.1.10. Let P be a metric space. Let A = P be a simple arc with end points a, b.
Let B = P be a simple arc with end points b,c. Let An B = (b). Then Au B is
a simple arc with end points a, c.

Proof: Let f; be a homeomorphic mapping of J onto 4. Let a = f,(0), b = f,(1).
Let f, be a homeomorphic mapping of J onto B. Let b = f,(0), ¢ = f,(1). Define
a mapping f of J into P as follows: First, f(1) = b, secondly, f(t) = f,(2¢) for
0 <t <4, thirdly, f(t) =22t — 1)) for $ <t =< 1. We verify easily that f
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is a one-to-one continuous (and hence, by 17.4.6, homeomorphic) mapping of J
onto 4 U B and that f(0) = a, f(1) = c.

20.1.11. Let P be a metric space. For n = 1,2,3, ... let C, = P be a simple arc with
end points a,,,a,,+l Let [1] C,nChyy = (a,4,) n=1,2,3,..), [2] d(C,) -0,

[3] a, —»beP U C,.,[M4C,nC,=0for |n—m| =2 Denote by Q the set
b)v U C,c P Then Q is a simple arc with end points a, b.

n=1
Proof: For n = 1,2,3,... let f, be a homeomorphic mapping of J onto C, such
that £,(0) = a,+4, f,(1) = a,. Define a mapping ¢ of J onto P as follows: First,
put @(0) = b. Further, put p(2"""Y) =g, (n = 1, 2, 3, ...). If ¢ is another number
in J, there is exactly one n (=1,2,3,...) with 27" <t < 27~ 1; then put ¢(t) =
= f,(2"t — 1). It is easy to prove (in exercise 20.12) that ¢ is a homeomorphic
mapping of J onto Q and that ¢(0) = b, ¢(1) = a;.

20.1.12. Let P be a simple arc with end points a, b. Let ¢ > 0. Then there is a one-to-one

finite point sequence {c;}i{=, and a finite sequence of point sets {C;}[=, such that m

co = a, ¢y = b, [2] C,is a simple arc with end points ¢;_,, c;(1 £ i £ m), [3] U C; =
n=1

=P, [4 CinCiyy=() Isiz=m-1, 5] C;nC;=0 (1=sis=m 1=
gjism [i—jlz2),[0dC)<e(lsism).

Proof: Let f be a homeomorphic mapping of the interval J onto P such that
f(0) = a, f(1) = b. By 9.6.1 and 17.4.4 there is a 6 > 0 such that

nheld, el |ty —1]<é = olf(t),f(t)] <e

Evidently, it suffices to choose an m such that m™!

O0Ligm), Ci=fE[(—-Ym* <t <im™)).

<édandtoputc; =f(i.m™ "y

20.1.13. Let P be a simple arc. Let Q = P be a continuum. Then Q is a simple arc.

This may be easily proved by theorem 19.2.2.

20.2. If P is an ordered set (see § 4) and if a e P, f € P, « & f, denote by M(«, f)
the set of all x e P which are between « and B (see 4.1). Thus, M(B, &) = M(a, f3).

An orientation of a simple arc P is an ordering of the set P such that (a) U (f) U
U M(a, B) is a simple arc whenever o € P, f€ P, a + f.

The following theorem is evident.

20.2.1. Let P be an oriented (i.e. endowed by an orientation) simple arc. Let Q < P
be a simple arc. The given orientation of P determines an ordering of Q (see 4.1).
This ordering of the simple arc Q is an orientation.
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If simple arcs P and Q < P are oriented by 20.2.1, we say that they are coherently
oriented.

20.2.2. Let P be an oriented simple arc. Then the oriented set P has both first and
last elements. These two points are the end points of the simple arc P,

The end point which is the first element in the given orientation is called the
initial point, the other end point is called the rerminal point of the oriented simple
arc P.

Proof: Let a, b be the end points of the simple arc P, and let, e.g. a precede b.
By the definition of orientation, the set Q = (a) U (b) U M(qa, b) is a simple arc,
hence (see 20.1.1), @ = P is a continuum containing both a and b, so that (see 20.1.4)
Q = P. Thus, every x e P — [(a) U (b)] is between a and b, hence, it follows a and
precedes b, i.e. a is the first element and b is the last one in P.

20.2.3. Let P be an oriented simple arc and let « € P, B € P, o & . Then () U () v
U M(a, ff) = P(a, ) (see 20.1.8).

Proof: Theset Q = () U (B) v M(a, B) = Pisasimple arc. In the given ordering «
is the first and g the last element in Q so that, by 20. 2.1 and 20.2.2, « and S are the
end points of the simple arc Q; thus, 0 = P(«, B).

20.2.4. Let a be an end point of a simple arc P. Then there is exactly one orientation
of P such that a is the initial point.

Proof: 1. Let (see 20.1.3) f be a homeomorphic mapping of the interval J =
= E[0 = 7 = 1] onto P such that f(0) = a. Define an ordering of P as follows:
t

“x precedes y”* if and only if f_,(x) < f_,(y). Thus, we obtain an orientation of P
with a as the initial point.

II. On the other hand, let P be oriented in such a way that a = f(0) is the initial

point and let xeP, ye P, x precede y. Hence, x = f(u), y =f(v), 0 u =1,
0 < v =1. We have to prove that u < v. Obviously f(E[0 £ ¢ £ v]) = P(a, y)
14

(see 20.18) so that, by 20.2.3, f(E[0 < ¢t < v]) = (e) U M(q, y). On the other hand,
13

x = f(u)e(@) v M(a, y), so that 0 < u < v.

20.2.5. Let P be a simple arc with end points a, b. Then P has exactly two orientations.

In one of them a is the initial and b the terminal point, in the other one,a is the terminal
and b the initial point. These two orientations are mutually inverse.

Proof: In any orientation either a or b is the initial point by 20.2.2 and for any
of these cases there is exactly one orientation by 20.2.4. Moreover, the inverse
ordering to an orientation is evidently also an orientation.
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20.2.6. Let P be an oriented simple arc and let o € P precede € P. Let the simple
arc P(a, f) = P (see 20.1.8) be oriented in siich a way that o is the initial point. Then P
and P(a, B) are coherently oriented.

Proof: If P(a, f§) is coherently oriented with P, the condition that « is the initial
point is evidently satisfied. On the other hand, by 20.2.4, this condition determines
uniquely an orientation of the simple arc P(x, f§).

20.2.7. Let P be a metric space. Let C = P be an oriented simple arc. Let F < P
be a closed set. Let Cn F % (). Then there are both first and last elements in the
ordered set Cn F <= C.

Proof: Let f be a homeomorphic mapping of J = E[0 <t < 1] onto C such
t

that f(0) is the initial point. The set C n F is closed in C (see 8.7.2) and hence (see
9.2) the set f_,(C n F) is closed in J. Of course, it is non-void and bounded, so
that (see 17.4.1) there exist numbers u = minf_,(C N F), v = maxf_,(C n F).
Evidently, f(u) is the first and f(v) the last point of C N F.

20.3. (Converse of theorem 20.1.7.) Let P be a continuum. Let a€ P, b e P. Let cvery
x € P — [(a) U (b)] separate the point a from the point b in P (so that a + b). Then P
is a simple arc and a, b are its end points.

Proof: 1. Put Q = P — [(a) v (b)]. By 18.1.9 the set Q is uncountable.

I1. For every x € Q there are sets A(x), B(x) such that [1] A(x) U B(x) = P -- (x),
[2] A(x), B(x) are separated, [3] a € A(x), b e B(x). The sets A(x), B(x) are open
in P — (x) and hence (see 8 7.7) they are open in P.

III. Let S = P be a connected set and let ae S, be S. Then S = P. On the other
hand, let xe P — S and hence x € Q. We have S < A(x) U B(x), ae S n A(x) £ 0,
be S n B(x) & 0. This is a contradiction (see 18.1.2).

IV. If x e Q then (x) U A(x), (x) U B(x) are connected sets. This follows from
18.1.11.

V. If x e Q, then A(x), B(x) are connected sets. Suppose, on the contrary, e.g.
A(x) not to be connected. We have ae A(x) + (J, hence A(x) = 4, U 4, with
separated summands, a€ A,, A, £ (). Then P — (x) = A, U [4, U B(x)] with
separated summands. The sets (x) U B(x), (x) U 4, are connected (see 18.1.11),
hence S = (x) U 4, U B(x) is connected by 18.1.4. On the other hand, ae 4, = S,
be B(x) = S and hence S = P by IIl. Thus, 4, = S which is not possible.

VI. For every x € Q, P — (x) has exactly two components, namely A(x) and B(x).
(Thus, the sets A(x), B(x) are uniquely determined by the point x.) Actually by
18.1.2, each component of P — (x) is a part of either A(x) or B(x); by V and 18.2.5
each one of A(x), B(x) is a part of one component of P — (x).
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VII. Let xe Q, ye Q, x % y. Then exactly one of the following relations holds
Ax) = A(y),  A() = A(x).

The sets () U A(»), (») v B(») are connected (see IV) and one of them is contained
in P — (x); hence (see VI and 18.2.5), one of them is a part of one of the sets A(x),
B(x). Since ae€ A(y) — B(x), be B(y) — A(x), we have either () U A(y) = A(x),
and hence A(y) = A(x) £ A(y) [as y does not belong to A(y)], or () U B(y) = B(x),
and hence P — B(x) =« P — [(») U B(y)], i.e. (x) U A(x) = A(y) and hence A(x) =
< A®y) # Ax).

VIIL. Let us define an ordering U of P as follows: If x € P, y € P then ““x precedes y™
means that x # y and moreover either x = a or y = b, or, finally, xe Q, ye Q,
A(x) = A(y). It is easy to verify that U is an ordering, i.e. that the properties [1],
[21, [3] pronounced in 4.1 are satisfied. Moreover, a is the first and b the last element.
Finally, for x € Q, A(x) is the set of all points preceding x and B(x) is the set of all
points following x.

Remark: 1f we interchange points @ and b, we evidently have to replace the orde-
ring U by its inverse ordering.

IX. Q is an infinite separable space (see 16.1.2 and 17.2.6), so that (see 16.1.3)
there is an infinite countable set M = Q densein Q. Let x € P, y € Pand let x precede y,
so that x £ b, y & a. We shall prove that there is a point z e M between x and y.
We have to distinguish four cases: [I] x =a, y=b, [2] x =q, ye Q, [3] xe Q,
y=0>b,14 xeQ, ye Q. In case [I] we may choose z e M arbitrarily. Secondly, let
x = a, ye Q. We have a e A(») and (a) + A(), as (see IV) (y) u A(p) is connected
and hence A(y) — (a) is a non-void open subset of Q, (see II) so that (see 12.1.2)
there exists a ze M n A(y). As ze€ A(y), z precedes y and hence z is between a
and y. Thirdly, let xe Q, y = b. Now, B(x) — (b) is a non-void open subset of Q
so that there is a point z € M n B(x), which is between x and b. Finally, if we have
xeQ, yeQ and if x precedes y, we obtain (x) U A(x) = A(y), hence P — B(x) =
< A(y),ie. [P — B(x)] n [P — A(y)] = 0.If B(x) n A(y) = OthenP = [P — B(x)] U
U [P — A(y)] with non-void separated summands, which is a contradiction. Thus,
B(x) n A(y) is a non-void open subset of Q, so that (see 12.1.2) there existsaze M N
N B(x) n A(y). Evidently, z is between x and y.

X. The ordering U of P determines an ordering of M. If x e M, then, by IX,
there are points z, € M, z, € M such that z, is between a and x, and z, is between x
and b. Thus, x is neither first nor last in M. If xe M, y e M and if x precedes y,
then, by IX, there is a ze M between x and y. Thus, M is densely ordered. Let R
be the set of all rational numbers ¢ such that 0 < ¢t < 1. By 4.7 there is a mapping ¢
of M onto R such that

xeM, yeM, x precedes y = o(x) < ¢(y).
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XI. Let us define a mapping f of P into the interval J = E[0 < 7 £ 1] as follows:
t

First, f(a) = 0, f(b) = 1. Secondly, let x € 0. Denote by M,(x) the set of all ze M
which precede x and by M,(x) the set of all ze M which follow x. By IX, M,(x) +
+ 0 £ M,(x). If z; e My(x), z, € M,(x), then z, precedes z,, hence, 0 < ¢(z,) <
< ¢(z;) < 1. Hence

0 < sup o(z2) £ inf ¢(z) < 1 0y
zeM;(x) zeMy(x)
We shall prove that
sup ¢(z) = inf ¢(2). )
ze M (x) zeM2a(x)

If this were not true, there would exist rational numbers ¢,, ¢, such that
e My(x), e My(x) = ¢(z)) <t <t < ¢(z) 3)

There would exist points y; e M, y, e M with o(y,) = t;, o(y;) = t,. By (3),
y, would belong neither to M;(x) nor to M,(x) so that we would have y, = x
and similarly y, = x. Hence y; = y,, t, = t, which would be a contradiction.
Thus, (2) holds and we denote the common value of both sides by f(x). By (1),
0<f(x) <l

XII. If x € P precedes y € P, then f(x) < f(y). This is obvious whenever at least
one of x, y does not belong to Q. If xe @, y € O, then, by IX, there is a z, e M
between x and y, and a z, € M between z, and y. By X, ¢(z,) < ¢(z,). Moreover,
7y € My(x), z; € M((y), hence f(x) £ ¢(z,) < ¢(z2) £ f(¥), so that f(x) < f(»).

XIII. The mapping f is continuous. Let x, € P, x € P, x, —» x. We have to prove
that f(x,) — f(x). Let us assume the contrary. Then there is an ¢ > 0 such that
| f(x,) — f(x)| > ¢ for infinitely many indices n. As f(x,) e J and as J is compact,
there is a subsequence {y,} of {x,} such that lim f(y,) = 7 exists, 0 < t £ 1, and
such that | f(y,) — f(x)| > ¢ for every n, so that t + f(x). E.g. let t > f(x). There
exist numbers t; € R, 1, € R with f(x) < t; < t, < 1. There exist points z, € M,
z, € M with t; = ¢(z,), t; = ¢(z;,). As t, < t,, z, precedes z, by X. Since f(x) <
< t, = ¢(zy), z; does not precede x, so that x precedes z,, i.e. x € A(z,). Since
A(z,) is an open set, thre is a § > 0 such that Q(x, §) = A(z). On the other hand,
¥y, = x by 7.1.2 so that there exists an ind=x p such that n > p implies y, € Q(x, §) =
< A(z,). Thus, if n > p z, follows y,, so that f(y,) < ¢(z;) = t,. Hence also 7 =
= lim f(y,) £ t, < 1, which is a contradiction.

XIV. f(P) is connected by XIII and 18.1.10. It is contained in / = E[0 < ¢ £ 1]

t
and contains both 0 = f(a) and 1 = f(b). Thus, f(P) = J by 19.2.2. Hence, f is
a mapping of P onto the interval J. The mapping f'is one-to-one by XII and continuous
by XIII; hence, it is homeomorphic by 17.4.6. Thus, P is a simple arc and a = f_(0),
b = f_,(1) are its end points.
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20.4. (Converse of theorem 20.1.2.) Every continuum P contains at least two points
which do not seaparate P. If P contains only two such points, then P is a simple arc.

Proof: 1. Let P be a continuum, letae P, beP, a + b. Let every xe P — [(@) L
v (b)] separate P. We shall deduce that then P is a simple arc with end points a, b.
It is easy to see that this yields a proof of the stated theorem.

II. By 20.3 it suffices to prove that every xe P, a + x = b, separates a from b.
Assume the contrary, i.e. the existence of a ¢y € P, a + ¢, = b such that it does not
separate a from b in P. As a #+ ¢y + b, ¢, separates P, so that P — (cy) = Ao U By
with non-void separated summands. As ¢, does not separate a from b we may assume
a€ Ay, be A,.

III. Since P is a continuum, it is, by 18.1.9 and 17.2.6, an infinite separable space.
Hence (see 16.1.3) there is an infinite countable set M dense in P. Let {x,}{ be a se-
quence containing exactly the points of M.

IV. For some n (=0,1,2,...), let a point ¢, € P and non-void separated sets
A,, B, with P — (c,) = A,V B,, a€ A,, be B, be given. B, is open in P -- (c,)
and hence in P, so that, by 12.1.2, there is an index k with x, € B,. Let k,,, be the
least index k with x,€B,. Put ¢,,, = x _,,. Thus, ¢, € B,. Moreover, a =+
#+ ¢,4+1 + b, so that (see I) ¢,4, separates P and hence P — (¢,4;) = Ap+1 YU B, 4,
with non-void separated summands.

We may assume that a € 4,4,. The <t (c,) U 4, is connected by 18.1.11. Since
Cy+1 € B,, we have (¢,) U 4, © P — (c,4+y), so that, by 18.1.2, (c,) v 4, is contained
inoneof A,4;,By+1-Asa€A, — B,y + 0, wehave (c,) U A, < A,,,. Asbe 4,,
we obtain be 4,,44.

V. It follows, by II and 1V, that we may construct a point sequence {¢,}¢ and set
sequences {4,}5, {B.}o such that: [1] 4,, B, are separated (n =0, 1,2,...), [2}
a€A,, bed, B,+0 n=0,1,2,..), 3] 4,uB, =P~ (c,) n=0,1,2,..),
[4] ¢, = xx, (n = 1,2,3,...) where k, is the least index k with x; € B,-1, so that
¢€B,_, n=12,3,.)6l()vd,c4,,, n=0,1,2,..).

VI. The sequences {c,} and {k,} are one-to-one. Let m < n. By V [5], cw € 4,,,, <
c A4,,by V[3], c,e P — A,, hence ¢,, * c,, so that k,, % k, by V [4].

VI1I. We have n B, + (. By V [1] and 10.2.3, 4, n B, = (J, and hence, by V [3],
B, < (c,) v B,. ByV 3] and V [5], B, = P — [(c,) v 4,] :>P Ay = (e L
U B,,, and hence B, > B,.;. Thus, by V [2] and 17.5.1, ﬂ B, + 0.

n=1

VIII. By VII there is a point ze (1 B,. By V [l] and V [2], ae 4, < P — B,,
n=1

hence z #+ a and similarly z & b. Thus (see I), z separates P, i.e. P — (z2) = HU K
with separated summands, a€ H, K #+ J. The sets (c,) U 4, are connected by y (1,
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V [3] and 18.1.11, and they contain the point a by V [2], so that U [(c,) U 4,] is
n=1

connected by 18.1.5. Since ze B, = P — [(c) u 4,], we have | [(c,) v 4,] =

n=1

< P = (2) and hence U [(c,) U 4,] is contained (see 18.1.2) in one of H, K. Con-
® n=1 :

sequently U [(c,) u 4,] « H, as ae H. K is open in P — (z) and hence in P (see
n=1

8.7.7). Since K # 0, there is, by 12.1.2, an index i with x; € K. By VI there is an index
mwithk,+; > i.As(c,) U A4, <« Hwehave B, =P — [(c,)uAd,] P — H>o K.
Thus, x,€ K = B, so that, by V [3], i £ k,,,, which is a contradiction.

Exercises

Py, P,,..., P, are the spaces from exercises to §19.

20.1. If PxQ is a simple arc, then one of P, Q is a simple arc and the other is a one-point space.

20.2. If C < E, is a simple arc, then E, — C is dense in E,.

20.3. Let M < E, be the set of all (x, y) with x = 0,y = 0, x + y < 1. Then there exists a disjoint
system & of simple arcs such that U X = M. That system & cannot be countable.

Xe3s

20.4. If a simple arc P is a union of a disjoint system & of simple arcs, then S contains only one
element. ' »

20.5. Let P be one of P,, Py, Py, P,;. Let a€ P, b €P, a + b. There is exactly one continuum
K < P irreducible between the points a, b. K is a simple arc.

20.6. Let aePy, bePy, a+ b. There exist infinitely many simple arcs C < P, with the end
points a, b.

20.7. LetP = P, or P = Py. Let S be a disjoint system of simple arcs in P. Let ¢ > 0. The system
of all C € S with diameter greater than ¢ is finite.

20.8. Let P be one of Py, Pyg, Pyy. Let C < P be a simple arc. The set P — C is not dense in P.

20.9. The following theorem may be deduced from 20.4 (see also 18.1.11). Let P be a continuum.
If S < Pis aconnected set, S + P, then there is a point @ € P -- S which does not separate P.

20.10. A space P is the image under a one-to-one continuous mapping of some of the three spaces

E,, E[rz0, EO0=rsg1],
t t

L= o] .
if and only if P = U C, where C, are simple arcs such that C, < C,,, (n =1,2,3,...).
n=1

20.11. Let the symbol S(x) (x € D) have the same meaning as it had in ex. 19.12. There exists a one-
to-one continuous mapping of E[t = 0] onto S(0); the inverse mapping is nowhere continuous.
t

If S(x) + S(0) there exists a one-to-one continuous mapping of E; onto S(x); the inverse
mapping is nowhere continuous.

20.12.* Complete the proof of theorem 20.1.11!
20.13. In theorem 20.4 we cannot replace the words “two points which do not separate P

by “two points x such that P— (x) is a semicontinuum”. In fact, P5 contains only one
such point x and it is easy to construct a similar space which contains no such point x.
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§ 21. Simple loop

21.1. A metric space P is said to be a simple loop, if there exists a continuous mapping f
of E, onto P such that

f(u) = f(v)<>u — v is an integer. *)
21.1.1. Simple loops are continua.
Proof: Evidently P = f(E[0 £t £ 1]). The set E[0 <7< 1)) is a continuum
t t
by 19.2.1 and hence P is a continuum by 17.4.2 and 18.1.10.

21.1.2. Let P be a simple loop. Let ae P, be P, a & b. Then P contains exactly two
simple arcs with end points a, b. If A, B are these simple arcs, we have

AUB=P, AN B=(a)v ().

Proof: 1. Let a = f(u), b = f(v). By (*) we may assume that u < v <u + 1.
Put Jy=Eust=sv),J,=Ep 2t 2u+1), 4=[f(J,), B=f(J,). The partial
t t

mappings f;, and f;, are continuous; moreover, by (*) they are one-to-one, so that
they are, by 17.4.6, homeomorphic. Thus, 4 and B are simple arcs with end points
a, b [since f(u + 1) = a by (¥)]. Moreover, we have, by (*),

AUB=P, AnB= (v ).

II. Let C < P be a simple arc with end points a, b and let C &+ A. We have to prove
that C = B. As A and C are two different simple arcs with end points a, b, we obtain,
by 20.1.1 and 20.1.4, 4 — C + (). Choose an o€ A — C and a number z with
o = f(z). Obviously e e P — Band P = f(E[z £ t £ z + 1]). By 17.3.4, g(a, B) > 0,

t

o(a, C) > 0, so that, by 9.1.1, there is an ¢ > 0 such that
|t — z| < &= o[f(1), o] < min [o(a, B), o(a, C)).*)
Therefore BuU C < f(M), where M = E[z + ¢ £t £z + 1 — ¢]. Evidently f(M)
t

is a simple arc. As B and C are simple arcs with common end points and as Bu C <
< f(M), we have B = C by 20.1.8.

21.1.3. Let P be a metric space. Let A = P and B < P be two simple arcs with common
end points a, b. Let

AUB=P, An B = (a)u (b).
Then P is a simple loop.

*) This ¢ has to be less than .
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Proof: Let f; be a homeomorphic mapping of the interval J = E[0 < ¢ < 1]
t

onto 4; let a = f1(0), b = fi(1). Let f, be a homeomorphic mapping of J onto B;
let b = £5(0), a = f,(1). Define a mapping ¢ of J into P as follows: First, ¢(1/2) = b;
secondly, @(t) = f1(2f) for 0 < t < 1/2, hence ¢(0) = a; thirdly, ¢(f) = f,(2t — 1)
for 1/2 < t = 1 and hence ¢(1) = a = ¢(0). Evidently, ¢ is a continuous mapping
of Jonto AuBand, for 0 <t <t, <1, o) =@, only if t;, =0, t, = 1.
If t € E;, then there exists exactly one integer n with 0 < ¢t — n < 1; put f(¢) = ¢(?).
It is easy to verify that fis a continuous mapping of P onto 4 U B such that (*)
holds.

21.1.4. Let P be a simple loop. Then no point a € P separates P.

Proof: Let f be a continuous mapping of E; onto P such that (*) holds and let
a = f(z). Then P — (a) = f(E[z <t <z + 1]) so that P — (@) is connected by
t

18.1.10 and 19.2.2.

21.1.5. Let P be a simple loop. Let ae P, be P, a = b. Then (a) u (b) separates P.

Proof: By 21.1.2 there are simple arcs A < P, B < P such that 4 U B = P,
AN B =(a) v (b). The sets 4, B are closed by 17.2.2. Thus, P — [(a) u (b)] =
= (P — A) v (P — B) with non-void separated (see 10.2.2) summands.

21.1.6. Let P be a simple loop. Let G = P be an open set. Let P — G contain at least
two points. Let T be a component of G. Then T is a simple arc and its end points form
thesetT — T=T - G.

The reader can prove this without difficulties (see ex. 21.6).

21.1.7. Let P be a simple loop. Let € be a system of simple arcs C = P. If C, €@,
C,€eQ, C, + C,, xeCy n C,, let x be an end point of both simple arcs Cy, C,.
Let 6 > 0. Then € contains only a finite number of simple arcs with diameter greater
than 4.

Proof: Let there be, on the contrary, a one-to-one sequence {C,}° with d(C,) > &
for every n. Denote by a,, b, the end points of the simple arc C,. As C, is connected
and as a,€ C,, b, e C,, d(C,) > 9, it is easy to prove that there is a point ¢, € C,
with o(a,, c,) > %6, o(b,, c,) > %6. As P is compact, there are indices i; < i, <
< i3 < ... and a point ¢ € P such that ¢; — c. It is easy to prove that there exist
simple arcs 4, B such that P= AU B, ce A — B, d(4) < %6. Evidently there is
an index p such that n > p=> ¢, € A= A n C;, + (. Evidently neither a,, nor b;,
belongs to 4. On the other hand, it is easy to prove that B(C;) = (a;) v (b,).
Thus, 4 n C;, + 00 = 4 n B(C,). Since A4 is connected, we have, by 18.1.8, 4 = C;,
for every n > p and this is evidently impossible.
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21.2. Orientation of a simple loop P is a cyclical ordering C (see § 5) of P such that
(a) U (b) U J(a, b) (see 5.3) is a simple arc whenever ae P, be P, a + b. A simple
loop endowed by an orientation is said to be oriented.

21.2.1. Let P be an oriented simple loop. Let ac P, be P, a + b so that Q = (a) U
v (b) U J(a, b) is a simple arc. Then a, b are the end points of the simple arc Q. If Q
is oriented (see 20.2.4) in such a way that a is the initial point, then the ordering of
J(a, b) determined, (see 4.1,) by the orientation of Q coincides with the ordering of
J(a, b) determined (see 5.3) by the given orientation of P. We say then that P and Q
are coherently oriented.

Proof: 1. (a) u (b) L J(a, b) is a simple arc, so that J(b, a) # @. Choose a c € J(b, a).

II. The cyclical ordering € of P determines by 5.2 an ordering U(c) of P — (c).
If xeP - (c), yeP — (c), ze P — (¢), then (see Chapter J, 5.2.1) (x,y,2)eC
if and only if either

x precedes y, and y precedes z in U(c)
or

y precedes z, and z precedes x in U(c)
or

z precedes x, and x precedes y in U(c).

III. By 5.3, Q = P — (¢) so that the ordering U(c) of P — (c) determines an
ordering V of Q = (a) v (b) U J(a, b). As c € J(b, a), we have (see 5.3) (b, ¢, a) € C,
so that, by 5.1 [1], (¢, a, b) € C; further, by 5.2 a precedes b in U(c) and hence in V.
If x € J(a, b), then (a, x, b) € C so that, by II, x is between @ and b in U(c) and
hence in V. Thus, a is the initial point and b the terminal one of Q (in the ordering V).

IV. Since (c, a, b) € € (see III), we have (see 5.1 [1] and 5.3) (a,b,¢)eC, ie.
b e J(a, c), so that, by 5.5.1, J(a, b) = J(a, c). By 5.3, U(c) and U(a) determine
identical orderings of J(a, ¢) and hence also of J(a, b) = J(a, c). Consequently,
the ordering of J(a, b) determined by the ordering V of Q coincides with the ordering
U(g, b), i.e. with the ordering of J(a, b) determined (see 5.3) by the cyclical ordering C
of the simple loop P.

V. Now, we are going to prove that V is an orientation of the simple arc Q. Let
xeQ, yeQ, x £y, hence, e.g., let x precede y in VY [and hence in U(c)]. We have
to prove that (x) u (y) U M(x, y) is a simple arc, if M(x, y) is the set of all the
z € @ which are between x and y in V. Since C is an orientation of the simple loop P,
(x) U (») U J(x, y) is a simple arc, so that it suffices to prove that M(x, y) = J(x, y).
First, let ze M(x, y). Then x precedes z and z precedes y in V and hence in U(c),
so that, by II, (x, z, y) € C and hence z € J(x, y). Secondly, let z € J(x, y). Then
(x, z, y) € C, so that, by 5.1 [2], (z, x, ¥) does not belong to C. Since, on the other
hand, x precedes y in U(c), we have (c, x, y) € C. Thus, z # ¢ and, of course, x *
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% ¢ # y. Since (x, z, y) € C and since x precedes y in U(c), by Il x precedes z
and z precedes y in U(c). On the other hand, by III, either x = a, or a precedes
x in V and hence in U(c); moreover, either y = b or y precedes b in V and hence in
U(c). Thus, a precedes z and z precedes b in U(c) so that, by II, (a,z, b)e € and
hence ze J(a, b)) = Q. Moreover, xe Q, ye Q and x precedes z and z precedes y
in U(c) and hence in V. Thus, t e M(x, y).

VI. Since V is an orientation of the simple arc Q and since, by IlI, a is the initial
point and b is the terminal point in V, a and b are, by 20.2.2, the end points of the
simple arc Q.

21.2.2. Let P be an oriented simple loop. Let ac P, be P, a + b, so that, by 21.1.2,
P contains exactly two simple arcs with end points a, b. Let the two simple arcs be
oriented coherently with the given orientation of the simple loop P (see 21.2.1). Then
one of these simple arcs has initial point a and the other one kas initial point b.

We shall denote by P(a, b) that one of the two simple arcs which has initial point a,
so that the other will be denoted by P(b, a).

Proof: Both simple arcs are evidently (a) U (b) U J(a, b), (b) U (@) U J(b, a). The
validity of the statement follows by 21.2.1.

21.2.3. Every simple loop P has exactly two orientations which are mutually inverse.

Proof: 1. For every couple (a, b) of distinct points there are in P, by 21.1.2, exactly
two simple arcs A4, B with end points a, b. Associate the sets A* = 4 - [(a) U (b)],
B* = B — [(@) v (b)] with the couple (a, b). By 21.1.2, A* UB* =P — [(a) v
v (b)], A* n B* = (J. An orientation of the simple loop P is a cyclical ordering such
that, for every couple (a, b) the sets A*, B* associated with this pair are identical with
the sets J(a, b), J(b, a).

II. Thus, by 5.5.2, it suffices to prove the following: If A* and B* are associated
with a couple (g, b) and if ce A* (thus, ce 4, a + ¢ #+ b), then one of the two
sets associated with (a, ¢) — denote it by C; — and one of the two sets associated
with (¢, ) — denote it by C, — are such that 4* = (¢) u C, u C, with disjoint
summands.

III. The statement, which has to be proved, may also be stated as follows: Let
aeP, beP,a+b. Let A =P be a simple arc with end points a, b. Let ce 4,
a # ¢ =% b. Then there exists a simple arc C' = P with end points a, ¢ and a simple
arc C" < P with end points ¢, b such that 4 — [(@) v (B)] = (c) U {C' — [(a) U
U (01} u {C" = [(c) v (b)]} with disjoint summands. This follows by 20.1.9.

Remark: If P is a simple loop and if ae P, b € P, a + b, then the notation P(a, b),
P(b, a) for the pair of simple arcs with end points g, b contained in P is meaningful



21. Simple loop 169

only if an orientation of P is chosen. Under a change of orientation the simple
arcs P(a, b), P(b, a) interchange.

21.3. Let P be a continuum. Let C = P be a simple loop. Let K be the set of all xe C
separating P. Then K is a countable set.

Proof: 1. By 18.1.9 and 17.2.6, P is an infinite separable space, so that, by 16.1.3,
there is an infinite countable subset M dense in P. Let {z,} be a one-to-one sequence
containing exactly the points of M.

II. Let xe K. Then x€ C and P — (x) = A(x) v B(x) with non-void separated
summands. The set C — (x) is connected by 21.2.7, so that, by 18.1.2, we may
assume C — (x) = A(x), hence C n B(x) = (J. Since P — (x) is open, B(x) is also
open by 8.7.7. As B(x) # J, by 12.1.2 there is an index n(x) with z,(,, € B(x).

ITI. Obviously if suffices to prove that n(x) # n(y) for xe K, ye K, x % y. Let,
on the contrary, n(x) = n(y). Then B(x) n B(y) + 0. We have ye C — (x) = A(x)
and similarly x e A(y). The set (¥) U B(») is a connected (see 18.1.11) subset of
P — (x) = A(x) u B(x) and hence (see 18.1.2) it is a subset of one of the two scts
A(x), B(x). As y € A(x), we have (y) U B(y) = A(x). This is a contradiction, since
B(y) N B(x) + 0 = A(x) n B(x).

21.4. (Converse of theorem 21.1.5.) Let P be a continuum. If every two-point set
M < P separates P, then P is a simple loop.

Proof: 1. Chooseae P,be P,a + b. Then P — [(a) u (b)] = A U B with non-void
separated summands. The sets 4, B are open (see 8.7.7), and hence @, = A U
v@u@)=P—-B and Q,=Bu(@u(d) =P — A-are closed and hence
(see 17.2.2) compact. Moreover, @, U O, = P, O, n @, = (a) u ().

II. 0, and Q, are continua. Let, on the contrary, e.g. @, not be a continuum.
Q, contains more than one point and it is compact. Thus, Q, = H u K with non-void
separated summands. We may assume that ae H. If b € H, we have K < A, so that
(see 10.2.4) K and B are separated. Consequently (see 10.2.5), K and Hu B are
separated, so that we have P = K u (H u B) with non-void separated summands,
which is a contradiction. Thus, b e K. If H were not connected, we would have
H = H, u H, with separated summands, a € H,, H, + (). We would have H, c 4,
so that (see 10.2.4) H, and B would be separated. H, and K would be also separated
(again by 10.2.4), so that (see 10.2.5) H, and H, u K u B would be separated. Thus,
we would have P = H, u (H, u K u B) with non-void separated summands, which
would be a contradiction. Thus, H is connected. Similarly we can prove that K is
connected. As Q; = H u K with separated summands and as Q, is compact (and
hence closed), the sets H, K are closed and hence compact. Thus, each of H, K
is either a one-point set or a continuum. More precisely, either H = (a) or H is
a continuum and similarly either K = (b) or K is a continuum. If 9, = B u (a) U (b)
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is not connected, we have @, = H' u K’ with separated summands, ae H', K’ % 0.
H'’ and K’ are closed. The point b cannot belong to H’, since this yields P = K’ u
U (H' u A) with non-void separated summands, so that € K’. This is also a con-
tradiction, since then P = (H u H') u (K u K’) with non-void separated summands.
Thus, @, is connected.

We know that either H = (a), or H is a continuum. Analogously either K = (b)
or K is a continuum. We cannot have simultaneously H = (a¢) and K = (b) since
this yields A=0, —[(@u®]l=[H-@]Vv[K—-®B)]=0 and 4+0 by
I. Hence, we have either

[1] both H and K are continua, or:
[2] H = (@), K is a continuum, or:
[3] H is a continuum, K = (b).

In the first case there is an xe H, x + a and a ye K, y % b such that H — (x)
and K — (y) are connected sets (this follows by 20.4). Then P — [(x) U ()] =
=Q,uU[H - (x)'] v [K — (»)]. Q, is connected and contains both points a and b.
H — (x)is connected and contains point @, K — (y) is connected and contains point b.
Thus, by 18.1.4, P — [(x) U ()] is connected, i.e. the two-point set (x) U () does
not separate P, which is a contradiction.

In the second case choose an xe Q,, x # b such that Q, — (x) is connected
(this is possible by 20.4, as Q, is a continuum); then choose a y e K, y + b such
that K — (¥) is connected (this is possible by 20.4). Then P — [(x) v (y)] =
=[0; — @]V [K— ()] We have beQ, —(x), beK—(y), @, — (x) and
K — () are connected. Thus, by 18.1.4, P — [(x) U (»)] is connected, which is
a contradiction.

The third case may be obtained from the second one by interchanging simultane-
ously a with b and H with K; this also yields a contradiction. Thus, Q, is connected.

III. Thus, there are continua Q, =« P, O, < P such that Q, v Q, =P, @, n
N Q, = (a) u (b). By 21.1.3 it remains to prove that Q; and Q, are simple arcs
with end points a, b. Assume that this is not true e.g. for Q,. Then, by 20.1.2 and
20.4 there is a point ce Q,, a * ¢ * b, such that Q, — (c) is connected. Choose
an x&€ Q,, a + x #+ b, hence, x F c. If @, — (x) is connected, then, by 18.1.4, also
P—-[c)u)] =10, - (©)]vlQ, — (x)] is connected, and hence the two-point
set (¢) U (x) does not separate P, which is a contradiction. Thus, Q, — (x) is not
connected. Hence, each x e Q, — [(a) L (b)] separates the continuum Q,, so that
0, is, by 20.4, a simple arc and a, b are, certainly, its end points. Choose a de Q,
(hence, d +¢), a +d + b. By 20.1.9 we have Q, = SuU T, where S is a simple
arc with end points a,d, T is a simple arc with end points d, b and S~ T = (d).
The sets S — (d), T — (d) are connected by 20.1.2. @, — (¢) is also connected.
Moreover, P — [(()u (@] =[Q; — (IV IS = @]V [T - @] ae[Q, — ()] n
N[S—@) be[Q, — (©)] n [T — (d)], so that, by 18.1.4, P — [(¢) v (d)] is con-
nected, i.e. the two-point set (c) U (d) does not separate P, which is a contradiction.
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Exercises

A cartesian product PxQ where both P and Q contain more than one point, cannot be
a simple loop.

Let P have the property that every two of its points belong to some simpie arc C < P. Let P
contain no simple loop. If a € P, b € P, a + b, there exists exactly one simple arc C < P
with end points a, b. If C; = P, C, < P are simple arcs, then C; N C, is either void or
connected.
Let P = P, or P = Pg (see exercises to § 19). Leta € P, b € P, a + b. Then there is a simple
loop C < P withaeC, beC.
The following more general theorem may be proved in a manner similar to 21.3: Let P
be a separable connected space. Let C < P be a connected set. Let K be the set of all x € C
which separate P and do not separate C. Then K is countable.
Let P be a separable connected space. Let C < P be a connected set. For n =1,2,3, ...
let A, < P— C be connected sets. Let (see 8.8)

Lim 4, > C.

Let K be the set of all x € C which separate P. Then K is countable.

21.6.* Prove theorem 21.1.6!
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