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Chapter VI 

MAPPINGS OF A SPACE 
ONTO THE CIRCLE 

§ 24. Inessential mappings onto the circle 

24.1. In this and in the following chapter we shall identify couples (A, J>) of real 
numbers with complex numbers x 4- iy, so that E2 is the set of all the complex 
numbers nad Sj (see 17.10) is the set of all complex numbers ,v + iy with absolute 
value . . . T„ 2 

I x + \y | = + V(x2 + y2) 
equal to one. The set E2 will be termed the plane, the set SX will be termed the circle. 
Evidently ^ ^ b) = \ a — b\ for AGE 2 , ¿ G E 2 . 

As is well known, for. any t e E1? 

efi = cos t -f i sin t e 5, . 

The following two theorems are well known: 

24.1.1. Put f(t) = ¿'for t G E , . Then f is a continuous mapping of E1 onto SJ . 

24.1.2. Let a G Ex, J = E[A < t < a + 2n]. Put /(/) = eri for t e J. Then f is 
t 

a homeomorphic mapping of J onto Sj - (piot). 

24.2. Let P be a metric space. The following two theorems are easy to prove: 

24.2.1. Let f and g be continuous mappings of P into S,. Then f . g is a continuous 
mapping of P into Si. 

24.2.2. Let f be a continuous mapping of P into S,. Then \/f is a continuous mapping 
of P into Sj. 

It follows easily by 24.1.1: 

24.2.3. Let cp be a continuous mapping of P into Ej. Put f(x) = eI</,(x) for every xeP. 
Then f is a continuous mapping of P into Sx. 

Let / be a continuous mapping of P into Sx . We say that / is inessential, if there 
exists a continuous mapping (p of P into E, such that f(x) = e1<p(x) for every x e P. 
A mapping / is said to be essential, if it is not inessential. 

The following three theorems are evident. 
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24.2.4. Let f and g be inessential continuous mappings of P into Sj . Then f . g is an 
inessential continuous mapping of P into Si. 

24.2.5. Let f be an inessential continuous mapping of P into Sj . Then \\f is an 
inessential continuous mapping of P into S t . 

24.2.6. Let Q c P. Let f be an inessential continuous mapping of P into SJ. Then 
the partial mapping fQ is also inessential 

24.2.7. Let f be a continuous mapping of P into S^ If S, - / (P) 4= 0, then f is 
inessential 

Proof: There is an a e with eiaeSl - /(P). By 24.1.2 there exists a homeo-
morphic mapping h of SA — (ei<z) onto the interval E[a < t < a 4- 2n] such that 

t 
eih(z) = z for every z e Sx - (eia). Put cp[x) = A [/(*)] for xeP. Then is a 
continuous mapping of P into Et such that/(x) = ei<p(x) for every x e P . 

24.2.8. Let f and g be continuous mappings of P into S^ Let f be inessential Let 
I/O) — g(.x) | < 2 for every xeP. Then g is also inessential 

Proof: Obviously g(x)Jf(x) 4= —1 for any xeP. Thus, the mapping g = f . ( g / f ) 
is inessential by 24.2.4 and 24.2.7. 

24.2.9. Let 0 < o < 2n. Let f be a continuous mapping of P into SA. Let q> be a 
mapping of P into Ex. Let f{x) = el<p(x) for every xeP. Let cp not be continuous in 
a point as P. Then there is a sequence {*„} in P such that lim xn = a, \ cp(xn) — 
— (p(a) | > co for every n. 

Proof: Denote by M the set of all xeP such that | cp(x) - (p(a) \ > co. By 8.2.1, 
we have to prove that a e A7. Let us assume the contrary. Then U = P — ~M is 
a neighborhood of a such that xe U implies | cp(x) — (p(a) | ^ co. Evidently there 
is a neighborhood V of a such that Sx — f(V) 4= 0. By 24.2.7 there is a continuous 
mapping \j/ of Kinto Ex such that, for every xe V 

eHx) =f(x) = e M x ) . 

In particular e^(o) = eMfl), so that there is an integer k with q>(a) = ^(a) 4- 2nk. 
Since co < 271 and since \J/ is continuous, there is obviously a neighborhood W cz U 
of a such that xeW implies | \l/(x) - \jj(a) \ < 2n - co. For xeU n W we have 
j cp(x) - il/(x) - 2kn | = | [<p(x) - <p(a)] - ^(x) - M<*)] I i I <p(x) - <p(a) | + 
4- | \jj{x) - {¡/(a) | < 2n. However, the number 

(p(x) - ipjx) - 2kn ^ 
2n 
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is an integer, since 
ei<Kjc) = el>(x) = e i W x ) + 2&n). 

Thus, (1) is an integer and its absolute value is less than 1, hence <p(x) = \l/(x) + 2kn 
for every xe U n W. On the other hand, U n W is a neighborhood of a and is 
continuous. Thus, cp is continuous in a. This is a contradiction. 

24.2.10. Let f be a continuous mapping of P into Sjl . Let there exist an integer k 4= 0 
such that the mapping fk is inessential. Then f is also inessential. 

Proof: There is a continuous mapping q> of P into Et with 

[f(x)]k = e
i<p(x) 

for every xe P. For xeP put 

g(x) = exp [icp(x)/k] . 

Then g is an inessential continuous mapping of P into Sx . For every xeP we have 
[f(x)/g(x)]k = 1, so that f/g is inessential by 24.2.7. Thus, the mapping 

f=(flg)-g 
is inessential by 24.2.4. 

24.2.11. Let cpi and cp2 be continuous mappings of a connected space P into E^ Let 

ei<Z>t(*) _ ei<Pi(*) 

for every x e P. Then there is an integer k such that 

cp2{x) = (p^x) + 2kn 
for every xeP. 

Proof: (p = (2n)~l . ((p2 — cpis a continuous mapping of P into Ex and the 
set (p(P) consists of integers, so that cp(P) is not an interval. Hence, (p(P) is a one-point 
set by 18.1.10 and 19.2.2. 

24.2.12. Let K = 1, 2, 3,.. . . Let P = A u B and let A, B be either both closed or 
both open. Let A n B have at most k components. Let fx( 1 g X g k) be continuous 
mappings of P into ST. Let all the partial mappings 

Cfx)A, (A)B 

be inessential. Then there are integers nk (1 g I g k) which are not all equal to zero 
such that the mapping 

n ( A r 
A = 1 

is inessential. 
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Proof: Let CM (1 g p g h) be all the components of the set A n B; thus, 
O^h^k. 

There are continuous mappings cpx (1 g X g k) of A into and continuous 
mappings ip x (1 g X g k) of B into E1 such that 

fk(x) = e1**00 for xeA, 
fx(x) = e ^ ( x ) for A-6^. 

By 24.2.11 there are integers k^ (1 g p <; h, 1 g X g A:) such that 

*AAM = <PAW + l i tk^ for x e C r 

Let us determine integers n, nk (1 g X g fc) satisfying the equations 

I fc,^ = »• (1 (2) 
A=1 

Since the number, of the equations is less than the number of unknowns and since 
the coefficients are integers, there exists a solution of (2) such that we do not 
have nx = ... = nk = 0. 

k 
Put f = Y[ (LT\ so that / is a continuous mapping of P into Sj . We have 

A = 1 
to prove that / is inessential. 

k k 
Equations (2) yield that xe A n B implies £ «A'AAW = Z nx(Px(x) + 

A=1 A = 1 
Thus, we may define a mapping x of -P into Ex by 

k 

*(*) = E "a^aW + 2tin for xe/4, 
A=1 

k 
*(*) = Z "A<AA(*) for 

A=1 
Evidently f(x) = e ,z(x) for every x e P, so that it suffices to prove that x is continuous. 
This follows easily from the continuity of the partial mappings XA j XB (see ex. 9.5). 

24.2.13. Let P = A u B and let A, B be either both closed or both open. Let A r> B 
be either void or connected. Let f be a continuous mapping of P into Sj. Let both 
partial mappings fA, fB be inessential. Then also f is inessential. 

This follows immediately from 24.2.10 and 24.2.12.*) 

00 

24.2.14. Let P = (J An.Let An a An+1(n = 1, 2, 3, . . .) .Let the sets An be connected. 
n = 1. 

For every xeP let there be an index n such that x is an interior point {see 8.6) of An. 

*) 24.2.13 is a particular case of theorem 24.2.12. If the proof is carried out for this particular 
case, we see easily that we do not need theorem 24.2.10. 
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Let f be a continuous mapping of P into S,. Let the partial mappings fAn be inessential 
(n = 1, 2, 3,...). Then f is inessential. 

Proof: Choose an aeAl9 so that ae An for every n. For n = 1, 2, 3, ... there 
is a continuous mapping i¡/n of An into Ej such that f(x) = e^n(Jc) for every xeAn. 
If m < n, then, by 24.2.11, there exists an integer kmn such that xeAm implies 
W*) = W*) + 2nkmn. Put hn = kln. We have 

= + 27iA:mn, 
^nW = ti(a) + 2nhn, 

= (*) + 27i/zm , 

hence, /cmn = hn — Am. Thus, we may define a mapping q> of P into E1 by 

<P(*) = il/n(x) - 2nhn for xeA„. 

Evidently f(x) = el<p(x) for every xeP. Since for every xeP there is an index n 
such that x is an interior point of A„ and since the mappings {//„ are continuous, 
<p is also continuous. Thus, fis inessential. 

24.2.15. Let Q C P. Let either T = EJ or T = SX. Let e > 0. Let (p be a continuous 
mapping ofQ into T. Then there is a neighborhood G of Q and a continuous mapping \j/ 
of G into T such that | i¡/(x) - (p(x) | ^ & for every xeQ. 

Proof: I. First, let T = Ej. We may assume that 2 + 0. 

II. Let P be the set of all xeQ such that there is a number rjx > 0 with 

(a) u (b)czQn Q(X9 rjx) => | cp(a) - <p(b) \ < ¿£ . 

As <p is continuous, we have obviously 

QczTczQ. 

Moreover, it is easy to prove that 

xeT => Q n Q(x, rjx) <= P 
so that P is open in Q. 

III. For n = 0, ±1, ± 2 , . . . denote by An the set of all xeQ with 

ne ^ <p(x) ^ (n 4- 1) e, 
so that 

Q = U 4 . . 
u = — oo 

IV. We have 

^ <= U A -
n = — oo 
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To prove this, we choose an xeT. Since i cz Q, we have 0 = q(x, Q) < tjXi 

so that there is an ae Q with g(a, x) < r*x. Choose such an a and determine an 
integer m with | <p(a) - me | g ie . If 0 < <5 g rjx9 then 0 = q(x, Q) < 5, so that 
there is a point beQ with g(b, x) < b % rjx. By II, | (p{a) - q>(b) | < so that 
| cp(b) - me | < e, hence b e Am-l u Am. Thus, q(x, Am_1 u A J < <5_ for every 
S > 0, <5 g rjx9 so that u Am) = 0, hence xe Am_i u Am = Am_l u Am% 

V. Further, we prove that 

xe T n An, y e T n Am, q(x, y) < rjx=> \ m - n \ g 1 . 

(In particular, x e T n An n Am=> \ m — n \ g 1.) 
Since xeT n An, there exists a point a e An n Q(x, rjx). Choose a <5 > 0 with 

S < t]y, q(x, y) + 5 <t]x. Since yerr\Am, there exists a point be Amn Q(y, 
We have {?(£, *) g <?(*,>>) + Q(b,y) < Q(x,y) + S < rjx. Hence, (a) u (b) cz Q n 

n so that | q>(a) - <p(b) | < ie . Since a e A„, b e Amf we have we g <?(<*) § 
l)e, me ^ (p[b) g (m + l)e. Since | <p(a) - <p(b) | < e, we have | m - n | § 

g l . 

VI. Let us define a mapping / of f into Ex as follows: 
If . v e i n An (n = 0, ±1, ±2 , . . . ) then*) 

X(x) = ne + c 

Q(x, An-X) + Q(X, An+i) 
(the ratio on the right-hand side is always defined, since q(x, + q(x, An+1) = 
= 0 implies x e An-X n A n + l , which is, for x e T , impossible by V). By IV, the 
number x(x) is defined for any x e r at least in one way. If x e r n Am, x e r n An, 
m =# n, then, by V, m = n ± 1. Then we obtain two formally different definitions, 
which, however, both lead to the same value, namely x(*) = ne provided m = 
= /z—l, = (n + l)e provided m = n + 1. 

VII. xeQ=>\x(x)-cp(x)\ ^ e. 
In fact, there is an index n with x e An c r n A„. By III, ne g <p(x) (n + l)e, 

by VI, ne g x(x) ^ (n + l)e, hence | x(x) — q>{x) | g e. 

VIII. The mapping x is continuous. Let xre T (r = 1, 2, 3,...), x e T, lim xr = x. 
We have to prove that lim x(xr) = /(x). Let us assume the contrary. Then there 
is a number S > 0 and a subsequence {yr} of {xr} such that | x(yr) — x(x) I > S 
for every r. By IV there is an index n such that xe T nAn. There is an index p 
such that r > p implies Q(x,yr) < rjx. 

By V, yre T n (An-1 uAnu An+1) for every r > p. If yre T for 
infinitely many indices r, then = Q(x,yr)-+0, hence) q(x9A„^1) = 0, 
i.e. x e f n Similarly, x e f n An+i provided there exist infinitely many 

*) We arrange to set {>(*> 0) = 1 for every point x. 
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indices r with yre T n An+l. Thus, there exists an index m (m = n or m = // - 1 
or m = n 4- 1) such that xe T N Am and {JV} contains a subsequence {zr} such 
that zreT n Am for every r. On the other hand, zr x and the partial mapping 
XrnAm is continuous (see ex. 9.10). Hence, x(zr) %(x). This is a contradiction, 
since | x(zr) — x(x) | > <5 > 0 for every /•. 

IX. The set Q - T is closed by II and 8.7.3, so that the set G = P - (Q - f ) 
is open. Moreover, r = Q n G, so that r is closed in G by 8.7.2. Hence, by VIII 
and 14.8.3, there exists a continuous mapping ^ of G into Ej such that ^(.r) = x{x) 
for xeT. As QczT,xeQ implies | <K*) - cp(x) | ^ e by VII. 

X. The proof is finished for T = Now, let us turn to the case of T = S,. 
We may assume that e < 1. For xeQ put <p(x) = cpi(x) 4- i<p2(x). Then <p,, <p2 

are continuous mappings of Q into E l f and, for every xeQ we have [(pi(x)]2 4-
+ [<Pi(x)]2 =* Hence, there exist neighborhoods Gl9 G2 of Q, a continuous 
mapping i/^ of G into E1 and a continuous mapping \l/2 of G2 into Et such that for 
every xeQ we have | (p^x) - ij/^x) | < | (p2(x) — \jj2 (x) | < | e, and hence 
also 

I I iM*) + iMx) | - 1 I = | | Mx) + if2(x) I - I <Pl(x) + 1>2(*) I | g 

^ I l<Pi(x) - ^ (x ) ] 4- i|>2(x) - ^2(x)] I < y e. 

Let us denote by G the set of all xe Gt n G2 with || ^ ( x ) 4- i^2(.v) | - 1 | < 
< i £. We see easily that G is a neighborhood of <2, that 

I = + "ft 2 
W l<fti+iift2 | 

is a continuous mapping of C? into Sj, and that | ^(x) — <p(x) | g e for every xe Q. 

24.2.16. Let f be a continuous mapping of P into . Let Q cz P. Let the partial 
mapping fQ be inessential. Then there exists a neighborhood G of the set Q such that 
the partial mapping fG is inessential. 

Proof: There is a continuous mapping (p of Q into such that / (x ) = e1<p(x) 

for every xe Q. By 24.2.15 there is an open set G0 Q and a continuous mapping 
ij/ of G0 into Ex such that | \JJ(X) — <p(x) | < n for every xeQ. Let G be the set 
of all xeG0 with / (x ) . e"!^(jc) 4= — 1. Then G is, by 9.2, open in G0, hence, open 
in P by 8.7.7. It is easy to prove that Q cz G. If x G G, then/(x) = / (x ) . e~mx). e^(x), 
/ (x ) . 4= - 1 , so that the partial mapping/c is inessential by 24.2.4 and 24.2.7. 

24.2.17. Let a space P be either compact or locally connected. Let f be a continuous 
mapping of P into S1# Let fK be inessential for every component K of P. Then the 
mapping f is inessential. 
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Proof: We may assume that P 4= 0. 
I. Let P be locally connected. By 18.2.1 there exists a mapping <p of P into Ej 

such that f(x) = e[(pix) for every xeP, and such that (pK is continuous for every 
component K of P. Since the sets K are open (see 22.1.4), we prove easily that q> 
is continuous. 

IF. Let P be compact. Let 51 be the system of all components of P. Every KeSK 
has, by 24.2.16, a neighborhood r(K) such that the partial mapping fr{K) is 
inessential. By 19.1.4 (see also 19.1.5) there is a neighborhood A(K) c: r(K) of K 
such that A(K) is both closed and open. Since the sets A(K) are open and since 

U A(K)z> U K = P, 
Ke® Ke® 

P 
contains by 17.5.4 a finite sequence {Kn}\ such that JJ A(Kn) = P. Put 

n= 1 
H^AiKJ, //„ = A(Kn) - U (2 ^ n ^ p). 

5 = 1 
P 

The partial mappings fHn are inessential by 24.2.6. Moreover, \J Hn = P with 
n = l 

disjoint summands. Thus, there is a mapping <p of P into EA such that f{x) = el<p(x) 

for every JC e P and the partial mappings q>Hn are continuous. Obviously the sets Hn 

are open. Hence, we see easily that the mapping cp is continuous, so that / is 
inessential. 

24.2.18.*) Let P be a separable, locally compact and locally connected space. Let f 
be a continuous mapping of P into Sj. I f f is essential, there is a continuum K c P 
such that the partial mapping fK is essential. 

Proof: By 24.2.17 there exists a component Q of the space P such that the partial 
mapping fQ is essential. By 16.1.2, ex. 17.20, 22.1.4 and 22.1.6, Q is a connected, 
separable, locally compact and locally connected space. Since Q is locally compact, 
we may associate with every z e Q a neighborhood U(z) of z in Q such that U(z) 
is compact. Since Q is locally connected, we may find (for every z e Q) a connected 
neighborhood V(z) of z in Q such that V(z) a U(z). The set V(z) is connected 
by 18.1.6 and compact by 17.2.2. By 16.2.2 we may find a sequence {z„} J° such 

X 

that U V(zn) - Q. By 18.4.2 (see also 18.3.1), for every m = 1, 2, 3, ... there is 
n= 1 

a finite subsequence {w(
A

m)}ho of {zn} such that w(
0
m) = zl9 4"? = zm, V{u^\) n 

n V(u{!n)) 4= 0 for 1 g A g km. Put 

Hm = U V(u?\ Gn= U Hm . 
A = 0 m = 1 

*) This is a particular case of theorem 24.4.2. The proof of the more general theorem is, of course, 
more complicated. 
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It is easy to prove that the sets Gn are connected and open in Q. Moreover, 
00 

Gn a Gn+l, U Gn = Q and the mapping fQ is essential. Hence, by 24.2.14, there 
n = 1 

exists an index n such that fCn is essential. Hence (see 24.2.6) the mapping fK is 
also essential, if K = Gn. It is easy to prove (see ex. 24.8) that K is a continuum. 

24.2.19. Let Q be a connected dense subset of a space P. Let f be a continuous mapping 
of P into St. Let the partial mapping fQ be inessential. Then there exists a set M <= P 
such that [1] M is closed, [2] M n Q = (), [3] if Q c X <= P9 M n X = 0, then the 
partial mapping fx is inessential, [4] if Q a X a P, M n X then the partial 
mapping fx is essential. 

Proof: I. There exists a continuous mapping cp of the set Q into E{ such that 
/(x) = ew/>(x) for every xeQ. Let G be the set of all xeP which have the following 
property: There is a number \jj(x) such that, if an-+ x and an e Q for every w, then 
<p(an) Wx)-

Evidently Q a G and 
ij/(x) = cp(x) for xeQ. 

Put M = P - G, so that M n Q = 0. By ex. 12.2, for every xeG there is 
a sequence such that ane Q for every w, an x, SO that obviously f(x) =eI,/'(x) 

for every x e G . 

II. ij/ is a continuous mapping of G into E,, so that fx is inessential whenever 
Q a X a P, M n X = 0. Let x e G , xneG, xn-+ x. We have to prove that 

There exist sequences such that any e Q, lim tf„v = A'„. AS 
V-* 00 

xn e G, we have lim <p(anv) = ^(Xn)- For every n there is an index vn with 
oo 

(?(*», v„> -O < I ^ f l l v J - I < w"1. Thus, lim antVn = x, 6 Q, hence 
n - > oo 

lim <?(<*„, v„) = i^(x), so that lim ij/(xn) = i/̂ (x). 
« - • o o n - » x 

III. Let Q X cz P and let the partial mapping fx be inessential. We have to 
prove that M n X = 0, i.e. that ^ <z <7. There exists a continuous mapping / 
of X 3 0 into Ei such that /(x) = eiz(x) for every x e X, so that ei<p(x) = eix(x) 

for every xeQ. By 24.2.11 there exists an integer k with <p(x) = x(x) + 2A:7r 
for every xeQ. Choose a n ^ e l Let an e Q, an-> x (see ex. 12.2). Then we have 
X(an) /(x), hence (p(an) /(x) -f 2kn. Thus, xeG, ^(x) = x(x) + 2kn, so that 
in fact X c G. 

IV. It remains to be proved that M is closed, i.e. that G is open. Choose an a e G. 
By 24.1.2 there is a homeomorphic mapping h of Sx — [—/(«)] onto the interval 
J = E[iP(a) - n < t < \jj(a) -h n] such that eifc°° = y for every yeSt - [-f(a)]. 

t 
Evidently h[f(a)] = i¡/(a). There is a neighborhood U of a such that /(x) # -f(a) 
for every xeU. For xeU put <P(x) = h[f(x)]. Then $ is a continuous mapping 
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of U into Ei; we have 0(a) = i¡/(a), and f(x) = e l0(x) for every xe U. There is 
a neighborhood U1 cz U of a such that x e Ut implies | <P(x) — [¡/(a) \ < in. By II 
there is a neighborhood U2 <= Ut of a such that xeG n U2 implies | ij/(x) — 
— ij/(a) | < in. Thus, xeG n U2 implies | <P(x) — \p(x) \ < n so that xe Q n U2 

implies | &(x) - <p(x) \ < n. On the other hand, we have e i0(x) = f(x) = ti<p(x) 

for every xe Q n U2. Hence, xe Q n U2 implies 0(x) = <p(x). If xe U2 and if 
an eQ,an-+ x, there exists an index p such that n > p implies ane U2, which implies 
0(an) = cp(an). We have 0(an) 0(x). Thus, (p(an) 0(x), i.e. xeG, \f/(x) = 0(x). 
Thus, every xeG has a neighborhood U2 cz G so that the set G is open. 

24.3. 24.3.1. Let P be a simple arc. Then every continuous mapping f of P into S, 
is inessential. 

Proof: By 17.4.4 (see also 9.6.1), there exists an e > 0 such that 

xeP, yeP, Q(x,y) < e imply \f(x) - f ( y ) \ < 2. (1) 

By 20.1.12 there is a finite point sequence {c;}'"1 a finite sequence {Cf}7 
of point sets such that [1] Cx are simple arcs and, hence (see 17.2.2), they are closed 

m 
sets, [2] U Ct = P, [3] C, n C i + 1 = (c,) (1 ^ i g m - 1), [4] C, n Cj = 0 (1 g i ^ 

¿=i 
g m, 1 ^ j ^ m, | i - j | g 2), [5] d(Cx) < e (1 ^ / ^ m), so that, by (1), -
— /(Q) + 0. Thus, the partial mappings fCi are inessential by 24.2.7. Put A{ = 

i 
= U Cj 0 = i ^ w). Then Al = Cx and for 1 <; / m — 1 we have Ai+l = 

J= i 
= Ai u C i + 1 with closed summands, Ax n C i + 1 = (cf). Thus, by 24.2.13, it follows 
by induction that the partial mappings fAi (1 ^ i g m) are inessential. We have 
P = Am, so t h a t / is inessential. 

Now, let P be a simple loop and let / be a continuous mapping of P into Sj. 
Choose an orientation of P(see 21.2). Choose a eP, beP, a 4= By 21.2.2 (see also 
21.1.2) we have P = P(a, b) u P(b, a), P(a, b) n P(b, a) = (a) u (b). The sets P(a, Z>), 
P(b,a) are simple arcs, so that, by 24.3.1, there exists a continuous mapping cp{ 

of P(a, b) into E1 and a continuous mapping <p2 of P(b, a) into E{ such that 

JC e P(a, b) implies ei</,,(jr) = /(*), (2) 
xeP(b,a) implies ei<P2(x) = f(x). 

We have eiiPi(a) = ei<P2(o), ei<Pl(b) = ei<Mb), so that there are integers nl9 n2 with 

<p2(a) = (p^a) + 2^71, (3) 
(p2(b) = <px(b) + ln2n. 

Put 
n = -

so that n is an integer. 



24. Inessential mappings onto the circle 201 

Preserving the points a, b and the chosen orientation of the simple loop P, replace 
the mappings <pl9cp2 by other mappings having the same properties. We 
obtain integers mi9m2 instead of the integers nl9n2. By 20.1.1 and 24.2.11 there 
are integers k x , k 2 such that 

xeP(a,b) implies ^ ( x ) = (/^(x) 4- 2kin, 
xeP(b,a) implies i/f2(x) = cp2(x) + 2k2n. 

Thus, 
i\i2(a) = (p2{a) + lk2n = (px(a) + 2(n1 + k2)n = 

= + 2(H! + - fcj) n, 

so that /^i = ni + k2 — kx and similarly m2 = n2 + k2 — kx. Hence, 

n = ni — n2 = mx — m2. 

Thus, the number n does not depend on the choice of q>iy q>2. Let us write, more 
precisely, n — n(a, b). We are going to prove that (with the orientation of P given) 
the number n does not depend on the choice of a, b. It suffices to prove that the 
number n remains unchanged whenever we preserve one of the points —say the point 
ci — and replace the point b by another point c; i.e. we prove that n(a, b) = n{a, c) 
for distinct a, b, c. 

For certainty, let c e P(a, b). It is easy to prove that 

P(a, c) u P(cy b) = P(a, b), P(a, c) n P(c, b) = (c), 
P(c, b) u P(b, a) = P(c, a), P(c, b) n P{b, a) = (b). 

By 24.3.1 there are continuous mappings q>i,(p2,(p3 of the simple arcsP(<7, c)y 

P(c, b), P(b, a) into Et such that 

x e P(ay c) implies ei</?l(jc) = /(*), 
xEP(c,b) implies eiv,2(x) = /(*), 

G P{b, a) implies ei</>3(jc) = /(*). 

There are integers hl, h2, h3 with 

(p3(a) = (pi(a) + 2hxn9 

q>3(b) = <p2(b) + 2h2n, 
<Pi(c) = cp{{c) + 2 h3n. 

There exist (see ex. 9.5) continuous mappings <p4, (p5 of the simple arcs P{a,b)y 

P(cy a) into Ej such that 

x G P(a, c) => <p4(x) = 9i(x), x G P(cy b) => = _ 2h3ny 

x E P(cy b) => (p5(x) = (p2(x), XEP(b, a) => (p5(x) = (p3(x) - 2h2n. 
Evidently 

n(ay b) = nl - n2y n(a, c) = mx -



202 VI. Mappings of a space onto the circle 

where 
2nxii = q>3(a) - (p4(a) = (p3(a) - q>x(a) = 2hxn 
2n2n = <p3(b) - cp4(b) = cp3(b) - [(p2(b) - 2hzn] = 2(h2 + h3) n, 

2mln = (ps(a) - cp^a) = [(p2(a) - 2h2n] - cp^a) = 2(hi - h2) tt, 
2m2n = cp5(c) - cpx{c) = cp2(c) - (pt(c) = 2h3n, 

so that 
nx - n2 = ht - (h2 + h3) = (hv - h2) - = m{ - m2, 

i.e., n(a, b) = n(ay c). 
Thus, the number n — for a given mapping/—depends on the orientation of the 

simple loop P only. If we change the orientation, we obtain — n instead of n (see 
Remark at the end of Section 21.2). 

The number n is said to be the degree of the mapping f If the mapping/is inessential, 
then there is a continuous mapping q> of P into Et with el(p(x) = f(x) for every xe P. 
We may put <px «= (pp^a,b)f *P2 — ̂ Fî .a)» we obtain in (3) nx — n2 — 0 and 
consequently n = 0. 

On the other hand let n = 0, so that nx = n2 in (3); if cpx, (p2 are the mappings 
from (2), there is a mapping cp of P into EX such that 

xeP(a,b) implies cp(x) = (px(x), 
x eP(b, a) implies cp(x) = cp2(x) — 2nln. 

We have el<p(x) = f(x) for every xeP and the mapping/is continuous (see ex. 9.5) 
so that / is inessential. 

The results obtained are stated in the following two theorems: 

24.3.2. The degree n of a continuous mapping of an oriented simple loop into SJ is an 
integer. If the orientation is changed, n is replaced by —n. 

24.3.3. A continuous mapping of an oriented simple loop into is inessential if and 
only if its degree is zero. 

Moreover, it is easy to prove the following theorem: 

24.3.4. Let f{ ,/2 be continuous mappings of an oriented simple loop P into S 1 and let 
n{,n2 be their degrees. Then the degree of the mapping f x f 2 is equal to nx + n2. 

24.3.5. Let P be an oriented simple loop. There are exactly two kinds of homeomorphic 
mappings of P onto Sx. The mappings of the first kind have degree one, the mappings 
of the second kind have degree minus one. 

Proof: I. Choose aeP, beP, a b. Then P(a, b) and P(b, a) are simple arcs 
with end points a, b, so that there is a homeomorphic mapping q>x of the interval 
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J = E[0 ^ t g 1] onto P(a, b) and a homeomorphic mapping <p2 of J onto P(by a) 
t 

such that <^(0) = cp2(0) = ay <^(1) = <p2( 1) = b. Define f l y f 2 by 

/ i W = eint, f2(x) = e-int for xeP(ayb)y x = <px(t)y 

fx(x) = e- [nt
y f2(x) = einf for x e P(by a)y x = <p2(t). 

It is easy to prove that f l 9 f 2 are homeomorphic mappings of P onto S, and that 
their degrees are +1, —1. 

II. Let/be a homeomorphic mapping of P onto S1# Put a = /_i(l) , b = /_i(—1). 
Let My be the set of all ei7ti (0 ^ / g 1). Let M2 be the set of all e~i7rf (0 ^ t ^ 1). 
Then M{ u M2 = Sl9 M{ n M2 = (1) u (—1) and Mx, M2 are simple arcs with 
end points +1, —1. Thus, f-x(Mx) c P9 f-i(M2) cz P are two distinct simple 
arcs with end points a, b. Thus, under a suitable choice of orientation of the simple 
loop P we have 

P(ay b) = / - i f M j ) , P(b, a) = / _ x {M 2 ) . 

Obviously there is a homeomorphic mapping q>x of P(ay b) onto J = E[0 ^ t ^ n] 
t 

and a homeomorphic mapping (p2 of P(by a) onto J such that 

f(x) = ei<Pl(x) for xeP(ayb)9 

f(x) = e"i<P2(x) for xeP(by a). 

We have (^(a) = = = 92W = n> s 0 that the degree of / is equal 
to +1. If we change the orientation, the degree of / is equal to —1. 

24.3.6. Let P be an oriented simple loop. Let n be an integer. Then there exists a conti-
nuous mapping of P into Sx with degree equal to n. 

Proof: By 24.3.5 there is a homeomorphic mapping / of P onto with degree 
one. By 24.3.4 (see also 24.3.2) it is easy to prove that the mapping f n has degree n. 

24.3.7. Let P cz Ej. Then every continuous mapping f of P into S, is inessential. 

Proof: By 24.2.15 there is a set G => P open in Ex and a continuous mapping g 
of G into SA such that |/(*) - g(x) | < 2 for every xeG. Thus, by 24.2.6 and 24.2.8, 
it suffices to prove that the mapping g of G into Sx is inessential. 

Let g be essential. The set G is separable by 16.1.2 and 16.1.5, locally compact 
by 17.10.1 (see also ex. 17.20) and locally connected by 22.1.3 and 22.1.8. Thus, 
by 24.2.18, there is a continuum K cz G such that the partial mapping gK is essential. 
This is a contradiction by 19.2.2 and 24.3.1. 

24.4. 24.4.1. Let Q cz P. Let us define L(Q) in the same manner as in 22.2. Let Q a 
cz M cz Q\j L(Q). Let g be a continuous mapping of M into S t . Let the partial 
mapping fQ be inessential. Then f is inessential. 
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Proof: I. There is a continuous mapping (p of 0 into Et such that e1<p(Jc) = /(x) 
for every xe Q. 

II. Let xe M — 0. Since/ is continuous, there exists a neighborhood Vx of x 
in the space M such that f(y) 4= —f(x) for y e Vx. By 8.7.5 there is a neighborhood 
Ux of x in P such that Vx = M n Ux. Since M - 0 c L(Q\ there is a component 
Kx of 0 n Ux = 0 n Vx c M such that x is an interior point of Kx u (P — 0). 
The partial mapping fVx is inessential by 24.2.7, as f(Vx) c Sx - [-/(*)]. Thus, 
there exists a continuous mapping of Vx into E, such that 

Q ^ = f ( y ) for yeVx. 

As Kx is a connected subset of 0 n Vx, there is, by 24.2.11, an integer kx such that 

yeKx=> %x(y) = <p(y) + 2kxn. 

III. Let us define a mapping \J/ of M into Et as follows: First, if x e 0, put ^(x) = 
= cp(x). Secondly,- if x e M - 0 , put ift(x) = /X(x) - 2kxii. Then we have e 1 ^ = 
= /(x) for every xe M. It remains to prove that \j/ is continuous. 

IV. Let xe M. As L(Q) c 0, we have M a 0. Hence (see 8.2.1), there exists 
a sequence {a„} such that an x and aneQ for every n. We shall prove that cp(a„) 

This is evident for x e 0 . Hence, let x e Af — 0. By II, x is an interior point of 
Kx u (P — Q). Thus, there is an index p such that a„e Kxu (P — 0) for n > p. 
As e 0 , we see that 

n > p=> aneKx=> cp{an) = xx{an) - 2fcx7t. 

On the other hand, %x is a continuous mapping of the set Vx 3 Kx into E t . Hence, 

Xx(x) - 2kxn = ift(x). 

V. Let us choose an x e M and prove that i¡/ is continuous at the point x. Thus, 
let x„ e M, xn x. We have to prove that i¡/(xn) i/̂ (x). There are sequences 
t u r - i (w = 1,2,3, . . . ) in 0 such that lim bnv = xn. By IV, lim <p(6„v) = ^(xn). 

Obviously, for every n = 1, 2, 3, . . . there is an index v„ such that 

Q(xm, bnJ < w"1, 11A(xn) - ^(¿nVii) | < n"1 . 

As x„ x, Q(xn,bnVn) < TT1, we have lim = x. Moreover, bnVneQ, so that, 
V-» 00 

by IV, lim <p(6nv„) = <A(*). As | ^(xn) - ^(¿nVn) | < n~\ we have also lim i¡/(xn) = 
n - > oo n-+ co 

24.4.2. Lei P be a topologically complete locally connected space. LeJ fbe a continuous 
mapping of P into S j . Let fQ be inessential for every simple loop 0 <= P. Then f is 
inessential 
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Proof: I. Let K be a component of P. By 24.2.17 it suffices to prove that the partial 
mapping fK is inessential. The space K is topologically complete by 13.2, 15.5.3 
and 18.2.2. Moreover, it is connected and also, by 22.1.6, locally connected. 

II. Choose a point aeK and a number a e Ex with eIflt = f(a). If x e K , x 4= a, 
then by 22.3.1 K contains at least one simple arc with end points a, x. 

Let CL c K, C2 <z K be simple arcs with end points a, x. By 24.3.1 there is a conti-
nuous mapping of Cx into Ex and a continuous mapping cp2 of C2 into Ex such 
that: [1] (p^a) = <p2(a) = a, [2] e 1" 0 0 = f(y) for every yeCx and e^200 = f(y) 
for every ye C2. We shall prove that <Pi(x) = cp2(x). Let us assume the contrary. 
Let Ct be oriented in such a way that a is the initial point. Define M cz Cx as follows: 
If y e then y e M if and only if yeC2 and (pt(y) = <p2(y). The set M is obviously 
(see 9.5) closed in CL. Moreover, a e M and hence M +• 0. By 20.2.7 there exists 
a last point b of the set M c Ct. As cpx{x) 4= <Pi(x\ we have b 4= x, so that (see 
20.1.8) there exists a simple arc Cx(b9 x) c: Cx. Evidently 

yeC2n Cx{b9 x), <px(y) = q>2(y) => y = b. (1) 

There exists a simple arc C2{b, x) cz C2. Suppose that it is oriented in such a way 
that b is the initial point. We define a set M' c C2(b, x) as follows: If y e C2(b, JC), 
then yeM' if and only if y e Cx(b, x) and (px{y) 4= cp2(y). As ei<Pl(3° = ci9liy\ we 
may write | (px(y) — <p2(y) I ^ 271 instead of cpt(y) 4= (Piiy)* Thus (see 9.5) the set M' 
is closed in C2{b, x). Moreover, xe M' and hence M' 4= 0. By 20.2.7 there is a first 
element c of the set M' c C2(b, x). By (1), c is the first point y e C2(b, x) with 
ye Cx(b9 x) — (b). There exist simple arcs 

Cx{b9c) c Cl9 C2(b,c) c C2. 

Evidently Cx(b, c) n C2(b, c) = (b) u (c), so that Cx(b9 c) u C2(b, c) = Q is a simple 
loop by 21.1.3. Let Q be oriented in such a way that 

Q(b9c) = C1(b9c)9 Q(c9b) = C2(b,c). 

Since q>i(b) = <p2(6), the degree of the mapping fa is equal to 

- ¿ - b i W - ^ 2 ( c ) ] 4 = 0 , 

so that the mapping fQ is essential by 24.3.3. This is a contradiction. 
III. Put ij/(a) = a. If xe K — (a)9 we define \j/(x) e Ej as follows: Choose a simple 

arc C c A: with end points a9 x and a continuous mapping (p of C into Ex such that 
(p{a) = a and that 

e
i<p(y) =/0>) for j^eC. 

Then, put iK*) B y ^ i s a u n i q u e l y d e f i n e d mapping of the set K into Ex. 
Evidently tmx) = /(*) f o r e v e r y t h a t s u f f i c e s t 0 P r o v e that the mapping ifr 
is continuous. 
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IV. Let us choose a point x0 e K and prove that the mapping xj/ is continuous 
at the point x0. As / i s continuous in x0, there is a neighborhood U of the point x0 

in K such that x e U implies f(x) =}= —f(x0). By 24.2.7 there is a continuous mapping x 
of U into Ex such that e5*(x) = f(x) for xeU and that x(xo) = *K*o)-

Let V be the component of U containing the point x0. By 22.1.4, V is a neigh-
borhood of the point A'0 in K. V is a connected space. Moreover, V is topologically 
complete by 15.5.3 and locally connected by 22.1.3. 

It suffices to prove that x(x) = f° r (x0) u [V — (a)]. This is evident for 
x = x0. Thus, let x e V, a 4= x 4= x0. 

By 22.3.1 there exists a simple a r c C c V with end points x0, x. If x0 = a, then 
Xc is a continuous mapping of C into Ex such that e,x(y) = f(y) for ye C and that 

= a> s o that &(*) = /(*)• Thus, let x0 4= a. Then there exists a simple arc C0 cz 
c K with end points a, x0 and a continuous mapping <p0 of C0 into Ex such that 
ei<poOO _ y ^ f o r y e co and (p0(a) = a. Let C0 be oriented in such a way that a 
is its initial point. Define a set M cz C0 as follows: If j e C 0 , then yeM if and 
only if y e C. It is easy to prove that M is closed in C0. Evidently x0 e M, so that 
M 4= 0. Hence, by 20.2.7 there is a first point xx of the set M cz C0. IT xt = ay 

put Cx = (a). If xx 4= a, put Cx = C0(a, xt) (see 20.1.8). It is easy to prove that 
there are simple arcs C c Cx u C, C" c Cx u C such that [1] C = Cx u (C" n C), 
C" = Cj u (C" n C), [2] a, x0 are the end points of C', [3] a, x are the end points 
of C". As e ix(x,) = / ( x t ) = ei<Mxi), there is an integer fc with j f o ) = <7>o(*i) + 2kn. 
It is easy to prove that there exists a continuous mapping cp' of the set C into Ex 

and a continuous mapping <p" of C" into Ej such that 

yeCx=> (p'(y) = <p"00 = 
jeC' - C ^ (p\y) = x0>) - 2for, 
y e C" - C, => - *(>0 - 2kiz. 

Evidently: e1*'00 = /(}>) for yeC\ ei<p"Cy) = /(>0 for yeC\ <p'(a) = cp'\a) = a. 
Thus, we have cp'{x0) = iK*o), <p"(*) = since P'(*o) = - ¿for = i/̂ (x0) -
- 2A"7i, <?"(*) = xW - 2/ctt, we obtain k = 0 and x(x) = Hx)-

24.5. 24.5.1. Ler P be a metric space. Let Q be either a continuum or a connected and 
locally connected space. Let f be a continuous mapping of PxQ into . Let, for every 
xeP, the partial mapping /(JC)X Q be inessential. Let there exist a point beQ such 
that the partial mapping fPx{b) is inessential. Then the mapping f is inessential. 

Proof: I. There exists a continuous mapping x of P into Ej such that &x(x) = 
= f(x9b) for every xeP. For every xeP there exists a continuous mapping 
of Q into Et such that e1^*00 = f(x, y) for every y e Q. We may assume that i¡/x(b) = 
= x(x) f° r every xeP.*) 

*) Otherwise it suffices to replace the mapping y>x by a mapping y>x defined by 

V>) = vx(y) + X(x) — V>x(b) 
for every y e Q. 
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For (x9 y)ePxQ put cp(x9 y) = i¡/x(y), so that <p is a mapping of PxQ into E, 
such that el9(x,y) = f(x9y) for every (x,y)ePxQ. It remains to prove that the 
mapping q> is continuous. Let us choose an arbitrary point OLEP and prove that q> 
is continuous at the point (a, y) for every y E Q. 

II. Let Q be a continuum. As x is a continuous mapping of P into Ej, there is 
an e > 0 such that 

xeP9 q(cc9 x) < b => | x(x) - x(a) | < 7i. 

A s / i s a continuous mapping of PX Q into SL9 we may associate with every ZEQ 
a number S(z) > 0 such that 

XEP9 YEQ9 Q(A9 x ) < S(z)9 Q(Z9 y ) < 5{z) => \ f ( x , y ) - / ( a , y ) | < 2 . 

We have 
Q = U S(z)] 

zeQ 

with open summands. Since Q is compact, by 17.5.4 there is a finite sequence {zn} f, 
zn E Q, such that 

U QQ(Zh9 S(zn)] = Q. 
n= 1 

Let rj > 0 be the least of the p + 1 numbers e, S(zn) (1 g n ^ p). Then, first, 

XEP9 Q{CC9 X) < Y\ => I x(x) - / ( a ) | < TT, 
Secondly, 

xeP9 e(a, x) < t] => | f(x9 y) - /(a, y)\<2 

for every y E Q. In fact, for every yE Q there is an index n with g(zn9y) < S(zn). 
By 24.1.2 there exists a homeomorphic mapping v of S t — ( — 1) onto the interval 

E[ — 7I < t < 7I] such that eiy(z) = z for every ZE SX - ( -1 ) . 
t 

Put P0 = Qp(<X9 t]). If (x9y)EP0xQ9 we have x) < r\9 hence \f(x9y) -
- /(<*» y) I < 2, hence f(x9 j>)//0> y) #= - 1 ; therefore we may put 

4>(x,y) = *i>x(y) + v[f(x9y)lf{oL9y)} for (x9y)EP0xQ. 

Then Qmx,y) = f(x9y) for every (x9y)EP0xQ and & is a continuous mapping 
of PQXQ into Ex. 

Since i¡/x{b) = 

XEP0=>\ <P{x9b) - x(oc) \ < 7i. 

Since also XEP0=>\X(X) - I < N9 

XEP0=>\$(x9b) - x(x) \ <271. 
On the other hand, 

ei*(*.*) = b ) = e«*w 

so that <P(x9 b) = x(x) for every xeP0. 
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Choose an x e P0. Let <P(x, y) = gx(y) for y e Q, so that gx is a continuous mapping 
of Q into E t . ij/x is also a continuous mapping of Q into Ex. Moreover, 

e ^oo = ei*(*>y) = f ( X j y ) = j<p*(y) f o r every y e Q . 

The space Q is connected so that, by 24.2.11, there exists an integer nx such that 

$(x9 y) = gx(y) = i¡/x(y) + 2 nxii for every yeQ. 

Since be Q, <P(x9 b) = y(x) = ¡¡/x(b), we have = 0. Thus, 

y) = = <?(*, JF) for (x, y)eP0x Q. 

Since P0 x Q is open in PxQ, since $ is a continuous mapping of P0xQ into Sj 
and since a e P 0 , the mapping cp is continuous at the point (a ,y) for every yeQ. 

III. Let Q be connected and locally connected. If y e Q, let y e A if (p is continuous 
at (a, y)9 ye B if q> is not continuous at (a, y). We have to prove that B = 0. 

We have Q '= A U B, A N B = 0. We shall prove that the sets A, B are open 
in Q, so that Q — AKJ B with separated summands. Since the space Q is connected, 
this will imply that either A = 0 or B = 0. Then the proof will be finished, as soon 
as we prove that b e A. 

Let 13e A, so that cp is continuous at (a, /?). There exists a neighborhood C/ of 
the point a in P and a neighborhood V of the point P in Q such that 

xeU, y e V => | cp(x, - <p(a, | < irc. 

If y e V, (x„, >>n) -> (a, j>), there is an index p such that for n > p we have e U, 
yn e V. Since also aeU,yeV,n> p implies | cp(xn9 yn) - <p(a, P) I < \n9 | (p(oc, y) -
— <p(a, /?) | circ, which implies | (p(x„,yn) — cp(oc9y) \ < n, so that, by 24.2.9, the 
mapping cp is continuous at the point (a, y). Thus, V cz A. Consequently, A is 
open in Q. 

Now, let us prove that the set B is also open in Q. Let P e B so that (p is not conti-
nuous at (a, P). We have to prove that there is a neighborhood W of the point p 
in Q such that W <z B. 

By 24.2.9 there exists a sequence {(*„,;>„)} in PxQ such that xn-+ a, yn-> p 
and that | cp(xn, yn) - cp(a, P) | > n for every n. 

Since / i s a continuous mapping of PxQ into Sl9 we can find a neighborhood U 
of the point a in P and a neighborhood Vt of the point P in Q such that 

x e t f , yeVt => | f(x9 y) - / (a , /?) | < 2. 

By 24.1.2 there is a homeomorphic mapping i; of Sx — (—1) onto the interval 
E[ — 7i < t < 7t] such that eiy(z) = z for every zeSt - ( -1 ) . 
t 

If x e U9 y e Vx, we have \f(x9 y) - / (a , P) \ <2 and hence f(x9 y) #= - / ( a , P)9 
so that we may put <P(x9 y) = <p(a, + y)//(a, j5)] for x e U9 y e Vx. Then 0 
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is a continuous mapping of Ux Vx into E! and we have el0(Y,y) = /(*,>') for every 
(x, y)e UxV,. Moreover, 

xeU, yeVt => | <P(x, y) - <f>(a, p)\ < n. 

Let K2 be the component of V{ containing the point /?. Then V2 c \\ and, by 22.1.4, 
V2 is a neighborhood of the point /? in Q. 

If JC G £/, put gx(y) = <£(A% >')» hx(y) = K̂GO for ^ E F2. Then gx and are con-
tinuous mappings of the connected V2 into Et and we have el9xiy) = f(x>y) = e 'M v ) 

for every yeV2. Thus, by 24.2.11 there is an integer kx such that hx(y) = gx(y) + 
+ 2k xn for ye V2. Hence, 

xeU, ye V2 => <p(x, y) = <P(x, + 2k xn. 

Since i¡/a is a continuous mapping of Q into ELS there is a neighborhood W c V2 

of the point P in Q such that 

yeW=> | <P(A, y) - cp(ct9 fi) \ < ¿TE. 

We shall prove that W c: B; then B will be proved to be open. Since A-„ a ,yn-+ />, 
there is an index p such that n > p implies xn e £/, yneW. If n > p, we have 
I *(xH9yH) - <*>(*,/?) | < 7T, | <p(xn,yK) - <P(OL,P) I > 7ü, yn) = <P{xn9yn) + 2kXN, 
<P(<x, /?) = <p(oc, /?), hence ka = 0, 4= 0. If IF is not contained in B, there is a point 
ye A n We shall obtain a contradiction as follows: Since }> e /I, the mapping q> 
is continuous at the point (a, j>). Since <P is also continuous at the point (a, y) and 
since xn —• a, we have <p(x„, y) cp(x,y), <P(xn, y)<P(<x,y) = <p(cc,y) + 2fca7r = 
= <p(a, y), <p(AR„, — $(A'„, >>) = 2k xn -> 0, which is a contradiction, as | J ^ L 

Since | | ^ 1 and since <*>(*„, /?) f f ) = <p(a, /?), <i>(jcn, P) = ¿8) -
— 2kXnn, (p(xn, P) cannot converge to <p(a, /?). On the other hand, evidently <p{xn, 6) -» 

<p(a, J5). Thus, p 4= 6 for every P e B, so that 6 e 

24.5.2. Le/ f be a continuous mapping of P into Sj. Then f is inessential, if and only 
if there exists a continuous mapping g of PxE[0 ^ t ^ 1] into S t such that 

t 
g(x, 0) = /(*), g(x, 1) = 1 for every x e P*) 

Proof: I. Let such a g exist. Put J = E[0 ^ / ^ 1]. By 24.3.1 the partial mapping 
t 

g(x)xj is inessential for every xeP. By 24.2.7 the partial mapping gP x ( 1 ) is inessential 
Hence, by 24.5.1, g is inessential, so that (see 24.2.6) also the partial mapping gPx{0) 

is inessential. Thus, also the mapping / is inessential. 

*) If / 0 , / , are mappings of X into Y such that there is a continuous mapping g of X v 
x E [ 0 ^ / ^ 1] into Y with g(x, 0) - f0(:v), g(x, 1) the mappings / 0 , A are said 

t 
to be homotopic. Thus, the theorem states that a mapping / of P into SA is inessential if 
and only if it is homotopic with a constant. (Ed.) 
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II. Let / b e inessential. Then there exists a continuous mapping (p of P into Et 

such that ei<p(jr) = f(x) for every XGP. Obviously, it suffices to put g(xf t) = ei(1 ",)<P(JC) 

for xeP, 0 ^ t g 1. 

24.5.3. Let f be a continuous mapping of the euclidean space Em (m = 1,2, 3,...) 
into Sj. Then f is inessential. 

Proof: The statement is true for m = 1 by 24.3.7. Since Em+1 = EmxE1 , the 
general statement may be proved by induction by 24.5.1. 

24.5.4. Let f be a continuous mapping of the spherical space SOT (m = 2, 3, 4, . . .) 
into Sj. Then f is inessential. 

Proof: If a e Em, it is easy to prove that the set Em — (a) is connected. Conse-
quently, by 17,10.4, Sm — [(a) u (£)] is also connected if we choose a e Sm, be Sm, 
a 4= b. The sets A = Sm — (a), B = Sm - (5) are open in Sm and the partial mappings 
/4»/ii a r e inessential by 17.10.4 and 24.5.3. Moreover, A n B = Sm — [(a) u (6)] 
is connected. Thus , / i s inessential by 24.2.13. 

Exercises 

24.1. Let / be a continuous mapping of Em (m ^ 2) onto S t . Let a e Em , be E,M, a * b. Then 
there exists a point c e Em such that either a 4= r, f(a) ••= f(c) or b =*= c, f(b) = f(c). 

24.2. What must we assume about a space P to be allowed to replace Em in ex. 24.1. by P ? 
24.3. Every continuous mapping of any of the spaces P2, P3, P4, P 5 , P-j (see exercises to § 19) 

is inessential. This is not true for the spaces , P6. 
24.4. We may replace Ex in theorem 24.2.15 by any Em (m = 2 , 3 , 4 , . . . ) or by U (see 

section 7.3). 

Let m = 1, 2, 3 , . . . . Let / be a continuous mapping of a space P into S m . We say that / i s ines-
sential, if there exists a continuous mapping of ? x E [ 0 ^ t ^ 1] into Sm such that 

t 
g(xi0)=f(x)9 g(x, 1) = ( 1 , 0 , . . . , 0 ) for every xeP. 

By theorem 24.5.2, this definition is consistent with the definition for m = 1 given in the section 24.2. 

24.5. In theorems 24.2.6, 24.2.7, 24.2.8, 24.2.16 we may write more generally S m (m = 1, 2, 3, 
instead of S x . 

24.6. Let M <= />, a e M, b e Mf C <= p. Let C be a simple arc with end points a, b. Let C n M = 
= (a) U (b). Let ay b belong to distinct quasicomponents of M. Let / be a continuous mapping 
of M U C into S x . Let the partial mapping fM be inessential. Then / is inessential. 

24.7. Let M <= P, a e M, b e M, C c P. Let C be a simple arc with end points a, b. Let C n M = 
= (a) u (b). Let af b belong to the same quasicomponent of M. Let g be a continuous 
mapping of M into S x . Then there exists an essential continuous mapping / of M u C 
into S t such that fM = g. 

24.8.* Complete the proof of theorem 24.2.18. 
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§ 25. Unicoherence 

25.1. A metric space P is said to be unicoherent if [1] P is connected, [2] if P = 
= A u B with closed connected summands, then A c\ B is connected. 

25.1.1. Let P 4= 0 be a locally connected space. P is unicoherent if and only if it has 
the following property: If C c P is closed and connected and if K is a component 
of P — C, then the set B(K) is connected. 

25.1.2. Let P 4= 0 be a locally connected space. P is unicoherent if and only if it has 
the following property: IfQczP is an irreducible cut of P between points a, b, then 
the set Q is connected. 

Proof: I. Let P 4= 0 be a locally connected space. Let U designate unicoherence, 
V the property from theorem 25.1.1 and W the property from theorem 25.1.2. 
Evidently it suffices to prove the three implications: U => V, V = > W , W = > U . 

II. Let U hold. Let C c P b e closed and connected. Let A' be a component of 
P - C. By 22.1.13, P - K is connected. By 18.1.6 the set K is connected. As P = 
= K u (P — K) and as U holds, Kn(P — K) = K — K is also connected, since 
P - K is closed by 22.1.4. By 10.3.2 and 22.1.4, K - K = B(K). Thus, V holds. 

III. Let V hold. Let Q cz P be an irreducible cut of P between points a, b. By 
22.1.10 there exist two distinct connected sets Gl9 G2 such that 

aeGl9 b e G2 9 Gt u G2 cz P - Q, B(GX) = B(G2) = Q. 

The set Q is closed by 10.3.1 (or by 18.5.4). By 22.1.9, GL9G2 are components of 
P - Q so that GV C\G2 = 0. The sets GX, G2 are open by 22.1.4, so that GT N G2 = 0 
by 10.2.6. The set GI is closed and by 18.1.6 connected. The set G2 is connected 
and B(G2) = B(GX) A GL9 while G2 cz P -GL. Thus, by 22.1.9, G2 is a component 
of P - GX so that, by V, B(G2) = Q is connected. Thus, W holds. 

IV. Let W hold. If P were not connected, we would have P = A u B with non-void 
separated summands. For a e A, b e B the set 0 would be an irreducible cut between 
the points a and b. This is impossible, since W holds. Thus, P is connected. 

Let P = A u B with closed connected summands. We have to prove that the closed 
set A n B is connected. Let us assume the contrary. As P is connected, we have 
A n B 4= 0. Hence, A n B = H u K with non-void separated summands. As A n B 
is closed, H and K are also closed. Moreover, HnK = 0. Choose aeH9 beK. 
Then the set P — (A n B) separates the point a from the point b in P. By 22.1.12 
there is an irreducible cut S c P — (A n B) of P between the points a, b. By W 
the set S is connected. Since A, B are closed, A — (A n B), B — (A n B) are evidently 
separated. On the other hand, S cz P - (A n B) = [A - (A n B)] u [B - (A n £)], 
so that, by 18.1.2, we have either A n S = 0 or B n S = 0. Since S is an irreducible 
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cut of P between the points a, b, S separates a from b in P, i.e. the set P — S is not 
connected between the points a, b so that (see 18 .3 .3)Mn5 4= 0 for every connected 
M c: P containing both the points a, b. On the other hand, aeH, be K,HvK = 
= A n B. Thus, each of the connected sets A, J5 contains both points a, b. Hence, 
^ n ^ + O + ^ n ^ , which is a contradiction. 

25.2. 25.2.1. Let P be a connected space. Let every continuous mapping of P into SA 

be inessential. Then P is unicoherent. 

Proof: Let us assume the contrary. Then there are closed connected sets A, 5 
such that P = A u B and A n B is not connected. Since P is connected, A n 5 4= 0. 
Since >4 n JB 4= 0 is closed and not connected, there are disjoint closed sets H 4= 0, 
K 4= 0 with A nB = H u K. 

Define a mapping/of P into as follows:*) 

- fix) = exp (in — 7 — — ] for xeA, 

f(x) = exp (—in , A for xeB. 

For xeAnB = HKjK we have formally two definitions of f(x). Both of them, 
however, give f(x) = 1 for xe H and f(x) = — 1 for x e K. 

The mapping / is evidently continuous. Thus, / is inessential, i.e., there exists 
a continuous mapping cp of P into Ex such that ei<p{x) = f(x) for every xe P. We have 

e x n ( \TT J _ J<p{x) r j 

expf-iTT , \ — ei<p(x) for xeB9 
\ Q(X9 H) + Q(X9 K) J 

and the sets A9 B are connected. Hence, by 24.2.11 there are integers m, n such that 

(p(x) = n— gf"X' H ] 4- 2mn for xeA9 
' Q(X9H) + Q(X9K) 

cp(x)=-n— ^hJQ - 4 - 2 nn for xeB. 

Q(X9 H) + e(x9 K) 

Let us choose a e / / , be K. We have aeAnB9beAnB9 so that 

(p(a) = 2mn = 2nn, 
cp{b) = n + 2m7r = —n + 2nn, 

which is a contradiction. 

*) Since / f , K are closed and since H =»= 0 =t= K, H n K - 0, we have tf) + AT) > 0 
for every x e P. 
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25.2.2. Let P be a locally compact unicoherent space. Then every continuous mapping f 
ofP into Sj is inessential. 

Proof: I. Put 

Real (a 4- ¿>i) = a, Im (a 4- b'\) = b. 

Define point sets Ql9 Q2, Q3, Q4 as follows. If XGP, then 

xeQt<=> Real /(x) > 0 , x G Q2 O Real f(x) < 0, 
xeQ3o Im f(x) > 0, xeQ^o Im j\x) < 0. 

We have P = Qi u Q2 u Q3 u Q4 and, by 9.2, Qx (A = 1, 2, 3, 4) are open sets. 

II. For 1 ^ A ^ 4 choose Mx c: Qx such that Mx contains exactly one point 
of every component of Qx. It is easy to prove (see ex. 25.5) that (with the exception 
of the trivial case with a one-point P) we may assume that the sets Mx (A = 1, 2, 3, 4) 
are disjoint. For every x e Mx let V(x) be the component of Qx containing the point x. 
The sets V(x) are connected and, by 22.1.4, open. Moreover 

U V(X) = QX 
xeMx 

with disjoint summands. 
P u t M = MyKJ M2KJ M3KJ A / 4 . 

III. Let x' G M, x" e Af, x' 4= x", V(x') n F(x") * 0. Evidently X" G 
where the couple (A, p) is one of the following eight ones 

(1,3), (3, 1), (1,4), (4, 1), (2,3), (3,2), (2,4), (4,2). 

IV. Let {xr}7 be a finite sequence such that [1] xreM for 1 ^ r ^ m, [2] if 
1 ^ r < s ^ w, then V(xr) n V(x5) 4= 0 if and only if either s = r 4-1 or r = 1, 
s — m. Then there is an index A (1 ^ A ^ 4) such that xreMx for no 
r (1 ^ r ^ m). 

Let us assume the contrary, so that m ^ 4. Put x0 = xm, xm+1 = xt. It follows 
easily by III that there exists an index s (1 rg 5- g m) such that 

V I 6 ^ » X . E M ^ X S + 1 G A / V , 

where the triple (A, v) is one of the following 

(3,1,4), (4,1,3), (3,2,4), (4,2,3). 

All four cases lead to a contradiction in the same way. Hence, it suffices to treat, 
one of them. E.g. let 

xs-i e M3, xse Mj, xs+1eM4. 

By the assumption there is an index t (1 ^ t ^ m) such that xteM2. 
We have xs G V(X5). Since xse MLY ye K(xs) implies Real f(y) > 0, so that 

yt implies Real f(y) ^ 0, while xteM2, so that Real/(xf) < 0. Thus, xte 
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e P - K(xs), SO that, by 18.5.3, B[V(xs)] separates the point from the point xt 

in P . By 22.1.12 and 25.1.2 there exists a connected set S cz Z?[K(xs)], which separates 
the point from the point xt in P. Put 

Wt = (J V(xr) (1 g r g m, î-1+r+w + i - l), 
r 

w2 = U V(xr) (1 Sr j + l + r # j + l - m). 
r 

Among the summands of the first union are the sets V(xs), F(*s+1); for every other 
summand V(xr) of this union we have V(xr) n V(xs) = 0 and hence (see 10.2.6) 
V(xr) n K(xJ = 0. On the other hand, S c B[V(xs)] = Kfo) - V(xs) (see 10.3.2). 
Thus, S n Wt = S n V{xs+l)y and we may deduce similarly that S n W2 = S n 
n V(xs-i). By 18.1.4 we see easily that the sets Wl9 W2 are connected; moreover, 
xse W{ n W2, xte l¥i n W2. As S separates the point from the point xt in P, 
the setP — »Sis not connected between the points xs, xty so that, by 18.3.3, S n Wx 4= 
+ 0 4= S n W2, i.e. 

0 ) 

Since S c F(xs), we have Real f(y) ^ 0 for y eS. By 22.1.9, however, S c B[V(xs)] c 
C P - Ö j , i.e., Real f(y) g 0 for yeS. Hence, Real f(y) = 0 for yeS, i.e./OO = 
= ± i for yeS. As xs_1 e l 3 , xs+l e Af4, we have Im f(y) > 0 for ye F fo . j ) , 
I m f ( y ) < 0 for y e V(xM+l). Thus [see (1 )], f(S) = (i) + ( - i ) , so that/(S) is not 
connected. This is a contradiction (see 18.1.10). 

V. By 24.1.2 there exists a homeomorphic mapping v of SA — (—1) onto the 
interval E[-7ü < t < n] such that eiy(z) = z for every z e S j - ( -1 ) . Evidently, 

t 
t;(z-1) = —v(z) for every zeSA - ( - 1 ) . 

If x e M, y' e V(x), y" e V(x), we have obviously / ( / ) + / ( / ' ) 4= 0, so that there 
exists a number 

VI. Let {*r}7, {yr}i be finite sequences (m ^ 2) such that [1] ^ e M f o r 1 ^ 
^r^m, [2] yr e V(xr) for 1 ^ r g m, yr+l e V(xr) for 1 ^ r ^ m - l,yieV(xm). 
Then we have 

This statement is evident for m = 2. Hence, let m^. 3. It suffices to prove it under 
the assumption (denote it by H) that equations analogous to (1) in which m is 
replaced by a number less than m, are valid. Consider two cases. 

First case. There exist indices h, k such that V(xh) n V(xk) 4=0, 1 ^ h < k ^ m, 
and neither k = h + 1 nor (h, k) = (1,/w). Obviously m ^ 4. Choose a point z e 



25. Unicoherence 215 

e V(*h) n V(xk)- Then we obtain, by assumption H, the following four equations 

V v(lte±A) + J M . ) + JM±A) + V vfii^il) = J i M ) 
rk { f(y,) ) { f ( y „ ) ) h { m f(yr) ) 1 {/(>'>))' 

V v ( f i * ± A ) + v ( M . ) =„ 
/(>v) ) {f(yk)J \f(y>+i))' 

We obtain (1) by adding them, since r(u *) = —v(u) for every ue SX. 

Second case. If 1 ^ r < s ^ K(xr) n V(xs) 4= 0, we have either s = r -f 1, 
or (A4, J) = (1, //?)• By IV there is an index X (1 ^ X g 4) such that xr G A/, for no r 
(1 g r ^ m). Obviously 

S, - / [ i m * r ) ] * 0 , 
r = 1 w 

so that by 24.2.7 there exists a continuous mapping cp of W = (J V(xr) into E, 
r = l 

such that e,>(>) = /(>>) for every y e W. If ei/J" = /0v) (1 ^ r ^ w), then 

e*<'> = exp + for yeK(xr), 

so that, by 24.2.11, there are integers kr (1 g r ^ m) such that 

<p(y) = + + for jeK(x r) . 
Hence 

which yields (1). 

VII. Choose a fixed a e ? and a 6 E, such that eia = f(a). For every yeP there 
are, by 18.4.2, finite sequences {jtr}7, {yr}o such that [1] y0 = a, ym = y, [2] xre M 
for 1 ^ r ^ m, [3] >>r-i G F(jcr), jv e V(xr) for 1 ^ r ^ m. Put (see V) 

We shall show later that the number il/(y) is uniquely determined for every y e P. 
Thus, ^ is a mapping of P into Ej. Evidently e®*00 = f(y) for every ye P. We have 
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to prove that the mapping {¡/ is continuous. For a given y and given sequences 
{aV}T> {yr}o> V(xm) is a neighborhood of y. Replacing the point y by a point 
y' e V(xm), we may preserve the points xr (1 m), yr (0 g r ^ m — 1) and 
take ym = y' instead of ym = y. Formula (2) yields 

As V(x,„) is a neighborhood of the point y, ij/ is continuous at the point y. 
It remains to prove that the number i¡/(y) is, for a given y e P , uniquely determined. 

Replace the sequences {xr}7, {>v}o by other similar sequences {.xr}\, {y'r}l- We have 
to prove that 

Put xm + r = x'n„r+l for 1 ^ r ^ n, ym+r = y'n-r for 1 ^ r g 77. We have then [1] 
yo = ym+n = al [2] xreM for 1 ^ r ^ m + [3] >>r-i e V(xr), yre V(xr) for 
1 ^ r ^ m + n and we have to prove that 

This follows by VI. 

25.2.3. The euclidean space Em (m = 1 ,2 ,3 , . . . ) is unicoherent. 

This follows by 19.2.4, 24.5.3 and 25.2.1. 

25.2.4. The spherical spaces S0 , S j are not unicoherent. The spherical spaces Sm 

(m = 2, 3, 4, . . . ) are unicoherent. 

Proof: I. S0 is not connected, hence, it is not unicoherent. SA is a simple loop, 
hence (see 20.1.1 and 21.1.2), Sx is a union of two continua, whose intersection 
is not connected, so that Sj is not unicoherent. 

II. Let m ^ 2. The space Sm is connected by 19.2.5. Thus, Sm is unicoherent 
by 24.5.4 and 25.2.1. 

25.2.5. Let P, Q be locally connected unicoherent spaces. Then the space PxQ is 
unicoherent. 

Proof: The spaces P, Q are connected, so that PxQ is connected by 18.1.13. 
Hence, by 25.2.1, it suffices to prove that every continuous mapping of PxQ into Sj 
is inessential. This follows by 24.4.2 and 25.2.2. 
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Exercises 

The spaces Py, P2»•••» P9 were defined in exercises to § 19. 
25.1. The spaces P2, P 3 , P4., P 5 , P-j, /'g are unicoherent. 
25.2. The spaces P 6 , P9 are not unicoherent. 
25.3. Let P E2 be the space consisting of all (.x, }>) such that xz + y2 = 1 and of all (x, 

of the form x = (1 + r - 1 ) c o s / , y — (1 + i ~ " 1 ) s i n r , t > 1. Then P is a unicoherent 
space. 

25.4. We cannot omit in theorem 25.2.2 the assumption that P is a locally connected space. 
25.5.* Prove that the sets Mx (A = 1 ,2 ,3 ,4 ) in part II of the proof of theorem 25.2.2 may be 

found disjoint. 
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