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Geometric elements in the theory of tranaformations of
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~ordinary second-order linear differential equationa.

l. In the following lecture I should like to give a short
aurvey of the present state of the theory of transformations of
ordinary 2nd order linear differential (d.) equ tions as well
as of the geometric elements accurring in this theéry. It ls a
theory in the real domain, of qualitative and global charactere
The geometric ele ents I shall speak about conc rn the centro -
affin differential global geometry of plane-curves. To be brief,
I hall just speak about the theory of transf rmation ithout
always stating that it 1is a question of tran formations of linear
2nd order dif. equations.

2« The basiec problen of tﬁe theory of transformations was
formulated by the German mathematiclan, E. E. KUMMER, in 1834,
as follows:

Suppoae twa gilven 2nd order 4if. equation

(@ y"=aqltdy, T=Qm@y @
wh re the coefficlents q , Q , which are sometimes briefly
called carriers of the dif. equati ns (q) or (Q) , are continu-
ougs functions in certain open, bounded or unbounded intervals
J= (a,b) or J= (A,B) . |

We are to determine the functions w(t) , X(t) such that,
for every integral Y(T) of the dif. equation (Q), the function

y(t) = w(t)X[X(2)]
is a solution of the d. equation (q) . We a ume that
wit) 30, X(¢)40.

The analysis of this problem directly leads to the following
non-linear dif. equation of the 3rd order, called Kummer‘'s dif.
egquation:
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(Qq) - fx,t} + QX" = g(¢)
where + stands for the independent varlable, X - for the un-
known function and the symbol { } for Schwarz ‘s derivative

of the function X at the point t :

e} =3 di -4 -

We can show that every function X satisfying Kummer’s prob-
lem is a solution of the dif. equation (Qq) , where w(t) =
= o3 VlX'(t)l (e = cenat;)* Vice versa, in the same way one
finds, from every solution of the dif. equation (Qq), solu-
tion of Kummer’'s problem. We can say that the entio ed theory
of transformations is, in fact, an analysis of Kummer’'s dif.

equation (Qq) .

| 3. The main notiong of the theory of transformations are
the notions of the firat and the second phases of the linear
dif. equation (q) .

Let us first consider the notion of the first phases.

Let u, v be an arbitrary basis of the dif. equation (q),
i. e. a sequence of two linearly independent integrals of the
dif. equation (q) .

By the first phase of the baals u, v we understand every
function o6 (t) continuous in the interval J , in which it
satiasfies ~ except the zeros of the function v - the relation
tg o(t) = ut):v(t) » We ses that there exists Just one coun-
table system of the first phases of the basis u, v , the diffe-
rences between the single phases of this system being integer
multiples of the number 77 .

By the first phase of the dif. equation (q) we understand a
firast phase of some basis of the dif. equation (q) .
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It is important to note that the first phasesof the 4if.
equ tion (q) are unbounded, both above and below, exactly when
the dif. equation (q) is oscillatory. The dif. equation (q)
is called oscillatory when its integrals have an infinite num-
ber of gzercos in both directions towards the ends &, b of the
interval J « For example, the d4if. equation y" = -y 1in the
interval J = (=62,00) is oscillatory. '

Besldes the first phases of the basls u, v or the dif.
equation (q) we can, analogously, define the second phasas
of the basis u, v or the d:!.}¢ equation (q) by means of the
formula tg P(t) = u’(t)sv’(t) .

Let us note that the function *(t) = P(t) - ot(t)
formed by means of an arbltrary second phase ,3 and first
phase <& , belonging to the same basis u, v of the dif,
equation (q) , is called polar function of the basis u, v .

4. Mnimportant section of the theory of transformations
is formed by the theory of the so-called central dispersions.
‘Central dispersions are certain functions of one variable which,
in a certain sense, describe the dispersion, that is to say,
distribution of the zeros of the integrals of the dif. equations
(q) and the derivatives of these integrals.

Let us now consider some arbitrary dif. equation () which
is osclllatory. In some cases it is convenient to assume that
the function ¢q 18 always < O . Note that, from the geometric
point of view, this sssumption ensures that the integral curves
of the dif. equation (q) are regular, i. e. locally convex and
without points of inflection.

In what follows we shall therefore assume qf{t) <0 for
t €3 .
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ell, let t € J be an srbitrary nuuber and u r v
an rbitrary integral of the dif. equation (q) , which has
or whose derlivative has, at the point ¢t the value 0O :
u(t) =0, v (t) =0 . Let, furthermore, B =1, 2, esss
and 4 note by:
% (t) or 3&n(t) s respectively, the n-th zero of the inte-
gral u that follows or precedes the zero ¢t j
Vv, (8} or YL,(%) , respectively, the n-th zero of the func-
tion v° that follows or precedds the zero t ;
Xn(t) or X.ft) , respectively, the n-th zero of the
function u’ that follows or precedes ¢t ;
wp (t) or wL,(t) , respectively, the n-th zero of the
integral v that follows or precedes ¢ .
Let now V =11, 2, ..s . The functions % or V¥, ,
)(v y Wy are called central dispersions of the first, second,
third, fourth kind with the index vV , respectively, and - in
particular - the functions  , VY , Ly » Wy are called
baslc¢ central disperéions of the respective kind. These defini-
tions evidently do not depend upon the choice of the inte rals
u end v , 80 that the mentioned central dispersio s repﬁesent
elements given by the dif. equation (q) .
The situation is illustrated by the following figures:
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5. The analytic apparatus of the theory of central diapersions

The preceding notions are connected by numerous mutual rela-
tions which can be expressaed by simple and often elegant formu-
las representing an effective analytic apparatus for solving
various problems from the theory of transformations and, more
generally, from the theory of 2nd order linear dif. equations.

Ag an example, let me introduce the formula

&
ot £
pie) = ¢y + 2 [T exp 2 [‘. cotg h(§)ap) d¢ ,

axpressing the basic central dispersion 99 by means of an
arbitrary first phase oo B oL(t) of the dif. equation (q)
and some polar function A (4) = p(t) -~ o/(t) corresponding
to the first phase o : h{ct) = () 3 o , 0tf (% 0)
denote the values of the functions o~ and oL’ , respectively,
at the number ¢t and € = sgn ou .

This formula ylelds |

+Er
Sf"(t) = exp Zf cotg h(@ ) ap

o

and furthermore »

-?2;{% = 2&4; cotg h(ok + £9) - cotg h(ocl )] . BXD (~2Lcatg h(@)df )
We see that the basic central dispersion ff(t) of the dif. equa-
tion (gq) 4is linear of the form
(1) F(t) = t+k (k = const., Xk > 0)
if and only if, the polar function h 1s periodic with periocd
and satisfies the condition
I’}catgh(@)d@ = Q0 .

This result we shall° meet again later; when considering the geo=~
metric applications of the theory of central dispersions. Note
that 1t 1s exactly the mentioned conditions upon which the vali-
dity of formula (1) depends that are characterist%c of the dif.

1
i

\
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equationa (q) , the zeros of whose integrals are ranged equi-
k
distantly, that is to say, so that the diatance(éetween.any two

neighbouring zeros is the same .

6. A brief aurvey of the present state of the theory of
tranasformations.
The theory of transformations consists, fundamentally, of
two parts. One part is the so-called theory of dispersions, whe-
reas the other part is the general theory of transformations.
BEach of these theories is further divided into two parts according
to the following scheme:

Theory of transformations

Theory of dlapersions | (General theory of tranaformation
Central General General Complete
disperaions | dispersions transformations transformations

The theory of dispersiona deals with oscillatory dif. equa-
tions (q) .

The notion of central dispersions has been introduced already
From the standpoint of the theory of transformations, the central
dispersions are characterized by the fact that they transform
the integrals u of the dif. equation (q) and their derivati-
ves u  into themselves or that they transform the integrals u
into the derivatives u’ or the derivatives u’ into the inte-
grals u , For example, every central dispersion of the first
kind {, transformé every integral u of the dif. equation (q)
into itself according to the formula

u(t) = (<1) by (1] (wit) = (<1)’ V‘f{(t) )

and in the case of central dispersions of higher kinds the situa-
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tion is similar. In the theory of central dispersions a number
of problems heve been studied. Let us, for instance, mention
the determination of all the dif. equations (q) having the
same basic central SQ, , or the determination of all the 4if.
equations (q) in which the basic central dispersions & and
Y, or X, and W, coincide, and others. Some of these prob-
lems are closely related to the centro-affine geometry of plane
-curves, as we shall see later.

The second part of the theory of dispersions is formed,
as I have already said, by the theory of general dispersions.
This theory studies the mutual transformations of two oscillatory
dif. equations (q) , (Q) . It starts with the constructive de-
finition of certain functions of one variable based on the dif.
equations (q) , (Q) and are called general dispersions of
the dif. equations (q) , (Q) . Studying the properties of
these functionas one finds that the general dispersions of dif.
equations (q) , (Q) are exactly all the integrals of Kummer's
dif. equation (Qq) « We may say that the theory of general
dlapersions is, essentially, a constructive integration theory
of Kummer s dif. equation in the aaciliatory case. It should be
noted that the theory of general dispersions leads to an exten-
aive algebraic theory of transformations of oscillatory d4dif.
linear equationa, as we shall hear later.

Let us now proceed to a brief survey of the theoby of
general transformations. This theory concerns arbitrary dif. equa-
tions (q) , (Q) , whether they are oscillatory or not. |

The central point in this theory is given bj’the theorem
about the existence and dniqueness of the integrals of Kummer’s

dif. equation (Qq) . This theorem ensures the existence of Jjust
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one integral X of the dif. equation (Qq) , satisfying the
given Cauchy initial conditions of the 2nd order. It is the
question of the wildest integral in the sense that every solution
of the dif. equation (Qq) , satisfying the same initial condi-
tions, is a part of this widest integral. We can show that this
widest integral X 1s given by the formula

x(t) = A"le(e) ,
where o ’ R  are convenient first phases of the dif. equation
(g) or (Q) , respectively. It may further be shown that the
curve determined by the integral X passes from one end of the
right-angled domain J x J to the other § J and J are
of course the definition intervals of the dif. equations (q) ,
(Q), respaectively. In case of increasing integrals X , for
example, the slituation is 1llustrated by the following figure:

Further problems studied in the general theory of transfor-
mations concern the properties of the solutions X of Kummer”s
dif. equation (Qq) as well as the relations of these solutions
to the integrals of the dif. equations (q) , (Q) . The funda-
mental relation in this respect is, of course, the formula

y(t) = ¥[x(t) ]
| X (t))
expressing the transformation of an arbitrary lntegral Y of the
dif. equation (Q) into a certain integral y of the dif. eq. (q).
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An important section of the general theory of tranaformations
is formed by the so-called complete transformations. The starting
~point of this theory 1s the mentioned theorem about the existence
and uniqueness of the integrals of Kummar’s aif. equation (Qq) .
In fact, the definition intervel 1 of the widest solution
X(t) of the dif. equation (Qq) does not coincide, generally,
with the definition interval J of the dif. equation (q) ,
neither do the values of the funection X form the entire inter-
val J of the dif. equation (Q) . The aolution X(t) is
called complete iIf 1 = J end if the values of the function X
form the interval J . The object of the theory of complete
transformations is to study the necessary and sufficient con-
ditlons for the existence of campiete solutlonag X of the 4if.
equation (Qq) , to determine the generslity of such solutions
and to describe the structure of the set of all complete solu-
tions of the dif. equation (Qq) . Even from this brief outline
of the object of the theory of complete transformations one may
realize that it 1s a vast theory, deeply affecting the notions
of the theory of 2nd order linear d4if. aquaﬁions. And we may
add that it is, on the whole, a most satisfactory theory, since

it leads to resuits of a definite kind,

7. The algebraic theory of general dispersions.

\

Let me now speak about the algebralc theory of general dis-
persions which belong, in my opinion, to the smartest parts of
the theory of transformations. I shall sgain considér the linear
dif. equations (q) , (Q) , etc., which are oscillatory and, more-
over, assume that their interval of definition 1s always the inter:
val J = (=00 500) » To the algebraic theory in question both

these assumptions are essential. \
\
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Let us use the term phase function for every function
which is defined in the interval J = (=00 ,00) , which is
unbounded on both sides, which belongs to class 03 (1, e,
always haes a continuous derivative of the 3rd order) and whose
first derivative (&° 13 always different from O : o' (t) # 0
for € € J » "Ithe importance of the phase functions for the the-
ory of {trensfprmations conaists in the fact that every first
phase of the dif. equation (q) 1s a phase function but that
there also holds, vice versa: Every phase function o. 1is the
firat phase of the dif. equation (q) whose carrier is given
by the formula q(t) = n-{ab, t} - ob'z(t) « For this reason we
simply speak about phases instead of phage functlons.

Let us consider the set Yg composed of all the phases
and define, in aq y & binary operation - 1. e. multiplication =
by composing the functions, so that the product o@ﬁ of an
arbitrary sequence of two elements ok ,ﬁ in ‘@/ is the com~
posed function ¥ [ﬁ (t)] « One can easlly see that the set
together with this multiplication is a group. This group is
called group of phases. Its unit is, of course, the function
‘fo(t) =t . We can say that the algebr ic theory of general
dispersions is a study of the structure properties of the group
@) end their relatione to the general dispersions of linear dife
equations of the 2nd order. |

When studying the structure of group ’{ﬁ we meet, first
of all, its sub-group % [ ‘6}/ s which is composed of all the
increasing phases. This subgroup P, has the index 2 and is
invariant in ‘? ¢ 80 that the factor-group (&} /?/ is composed
of two classes one of which is /P/ y whereas the other is formed
by &1l the decreasing phases.
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In the algebraic theory we are dealing with,an important
place is held by a certain subgroup (g of the group ‘9 ’
namely the so-called fundamental subgroup: % C ‘9 + This
fundamental subgroup is composed exactly of all the phasesa of
the dif. equation y" = -y in the interval J = (=92 ,00),

Its importance lies in the following property: If we form the
decomposition E of the group ‘fj into right classes with re-
gard to the subgroup % , 80 that E = g/r.g‘i' y then every

class %ob € E 1is composed of phases of exactly one dif. equa-
tion (q) , namely of phases of the dif. equation with the carrier
q(t) = "{f ’ t]-» ['2(1:) s where r stands for an arbitrary
phase of that class. The correspondence between the classes of
the decomposition E and the dif. equations (q) 4is a one-to-
one correspondence. A further important result is given by the
theoren:

The set I(Q,q) of all general dispersions of the dif. equa-
tions (q) , (Q) or 211 the integrals of Kummer's equation (Qq),
defined in the interval J , is given by the formula:

1(Q,q) = A “1.?00
where 1 , & stand for an arbitrary first phase of the dif.
equation (Q) or (q) , respectively .

From this result it follows in particular (Q = q , H = ol )
that the set I(q,q) of general dispersions of the dif. equation
(q) , in other words, the set of all integrals of Kummer s equa-
tion (qq) in the interval 3 , is a subgroup in the group ‘9-’ ’
conjugated with the fundamental subgroup % t I{q,q) = d»"lﬁoa.

For lack of time I cannot deal with the study of the alge-
bralc structure of the group @« any longer. I only wish to add
that considerations besed on this study have made it possible to
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solve several problems which would otherwise be very difficult

to approach. By this method it was found, for example, that the
set of all the dif. equations (q) in the interval J = (-89  oc
having the same basic central disperaion ffl , always has the
cardinal number of the continuum, regardless of the cliolce of

the function 501 « Furthermore, one has characterized the gene~
ral dispersions of the dif. equations (q), (¢) by means of thei
relations to the groups 1I(Q,Q) , X(q,q) , one has found common

solutions of two Kummer’s equations, etc.

8. Geometric elements in the transformation theory.

Let ua now proceed to study the geometric elements occurring
in the theory of transformations. As I have already said, the
theory of transformations represents an effective means of inves-
tigating centroaffine differential properties of plane-~curves
of global character.

Consider, in a centroaffine plane, an arbitrary curve C ,
defined by its parametric coordinates U , ¥V , in some open
interval J . Suppose these coordinates are related to s certain
fixed coordinate system given by two vectors X1 9 X5 with the
origin O . With regard to the method applied in what follows,
we shall first assume that the functions U , V belong to class
C, y 1. e., have, in the interval J , continuous derivatives
of the 2nd order and, furthermore, that their Wronskian W =
= UV" - UV 4s always different from O . Upon these conditions
there exlsts a 4if. linear equation of the 2nd order with conti-
nuous coefficlents s B.

(A) ¢ +AY + BY = O
characterized by the property that the functions U, V are its
integrals and that these integrals are independent of each ¢ther.
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Let us now study the differential centroaffine properties
of the curve C , i. e. the properties ihdepandent with regard
to the centroaffine transformations as well as to the transfor-
mations of the parameter. The dif. equation (A) evidently
represents a definition-equation of the curve C 4in the sense
that the integral curves of the dif. equation (a) define the
curve C up to the centroarffine transformations. As to the
transformations of the parameter, we can choose the paremeter
of the curve C 8o as to transform the 4if. equation (A) into
Jacobi’s form (q) y" = q(t)y with a continuous coefficient gq
in some interval J = (a,b) (bounded or unbounded). We see that,
for a convenient choice of the parameter t ¢ j , the curve O
may be defined, up to the centroaffine transformations, by the li:
dif. equation of the form (q) .

Let us, next, assume the curve C to be reguler, i. e.
locally convex and without points of 1nflection} This assumption
can be expraessed by the fact that the carrier ¢ of the corres—
ponding dif. equation (q) is always different fraﬁ O ¢
q{t) + 0 for t e J .

On the whole, we then suppose that the definition~equation
of the curve € 1is of the form (q) whilst the function ¢
is always different from O .

Well, first there is the question of expressing the funda-
mental centroaffine invariants of the curve C , namely the centr«
affine ariented arc s(t|k)) and the centroaffine curvature k(t.
of the curve C by means of the function q . These invariants

are given by the following formulas:

b
(1)  s(t)t,) = sgn w . L \1aleD] ae ,

1
3837

(2) k(t) = 8s8gn v . (

)’ ] (t! tce d* 4
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where w stands for the Wronskian formed by the coordinates
ult) , v(t) of the curve c.

Note that if the function q 1s perlodic with period p ,
then, according to (2), for ¢, t+ pe J ¢

£+P
I. k{6 )ag =0 .
t

9. QJeonmetric significance of the central dispersions.

Let us now consider the geometric significance of the centra
dispersions. To that purpose we shall denote by P(t) , t ¢ § ,
the point of the curve C given by the parameter <t and, furthe
by q‘(t) the tangent of the curve C at the point P(t) .

Then the followlng theorems apply:

1* Two points P(t,) , P(t;) of the curve C , determined
by the values ¢, , t, of the parameter t , different from
each other, lie in the same straight line passing through the
origin 0 , if and only if tl ’ tz are zeros of the same in-
tegral of the dif. equation (q) .

2° Two tangents " (t;), T'(t,) of the cuwrve C , deter-
mined by the values *t,, t, of the parameter t , different from
each other, are parallel, if and only if tl' t2 are geros of
the derivative of the same integral of the dif. equation (q) .

3° The tangent T'(t,) and the straight line OP(t,) are
parallel, if and only if there exists an integral v of the dif.
equation (q) wvanishing at t, and whose derivative vanishes
at ty : v(ty) =vit,) =0,

From this as well as from the definition of central disper-
sions we realize the geometric significance of central dispersion
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For every value t ¢ § end every index 'y = 1, 32, s
there holds: The points P(t) , P [tf\, (t)] lie in the same strai
line passing through the origin O 3
the tangenta T(t) , T [’Vv (t)] are parallel ;
the straight line OP(t) end the tangent [}, (t)| ere peralle
the tangent T/ (¢) end the straight line GP[wv(t)] are paralle

In all theae cases the mentioned values of the parameter

are not only a sufficient but also a necessary condition of the
described position of the points and tangents of the curve C .
The theory of central dispersions has been succesafully
applied in the atudy of a certain class of plane-curves, the
so-called curves (F) . By a curv (F) we understand a plane-
curve vhich has with regard to a given pepcil of straight lines
through a point 0 , F , the following position: Every line p
of the pencil F intersects the curve, at least, at two differer
pointas, and in such & way that the tangents of the curve are,
at all points of intersection with the straight line p , para-
llel with each other.

Examples of curves (F) are the ellipses as well as the
logarithmic aspirals.

Well, considering the geometric significance of central
dispersions I have spoken about, we easily realize that the
curves (F) are defined by linear dif. equations (q) charac-
terized by the fact that their basic central dispersions of the
1st and 2nd kind coincide: o, (t) = Y, (¢) .
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Dif. equations | (q) with this property of the basic central
dispersions have been thoroughly studlied: Every dif. equation
(q) of this kind has, in particular, the property that iz basic
central dispersion of the lst (and thus even of the 2nd) kind
@;(t) (= Yy(£)) 4s linear of the form () =ct+ k
(¢ and k are constants, ¢ > 0). These Adif. equations (q)
also include the dif. equations (q) whose basic central die-
persions of the 3rd and the 4th kind coincide: Z 1(1;) ﬁwl(t) .
The curves defined by the dif. equations (q) are the so-called
J« Radon curves, often dealt with in the literature. They are
characterized by the property that not only are the tangents of
the curve at the polnts of intersection parallel with each other
but, at the same time, the straight line p° of the pencil F ,
parallel with these tangents, intersects the curve at the points
at which the tangents are parallel with the straight line p .

For lack of time I cannot give a more detalled description
of the results concerning the curves (F), Let me Jjust point
out that one has found, in particular, the finite equdtion in
polar coordinates of all curves (F) :

r=C%, Flaw)

¢ (>0) is a constant and F (€ 02) a positive periodic functi
with period 9" , which eatlafies a certain differential inequali
expressing that the corresponding curve (F) is regular.
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10. Centrosymmetric curves.

A further section of the theory of transformations including
geometric elements/concerns the dif. equations (q) in the in-
terval J = (o0, @) , which are oscillatory and such that the
distance between every itwo geros od thelir integrals is conatant
and always the same. It is therefore a question of oscillatory
dif. equations (q) vwhich have the basic central dispersion of
the 1st kind of the form {(t) = t+ k, where k >0 is a
conatant. We shall briefly#rite Y’ instead of 9?_ « These
dif. equations (q) have been studied by many authors.

Firat, let us note that the problem of determining all the
dif. equations {(q) defined in the interval J = (~02, c0)
and having the mentioned basic central dispersion <f( t) is in-
cluded in the following, more general problem: Determine all
the oscillatory dif. equations (g) 4in a certain interval J,
which have & given basic central dispersion (f(t) « It can be
shown that, for every choice of the function ?(t) (having
certain properties belonging to every basic central dispersion
of the 1lst kind) there exist dif. equations (q) whose basic
central dispersion ias (f'(t) and that the set of all such dif.
equations (q) has, for every choice of the function (f( t) ,
the same potency, namely that of the continuum , N « We may
even show that all the dif. equations (q) having a given baasic
central diaspersion (f’(t) are determined by the formula:

- " (¢ ¥olt) ‘(¢
(1) q(t)“qa(t)*%;&;}- +2W¢§;ﬁ%‘ ’

where qo(t.) is the carrier of an arbitrary dif. equation with
the basic central dispersion (f(t) ’ 3’,;,(%) is an arbitrary
integral ot the dif. equation (q,) and p(t) an arbitrary



function with certain properties vhich I shall, for lack of
time, not introduce.

Well, let us now return to the special case Cf’(t) = £+ k
and choose, for example, k = J" . In {ihis case the formula (1)
yields, for the notation p(t) = p(@) ,exp £(t) ,
(2)  F(t) = -1 + £7(t) + £(t) + 2.2 (t).cotg £
whare £ 1s an arbitrary function in the interval J = (=o0Q , 00
with the following properties:

£t +9) = 2(t) for teJ; feC,; £(0) =£(0) =0

rrex ~2f - 1 a6 = O .
A sin“ 6"

Let us now consider, for a while, the oscillatory d4if.
equations (q) in the interval J = (=, °?) , with the pro-
perty Y(t) =t + I, The carriers q of these dif. equations
are therefore given by the formula (2) . Let us denote by the
symbol Q4 the set of all the carriers that are always £ 0 .
From the formula (2) Mr. F. Neumann has raecently deduced an

elegant result which may be expressed by the formula

i
P =
(3) % f"q( 6P a6 ’

where p 1s an arbitrary number satisfying the inequality
O & p £1 and the maximum 1s reached exaétly for the function
q(t) = =1 . |

Well, what are the geometric slements occurring in connectic
with the theory in queation 7

Let C be an arbitrary regular curve defined by the para=-
metric coordinatea U(T) , V(T) which are the integrals of a
certain dif. oscillatory equation (Q) 4in the interval J = (=~
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' Suppose the curve C is symmetric with regard to the origin O
of the considered coordinate system. This symmetry of the curve
C 1s expressed by the fact that the values of the amplitude
R(T) = \/{12 (T) + V2 (T)' for every two values of the parameter,
T, @(T) ;, are the same:

(4) R[] = R(T
(§ evidently stands for the basic central dispersion of the lst
kind of the d4dif. eQuatisn (Q) « Mention now that in the analy-

tic apparatus of the theory of transformations the following

formulas are occurring

H[@(T)]“ R(T) *W:sgnﬁ(?) s  R(T) = @ﬂi '

where H stends for en arbitrary (first) phase of the dif.
equation (Q) and W for the Wronskian of the basia U, V .

These formulas, together with (4) yield §(T) =1, 80
that we have (ﬁ("l‘) =T+ K (K» 0) , Vice versa, it can be
shown that this linear form of the basic centrsl dispersion é
is sufficient for the curve C to be symnmetric with regaré to
the origin O .

Let us now transform the parameter of the curve C by

substituting T = K t . This transformation keeps Jacobi’s

form of the 4if, eqz:atian (Q) and we can show that the basic
central dispersion (f(t) of the newly formed dif. equation (q)
s @(t) = t+ T .

Thus we arrive, first of all, at the result that every re-
gular plane-curve C which is symmetrlic with regard to the ori-
gin O of the coordinste system may be defined by the dif. equat
(q) with a carrier of the form (2) , £ denoting a convenient

function.



The curve C 1s evidently closed and its centroaffine

length s 1is given, according to (1) , by the formula
o~

g = vlc{fﬁ‘)tdé'.

0o
Employing the formula (3) for p = -%- s We gat the

inequallty

s<«21" ,
the equality being reached Just for the ellipse u(t) & sin t ,
v(t) = cos t .

Thus we have arrived at the followlng result:

The centroaffine length of every regular centro-symmetric
plane-curve defined by an @scillatory dif. equation (q) in
the interval j - (-2 ;02 ) 1is always at most equal to 27T,
the equality occuring only in the case of q(t) = «1 .

Now let me close nmy lecture with a few remarks.

Recently a number of further geometric applications of the
theory of transformations have been arrived at by H. Guggenheimer
(Brooklyn) and will be published in an article which will appear
in our periodical Archivum Mathematicum in Brno. I believe the
theory of transformations yields, for the differential global
geometry of plane-curves, many further possibilities, for example
in Minkowski’s geometiry., Its value in this respect copsists, in r
opinion, in the fact that ii{ has been systematically developed
and forms a complete theory rich in notions and methods, so that
it presents a wide theoretical basls with a powerful analytic apr
ratus for so¥ving various problems of dig. geometry. If you are
intereasted in more detailed information about the theory of trans
formation you will find it in ny book "Lineare Differentialtrans-
formationen 2. Ordnung”, published in Berlin (DDR) in 1967. At

present it 1s being translated into English and will be published
the University Press.
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