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031 COTfBAL DISPERSIONS Of 0?HE EEy?EHMTIAI# 
EQUATIONS X" * q(t)t WlfH FEHIOOOXC COOTICIMTS 

0. Bonivka, Brno 

I* Introduction, 

In the following lecture X shall deal with ordinary 
2 n d order linear differential equations of Jacobi's type 

mostly oscillatory. 

Suppose that the coefficient q, the so-called carrier of 
the equation (q)» i s a continuous function in the interval 
i « ( -©a,*©) . The equation (q) i s called oscillatory If each 
of i t s integrals has an infinite number of zeros which accumu­
late towards both ends of j . The prototype of these oscillatory 
equations i s the equation (-1) y" « -y, t e j9 which we shall 
often deal with in what follows* 

Let us consider, in particular, the equations (q) with 
periodic carriers q* The theory of these equations i s governed 
by Floquet's theory* According to the latter, every equation 
(q) with a periodic carrier q i s either dlsconjugate, !• e#, 
without conjugate points, or oscillatory, To oscillatory equa­
tions (q), en the other hand, one may apply the theory of dis­
persions, based, as we know, on other principles than Floquet's 
theory. We may therefore expect that by combining the notions 
and the results of both theories we may arrive at a new approach 
to oscillatory equations (q) with periodic carriers, yielding 
new results. And this i a exactly the leading idea of the f o l ­
lowing considerations. 



I I , Generalities* 
Let; me, first» introduce some basio notions and results 

from the theory of dispersions* needed i n our studyt 1* phases, 
2* central dispersions, J* inverse equations. 

A l l the equations (q) we shall deal with are oscillatory 
in the interval $ » (-<*> to° )• A composite function, e. g«t 

atb(t)3 w i l l often be written in the form ab(t) or ab. further­
more! we shall use the notations c a(t) * t+nsr (n»o,±l,..»| t€ 3) 
and instead of c^ we shall generally only put o. 

Let (q) stand for an arbitrary (oscillatory) equation. 
1* Phases, Let us note, f i r s t , that by a basis of the equa­

tion (q) or of the carrier q we mean an ordered pair, u,v, of 
independent integrals of (q)* As to the phases, more precisely % 
the f i r s t phases, we distinguish the phases of a given basis 
of (q) and the phases of the equation (q) or of the carrier q. 
By a phase of the basis u,v we mean every function in the inter­
val it OC(t), which i s continuous in $ and, for v(t) $ 0 satis­
fies the relations tan oc(t) « u(t)sv(t)« By a phase of the equa­
tion (q) (of the carrier q) we mean any phase of some basis of 
(q). Every phase ot of (q) has the following properties! 
l» a(t)* c5, 2. a,'(tHO for te A* 5# lim a(t)«<5.sgna'.oo (s «tl) 
Every phase ou of (q) uniquely determines i t s carrier in the 
sense of formulas 
(1) q(t) * - (tana ft} (t6 j)» 
where the symbol i } denotes Schwartz1 s derivative of the func­
tion tana, at the point t. The carrier q with the phase a i s 
also denoted q^ • 



ct i s called the upper or the lower phase i f the property 
2* i s reinforced by the inequality oc/(t) > 0 and i f , moreover, 
there holds <X(t) > t or oc(t) < t (t € d), respectively. Both 
the upper and the lower phase are called dispersion phases* 

The phase oo i s called elementary i f 

06(t+?r) * oc(t) + % •sgncc/ (t e j ) , 

!• e», occ a c a ( W .oc • Every elementary phase a i s of the form 

a(t) * t,sgna' + p(t) (t € j) 

where p i s a periodic function with period 3T i pc a p, 

The set formed of a l l the elementary phases, together with 
the operation given by composing the functions, forms a group 
called the group of elementary phases,^ • 

An important part Is played by phases of the equation 
(-l)i y M n ~y. Each phase of the latter, fc(t), may be expressed 
in the form 

(2) s (t) a Q A r o tan C. 

where n i s an integer and C;a,b constants such that a € (0,TT3 , 

b € C O , n ) , CjCb-a) 4 0, The expression on the right-hand side 
in (2) denotes the continuous function in the interval A unique­
ly determined by the conditions t 

£(-a-n^l?f )«0, tan fc(t)»C«sin(t+a)isin(t+b) for sin(t+b)4Q, 

t i s an upper phase i f C*sin(b*a) > 0 and, moreover, 
either n » 1 and between the constants Cfa,b there are further 
relations, or n :>2| £ i s a lower phase i f , again, C«sin(b~a)>0 
and, moreover, either n « 0 and between the constants C$a,b 
there are further relations, or n 4 -1. 



mf m* 

£he set? of a l l phases of the equation (~1), together with 
the operation given by the composing of functions 9 foras again 
a group called the fundamental group ^* fhe latt e r i s a sub­
group i n $ t % c i hence a l l the phases of the equation (~1) 
are elementary. 

An important results Let oc be an arbitrary phase of the 
equation (q)« fhen a l l the phases of the equation (q) are exact­
l y the composite functions £0t(t)» • 

2» Central diversions* fo every number n (»Ottlf •*•) there 
corresponds the central dispersion (of the f i r s t kind) with the 
index n of the equation (q) or of the carrier q y denoted Qp n« 

I t i s a function i n the interval $ and i t s value <yn(t) (t € j) 
i s determined as follows, I f n * 0, then <jpn(t) i s the \n\th 

conjugate number (of the f i r s t kind) with the number t, greater 
or smaller than t according as n > 0 or n < 0. In case of n a 0, 
we put % ( t ) * t. The dispersion q v i n particular, i s called 
basic and i s often denoted • 

from the number of important properties of the dispersions 
I shall only introduce these, 
Every dispersion cpn has the above properties 1*~3» of 

phases while the property 2# i s replaced by the inequality 
n ( t ) > Of moreover, there holds tJa.j.Cfc) < ^ n ^ * 3)-

We see that Cfn i s an upper or a lower phase of a convenient 
equation according as n > 1 or n$-l» 

Every phase Oc of the equation (q) i s connected with the 
dispersion ^ by Abelian relation 

(5) <XS?n(t) * «,(t) + a.TC »sgttcx/ (t e i)> 



more brieflyi cc<?n » c n # s s a o t,oc, 

Hence follows the expression of the dispersion <j>n by oc * 

Every integral y of (q) as well as i t s derivative y* i s , 
by the dispersion cfn$ transformed into Itself in the sense of 
formulas 

1 
ycj a(t) * <~l) n C ^ ( t ) ] 2 . y(t) f 

(5) _ x 

y > n ( t ) * <~Da t ^ ( t > r ? , y(t), i f y(t ) « o . 

If q(t) < 0, t 6 it then thore holds* for n >, 1, 

with convenient numbers ^2^1 ( VttiM»»»2a)» latter separate 
the zeros (t«s)a0< a^< <a^(aj ($>n(t)) of every integral y of (q), 
which vanishes at the number t 9 and the zeros b^< . < b n of i t s 
derivative y*, lying in the interval (t> <J>a(t))t 

(t«)a0< t x< b x< t 5 < %< t 5 < ,., < t t a ^ 3 < b n < t t a_ x< a^C* % ( t ) ) . 

By means of the central dispersions cpn we define the dis­
tance functions of the equation (q) or of the carrier q by the 
relation 

d^t) * <f a(t)~t (n*Of!l,*..f t € A) 

with the evident meanings <yt) i s the distance of the number 
<?a(t) from t# Clearly, ̂ ( t ) | 0 according as n | 0* d^ ( > 0) 
i s the basic distance function| i t i s often denoted by d. 
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3* Inverse equations. Let me now introduce a new notion, 
namely that of the inverse equations with regard to (q)« 

A differential equation (q) i s called inverse of the equa­
tion (q) i f i t has a phase 61 which i s the inverse function of 

mm « * » ! 

some phase oc of (q)t oc» ot • 
From this definition there follows a number of properties 

of inverse equations} I shall introduce only those we shall need 
in what follows* 

Symmetry! If (q) i s inverse of (q) t then (q) i s inverse of 
CD. 

0!he carrier of the equation inverse of (q), with the phase 
£ f i s given by the formula 

q^ (t) * ~1 - [ 1+q 5 (t)l ( 5(t)) ' 2 

(She set of a l l (oscillatory) equations (q) i s decomposed 
into nonempty disjoint subsets, called blocks, so that the latter 
form a decomposition U of the set in question* To each block 
u e U there exists exactly one inverse block, u e U, with the 
characteristic property! Any two equations (q) c u, (q) e 3 are 
inverse of each other* 

The proof of this theorem lies deep in the algebraic theory 
of oscillatory equations (q) and cannot be introduced here for 
want of space* 

III* Study of the problem* 

Well, applying the above notions* I may now proceed to the 
main subject of my lecture dealing* according to the t i t l e , with 
the properties of the central dispersions of the oscillatory 
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equations (q) with periodic carriers qt qo « q, t e A* The set 
of these equations will be denoted Â . 

Lot, f i r s t , (q) € ^ . Then there holda, i f y l a an integral 
of the equation (q) v then the function yc i s an integral of (q) 
as well* Hence we easily deduce that to every phase oc of (q) 
there exists a phase of the equation (-1), z € ̂  • such that 
ccc n eoc , Consequently <x i s a solution of the equation 

(?) a(t+rc) n ea(t) (t € A) 
or 

( 9 0 g n o c , s) accent) « t(t). 
* 

Uhe function ~ o r_ / i s , by (4). the fundamental dispersion 
of (q ^ ) or the function inverse of this dispersion, according 
as OC' > 0 or oc'< O, 

Consequently! 
£(t)fc ^ is a dispersion phase, upper or lower, according 

as oc;> 0 or ot'< 0* 

The fundamental dispersion of the inverse equation (q 
and, therefore, every central dispersion of the latter, lies in 
the fundamental group ^ * 

These results suggest the question whether the above proper­
ties of phases and central dispersions of the equations of the 
class A_ or of the corresponding inverse equations are charac-

«*2 - ^ — . - v » . — . u 
the sense of the following theorems t 

The equation (q) belongs to the class i f and only i f 
each of i t s phases oc satisfies the equation (7) with a dispezv 
aioa phase t ( t ) € $ . 



fhe equation (q) belongs to the class A^ i f and only i f 
a l l the central dispersions of each inverse equation of (q) l i e 
i n the fundamental group ^ • 

Furthermore, one may, i n this connection, prove the theo­
rems i 

The fundamental dispersions of the equations inverse of the 
equations of the olass A^ are exactly a l l the upper phases of 
the fundamental group $. 

A l l the equations (q) of the same block simultaneously e i ~ 
ther belons or do not belong to the clasa A>. 

Remember that the class A^ consists of oscillatory equations 
(q) with periodic carriers: q(t+ at) » q(t), t e (-*oo,co)« 

2* Into our considerations there have entered, as an imp or* 
tant element, the central dispersions of the equations Inverse 
of those of V 

In this connection there arises the question concerning the 
properties of the central dispersions of the equations of the 
olaaa ̂  t h e s e s . The central dlspersiona of the equations 
(q) € Ap have, i n fact, the following remarkable property! 

A l l central diaperaiona of every equation (q) € ^ are ele-
mentary# 

In other words t 

A l l distance functions of every equation (q) € Ap are peri­
odic. 

Indeed, l e t (q) £ Ap and cf be the fundamental dispersion 
of (q)* 



?e easily ascertain that? the proof need not be given but 
for the dispersion cy • 

Well, l e t oc(e, g. «/> 0) be a phase of (q), From (7) and 
(3) there follows 

OtCGp » &cxcf ss t e a tt c^oc « coco 

consequently, c cp » (a*^o oc)c a ^ c so that ^c « and the 
proof i s accomplished. 

3« In this place I have the opportunity to mention the class 
of the equations (q) characterised by the fact that their funda­
mental dispersions are elementary* Let the class of these equa­
tions be denoted by A, so that (q) £ A <j c = c Cj>. Fe have 
just seen that A^c A. 

The equations (q) € A may be characterised by the following 
geometric property* Let C be an arbitrary integral curve of the 
equation (q) € A, whose parametric expression i s given by some 
of the bases of (q) £ A. Let 0 stand for the origin of the coor* » 
dinates and OP(t) for the radius vector from the point 0 to the 
point P(t) € C determined by the value of the parameter (time) t» 
Then the oriented areas traced out by the radius vector QP(t5 > 
and the opposite radius vector 0P( c^(t)) i n the time from t to 
t+ 7T are the same* 

The equations (q) with elementary fundamental dispersions 
occur even i n other connections, e* g#, i f there i s a question 
of determining pairs of equations (q) with interchangeable fun-* 
domental dispersions* 

The theory of the equations (q) ( A i s extensive, so I can­
not - for want of time - deal with i t i n detail but shall confine 
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myself to a few remarks. 

The theory of the equations (q) £ A i s fundamentally analo­

gous to the theory of the equations (q) € Ap, the part of tho 

group ^ i n the lat ter being taken over by the group of the ele­

mentary phases, ^ • 

In particular, there holds i 

The equation (q) belongs to the class A i f and only i f each 

of i t s phases a satisfies the equation a(t+ J T ) » hoc(t) (t t $) 

with a dispersion phase h(t) € ^ • 

The class A i s closed with regard to the operation of forming 

inverse equations. 

The equation (q) belongs to the class A i f and only i f the 

carriers q(t), q(t+Jr) have the same fundamental dispersion. 

I f (q) € A, then there exist, i n every interval Lt , <f(t)), 

at least four mutually different numbers t l t t 2 , t ^ , t ^ such that 

q C t ^ i r ) « qCtjt) ( i A 1,2,5,4). 

Hote that, by the f i r s t theorem, the class A i s wider than 

4. How we arrive at the last point of my lecture, where we 

return to the equations (q) with periodic carriers J (q) & Ap. It 

w i l l be a question of expressing real periodicity factors (charac-

ter is t ic roota) of tho equations (q)€ ^ by means of the values 

of the derivatives of central dispersions and, furthermore, of 

estimating the absolute values of tho periodicity factors by 

means of the extreme values of the function l q | . 

Well, l e t (q) € A^ be an arbitrary equation whose periodicity 

factors Qe ( ( T a + D are real* Denote 



A a 3^ + S ^ , 

so that the charaoteristic equation corresponding to (q) i s , by 
p 

Floquetfs theory, s - A.s + 1 a 0 and, according to the suppo­
sition, we have I A) > 2. 

Let s be one of the roots s e • Then there exists a nontriv-
i a l integral y Q of the equation (q), with the property 
(8) y 0c a s.y0 . 

The equation (q) being oscillatory, the function y Q has at 
least one zero xs y 0(x) a 0. From (8) then follows y Q(x+Jc) a 0. 
e see that the point x+x i s right conjugate with the point x. 

So we have, for a natural ni 

(9) ° i f n ^ a X + 3 T , 

Let u,v denote the basis of the equation (q), determined by 
the i n i t i a l values: 

(10) U(x)al, U #(x)aO| V(x)«0, v'(x)al. 

Then A a U(X+TT )+V*(X+TT ) whence, by (9),(5)§(10), there 
follows 

1 _ 1 
A a (-l)a ( [<f £(x)] ? + Wi(x)l" 2 )• 

We see that the periodicity factors of (q) arei 

(11) s^ a (-D^aCx)! 2 (flr «tl). 

Now suppose that the carrier q of the equation (q) i s always 
different from zero* q(t) » 0 (t 6 j ) . 

Then, by (11) and (6), we havei 

(12) s^ a (-1) Iĝ xp-'SCSp- Wx4n-lJ 
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with convenient numbers 3 c 2 v ^ (ys&,...,2n), and which separate 
/ the zeros (x»)a0< a^< <an(«x4>Jr) of the integrals y Q and the 

zeros b^< , <b n of its derivative y*, lying in the interval 
(x,x+3C)t 

(x»)aQ< x x < b1< x 3 < a 1 < < ... < < b n< x ^ ^ < a^ax* * ) 

Denote 
m * min !q(t)l» M a max I q(t)| 

so that 
0<a4M, 

n stands for the number of zeros of the function y Q in the 
interval tx,x+?r) and therefore, by a classical theorem, satis­
fies the inequalities 
(13) Vm £ n ^ V¥. 

From (6) we have 

(» * 4 (ff 
which, together with (11) and (1J), yields 

Thus we have arrived at the following results 
If the periodicity factors sff of the equation (q) « ^ are 

real (6"=itX), then their values are given by the values of the 
function cpn in a number * € d, in the sense of formula (11). If, 
furthermore, the carrier q i s always different from zero, then 
the numbers s c may be expressed by values of the carrier q in 
the sense of formula (12)* In that case there hold, for absolute 
values of the numbers ŝ . , the inequalities (14). 

Koto that the inequalities (14) may be employed to obtain 
information as to the absolute values of the periodicity factors 
for H i l l f s equation in case of instability. 



I V . F i n a l remark. 

L e t me now f i n i s h my l e c t u r e w i t h a shor t l ook a t the a l g e ­

b r a i c theory o f ( o s c i l l a t o r y ) equations (q) and s t r e s s the c o n ­

n e c t i o n o f the c l a s se s Ap and A w i t h other elements o f the theory 

i n question* 

The b a s i c n o t i o n of the a lgeb ra i c theory o f the equat ion (q) 

i s the group of phases. 

The group o f phases, i s the se t o f a l l phases o f a l l the 

equations (q) w i t h the group-operat ion g iven by the composing of 

f u n c t i o n s . The u n i t o f 1, i s the f u n c t i o n t U t , 

The i n c r e a s i n g phases form, i n an i n v a r i a n t subgroup
 <£J,Q, 

w i t h the index 2g the decreas ing phases form a cose t o f the f a c ­

t o r group ^ / ^ j t denoted 

The upper phases a sire cha rac t e r i zed by the i n e q u a l i t y 

a ( t ) > t (€ J> | they form a subset i n c a l l e d the upper 

complex, K r The lower phases cL are c h a r a c t e r i z e d by the i n ­

e q u a l i t y 0C(t) < t J ) | they too form a subset i n
 c0f 0, c a l l e d 

the lower complex, The complexes ( 6 « ± 1 ) are d i s j o i n t 

and c o n s i s t o f func t ions mutua l ly inverse* ^ i s composed o f the 

fundamental d i spe r s ions o f the equations ( q ) i c o n s i s t s o f 

func t ions i nve r se o f these d i spers ions* F o r f e % there a p p l i e s t 

The se t o f a l l phases o f the equat ion (-1) forms a subgroup 

i n <£J,t namely the above mentioned fundamental group ^ . The l a t ­

t e r generates, on HJ.. the r i g h t decomposit ion ^ J / r ^ and the l e f t 

d e c o m p o s i t i o n * ^ . Each element o f the former has the form 

<̂ 06 C 016 ^ ) | i t i s the se t o f a l l phases o f the equat ion (q) 

w i t h the c a r r i e r g iven by the formula ( 1 ) . Each element o f the 



- 14 -

latter i s of the form a,^ (<x* ^ ); i t i s the set of the func­
tions inverse of the phases of (aa.<,) • Every element u s U of 
the least common covering U «s M j / r % i %] i s the union of 
the phases of some equations (q) [43 • The latter form the block 
corresponding to the element u. To u there exists exactly one 
inverse element u*"1 £ 5 composed of the functions inverse of the 
phases lying in u. Every equation (q) from the block correspond­
ing to u i s inverse of every equation from the block correspond­
ing to u and vice versa* 

The center of the group ̂ 0 n | . i s the infinite cyclic 
group ^ . s { c

nC*)} ( ° n ^ a *+nlt I n»0,tl,•••). The group O t ^ o c 

( ot€ c 0 p consists of the central dispersions of the equation 
(qa. )• The normalizer of ̂  in ̂  i s the group of elementary 
phases,^* There holdst • 

The class A consists of a l l the equations (q) characterized 
by the fact that the inner automorphisms of the group <0J,> formed 
by their phases ct , the so-called phase-automorphisms of the 
equations (q) 9 transform the center ̂  into i t s normalizer; 
0t~ 4^,0C C ̂  • The same class A consists of the equations (q) 
inverse of the equations of class A* 

The class i s a part of A i A ^ c A . The equations of the 
clasa ̂  are characterized by the fact that the phase-automor-
phisms of the inverse equations transform the center ^ into the 
fundamental group j£ . 
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