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STUDIES ON MULTIPLICATIVE SYSTEMS.
PART 1.

BY
0. BORUVKA.

In a series of considerations beginning in this paper I shall try
a systematic study of multiplicative systems. The fact that most impor-
tant mathematical theories deal with multiplicative systems for which
additional properties are postulated, as well as the presence of well
known unsolved problems concerning multiplicative systems which seem
of a profound theoretical character?), may prove the fitness of such study.

In this paper an extended class of multiplicative systems, which
L call multiplicative systems without kernel, is considered. A multiplica-
tive system It of this kind is characterised by the property (excluding
the groups) that there exists for every element a of IR a positive in-
teger o so that @ is product of o but not more than o elements of .
The theory of these systems is connected with the theory of homo-
morphic representations of multiplicative systems on the infinite cyclic
multiplicative system which of the multiplicative systems without kernel
seems to be the simplest.

I. Introduction.

1. Multiplicative systems. An abstract multiplicative system (m. sy-
stem) is an abstract non-vacuous set for which an abstract associative
multiplication is defined; i. e. an abstract rule by which to every orde-
red pair of equal or different elements a, b of the set a single further
element ad of the set is associated so that the associative law holds

(ad) ¢ = a (be). (1)

ab is the product of a and b; a, b are the factors of ab. Therefore, the
abstract m. systems generalize the abstract groups so far as the existence
of the unity and inverse elements is not explicitly postulated. We usually
employ the term m. system instead of abstract m. system.

In the sequel the following notations will be used: m. systems
(abstract or realized): German capitals; sets: Latin capitals; the vacuous
set: O; matrices: Greek capitals; elements of sets: small Latin letters;
numbers varying within a given number-field: small Greek letters. For
fundamental concepts of the theory of sets we employ the usual nota-

) A Malcev, On the Immersion of an Algebraic Ring into a field (Math.
Ann,, 113, 1937, p. 686).
1%
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tions, particularly the symbols n, \/, A for a product, sum, difference
of sets. On the contrary, the symbols., 4+ will be employed for ex-
pressing associative multiplications, so that we denote by a - b, shorter
by ab, or, if desired, a + b the product of a and b. Usually we employ
the symbol .. A m. system can be realized by choosing for its elements
the subsets of an abstract set and by giving the symbol . the meaning
of n or \/.

2. Let M be a m. system. Let ay, ...,a,eM, y > 1. For every
positive integer ¢ <y we denote by a; ... a,4, the element of )¢, which
is defined by the recurrence formula

Ay -+ aa+1 - (al e aa) aa+1.

Then we have for 1 <a < a+ <y the following equality

(a1 .o aa) (aa_l_l e aa_l_s) ay ... aa.l.s- (2)

If <M is commutative, i. e., if ab — bafor a, b e Y. the element a, .. . a,,
1< a<y, does not depend on the order of the factors ay,...,aq").

3. Let M be a m. system. Let 4, Bc M. By the symbol AB we
mean O if at least one of the factors is O; if both are 3=0 we mean
by it the set of all such elements z e I, that there exist ae 4, be B,
x ab.

Let A, B,CcM. Then

-1 (AB) C= 4 (BO);
2(4VB)C ACVBO; CAVB) CAvOB.

We leave out the proofs of these formulas as they are easy to
be given.

According to °1 a m. system can be realized by taking the sub-
sets of an abstract m. system I for its elements and defining the multi-
plication by the contents of the symbol AB. We say that I induces
this concrete m. system. By -2, the m. system just defined is immerged
into a concrete system with double associative composition ., \/, for which
the distributive laws hold.

4. Multiplicative subsystems and oversystems. Let IR be a m. sy-
stem. Let 4 cIM, 45=0. If 4 has the property that for a,be A we have
abe A, then A is a m. subsystem of M. If 4 is a m. subsystem of I,
then it is evidently a m. system and we say that 0t is a m. oversystem of A.
P is a m. subsystem and at the same time a m. oversystem of .
If A is a m. subsystem of Pt and A} MM, we state this inequality
saying that U is a proper m. subsystem of M or that P is a proper m.
oversystem of U. It is clear that the m. system induced by a m. sub-
system of I is a m. subsystem of the m. systemr induced by .

2 B. L. van der Waerden, Moderne Algebra, I T., Berlin 1930, p. 20.
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‘1. Let AcIM, A40. A is a m. subsystem of M if and only
if 4°c A.

In fact, if 4 is a m. subsystem of I, then the product of any two
elements of 4 belongs to 4 and vice-versa. As the set of products of
any two elements of 4 is precisely A%, the theorem results.

‘2. Let U be a m. subsystem of M. Then A>A>A> ...

Consider a positive integer &t. Let w e %+ g0 that u—a, ... da1
for some suitable wy,...,a04,¢%U. By (2) we have u={(a,...aq—)
(@ @y y), Wwhere the symbol (a@;...ag—,) is to be omitted for o= 1.
By -1 we have a'p =aaaay,eUA*cU. Hence u— @y ... dg—1a € A*
and 9% > Y*+1 follows.

3. If A is a m. subsystem of M, so is U* for every positive in-
teger a.

In fact, by *7 and 3 *1 we have %> U** = (A*)? for every posi-
tive integer a. Hence A%> (A%)* and the theorem follows from -1.

5. Projection. Let It be a m. system. Let N be an overset of I
so that I c N. Each representation f of N into 9 such that the equality
f(a) = a holds for every ae M, will be termed projection of the set N
into . The element f(a) e M, for an arbitrary a e N, is the #race
of a in N at the projection f.

Let f be a projection of the set N into SR. For N we define a
multiplication in the following way:

ab=f(a)f(b) for a,beN.

We shall show that this multiplication is associative. According to
the definition and with regard to the assumption that I is a m. system,
we get for a,b,ce N

a(be)=a[f(B)f () =f(a) - fIfB)S () =1 (a) [f(8)f(e)] =
= [f@)f(®)]f () =S1f@) () f(e)=[f@)f(®)] ¢ = (ad) c.

It is evident that the m. system XN, defined in this way, is a m. over-
system of IN. We say that N is the m. oversystem of It at the pro-
jection f; Pt is the m. subsystem of N at the projection f.

We remark the following simple theorem:

Let N be the m. oversystem of M at an arbitrary projection f. Then
we have N* = M2 for every positive integer o> 1.

As a simple example of a projection consider the m. system

{(al’ bl)’ (a27 bl), (as, bl); ..... }
(“z, b2\, (as, bg), .....
(@0 Ba)y - - - - (3)

for which the multiplication is defined by the formula



(@ay bg) (a4, b3) = (Ga4.3,b1); %7 =1,2,...,1<3< e, 1< <.

This m. system is evidently the m. oversystem of the m. system

{(al, bl)’ (ag, bl)) (as, bl)) ..... } (4)
the multiplication being given by
(aa, bl) (a-r, bl) == (aa_l_.{, bl) ; & 7 = 1, 2, ..... ’
at the following projection
fl(as, b3)] = (a0, by); 6 =1,2,...; 1< < e (5)

6. Excentrum. Let IR be a m. system. For every positive integer
o let M, be the set defined as follows

Ma Wt \ M, Mat+ta M, =0.

In particular, the set 2/, will be called the excentrum of the m. system .
The elements of 3/, are the prime factors of It If M; —0 we say
that ¢ has no excentrum.

From the definition follows, that for every positive integer a, M,
is the set of elements of I which are products of @ but not more than
o elements of M. The prime factors of I are precisely the elements of P
which are not products of two elements of 9t. The sets 3, M, ... are
evidently mutually exclusive.

*1. If the equality M, = 0 holds for a positive integer o, then
O=Ma Ma.[..l Ma+g— U

In fact, if the equalities 0= My = My 1y = ...= My g, hold,
then Ma+B—1 = gRe+B and Ma+B8 = N *+B+1; hence My p=0.

2. For every positive integer o the excentrum of MM* is the set
MaNV Myi11V ...V Mya_1.

From the equality

m.&"'B—I :ma’*'? V_Ma+p_1,
which according to the definition holds for any positive integers e. £,
follows M — MoV Moy 1V ... VMoyp_,V Mats. (6)

Every element of the set MoV My V...V Myyp_y is product of
@ + 8 —1 elements of M to the utmost, while every element of M 2+8 is
product of @+ § elements. Hence

(.MaVMa+1V e V.Ma+B__1) n ma_l-s —t O.

Erom this and (6) the theorem follows for 8= a.
*3. Let N be a m. oversystem of M at some projection f. Let the sets
Ny,e —1,2,..., have for N the same meaning as Mq have for M. Then

N]/\.Ml m/\m, .A’Ta—Mafora>1-



The proof results easily from the theorem of n° 5.

‘4. For any positive integers o, § is M, gc My Mg.

It is evident that the affirmation holds, if 3/, g=10. Let us there-
fore assume we My g, so that u is product of « 4+ 8 but not more than
a + B elements of M. Then we have u—a,.... an @t ... .aq4p at
suitably chosen ay,...,az4pgeIM. The element a,...a, is a clear
product of at least & elements of 9%, but not more than o+ 8 — 1
elements; for otherwise » would consist of more than & + 3 elements of .
Hence @, ... aq € Moy, for a suitable positive integer y, 0 <y <f — 1,
and likewise @g.y;...aqpeMpyy for a suitable positive integer d,
0<d0<La—1. Then u @My Mg, s and it follows that » consists
of at least ¢ + y 4+ B + 0 elements of IR. Therefore y —d = 0.

In particular, thére exists the relation M, c M,* for every positive
integer a; i. e, every element of I, is product of & prime factors.

7. Kernel. Let It be a m. system and the symbols 3, M,, ...
have (everywhere in the sequel) the above meaning. There are preci-
sely two possibilities:

1° There exists such a positive integer & that M, =0, while (if
a>1) Mg4=0forg 1,2,...,0—1

In this case we get by 6 -1

O:Ma—_—Ma+1:Ma+2=...; ma=%a+1:%a+’:.,.;

from this follows

932=M1VM2V...VMa_1ViD?“

and all sets on the right are different from O. The m. system R% has
no excentrum; we call it the kernel of IN.

2° There holds for every positive integer & the inequality M, =}= O.
In this case we waite suppo

§D?=M1\/M2V~..

and say that the m. system It is without kernel.

To the m. systems which possess a kernel belong e. g. the groups or
more generally all m. systems containing the unity-element. For if )t con-
tains the unity-element e, so that ee M, {¢} M — M {e} =M, it follows
M ={e} M c P aud thus M = M!; hence M has the kernel M.

In the remaining pages of this paper we shall be concerned only
with m. systems without kernel.

I1. Multiplicative systems without kernel.

8. Fundamental properties. Let It —= 3, \/ M;\/ ... be a m. sy-
stem without kernel.



1. For any positive integers a, § is

Ma Mﬁ CMG-|—5 VMa+B+1V “ e

Let we M, Mg so that there exist a e My, be Mp, u=ab. By 6 -4
the element a (b) is product of ¢ (8) prime factors of . Consequently
u—ab is product of &+ @ prime factors of 2. As no element of I,
y=1,2,..., is product of wore than y elements of W, we get
U GMa+p VMa-l-B-l-lV cen

‘2. Let A be a m. subsystem of M. Then U is without kernel.

Otherwise there exists such a positive integer a, that Y*—=Y*+*__ ...
Let ae A* so that aeW>+E for every positive integer 3. Then g is pro-
duct of a4+ @ suitable elements of AcIM. As ae I, we have aell[T
for a suitable , so that @ does not consist of more than y elements of It.
Taking 8 in manner that &+ 8> y, we get a contradiction.

In particular, the m. system % is without kernel for every posi-
tive integer o.

3. Let N be a m. oversystem of M at a projection f. Then N is
without kernel.
The proof follows easily from 6 -3.

9. Indices. Let M = M,\/M3\/ ... be a m. system without ker-
nel. Let aeR The sets M,, Mj,... being mutually exclusive, there
exists such a single positive integer «, that ae M,. We call o the in-
dex of a.

From the definition follows that cvery element ae It has pre-
cisely one index. The sets M, My, ... being all different from O, there
exists for every positive integer o an element of I, the index of which
is @. By 6 4 every element of index & is product of « prime factors
of M but (by the definition of the sets 3/) not more than o elements
of M. By 8 *1 the index of a product of any two elements of I is at
least equal to the sum of the indices of both factors,

10. Infinite cyclic m. system. Of the m. systems without kernel
the infinite cyclic m. system seems to be the simplest. We denote it by 3.
This m. system is an infinite sequence of elements {7, 2y, 23, - . .} for
which the multiplication is defined by the formula: 2,68 = 2448; ©,
f=1,2, ... Writing 2 instead of 7, we get

83—1{s2, ...}

It is clear that 3 is commutative. § is isomorphic to the m. system,
the elements of which are positive integers and the multiplication is the
usual addition; the corresponding isomorphic representation (isomorphism)
is 2=<—a for ¢ =1,2,... We evidently have

G={A ..}, F=1...),...



so that the respective sets M which we denote by Z;, Z,,... are
z,— 2}, Z;={s*, Z, {&,...

Thus §is a m. system without kernel. By 6 -2 the set {#%, 7%+, .. ., Fa—1}
is the excentrum of the m. system 3%, for every positive integer .

Let M be a m. system without kernel. Let z e IR. Then the elements
of the infinite cyclic m. subsystem B {z,2% 2% ...} of M differ from
each other.

Let us assume, on the contrary, that we have for suitable o,
B:2* 2+tE. Let y be the index of £%, so that the element ” — p, ... p,
is product of y prime factors of I, but not more than y elements of M.
From the equalities 2% =222 —p, ... pTzB follows that 2* is product
of more than y elements of It and we get a contradiction.

11. Homogeneous and inhomogeneous m. systems. Let It —
M;\/M,N ... be a m. system without kernel. If any element aeIM
of index @, @ 1, 2,..., does not consist of less than « prime factors
of M, then W is said to be homogeneous. Otherwise W is inhomogeneous.

1. WM is homogeneous if and only if M, DM* for every positive

integer @, so that
W—MIVMI”VMia\/ oo

a) Let us assume that 9! is homogeneous. Then the product of
any o prime factors, ¢ 1,2,..., obviously belongs to the set M,.
Hence M,*c M, and thus M, — M,% by 6 4.

b) Suppose M, = M,* for every positive integer a. Consider an
element ael. Let a p,...pa=p1...p’s be two decompositions
of a into prime factors. Then ae M,*n M,f = M, n Mg and therefore
o = (@ because the sets M are mutually exclusive. Hence ¢ is homo-
geneous.

A simple example of a homogeneous m. system is given by the
infinite eyclic m. system 8. We evidently get Z, — Z\*fora=1,2,...

*2 Let M be homogeneous. Then there exists such a homomorphic
representation of I on B, that every prime factor of M is represented
on the single prime factor of 3.

In fact, the correspondence & which makes each element of A,
correspond with the element 2% of 8, ¢ 1, 2,..., is evidently a repre-
sentation of I on § and has the property that every prime factor of It
is represented on the single prime factor of 8. Let a e M, be Mg at
some @, 8, so that in the correspondence &F:u-=>22, b-=28. As N is
homogeneous, we get ab e My Mz — My, g and thus ab—g2+8 = 7248,
Hence & is a homomorphic representation (homomorphism) of M on 8.

12, Let 3t be without kernel.

1. For every positive integer o> 1 the m. system N* is inhomo-
geneous.
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Let o be a positive integer. Let the symbol M, g have the same
meaning for M* as Mg has for M, for an arbitrary B, so that

WMok = M B+ \/ M, g; MBYAM, g=0

and M, ; denotes the excentrum of the m. system Mt* According to (6)

we get
Ma, 6 =MaBVMa3+1V v V.n.[a3+a_1.

If 2> is homogeneous, we obtain according to 11 :1: M, g— M,, ,P
and thus

MaB\/MaB+1V s VMaB+a—1 =MaNV Myi1V ...V M, a—])By
=12...

In the set on the left there are elements whose greatest index is
af + a— 1; whereas of those on the right the greatest index is > 8 (2a — 1),
according to 3 -2 and 8 1. Hence ¢f +a— 1> (2a — 1) and thus
(¢ — 1) (8 — 1) <O. Therefore @ 1.

‘2. M is a proper m. subsystem of a suitable inhomogeneous
m. system.

Consider an element a e, the index of which is at least 3, so that
there exist prime factors of M, py, ..., pa, ® > 3, for which a  p; ... pa.
Let ! be a proper m. oversystem of ! at a projection f. We
can choose f in such a way that f(p) =p,...pa for some element
poe MAM. Because of 6 3 the elements p,, py, . . ., po are prime factors
of M. According to the definition of the multiplication in 9t we get
D100 =F(p) f(p,) = P12 - - - Po = @, 80 that a is product of two as well
as at least three prime factors of . Hence 9t is inhomogeneous.

For instance (3) is a proper m. oversystem of the infinite cyclic
m. system (4) at the projection (5) and is inhomogeneous. In fact, let
(@, b)) be of an index at least equal to 3, so that @ > 3. According to
6 ‘3 both (ay, b;y) as well as (a4, bp), for 2< < a— 1, are prime factors
of (3). By the definition of the multiplication we get (ay, b;) (@a—s, bg) —
(a3, b))%, so that this element is product of two as well as at least three

prime factors. — It can be shown that generally every element (aq, b,),
a> 2, is product of an arbitrary number 8, 2< < a, of prime factors
of (3).

13. Homomorphic representations on 3. By the theorem 11 2
we are conducted to the study of homomorphic representations of m. sy-
stems 0t on the infinite cyclic m. system 8 = {s, 2%4% ...}. For such a re-
presentation: 1° every element a e Dt is represented on a single element
(the counierpart of a) 2*eJ; we write a—=2* 2° every element of 3
is the counterpart of at least one element of I 3° for a,be M, a— 2%
b-=28 there holds ab—= 2218,

Let M be a m. system.
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* 1. M is homomorphically representable on 3 if and only if there exists
a sequence of non-vacuous and mutually exclusive sets Foy00 — 1,2, ...,

S0 that
M=FVEF,V... (1)

and FoFgc Foyp for 0, 3=1,2,...

a) Suppose a homomorphic representation & of M on 3. Let F,
be the set of those elements of 9t which are represented on z* in &,
e=1,2,... As every element of 3 is the counterpart of at least one
element of MM, the F, are non-vacuous. As every element of 3¢ is re-
presented on a single element of 8, the F,, ¢ — 1,2,..., are mutually
exclusive. Obviously (7) holds. Let u e Fo Fg for some positive integers
@, 3, so that there exist ae Fy, be Fg, u=ab. According to the de-
finition of the sets F we get a—=2* b-=2z° and therefore w = ab—= #>+8.
Hence uwe Fy g, and FoFgc Foys.

a) Consider "a sequence of sets F, ¢ = 1,2, ..., which has the
above properties. The correspondence by which every element ae F',
corresponds with the element 2* of 8, ¢ =1,2,..., is apparently a
homomorphie representation of I on 3.

The sequence of sets Flyy ¢ = 1,2,..., defined by a homomorphic
representation & of the m. system 9% on 3 as in -1a), will be called
the determining sequence for the homomorphism & A homomorphism &
with the determining sequence F',, F,, ... will be denoted in the fol-
lowing way: &F(F,, Fy,...).

2. Let MM be homomorphically representable on 3. Let & (Fy, Fy,...)
be a homomorphism of M on J. For every decomposition of an element
wueF, a—1,2 ..., in a product u=a, ...ag of elements a,,...,a3
of M, there holds

a) <ea, b)a,...,a5eF\/Fg\/...\) Fy,
0) n1+2ﬂ2+.--+aﬂa:a’

the 7. being the number of the elements a which belong to F..

In fact, for suitable positive integers a, ..., ag we get a; e Fy,, .. .,
ageFaB, so that u—=u¢; .... a‘geFml FchFa,+.... """B:F“'
Hence @ + ....-tag= a. It follows a) <o, b) . .... , a3< e and
thus a,...., age F1\VVF\/ ....\VFy ¢) a=@a;+.... +tag=m; +
273+ . .. + oy, because by definition of 7z, the number 7 appears in the
series a,,...,ag m,-times, 2 appedrs s7,-times, ..., & appears 7,-times.

3. Let M be homomorphically representable on 8. Them M is
without kernel.

Consider an arbitrary homomorphism & (F;, Fy,...) of I on 3.
Let us assume on the contrary that M, — O for some positive integer a.
Then IN* = IPM>+1, so that every element aeIN* is produet of more
than & elements of M. By 1 we get F',*c F, and on the other hand
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apparently F,%c iM%, so that there exists an ae F, nIMN* Hence a is
product of more than « elements of I and at the same time, by *2a),
it is product of o elements of I to the utmost. Therefore we have
a contradiction. Hence My, =40 for ¢ 1,2,...

‘4. Let M be homomorphically representable on 3, so that M=
M\/M;... Let §F(F,, Fy, . ..) be an arbitrary homomorphism of M on 3.
Then for any positive integers oy, @, ...,0g there holds

FU.[FG_ v e FaBCMBVMB_l_lv oo VlV[a1+a2+....|_as. (8)

In fact, consider an a e Fy, o being some positive integer. a has
a fixed index ¢, so that a e M,. By *2a) the number of factors at every
decomposition of @ in a product of elements of I does not exceed a.

Hence y < @ and thus
FocM NV Mg\ ...\ M,.

If we take for ¢ some positive integers a,, ... )0 and multiply, we get

FalFa, e Faﬁc (Zl[lv.MgV PPN \/Mal) (MIV-M2V' .. VMa,) e
o (MM - N Mag) Mle...vMa,Ma,...Maﬁ.

By 8 -1 follows
FalFaz"'FGSCMﬁ\/Mﬁ-I-lV"'

At the same time we get
..F'a1 1a2 PP FaﬁcFa‘+a,+...+aBCM1VD/Igv e VMa,+a'+...+aB

and therefore (8) holds.

‘5. Let I be hcmomorphically representable on 3 in such a way,
that every prime factor of I corresponds with the single prime factor
of 3. Then M is homogeneous.

Let & (¥4, F, ...) be a homomorphism of M  M;\/M,\/...on 8
having the above property, so that M; — F;. By 6 -4 we have M, c M,*
and by (8) (¢; —ag=... ag— 1} M,*c M,, for a=1,2,... Hence
My, — M* for e —=1,2,... and I is homogeneous (by 11 -1).

14. By the theorem 13 ‘5 we can construct a simple example of
a homogeneous m. system whose elements are matrices of an arbitrary
order ¥ in the continuum of complex numbers.

Let o, v be arbitrary positive integers, ¢ <v. Let o4 denote the
ath compound of 4 for an arbitrary matrix 4 of order » in the con-
tinuum of complex numbers. From elementary thevrems follows that in
the mentioned continuum theie exist such matrices 4 of order », for
which all matrices of the sequence

ad, (ad)’, (ad)® ... 9)

are mutually different.
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Consider a matrix .4 having this property. Let us denote by 4
a set of matrices of order ¥ in the continuum of complex numbers whose
ath compounds are equal to ,4. If, for instance, the rank of 4is> ¢,
every matrix of the set Aisw.4, where wis an ath root of unity 8).
‘We suppose A e A.

Let M be the m. system of matrices of order v, the elements of
which are the matrices of the set 4 and all others derived from them
by the usual composition. Then 9? is homogeneous.

In fact, according to 13 -5 it is sufficient to prove that 9t is ho-
momorphically representable on the concrete infinite eyclic m. system (9)
in such a way, that every prime factor of QIR corresponds with ,A4.

For any two matrices )5, H of order » there holds the well known
equality

(5 H) = o= . H. (10)

Let & be the correspondence by which every matrix eIt cor-
responds with o%. According to (10), the matrix o5 belongs to the
m. system (9) for every matrix XeIR and the matrix (,4)? is the
ath compound of 43eIN for every positive integer B. Hence & is
a representation of M on the infinite cyclic m. system (9) and, by (10),
precisely a homomorphic representation. By the definition of I the re-
lation I ¢ A apparently holds for the excentrum A, of M. If some
matrix Be 4 does not belong to M, there exist 4, 4,,... A, e My, 7> 2,
sothat B= 4, 4,... AT and therefore o4 —=yB 4Ad;.q04;... aAT =
= (44)7. This contradicts the assumption that all matrices of the se-
quence (9) are mutually different. Hence M; — A4 and therefore every
prime factor of I corresponds with 4.

15. As to the inhomogeneous m. systems, some are and some not
homomorphically representable on 3.

For instance, the inhomogeneous (s. n° 12) m. oversystem (3) of the
infinite eyclic m. system (4) at the projection (5), is homomorphically
representable on B. For the sets

Fo={(0a b1), (@as b3), + . ., (@ay ba)}, ¢ =1,2,...

are non-vacuous and they are mutually exclusive; further, their sum is the
m. system (3) and there apparently holds Fy Fig = {(@a+8,61)} € Fatp
for ¢, 1,2,... Hence (3) is homomorphically representable on 3
(by 13 -1).

On the contrary, the following theorem holds:

Let M be an arbitrary m. system without kernel. Then for every
positive integer a> 1 the m. system WM* is (by 12 -1 inhomogeneous
and is) not homomorphically representable on 3.

}) John Williamson, Matrices whose sth compounds are equal (Bull. Amer
Math. Soc., Vol. XXXIX, 1933, p. 108).
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Let us assume, on the contrary, that for some positive integer
¢> 1 the m. system P* is homomorphically representable on 3. Let
F(Fy, Fyy...) be a homomorphism of IM* on 3. Let us choose an arbi-
trary prime factor p of . Let v—=0,1. By 8 -1 we get

prveMoyy NV Moy V-

and therefore, for a suitable positive integer @3,, holds

p*tve Fg .
Hence
watyy | @) e Fgayy
. p = (p“"'l)“eF;ala
an us

Bo(@+1)=p e
Therefore there exists such a positive integer y (8, — §,) that
Bo—re, Bi=y(a+1)
p“eFTa, prtleFray. (11)

Let a be an arbitrary element of F;. By 13 -4 and 6 2 we get

and consequently

FicMe\/ Mo yaV.. .\ Mya_s,

so that there exist such py, pg, ..., paype M;, 0< < & — 1, that

@ P1P2 - PatB-

If $>1 then p;p;...payrpeIM* and therefore p;ps...pajpe Fy for
some suitable J. Then from the equality

pea=p*t (Paps - Patp)
follows [by (11)] the relation

rtaeF 140 Fra+n4+3

for some suitable positive integer y, so that ya+4+ 1=y(a+ 1)+,
which is absurd. Thegefore 8§ — 0. Thus every element a e F is product
of at most « prime factors of .

Let us choose an ae F', 8o that a =, ps . . . Pa} D1, P2y + - - Pa € M.
As a> 1, We get P3P . .. Pa - P1Ps - - - o€ Fg for some suitable positive
integer #> 1. But

P =p®tt. (Paps - - PaPsPs - - - Pa)s
from which follows by (11)

pra’e F7a+2 0 Fyat1)+B
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for a suitable y> 0. Hence ya+2 y(e¢+ 1)+ 8 and thus f+4+y=2,
which is contradictory with regard to 8> 1, y> 0.

From the results of this n° follows, that the inhomogeneous m. systems
of the type M> M being a m. system without kernel and o> 1, are of
a special character: A given inhomogeneous m. system is generally not
a power with an exponent greater than 1 of a suitable m. system without
kernel.
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