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STUDIES ON MULTIPLICATIVE,.SYSTEMS.

PART 1II.
BY
0. BORUVEKA. .

This paper is a sequel to the publication Studies on multiplicative
systems. Part I. (Publ. Fac. Seci. univ. Masaryk, n° 245, 1937). It deals
with m. systems without kernel, i. e. m. systems it characterised in the
way that for every element @ e It there exists a positive integer e,
called the index of a, such that @ is product of a but not more than «
elements of N,

16. M. systems homomorphically representable on the infinite
cyclic m. system 3. Let A be a non-vacuous set. Any system of mu-
tually exelusive subsets of A, covering A4, is termed decomposition of A.

Let I be a m. system. Let (0 3=) Ac D and the sequence

{4,, 4,,...} (12)
be a decomposition of 4. Let Wy, for « =1,2,..., be defined by the
formula We Zdudu-..Aag,

0y, U3y« « ., 063 being an arrangement of § equal or different positive in-
tegers such that @, | @3 ...+ ¢g—=a and the summation being re-
lated to all arrangements of this kind for §=1,2,...,. If a factor of
some term in the sum is vacuous, this term is to be replaced by the
vacuous set. It is clear that W, is a subset of It. We call it aggregate «
in the decomposition (12). For instance, we get

W1 - Au Ws = A VA12, W= y: V4, y: PRV 4, VA18, R
For a,=1,2,..., there evidently holds
Wa W< Waqp. (13)

The decomposition (12) of A is called generating if: 1° 4, & 0 2° any
two aggregates «, # in the decomposition are mutually exclusive for
af .

1. Let M= M;\/ M3\/...be a m. system without kernel and be
homomorphically representable on 8. Let & (F, Fl,. ..) be a homomorphism
of Mon 8. Let Apo=M;nF,, for a=1,2,..., so that the sequence
{41, 4s,. ..} is a decomposition of the excentrum of M. Then the aggre-
gate a in this decomposition is precisely the set Fy.
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Prooft. From the relation
fD}- —— Fl V F’ V PRI
we get M= I F,Fg

e, f=1,3,.."
and therefore M =FeVFuV ...,
Fyq, for a =2, 3,..., being given by the formula
Fyo=F; Fyo_ ~1VFy Fo_ s V.. VFo_,y Fi

According to 131 there holds Fy,c F,, and therefore A,\/ Fyyc Fy,
a=2,3,.,, Thus, from the relations

M=DM\ I =4,V 4V Fa) V(4AsV Fi5) \V . ...
follows =FV F V Fy V...

F&=Aqu1Fa—1vFjFa—2V---vFa—1F1(a=1)2,°v-;F1=Al)-

Now let W, be the aggregate & in the mentioned decomposition of the ex-
centrum of M, ¢ =1, 2,... Obviously the equality W;—=F, holds.
Let us therefore suppose Wy —=F,, W= "Fs,..., Wa_y=Fgo_,, for
some & > 1. We get

Fo=A4Az:NV Wi WayVWsWa_sV ...V Wa_y Wy,

so that, according to the definition of W, and by (13), results Fp c W
CODSldel‘ an arbitrary element g ¢ It contained in W,. Then ae 4,, 4,,
A“B’ 04, &3, . - .,08 being a suitable arrangement of (1 <) 8 (< @) equal
or different positive integers such that ¢, +- 034 ... +op=a. If § =1
we get a; = & and therefore ae A,c Fo. If > 1weget 1<, <a—1
and ag,...,0g is an arrangement of (at most @ — ;) equal or different
positive integers such that o3+ ....+ag=a—a, Hence ae W,
Wo—a, € Fa, by induetion. It results that Wa =F, for e =1,2,...

‘2. Let M be a m. system without kernel. M is homomorphically
representable on 8 if and only if there exists a sequence of sets which
is a generating decomposition of the excentrum of M.

Proof. a) Let MM be homomorphically representable on 8. Using
the notations as in *1 the sequence {4, 4;,...} is a generating decom-
position of the excentrum M;. In fact, the sets 4, @:=1,2,..., are
evidently mutually exclusive and cover M,; as Ay — F,; we get 4, 0;
by 1 are any two aggregates «, § in this decomposition mutually exclu-
sive for a 3= 6.

b) Suppose that there exists a sequence of sets {4;, 4. ..} Which
is a generating decomposition of the excentrum 23;. Let Wq, 2 =1, 2,.. .,
be the aggregate « in this decomposition. According to the supposition,
the sets W;, Wy,... are mutually exclusive. Because (13) holds, we get
Wtc W, for e =1,2,...; hence Wy 3= 0 since Wy = A4;3=0. Fur-
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ther, there holds M = W,\/ W,\/.... Thus F(W,, W,,..,) is a homo-
morphism of M on B (13 *1). — We remark the following relation:
Ao =M, aW,, a=1,2,...

By the theorem in n° 15 and by 6-2, ‘2 we get the following
result:

Let I be a m. system without kernel. Let & be an integer > 1.
Consider a sequence of sets which is a decomposition of the set of all
elements of I whose indices are @, a + 1,...,2a¢ — 1, the first set of
the sequence being non-vacuous. Then there are two aggregates @,y in
this decomposition, §# 4=, which have a common element.

*3. Let M be a m. system without kernel and be homomorphically
representable on 3. There exist a (1, 1) correspondence between the homo-
morphic representations of M on J and the sequences oOf sets which are
generating decompositions of the excentrum of .

Proof. Consider the following correspondence between the homo-
morphie representations of it on § and the sequences of sets whieh are
generating decompositions of the excentrum AM; of M: With any homo-
morphism & (F,, Fy,...) the sequence of sets A =My nF,,0=1,2,...,
which really is a generating decomposition of M, (-2 a)), is associated. By
‘2 b) we see that for any sequence of sets which is a generating decom-
position of M; there exists a homomorphism of 9t on § to which the
sequence in the mentioned correspondence belongs. By 1, with any two
different homomorphic representation of MM on § two different sequences
are associated.

17. Uniquely decomposable m. systems. Let It = M, \/M,V/ ...
be a m. system without kernel. I is termed uniquely decomposable if
every sequence of sets {Al, 4s,...}, A, being non-vacuous, which is
a decomposition of the excentrum of IR, is generating. According to
16 -2 +3, if M is uniquely decomposable it is homomorphically represen-
table on B3 and there exists a (I, 1) correspondence between the homo-
morphic representations of 9t on 8 and the sequences of sets {Al, Ads,. ..},
A, 0, which are decompositions of the excentrum of IR.

1. M is uniquely decomposable if and only if all decompositions of
every element of IR into prime-factors differ only by the order of factors.

Proof. a) Let I be uniquely decomposable. Firstly, it is easy to
see that I is homogeneous. In fact, otherwise there exists an element
aeIN of index > & admitting two different decompositions into prime-
factors , L, ,

G=D1Pa-+-Pa"— P1D3- P
with 7 < @ < 8. Then for every decomposition {Al, Ay s .} of. the ex-
centrum of 9 such that all prime-factors p as well as p" are in A4;, we
get aed,*nA,P; it follows that a is a common element to the aggre-
gate a as well as to the aggregate § in this decomposition. Further, all
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decompositions of every element a e It into prime-factors differ only by
the order of factors. Indeed, let

a=p1P:--Pa=p103-.-Va (¢>2)

be two decompositions of @ into prime-factors. If, for instance, the prime-
factor ', is noue of the factors p,ps,..-.,pa, then for every decompo-
sition {4,, 4j,...} of the excentrum of I such that p,, ps,...pa, 7'y
PayseeyPa_re Ay, pae A; the element @ is contained in the aggregate
¢ in this decomposition as well as in the aggregate a 4 1.

b) Suppose that all decompositions of every element of I into prime-
factors differ only by the order of factors. Let {4, 45,...} be a decom-
position of the excentrum of I such that 4, 4=0. Let W, be the ag-
gregate & in this decomposition, ¢ =1,2,... Let aeIM, ae Wan Wp.
Then a e Ay, A,,. - . Aay 0 Ag,4g,. . . Ag,, the integers o, § satisfying the
relations &, g+ ... ta,=a, §;, + B3+ . .. 4+ f3=_4. Therefore there
exist prime-factors pg, € Ag,) Do, € 4y,. . ., Pgy € Agy such that a = p,, pa,

+ « Pay = DB, Pp,+ + - D3y Because the sets A, 4s,.,. are mutually exclu-
sive, from the relation p,, = = 1B, follows A, _AB As the decomposi-
tions of @ differ only by ‘the order of factors, we get a = f.

A simple example of a commutative uniquely decomposable m. sy-
stem is the m. system whose elements are the integers 2, 3,... and the
multiplication is defined in the usual way, For this m. system the set 3/,
¢=1,2,..., 18 clearly the set of integers > 1, which are products of
precisely o prime numbers. In particular, the excentrum of this m. system
consists of all prime numbers. Because two decompositions of every posi-
tive integer into prime numbers differ only by the order of factors, the
m. system in question is uniquely decomposable.

An example of a uniquely decomposable non-commutative m. system
is the m, system defined in the following way; The elements are positive
integers with the exception of those whose symbol in the decimal syste
contains the figure 0. The multiplication is defined as follows: For
@=0y05...0, 8=005...0 y, =1, where o (8,) denote the fi-
gures of @ () in the decimal system, ¢ is given by the formula:
af—=a, a;.. O 81 Bs. . . B5. Consequently, we get, for instance 1.2 =12,
14.23391 — 1423391. It is clear that this multiplication is associative,
The set My, ¢==1,2,...,for the m. system in question is the set of
its elements, whose symbol in the decimal system contains « figures. In
particular, the excentrum is the set {1, 2. . .9}. As every number is
completely determined by its figures and their order, the above m. sy-
stem is uniquely decomposable. It is clear that it is non-commutative.

18. Countable m. systems without kernel. A m, system is called
countable if the set of its elements is countable. Let Mt be a countable
m. system. Then the set of elements of N can be ranged in a sequence,
that is *o say, it can be put into a (Z, 1) correspondence with the set
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of all positive integers. We say that IR is ranged if a ranging of it in
a sequence has been chosen. Let It be ranged. We denote by a, the
element of 9N, which corresponds to the positive integer a. Then Pt
{a, ag,...}. About two elements aq, ageI we say that a, precedes
(follows) ag if & < B (e> 8). M is isomorphic to the m. system, whose
elements are positive integers and the product &8 of any ordered pair
of pesitive integers «, 8 is given by the formula a, ag = a.3. Any m. sub-
system of a- eaounmtable m. system is at most countable; that is to say,
finite or countable. ]

1. Let M= DM, \/ M3X/. -« be a m. system without kernel. M is
countable if and only if its excentrum ¥s-ak most countable.

Proof. It is evident that the excentrum Af, is at most countable
if M is countable. Let us therefore suppose, that the-excentrum M, is
at ‘most countable. Obviously it is sufficient to prove that the set MM,
for ¢=2,3,..., is at most countable. Consider to this effect an @ >2
and an @ e M,. There exists at least one ordered group p,,.. ., p, of prime-
factors such that @ — p;...p,. Let us associate with every element a ¢ M,
one group of this kind. Then with any two different elements of M, two
different groups are associated. The elements of 3/, are therefore put
into a (Z, 1) correspondence with the elements of a certain subset in the
set formed by all ordered groups of « elements of 3. Because I, is at
most countable, this set of groups and thus every one of its subsets is
at most countable. Consequently, M, is at most countable.

If the excentrum M, is finite so is My, for a =1, 2,...

19, Let M be a countable m. system. A ranging M = {a, a3...} is
termed éncreasing if it has the following property: The product of any
two elements follows each of them. Then we get by induction (related to e)
that the product of any & + 1 elements of M follows the element a,. M is
called increasing if there exists an increasing ranging of M.

For instance, the m. system §'= {2, 2#t....} is obviously in-
creasing and the above written ranging is increasing for every positive
integer ». This m. system 1is isomorphic to the m. system whose elements
are all positive integers and the multiplication is given by the formula :
ef—=a+pf+v—1, fore,=1,2,... On the contrary, the m. system
consisting of all positive integers with the usual multiplication is obviously
not increasing. Every m. subsystem of an increasing m. system is increasing.

+1. Let M be a countable m. system. M is increasing if and only
if it is without kernel and every ome of its elements admits only a finite
number of different decompositions into prime-factors.

Proof. a) Let MM be increasing. Let Mt —{a;, a,,. . .} be an increas-
ing ranging of IN. Let a, e M. As the product of any & + 7 elements
of 9 follows the element a@q, a, is a product of at most a elements of .
Hence It is without kernel. If a decomposition of a, into prime-factors
be given, every prime-factor precedes a, because the ranging is increas-
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ing. But only ¢ — 1 elements precede a,. Consequently, there exists
only a finite number of prime-factors which appear in the decompositions
of a, into prime-factors. Hence a, admits only a finite number of different
decompositions into prime-factors.

b) Let I be without kernel and let every element of It admit
only a finite number of decompositions into prime-factors. Let a e M.
Every element b e It such that @ = 2b or a = by or a = zby, for suitable
z, ye M, shall be called part of a. Every element of It has only a finite
number of parts. Indeed, otherwise there exists a sequence of mutually
different parts {b, b,...} of some element ae IR, Let ¢ be the index
of a. The index of every part bg of a is < a. Consequently, the number
of prime-factors which appear in the decompositions of all parts by, bs,. . .
into prime-factors is not finite. For any part bg of a there exists at least
one decomposition of @ into prime-factors in which all prime-factors
occuring in an arbitrary decomposition of bg into prime-factors appear.
Consequently, the number of prime-factors appearing in the decompositions
of @ into prime-factors is not finite. @ admits therefore an infinite number
of different decompositions into prime-factors-which is contradictory to the
supposition. Let I == {a’;, a5,...} be a ranging of Pt Let 4, be the set
formed by the element a’; and all its parts. For every integer & > 1let
A, be the set formed by the element a’g and by all its parts which do
not appear in 4,V ...\ Aa—, ag being the first element in the sequence
{dy,ds,...} not contained in A,V ...\ A4ay. It is clear that the sets
Ay, Ag,. .. are non-vacuous, mutually exclusive and (according to the
above consideration) finite. There holds =4,V 45V ... Let {a;,a5,. ..}
be a ranging of M defined in the following way: 1° Every element of
Aqy, follows every element of 4,, ¢ =1,2,..., 2° the elements of 4,
are ordered in an arbitrarily chosen way upon the only condition that
the indices of them increase. This ranging is inereasing. In fact, let us
choose ay, aye M. Then ay e 4,, a, e dg, aypa,ed, for suitable &, 8, 7.
As ay (ay) forms a part of aya,, we get ay,a,e 4,V >t -\Vid;. Hence
y=>0,8, If y >a, the element aya, follows a, because every element
of A, follows every element of A,; if y =@, the element aya, follows
ay. because the index of gy a, is greater than the index of ay. Similarly,
the element gy a, follows a,.

For instance, every countable m. system without kernel which has
a finite excentrum is increasing. An example of a non-increasing countable
m. system without kernel is the m. oversystem It — {a,, 2, ag, 8%, ag, 28, . . }
of the infinite eyclic m. system §={¢, #* £%...} at the following pro-
jection; f(ae) =2, f(#*) = #* for « = 1, 2,. . . By 6°3, the elements
@y, 3, «. are prime-factors of IN; according to the definition of the
multiplication in I, for any positive integer B and for ¢ = 1, 2,... there
holds @, 28 — 2B+!, Hence #P+! admits an infinite number of different
decompositions into prime-factors.



IIl. Structure of m. systems without kernel.

20. Decompositions of sets. Let M be a non-vacuous set. We
have already defined (n° 16) what is meant by a decomposition of M.
As long as the contrary is not stated we suppose that the sets which are
elements of a decomposition, are non-vacuous; we shall denote them by
small Latin letters. If a decomposition D of M consists of the sets {a},
where a e M, we write D ~ M.

Let D, be a decomposition of M. Let D, be a decomposition of M

such that every element of D, is the sum of some subsets of M which
are elements of D;. D, is termed lower decomposition of M with regard
(w.r.) to D; and we say that it is (lies) under D;. Analogously, D, is
termed upper decomposition of M w. r. to D, and we say that it is (lies)
over Dj. .
Let ae D, and let 4 be the set of elements of Dy whose sum is a.
Then A is a decomposition of a and the system of elements of the 4’s,
associated in this way with the elements of D;, formns the set D, We
get therefore D, from D, by replacing every element a of J); by a sui-
table decomposition of a; we get D, from D, by forming a suitable de-
composition of Dy and adding the subsets of M which are elements of Dy
and are contained in the same element of the decomposition. Inversely,
if every one of the elements of I); be replaced by some of its own
decomposition, we get a lower decomposition of M w. r. to D;; we get
an upper decomposition of M w. r. to D, by forming an arbitrary de-
composition of Dy and adding the subsets of M which are elements of I,
and are contained in the same element of the decomposition.

*1. Let Dy, Dy be decompositions of M. Ds is under D, if and only
if for ae Dy, be Dy, anb £ 0 there holds b G a.

Proof. a) Let D,y be under D;. Let ae Dy, be Dy anb==0. Then
a is the sum of some sets which are elements of D, One of these is
the set b because anbd =0 and the sets of the system D, are mutually
exclusive.

b) If the above property holds, every element a of D, is the sum
of those elements of D, which have with ¢ a common element of M.

21. Let M be non-vacuous set. Let D, be a decomposition of M.
Let Dy be a lower decomposition of M w. r. to D;. Let D3 be a de-
composition of M such that it lies under D, and over D;, We say that
Dy is (lies) between D, and Ds.

As Dy (D,) lies under D, the set A5 (As) of the elements of Dy (Dy)
whose sum is a, for any @ e D;, forms a decomposition of a; as D, is
over D, every element of A, is the sum of some elements of A;. Con-
sequently, we get Dy from D; and Dy in the following way: For every
aeD; we form a suitable decomposition of 4; and add the subsets
of M which are elements of 4; and are contained in the same element
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of the decomposition; these sums are the elements of D;. Inversely, we
get a decomposition of M between D; and D; by forming, for every
a e D,, a decomposition of the set 4; and by adding the subsets of M
which are elements of 4, and are contained in the same element of the
decomposition.

22. Let M be a non-vacuous set. Let (I)) be a non-vacuous system
of decompositions of M. A decomposition D of M which is over every
decomposition belonging to (D) is termed upper decomposition of M w. r.
to (D) and we say that D is (lies) over (D).

The set of the upper decompositions of M w. r. to (D) is non-
vacuous, In fact, the decomposition of M formed by the single element 2/
is over every decomposition belonging to () and lies therefore over (D).
This decomposition is the largest decomposition Dmaz of M over (D).
It is clear that every decomposition of M over (D) lies under Dmas.

- 1. There exists a unique smallest decomposition 13,».;._ of M over (D),
i. e. such a decomposition of M over (D) that every decomposition of M
over (D) lies over Duin.

Proof. Consider a decomposition D, e (D). Let a,, by e Dy. Any or-
dered finite set of elements of D,

{ay,.. ., aq}

ghall be called chain in (D) for ay, by if a,— ay, @y = b, and if there
exists for any two adjoining elements of the set an element of a suitable
decomposition contained in (D) having with both a common element
of M. The relation applying to two elements a,, b, € D, and defined in
the way that there exists a chain in (D) for a, b, is clearly reflexive,
symetric and transitive. Consequently, there exists such a decomposition
Dy, of the set D, that for any two elements of D), which are contained
in the same element of D, there exists a chain in (D), whereas for any
two elements of I, which are not contained in the same element of D,
no such chain exists. The system of all subsets of M such that every
subset is the sum of all elements of D), which are contained in the same
element of D, is a decomposition Duin of M.

&) Dumin lies over (D). In fact, let D be a decomposition in (D).
We have to show that D) is under Dumin. Let a @ D, dmine Dainy a0 tmin * 0.
According to 20-1 it is sufficient to prove that @ C amin. A8 dmin is the
sum of some subsets of M which are elements of D, and since a n dmin == 0,
there exists an a, e D, such that @, C Gmin, @90 a = 0. Lot m be an ele-
ment of M contained in a. Then there exists such a b, e D, that m e b,.
Evidently {ao, b,} is a chain in (D) for a,, b,. Cousenquently a, b, are
in the same element of Dy, and thus by c dmin. Hence m e dmin and there-
fore ac dmin.

b) Duis is a smallest decomposition of M over (D). In fact, let D
be a decomposition of M over (D). We have to prove that Dimin is
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under D). Let d e .Zo), Gumin @ ﬁm;,., @ O duin &= 0. By 20°1 it is sufficient to
show that du, c a. By definition, 4 is the sum of some elements of D, and
similarly i8 Gpis. As G 0 Gpin =& 0 there exists an element a, ¢ D, such
that @pc @ n dpire Let by e Dy, by C dmin. Then there exists a chain in (D)
for ay, by {ay,. . ., aa) (@,  Ggy Ga = by).
We clearly get a, c d. Let us therefore suppose that there holds, for some
I<)B(<a—1), ay...,agcd. According to the definition of a chain
in (D), there exists an element a of a suitable decomposition D e (D)
which possesses common elements with ag, agy,. Consequently and == 0.
As D lies under J)) there holds a c 4. Hence agi,nd == 0 and since D,
lies under I) we get agt1 € 4. Hence a,c d and thus dmin C a.

¢) Dmin is unique. In fact, let D be also a smallest decomposition
of M over (D). We have to show that every element amine Dnmin is an
element of I). Consider an element ¢ e D such that @ n dmis 3= 0. Be-
cause Dumin is a smallest decomposition of M over (D) it lies under D
and therefore dmin C 43 because D is smallest it lies under Dmin and there-
fore dc dmin. Hence dmin — d.

23. Multiplicative nets. Let M/ be a non-vacuous set.

The warp o based upon (b.n.) M is the set formed by all ordered
groups (ay, ..., @;) of @ equal or different elements a,, ..., a4 ¢ M,
a=1,2,... Notation: Oq (M) or shorter On. The warp b. u. M is the
set O(M)=0,(M)\V O3 (M)\/ ...; a shorter notation: O. The length
of an element (ay,..., a,)e 0 is the number . The prolongation of an
element (ay,..., aa) € O by an element (by,..., bg) e O is the element
(a1y- <+, Ggy byy- .., b8) € O. A knot in O, shorter knot, is any non-vacuous
subset of O. If the set of lengths of the elements contained in a knot be
bounded, elements of a greatest length exist in the knot; in this case the
mentioned greatest length is the length of the knot. A knot is termed
homogeneous if every one of its elements is of the same length « ; in this
case the knot is a subset of O, and « is the length of the knot. Inversely,
every mnon-vacuous subset of O, is a homogeneous knot in O of length e.
The set of all elements of a length @ (> 1) contained in a knot is the
homogeneous component & of the knof. Such a component is therefore the
vacuous set or a homogeneous kmnot of length @. Should a knot have
a length then the length of every one of its non-vacuous homogeneous
components equals at most the length of the knot. The prolongation of
a knot a by knot b is the knot formed by the different prolongations of
every element of a by every element of b. Notation: ab. If a, b, ¢, be
knots in O there holds, of course, (ab) ¢ = a (bc);the operation  is the-
refore associative. It is clear that it is also distributive. If a () is of a
length a (8) then ab is of the length @ + B. If 4, B denote non-vacuous
sets of knots in O, the symbol AB will denote the set of knots formed
by the prolongations of every element of 4 by every element of B.
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A net b. u. M is a decomposition of the warp O (M) having the follow-
ing properties :

1 For every element {a)e O, (M) the set {(a)} is an element of
the decomposition ;

20 every element of the decomposition possesses a length;

3o for every ordered pair a, b of elements of the decomposition
there exists in the decomposition an element containing ad.

Usual notation : It (M) or shorter IN. Sometimes we say ,net* in-
stead of ,net b. u. M“ and ,knot of a net“ instead of ,element of a net“.
A net I is termed homogeneous if every one of its knots is homogeneous. —
The simplest net b. u. M is such that every one of its knots is a set
formed by a single element of O (3/) so that this net is equivalent to

O (M). The net in question shall be called the smallest net b. w. M. Nota-
tion: (M) or shorter . Clearly O (3) is a homogeneous net.
»1. Let E)J}be anetb u M Leta,...,anae, a,...aq0a 0;
o> 2. Then ay. .- GuC G

Proof. In fact ﬁrstly let us show that there exists a knot a’e It
such that a,..-a,ca’. If @ =2 such an o’ exists because of the property
3° of a net. Let therefore be ¢ > 2 and let us suppose that there exists,
for some ()P (Ca—1) a knot &’ e M such that a,. hgc b’. Then

ag ag+ 1c b ag +1¢b for a suitable b e . (Jonsequently there exists
an a’ eI, a,. c @’.— From the hypothesis follows a’na 3= 0 and thus
ad=a because the knots of 9N are mutually exclusive.

24. Let M be a net b. u. M. By the property 3° of a net there
exists in 9N, for every ordered pair of knots a, b e I, precisely one knot
containing ab. The correspondence, in which with every ordered pair
of knots a,be M precisely the mentioned knot is associated, defines in
MM a multiplication ab. We call it the muléiplication in IN.

This multiplication is associative. In fact, let a, b, c e M. By defini-
tion, ab[(ab)c] is the knot of M containing ab (ab)c. There holds there-
fore (ab) e > (abje > (ab) ¢ = — abe. A similar reasoning shows that a (bc) > abe.
Hence (ab)c = a(bc) because the knots of It are mutually exclusive.

The net I with the multiplication in Pt is therefore a m. system ;
we call it multiplicative (m.) net b. u. M. Notation: I (M) or shorter M.
The m. net M is homogeneous if the net Pt is homogeneous. — The sim-
plest m. net b. u. M is the smallest m. net b. w. M, O (M). This m. net
is isomorphic to the m. system whose elements are the elements of O (3/)
and the multiplication is defined by the formula ab = ab, ab being the
prolongation of the element ¢ by b. The m. net © () is homogeneous.

25, Let I be a m. net b. u. M.

1. The length of every knot ab of I equals at least the sum of
lengths of the factors.

The proof follows easily from the definition of the multiplica-
tion in IN.
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‘2. M is @ m. system without kernel.

Proof. If I possesses a kernel, there holds IM* == =+ B for 4 sui-
table positive integer ¢ and for every positive integer 3. Let a e M= so
that @ e M2 +8, According to the property 2° of a net a has 4 determined
length; on the other hand @ is a product of @ + 8 knots and therefore
(by -1) its length equals at least a -} 8, for every positive integer S,
which is contradictory. Similarly we find that there does not exist an

ae ITMe,
a=1

*3. The index of every knot in I equals its length.

Proof. Let ae I and let & denote the index of a. Then a is pro-
duct of « suitable knots of Jt but not more than a knots of JR. Let
be the length of a. According to -1 we get 3>a. a contains an ele-
ment (ay,. .., ag) e O of length @ and is therefore the product of the knots
{(@)},- .., {(az)} e M; hence §< a.

4. If M is homogeneous then it is a homogeneous m. system.

Proof, According to *3 the prime-factors of the m. system It are
the knots of length 7. By the definition of the multiplieation in 9, the
product of & knots {(a)},. - -,{(as)} €M of length 7 is the knot of M
which contains the element (a,,...,as) e 0. This element is of length a.
If M is homogeneous then the knot in question is homogeneous and
therefore every one of its elements is of the same length @. Thus the
length of the knot is @ and therefore (by -3) its index is a. Conse-
quently the product of any & prime-factors possesses index e.

*5. Every m. system without kernel is isomorphic to a suitable m
net b. w. its excentrum.

Proof. Let M =2M,\/ Ma\/... be a m. system without kernel.
Let O be the warp b. u. M. Let J stand for the correspondence defined
in the following way: With every element a e It the knot a in O formed
by all elements (p,,...,»,) e O for which p,...ps = a, is associated. The
set of knots in O which are counterparts of the elements of 9t in J is
a net b. u. M;; we denote it by IN. In fact, it is easy to perceive that I
is a decomposition of the warp O possessing the properties 1°— 3° of a
net. The correspondence J is an isomorphism between the m. system It
and M. Indeed, J is clearly a (I, 1) correspondence. Further, from
a<=a,b=<-=0>(a,beM; a,beM) follows ab<—ab because to the
element ab corresponds in J the element of 9 containing the prolon-
gation of every element belonging to a by every element belonging to
b, i. e. the knot ab,

*6. Every homogeneous m. system is isomorphic to a suitable homo-
geneous m. net b. w. its excentrum.

Proof. Let notions and notations be the same as in the proof of *5.
Further, let S0 be homogeneous so that every element a e 9% of an
index e is product of precisely & prime-factors. Then the knot a which
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is associated with @ in J contains elements of O but only of length e.
Hence ¢ is homogeneous.

According to *2 5 (-4 - 6) the theory of m. systems without kernel
(homogeneous m. systems) is equivalent to the theory of m. nets (homo-
geneous m. nets).

26. Consider the set M formed by the unique element 2, Then

O ({}) is the set (@), (22), (2,2 2)...).

Consequently O ({¢}) is given by
H@)}, {5 2)), {552}, -}

and this smallest m. net b.u. {¢} is clearly isomorphic to the infinite
eyclic m, system 8. We call it the infinite cyclic m. net 3. We notice
that the m. net in question is the unique m. net b. u. {z}. In fact, for
every positive integer & there exists in O ({¢}) a unique element of
length @: (2. . -,9)- Consequently, if some knot of a m. net b. u. {2}

contains two elements (z, ,z), (z, ,z) e 0 ({#}), & < B, there does not exist

in the m. net any knot of lengthBa; the considered m. net is therefore
not a m. system without kernel, which contradicts 25<2.
27. Construction of the homogeneous m. nets b. u. a given set.

1. Let M=M,\/M;\/ ... be a homogeneous netb. u. M, The
set My is a decomposition of O (M) and M;Mg is a decomposition of
Ouyp (M) for o, 3=1,2,...

The proof follows from the supposition of homogenity of I accord-
ing to which every knot of M, [M, Mp] is a subset of Oq (M) [ Oa.+8(M)].

2. Let the suppositions be the same as in *1. The decomposition
Moy 0f Ouyy (M), for ¢ =1,2,..., is over the system of decompositions
MyMayyy_y of the set Opyy(M), v=1,...,0

Proof. Let Ga 1€ My, ae M;;Ma+1_v and let anag4,3F0.
According to 20 - 1 it is sufficient to show that a c ag4,. But by the definition
of @ there holds a=ayas,,_, for suitable aye M,, ayyy_ye Moy
Consequently a,,,aa+1_vnaa+1:t:0 and we get, by 231, acaayy.

*3. Let M be a non-vacuous set. Let My~ 0, (M) and let My,
be a decomposition of the set Oy (M) over the system of decompositions
M,Myyy_y of Ouyy (M), for a=1,2,...,v—1,...,a. Then M=
M\/My\/ ... is a homogeneous net b. u. M

Proof. It is clear that M is a decomposition of O (M) and that
every one of its knots is homogeneous. We also perceive that the above
decomposition possesses the properties 1°2° of a net. We have therefore
only to prove that it possesses the property 3°. Let a, b e It so that a e My,
be Mg for suitable a«, 3, Then ab eM:Mg and according to the sup-
position, M, Mg is a decomposition of Oy (M) under M, g. Hence
there exists in M, g a knot containing ab,
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From *1 *2 -3 and 22°1 we get the following construction of all
homogeneous nets and consequently of all homogeneous m. nets b. u.
a given non-vacuous set JM:

Decompositions M, My, My, . . of the sets O, (M), Oy (M), O5 (M), ...
are to be formed in the following way: 1° My~ 0, (M) 2° if My, ..\, My,
for an & > 1, have been formed, an arbitrary upper decomposition of the set
Oa+1(M) w. 1. to the smallest decomposition of O, (M) over the system
of decompositions M:Ma_i_l_v, y=1,...,0, is o be chosen for M, ;.
Then the set M;\/M,\/...is a homogeneous net b.u. M.

4. If a homogeneous m. net possesses a single knot of index o (>1)
then it also possesses only a single knot of index ot B, for every positive
integer B.

Proof. It is sufficient to consider the case §=1. Let M=M,\VI,V...
be a homogeneous net b.u. 3, and let MMy, for a determined «, possesses
only one knot. By -1, this knot is the set O, (). Let (D) denote the
system of decompositions of Oqiy (M) Dy=DM,Mury_y, v=1,...,0,
and let D,;, stand for the smallest decomposition of Oa 4, over (D). By
2 and 22'1, My, is a suitable decomposition of Oy, over Dt There-
fore it is sufficient to prove that Doin possesses only one knot. Let {(a)}ﬁoa
be a knot of D; so that {(a)} e M,. As Do is over D, there exists an
element Gmin € Duins Gmin D {(@)} Ou. By definition, dui is the sum of
elements {(a')} O, of Dy such that there exists a chain in (D) for {(a)} O,
{(@’)} Oq. Consequently, it suffices to prove that such a chain exists for
every element {(a,’)}AOa e Dy. Let us choose an element (ay,.. ., a) € O.
Then {(a, ay,. . ., Ga)} = {(a)}‘{(al, +++,8a)} c{(a)} Oq and analogously {(a,
@y - +, aa)} € {(@)} Oa. Further, {(a, ay,. - -, aa)} ={(a, ay, -+ . , a—1)] {(@a)
¢ 0q {(40)} € Do and similarly {(@, ay, + .., ax)} € 0a{(as)}. Hence D,
contains the element Oy {(a«)} Which possesses a common element with
{(@)} Ox as well as with {(a")} Ou. Thus {(a)} Oa, {(a))} On form a ehain
in (D) for these elements.

*5. Let M be a non-vacuous sei. There exists such a homogeneous
m. net that its excentrum is equivalent to M and there exists bul one
single element of index > o -+ 1 for a given positive integer c.

Proof. Let M, Oy (M). In the case a>> 2 we define the sets]fy,. . .,
M, in the following way: If M,,..., Mp, for a (1<) (< a—1), have
been formed, we choose for Mg, an arbitrary upper decomposition of
Og1 (M) w.r. to the system (Dg,) of decompositions M, Mgy, of
Og4yy ¥=1,...,8. For e > 1, y>a let M,,, be the decomposition of
Oy+1 () formed by the single element O, . 4. Then M, . ; is a decom-
position of Oy, over (D, 44), (Dy+1) having an analogous meaning to
(D3 +1.) According to -3, M=2M,\/M;\/... i8 a homogeneous net
and evidently possesses the above mentioned properties.

28. Upper and lower m, nets with regard to a given m, net.
Let M be a net event. a m. net b. u. M. By definition, the net I is
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a decomposition of the warp O (JM). Every net MM b. u. I/ which lies
under this decomposition is (Ties) under the net I and is termed lower
net w. r. to PM; the m. net M is (lies) under the m. net M and is termed
lower m. net w.r. to M. M is (lies) over P and is termed wupper net
event. upper m. net w. r. to Y. If N be under the m, net Yk, then the
prime-factors of the m. nets I}, N are clearly the same. The simplest
lower net w. r. to M is O(M); it shall be ealled the smallest net under
(w. r. to) M or the support of M. The set of knots in O (M) which are
the different non-vacuous homogeneous components of the knots forming
M, is clearly a homogeneous net b. u. M and lies under IR. This net
event. m. net is the largest homogeneous net event. m. net under IN.

*1. Let M be a net under M. Let a, beM, gcaeIN, bcbeN.
Then gb c ab.

Proof. By definition, ¢b is the element of IM which contains the
knot gh. But b c ab c ab so that gb c ¢b n ab 5= 0. Consequently, by 20- 1,
we get gbc ab.

*2. Every homogeneous lower net w. r.to I lies under the largest
homogeneous net under M.

Proof. Let M ($) be a homogeneous (the largest homogeneous) net
under M. We have to prove that It lies under §. Let ge P, he H,
@ nh=E 0. It is sufficient to show that ¢ c h. According to the definition,
h is the set of all elements of O (M) which are of the same length and
lie in a knot a et. Hence g na =0 and thus, by 201, there holds
¢ c a, because It is under PM. Consequently, we get ¢ c h because g is
homogeneous.

29. Let M =M\ Ms\/...be a (m.) net b. u. M. Let (0)
Ac. Every (m.) lower net I w.r. to N such that the elements of
A are at the same time elements of It is a lower (m) net w. r. to M
generated by A. Since every lower m. net w. r. to 0t possesses the same
prime-factors as it we may study the lower (m.) nets w. r. to I} generated
by A supposing that A4 > M.

*1. There exists a unique smallest net WMpin under (w. r. o) M
generated by A; i. e such a lower net w. r. to MM gemerated by A that
every lower net w. r. to M generated by A lies over M oin.

Proof. Let us associate with every group a,, a, ..., aq of @ equal
or different elements of 4, ¢ =1, 2, ..., the following knot in O (M):

NN

@, dg. . .0q. Let O be the set of all these knots so that 0=ZA44... 4

o 1—»—’
For (a, .., aa) € O (M), ay, ..., au & M, we get {(ar)}, . {(aa)}
e M, c A and thus {(al) {(aa)} ={(as . - o aa)} e 0. Consequently 0
covers O(M). Let a, be O A chain for a, b is an ordered finite set
of elements of 0:

Can

{al, ooy aa}

such that gy =1, ay =25 and any two adjoining elements possess a
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common element of O (M). The relation for two elements a, b ¢ O defined
in the way that there exists a chain for @, b, is obviously reflexive,
symetric and transitive. Consequently, there exists such a decomposition
D of O that there exists a chain for any two elements of O lying in
the same element of the decomposition, whereas no chain exists for any
two elements of O lying in different elements. The system of the subsets
of O (M) such that every subset is the sum of all elements of O lying
in the same element of D, is a decomposition IM,,;, of O (I).

a) P is & decomposition of the net IN. In fact, let @Gpin € Pmins
aeM, gmannaz=0. It suffices to prove that ¢, €a. By definition,
Qmin 18 the sum of some elements of 0. Since @uinnNa$ 0 there exists
an element @e O such that ana==0. By the definition of @, we get
a al. . aa, @1y -+ +y Ga being suitable knots of M. Aecording to 23 1
there holds ac a. Let be O, b C gmn. Then there exists a chain for @, b:

{81, ceny ’a\a} (61 — g, am———?)\).

We clearly get a, c a. Let us therefore suppose that ay, ..., Eg c @ holds
for some (1<) # (< @~ 1). According to the definition of a chain we
get ag nagy; 3 0 and thus enagy, == 0; hence ag.H ca, by 231, Con-
sequently @, C as @uin € d.

b) M,.;. is a net b. u. M. We have only to show that I,,;, possesses
the properties 1°—3° of a net.

1° For every element (@) e O (M) the set {(a)} is an element of
Plmin- Indeed, for every element (a) e O; (M) the set {(a)} is an element
of O and clearly there does not exist any chain for this element and
any other element of O different from it.

2° Every element of 9., possesses a length, because it is (by a))
a subset of some element of .

3° For every ordered ‘pair of elements Guiny Dmin Of Puin there
exmts in Py an element contammg Gmin {),,,m Firstly, let us show that
if ct, @ C @utny b be Duminy @ a bc Camin t then a bcc,,,‘,,. In faet, 1f the sup-~
positions hold there exists a chain al, . ‘ao fora, a (a, =, as =a)
and a chain %, ..., bg for ¥, b (bl—b bg="0). We may suppose
8 «a; asif for mstance B < @, we prolong the chain for ¥, 5 by adding
a——ﬂ knots equal to bg. Now it suffices to show that

{&:317 vy ma}

1s @ cham for @, by, @a by; i. e. that for 1<y<a— 1 both knots
“T b “7+1 by4+1 possess a common element of O (). But both knots

Gy @yya [by, byty] Possess a common element t (a1, -5 o) [(Byy - -5 )]
of O(J), and therefore the knots a, b a.{_H B r+1 both contam the
element (@y,..., ay, by, ..., b)) e O (M) — Now let a {9] represent

@min [Dmin] 80 that Gaea [bm;,.] is the sum of elements @’ [6'] such that
there exists a chain for a, a’ [, ¥']. Let a bc Cmin- Lvery element of
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Gein Dmin 18 contained in o’ ¥, af, ¥ being suitable elements having the
mentioned property. Hence (ﬁ C Cminy Gmin vin Damin C Conin:

¢) My;n is a smallest net under M generated by A. Indeed, let Pt
be an- arbitrary: fower' net w: r. to I genmeratad by 4. Wae have to show
that I lies over Wnin. Let ¢ e M, @umia e Mutny @ 0O Guin 0 I sufbleen
to prove that gmis Cg. Let & represent the knot guia 80 that gmin is the
sum of elements a’ such that there exists a chain for @, @. There holds
@=a,. . .aq for suitable knots aj,. .., as e 4. According to our assumption
there holds Ay, - -y G € Pt and therefare, by 23+ 1, ac b, b  being a suitable
element of 931 From the existence of a chain for a, a’ easily follows
@ cbh and hence gus, € b From ¢ n guis == 0 results p — g since the knots
of I are mutually exclusive.

d) Mpin is uvnique. The proof is analogous to the proof in 22:7 e}

‘2. If A= M, then My s the support O (M) of M.

The proof follows easily from the construction of .

*3. If M is the smallest net b. w. M then Poiw =M for every 4 5 M,.

Proof. Every element a e I ia formed by a unique element of O ( M).
Every element gpis@ EIR,,,,,7 is a non-vacuous subset of a suitable a e N
and therefore gumin — a.

30. Construction of the homogeneous lower m. nets with re-
gard to a given m. net.

1. Let M=DM,\/ M;\/ ... be a homogeneous net b. u. M. Let
M=DM,\/ M;\/... be a hamagéneous lower net w.r. to M. My, is
a decomposition of Ogyy (M) and lies between Mo, and the smallest
decomposition of Oa (M) over the system of decomposition M, My  , _,
of Ouyys (M); 0~ 1,2,...,v=1...0

Proof. According to 271, M,4, is a decomposition of Oy and
by 27-2 and 22-1 it is an upper decomposition w.r. to the smallest
decomposition of Oy, over the system of decomposition M, My, of
the set Ogyy, ¥ =1,..., &t. My, is alsa & decomposition of Oy It
therefore only remains to prove that Mgy lies under M, ,; for which
purpose it is sufficient to show that for ge Myry, € Myyy, gna==0
there holds ¢ ca. But ge I, a e M and by hypathesis, P lies under M.
Consequently ¢c a.

‘2. Let M= M,\/ Ms\/... be a homogencous net b. w. M. Let
My~ 0, (M) and let Moy be an arbitrary decomposition of the set
Out1 (M) between Meqy, and the smallest decomposition of Ouyy (M)
over the system of decompositions My Moy of Ogyy (M);2=1,2,...,
v=1,..., 0 Then M=M\/ My\/ ... is a homogencous lower net of M.

Proof. Aceording to 27°3, M is a homogeneeus net b. u. M. For
geT, ae, gnask 0 there holds ¢ e M,, ae Mg, @, 8 being suitable
positive integers. From ¢ na == 0 follows 8= q. As M, lies under M,,
we get g c a. Consequently I is a lower ne{ w. r. to IN.

From 28:2 and 1 *2 the following canstruction of all homogeneous
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lower m. nets of a given m. net 3 b. u. a given non-vacuous set M
results:

Take the largest homogeneous lower net $ — H,\/ H;\/... under
M and form the decompositions My, My, My, . .. of the sets O, (M), Oy (M),
Oy (M),... in the following way; 1° M ~0, (M) 2° if Mj,. .., M, have
been formed for some & > 1, a decomposition of Oy 4, (M) between Hy.y 4
and the smallest decomposition of Oy (2 ) over the systent of decom-
positions M, Moy y, ¥ =1,...,8, of Ogy, (M) ista be chosen for M, .
The set M1V M\/... is a homogeneow Tower net w.r. to M.

31. Homomorphic representations of m, systems without kernel.
Let M, M be m. systems.

Every correspondence & between the elements of It and the ele-
ments of I which has the following properties is called homomorphic
representation of M in M: .

1 Every element a e 0t is associated with a single element a e JIi;
we write @ -> a (¥), shorter a = a, or, if desired, a={a.

20 Fora, beM, a -~ G, b — b there holds ab -= @b, i. e. fafb—fab
@ is the counterpart of a, a is an antecedent of a in & The set 4 c I
of the counterparts in & of a set 4 of elements befongmg to M is the
counterpart of the set A in & and A4 is an antecedent of A in &; we write
A A (9), shorter A — A or, if wanted, 4 = § A. For the sake of brevity
we sometimes say f. 1. “d is the counterpart (&) of a’’ instead of “@is
the counterpart of @ in &F’. — If & possesses the properties 1° 20 as well
as the further property:

3° Every element of I is the counterpart of at least one element
of I, we call F homomorphic representation of Pt on N or homomorphism
of M on M, We say that I is homomorphically representable in(on) M
if there exists a homomorphic representation of M in (on) M.

*1. M is homomorphically representable in (on) M -if and only if
there exists for every element de R a set Fyqc M such that 1° the system
of the sets F, is a decomposition of M 2° Fy F,c Fy; for a, bedt (3°
F; 3= 0 for every GeM).

In the case of a homomorphic representation in I some sets F; may
be, of course, vacuous.

Proof. Let 2% be homomorphically representable in (on) % so that
there exists a homomorphic representation & of It in (on) M. For @ e M
let F; denote the set of antecedents of the element @ in § Evidently
the system of the sets F; possesses the above properties. Inversely, if
there exists a system of sets having the above mentioned properties, the
correspondence & between the elements of Mt and the elements of I de-
fined in manner that every element of Fj is associated with @, is &
homomorphic representation of I in (on) M.

*2. Let M be homomorphically representable (F) in M. Then § M
is @ m. subsystem in M.
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Proof, Let a@,be$I so that there exists a,be M, @— fa, b = {b.
As ab=1{fab we get abefIN.

-3. Let M be homomorphically representable (&) in . Let WM be
without kernel. Then § M is without kernel.

The proof follows from *2 and 8-2.

*4, Let M be homomorphically representable (F) in M. Let o be an
arbitrary positive integer. Then § (IM)* = (§ M)=.

Proof. Let aef(M)* so that @ is the counterpart of the produet
of a elements ay,..., a, ¢ M. For the counterparts a,, ... , ag e M of
these elements there holds @; ...a, =fa,...a,=—a. Hence ae(f Mm)*,
Inversely, let @e (fIR)* so that @ is the product of & suitable elements
@y« - +y @g e f M. These elements being the counterparts of some elements
Apyoeey Gz €M, We get a,...a0e Mand {a,,..aq = a&,...8 = a. Con-
sequently a e f ()=

-5. Let M be homomorphically representable in M. Let M be without
kernel. Then MM is without kernel.

Proof. Let & be a homomorphism of M in M. If M possesses
a kernel, we get I+ = IM*+! for a suitable positive integer a. Then
f (D)* =¢ (IMM)>+1 and therefore (f M)* = (§ IM)>+2, by - 4. Consequently
f M possesses a kernel, which contradiets +3. If there exists an a e IM
such that a e IN* for every positive integer a, it follows f a e § (M)* =
(f M)* c M= for every positive integer @ and therefore M is not without
kernel.

6. Let the suppositions be the same as in 5. Let ae I and let
¢ be the index of the element a in WM. Then the index of § a in $ M is > a.

Proof. According to the definition of @ we get a e M* and by -4
there holds {a e (f M)=. Consequently the index of the element fa in {IM
equals at least c.

From this theorem particularly follows that every prime-factor of
§M is the counterpart of some prime-factor of M.

*7. Let W be homomorphically representable (F) on . Let M de
without kernel. Let @e M and let @ be the index of a. There exists an
antecedent of @ in & the index of which equals .

Proof. By the suppositions and by - £ there holds a e M= A Ta+! =
$()> A f(MM)>+! so that @ is the counterpart of a suitable element
a e e /\ MNa+1,

32. Complete antecedents of a given m. net, Let M .
-llTIVZI_f,V,., be & m. net b. u. M. Any m, net SREMIVM,V..,,
b. u. a set M, homomorphically representable (&) on I together with
the homomorphism & is termed complete (c.) antecedent of M; notation
(M, &F). M is the antecedent and &F the homomorphism belonging ;o (I, F).
(M, &) is homogeneous if WM is homogeneous. If M is the smallest m.
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net O (M) b.u. M, (0, %) is a smallest ¢. antecedent of M. For the
sake of brevity we sometimes say “c. antecedent” instead of “c. ante-
cedent of M,

Let (MM, ) be a c. antecedent of M.

*1. Let T be a lower m. net w. r. to M. Let F be the correspondence
between the elements of I and those of M defined in the following way;
With every element ¢ e M the element { a e M, where ¢ c a e M, is associa-
ted. Then § is a homomorphism of Yt on .

Proof. Every element of It is contained in a certain element of
I and is therefore associated (§) with an element of M. Every element
of M is the counterpart (¥) at least of one element of P and is there-
fore counterpart (§) at least of one element of IN. Let ¢, p e M, g>a,
beé(?). For suitable a, be N there holds: gca, bycd and a3,
b=>b (¥). Consequently ab-=ab (§). According to 28'71 we get
¢bcab—=ab (F) and therefore gp = ab (§).

We say that the homomorphism & of It on M is generated by &.
The c. antecedent (I, &) of WM is termed lower c. antecedent w. r. fo
(R, &) and we say that it is (Ties) under (I, &).

-2, Let M be an upper m. net w. r. to M such that every one of
its elements contains only elements of MM associated (F) with the same
element of M. Let & be the correspondence between the elements of I and
those of M defined in the following way: With every element a e R the
element { a e I, where &> a e M, is associated. Then &F is a homomorphism
of M on M.

The proof is analogous to the proot of °1.

We say that the homomorphism & of %t on It is generated by &.
The c. antecedent (é)Jol, 87’) of M is termed wypper c. anfecedent w. r. to
(M, &) and we say that it is (Ties) over (M, &F).

‘3. (IR, F) lies under (M, &) if and only if (M, &F) is over (I, F).

Proof. Suppose that (9, ) lies under (M, &F). Then every element
ae, a-> & (F), is the sum of some elements ¢ e Pt for which ¢ - a (F).
M is therefore an upper m. net w.r. to I such that every one of its
elements contains only elements of I associated (§F) with the same ele-
ment of M and further, & is generated by & Inversely, if (M, &) is
over (I, §), then every element ae MM, a-=a(¥) is the sum of some
elements g e N for which ¢ =a (F); M is therefore a lower m. net
w. r. to It and & is generated by &.

33. Let (MM, &) be a c. antecedent of M. By definition, every lower
m. net Y w. r. to P determines univocally a c. antecedent of I under
(W, &). We get the smallest ¢. antecedent of M under (w.r.to) (M, &)
if we choose for It the m. support of M ; notation (MPutey Fmin)-

In order to define the largest c. antecedent of I over (M, &F) we
are going to prove the following theorem:

1. Let Waw e the set of knots in the warp O (M) defined in the
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Jollowing way: Every prime-factor of M is an element of W oz Any other
element of Wnae is the sum of all elements of M which are associated (%)
with the same element of M. Then Was s an upper m. net w. r. to M.

Proof. It evidently suffices to prove that ... possesses the pro-
perties 10— 3° of a net, Pt n,, evidently possesses the property 1°. 2° Every
element of I, is of a certain length. In fact, let de Mpae- Lot a e m,
acd. If a is a prime-factor of M, we get a — & so that d is of a length
equal 7. Let us therefore suppose that the length @ of « is > 2. Let
a-=deIR (¥). Let & be the length of @. By 316 we get a < a. 4 being
the sum of all elements @ such that @ -= @ (), the last mequahty proves
the proposmon 30 For every ordered pair of elements d, b @ Wpnas there
exists in Wln,, an element eontaining ab. In fact, accordmg to the defi-
nition of Wae We get d = Ja, b = b, the first (second) sum being re-
lated to some elements ¢ [b] e I ; the counterpart (&) of any a[bj occurmg in

the first (second) sum is the same element @ [5] of EDE We get b —Z3 ab.
For any a,b wappearing in this sum there holds abc ab - &b (5). Let é

be the element df '5.)5?,,,.., containing ab. Then db — X¥abce.

By definition, 90 .. i8 an upper m, net w.r. to I such that every
one of its elements contains only elements of associated () with the
same element of M. We may therefore choose for M the m. net EIR,,.,,,
in order to get an upper ¢. antecedent (Mps, Fuaz) W. T\ to (M2, &). The
latter is the largest ¢. anlecedent of M over (w.r.fo) (MM, &). It is clear
that any upper c. antecedent of M w. r. to (M, &) lies under (Wnasy Fomaz)-

Remark. Let @ eI be of index « > 2. It might be shown that there
exists in i))?ma, at most one single element which is not a prime- -factor
and is associated (F,.) With @; its index equals precisely . Accordmgly,
the set of the antecedents (gi’,,,a,) of a given element @e It is composed
by a set of prime-factors of M, and by a unique further element a
whose index equals @, @ being the index of @, The set 4 of the mentioned
prime-factors may be, of course, vacuous. If we remove from i, all
prime- factors appearing in the sets A associated with the elements @ e M
which are not prime, we get a m. system N without kernel. It is oasy
to see that every element of 3t t possesses in N the same index as in Sﬁmz
The homomorphism of 9 on M established by &, is equiindicial, which
means that the index of the counterpart of every element % e It equals
the index of =.

2. Let (M, &) be a c. antecedent of M under (M, F). The largest
c. antecedent of M over (M, F) is the same as the largest c. antecedent
of MM over (M, F).

Proof. Let (Mmass Famaz) [(Dmazs Fmas)] be the largest c. antecedent
of M w. r. to (N, &) [(CR, 8‘)] Let @ @ sm,m, Gaw — G € M (?,,.,,)
According to the definition of zpt,,.,,,,, @maz i8 the sum of some elements
g e M for which ¢ = a(F). Each of these ¢ is contained in some a e M
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corresponding (%) to the same element @, because (M, &) is over (N, &),
by 32-3. We get therefore Gz Z a for some suitable a e M, a - a (¥).
By the definition of (QR,,“, ,,.,,,) there exists an a,.“ e im,,“ conta.mmg
all these @ a0d Gpaz = @ (Fras). We get therefore Gumas € s — @ (gmaz)
It remains to prove that G € Gmase- According to the definition of )11 -
Gmas i8 the sum of some elements a e M for which a-> @ (§). Each of
these a is the sum of some elements g ¢ It such that g = a(§). Consequently
we get Gpq,c & ¢ for some suitable ¢ e IR, ¢ = a (F). Accordlng to the
definition of (EZR,,,(,,, Facz) each of these g is contained in Gmazs Thus
amas C dmaz

34. Determination of the c. antecedents of a given m, net,
Let N be a m. net.

»1. Any c. antecedent of M lies under the.largest c. antecedent w. r.
to a smallest c. antecedent of M.

Proof. Let (I, &) be a c. antecedent of M. By 32:3, (M, &
lies under the largest c. antecedent (am,m, ,,m) w.r. to (I, &). According
to 332, (Mmazy Fmas) i8 the largest ¢, antecedent of N over the smallest
c. antecedent (M,;n; Fmin) W. r. to (MM, F). But the latter is a smallest c.
antecedent of IN.

‘We get therefore the following determination of c. antecedents of
a given m. net:

All c. antecedents of a given m. net N are precisely the lower
c. antecedents w.r.to the largest c. antecedents of M lying over the
smallest c¢. antecedents of IN.

35. Construction of the smallest c. antecedents of a given m, net,
Let M =M,/ M;\/ ... be a m. net b. u. M. Let (0,%) be a smallest
c. antecedent of I so that O =M,\/ Mp\/... is the smallest m. net
b. u. a non-vacuous set M. The homomorphism & determines univocally
a partial correspondence &* between the elements of M, and the elements
of a subset §* M, of M; F* is defined in the way that with every ele-
ment of M, the same element of I in F* as well as in & is associated.
Hence §* M, — { M,. According to 31°6 we get M, c f* M, so that the
power of M, and therefore the power of I equals at least the power
of My. Let {(ay, ..., aa)} € Mo, @>2, and a; > @y, ..., a - aq (¥) and
therefore (&*). As {(ay, ..., a)} — {(al)} A(a2)} =@, ... 8a (§), the
element {(ay, .. ., as)} is assoclated (¥) with the product of the counter-
parts (&%) of {(@)}, - . ., {(3)}-

Inversely, let us choose a set J/ of a power equal at least to the
power of M, and let us establish an arbitrary correspondence &* between
the elements of M, where M, denotes the excentrum of the smallest
m. net b.u. M: 0 (M)=M,\/M;\/..., and the elements of a subset
f* M, > M, c I, such that with every element of J; one single element
of f* M, is associated. Let & be the correspondence between the elements
of (M) and those of 9 defined in the following way: Every element
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of M, is associated with the same element of I in & as in &*; every
element {(a, ..., as)} e My, @ > 3, is associated with the product of the
counterparts (F*) of the elements {(a,)}, . - ., {(ax)} € M,. It is clear that & is
a hoomorphism of O (M) on M so that (O, &F) is a smallest c. ante-
cedent of Dt. In this way we get a construction of all smallest c. ante-
cedents of M.

36, Construction of the homogeneous c. antecedents of a given
m. net. Let I be & m. net. The following construction of all homogeneous
¢. antecedents of I results from our provious considerations:

Choose a smallest c. antecedent (D, Fny,) of M (35) and form the
largest c. antecedent (Muazy Fumaz) 0Ver (O, Fain) (33); form an arbitrary
homogeneous lower m. net I w. r. to M, (30) and consider the homo-
morphism & of M on M generated by &,4, (32). Then (I, &) is a homo-
geneous c. antecedent of .
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