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031 COTfBAL DISPERSIONS Of 0?HE EEy?EHMTIAI# 
EQUATIONS X" * q(t)t WlfH FEHIOOOXC COOTICIMTS 

0. Bonivka, Brno 

I* Introduction, 

In the following lecture X shall deal with ordinary 
2 n d order linear differential equations of Jacobi's type 

mostly oscillatory. 

Suppose that the coefficient q, the so-called carrier of 
the equation (q)» i s a continuous function in the interval 
i « ( -©a,*©) . The equation (q) i s called oscillatory If each 
of i t s integrals has an infinite number of zeros which accumu
late towards both ends of j . The prototype of these oscillatory 
equations i s the equation (-1) y" « -y, t e j9 which we shall 
often deal with in what follows* 

Let us consider, in particular, the equations (q) with 
periodic carriers q* The theory of these equations i s governed 
by Floquet's theory* According to the latter, every equation 
(q) with a periodic carrier q i s either dlsconjugate, !• e#, 
without conjugate points, or oscillatory, To oscillatory equa
tions (q), en the other hand, one may apply the theory of dis
persions, based, as we know, on other principles than Floquet's 
theory. We may therefore expect that by combining the notions 
and the results of both theories we may arrive at a new approach 
to oscillatory equations (q) with periodic carriers, yielding 
new results. And this i a exactly the leading idea of the f o l 
lowing considerations. 



I I , Generalities* 
Let; me, first» introduce some basio notions and results 

from the theory of dispersions* needed i n our studyt 1* phases, 
2* central dispersions, J* inverse equations. 

A l l the equations (q) we shall deal with are oscillatory 
in the interval $ » (-<*> to° )• A composite function, e. g«t 

atb(t)3 w i l l often be written in the form ab(t) or ab. further
more! we shall use the notations c a(t) * t+nsr (n»o,±l,..»| t€ 3) 
and instead of c^ we shall generally only put o. 

Let (q) stand for an arbitrary (oscillatory) equation. 
1* Phases, Let us note, f i r s t , that by a basis of the equa

tion (q) or of the carrier q we mean an ordered pair, u,v, of 
independent integrals of (q)* As to the phases, more precisely % 
the f i r s t phases, we distinguish the phases of a given basis 
of (q) and the phases of the equation (q) or of the carrier q. 
By a phase of the basis u,v we mean every function in the inter
val it OC(t), which i s continuous in $ and, for v(t) $ 0 satis
fies the relations tan oc(t) « u(t)sv(t)« By a phase of the equa
tion (q) (of the carrier q) we mean any phase of some basis of 
(q). Every phase ot of (q) has the following properties! 
l» a(t)* c5, 2. a,'(tHO for te A* 5# lim a(t)«<5.sgna'.oo (s «tl) 
Every phase ou of (q) uniquely determines i t s carrier in the 
sense of formulas 
(1) q(t) * - (tana ft} (t6 j)» 
where the symbol i } denotes Schwartz1 s derivative of the func
tion tana, at the point t. The carrier q with the phase a i s 
also denoted q^ • 



ct i s called the upper or the lower phase i f the property 
2* i s reinforced by the inequality oc/(t) > 0 and i f , moreover, 
there holds <X(t) > t or oc(t) < t (t € d), respectively. Both 
the upper and the lower phase are called dispersion phases* 

The phase oo i s called elementary i f 

06(t+?r) * oc(t) + % •sgncc/ (t e j ) , 

!• e», occ a c a ( W .oc • Every elementary phase a i s of the form 

a(t) * t,sgna' + p(t) (t € j) 

where p i s a periodic function with period 3T i pc a p, 

The set formed of a l l the elementary phases, together with 
the operation given by composing the functions, forms a group 
called the group of elementary phases,^ • 

An important part Is played by phases of the equation 
(-l)i y M n ~y. Each phase of the latter, fc(t), may be expressed 
in the form 

(2) s (t) a Q A r o tan C. 

where n i s an integer and C;a,b constants such that a € (0,TT3 , 

b € C O , n ) , CjCb-a) 4 0, The expression on the right-hand side 
in (2) denotes the continuous function in the interval A unique
ly determined by the conditions t 

£(-a-n^l?f )«0, tan fc(t)»C«sin(t+a)isin(t+b) for sin(t+b)4Q, 

t i s an upper phase i f C*sin(b*a) > 0 and, moreover, 
either n » 1 and between the constants Cfa,b there are further 
relations, or n :>2| £ i s a lower phase i f , again, C«sin(b~a)>0 
and, moreover, either n « 0 and between the constants C$a,b 
there are further relations, or n 4 -1. 



mf m* 

£he set? of a l l phases of the equation (~1), together with 
the operation given by the composing of functions 9 foras again 
a group called the fundamental group ^* fhe latt e r i s a sub
group i n $ t % c i hence a l l the phases of the equation (~1) 
are elementary. 

An important results Let oc be an arbitrary phase of the 
equation (q)« fhen a l l the phases of the equation (q) are exact
l y the composite functions £0t(t)» • 

2» Central diversions* fo every number n (»Ottlf •*•) there 
corresponds the central dispersion (of the f i r s t kind) with the 
index n of the equation (q) or of the carrier q y denoted Qp n« 

I t i s a function i n the interval $ and i t s value <yn(t) (t € j) 
i s determined as follows, I f n * 0, then <jpn(t) i s the \n\th 

conjugate number (of the f i r s t kind) with the number t, greater 
or smaller than t according as n > 0 or n < 0. In case of n a 0, 
we put % ( t ) * t. The dispersion q v i n particular, i s called 
basic and i s often denoted • 

from the number of important properties of the dispersions 
I shall only introduce these, 
Every dispersion cpn has the above properties 1*~3» of 

phases while the property 2# i s replaced by the inequality 
n ( t ) > Of moreover, there holds tJa.j.Cfc) < ^ n ^ * 3)-

We see that Cfn i s an upper or a lower phase of a convenient 
equation according as n > 1 or n$-l» 

Every phase Oc of the equation (q) i s connected with the 
dispersion ^ by Abelian relation 

(5) <XS?n(t) * «,(t) + a.TC »sgttcx/ (t e i)> 



more brieflyi cc<?n » c n # s s a o t,oc, 

Hence follows the expression of the dispersion <j>n by oc * 

Every integral y of (q) as well as i t s derivative y* i s , 
by the dispersion cfn$ transformed into Itself in the sense of 
formulas 

1 
ycj a(t) * <~l) n C ^ ( t ) ] 2 . y(t) f 

(5) _ x 

y > n ( t ) * <~Da t ^ ( t > r ? , y(t), i f y(t ) « o . 

If q(t) < 0, t 6 it then thore holds* for n >, 1, 

with convenient numbers ^2^1 ( VttiM»»»2a)» latter separate 
the zeros (t«s)a0< a^< <a^(aj ($>n(t)) of every integral y of (q), 
which vanishes at the number t 9 and the zeros b^< . < b n of i t s 
derivative y*, lying in the interval (t> <J>a(t))t 

(t«)a0< t x< b x< t 5 < %< t 5 < ,., < t t a ^ 3 < b n < t t a_ x< a^C* % ( t ) ) . 

By means of the central dispersions cpn we define the dis
tance functions of the equation (q) or of the carrier q by the 
relation 

d^t) * <f a(t)~t (n*Of!l,*..f t € A) 

with the evident meanings <yt) i s the distance of the number 
<?a(t) from t# Clearly, ̂ ( t ) | 0 according as n | 0* d^ ( > 0) 
i s the basic distance function| i t i s often denoted by d. 
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3* Inverse equations. Let me now introduce a new notion, 
namely that of the inverse equations with regard to (q)« 

A differential equation (q) i s called inverse of the equa
tion (q) i f i t has a phase 61 which i s the inverse function of 

mm « * » ! 

some phase oc of (q)t oc» ot • 
From this definition there follows a number of properties 

of inverse equations} I shall introduce only those we shall need 
in what follows* 

Symmetry! If (q) i s inverse of (q) t then (q) i s inverse of 
CD. 

0!he carrier of the equation inverse of (q), with the phase 
£ f i s given by the formula 

q^ (t) * ~1 - [ 1+q 5 (t)l ( 5(t)) ' 2 

(She set of a l l (oscillatory) equations (q) i s decomposed 
into nonempty disjoint subsets, called blocks, so that the latter 
form a decomposition U of the set in question* To each block 
u e U there exists exactly one inverse block, u e U, with the 
characteristic property! Any two equations (q) c u, (q) e 3 are 
inverse of each other* 

The proof of this theorem lies deep in the algebraic theory 
of oscillatory equations (q) and cannot be introduced here for 
want of space* 

III* Study of the problem* 

Well, applying the above notions* I may now proceed to the 
main subject of my lecture dealing* according to the t i t l e , with 
the properties of the central dispersions of the oscillatory 
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equations (q) with periodic carriers qt qo « q, t e A* The set 
of these equations will be denoted Â . 

Lot, f i r s t , (q) € ^ . Then there holda, i f y l a an integral 
of the equation (q) v then the function yc i s an integral of (q) 
as well* Hence we easily deduce that to every phase oc of (q) 
there exists a phase of the equation (-1), z € ̂  • such that 
ccc n eoc , Consequently <x i s a solution of the equation 

(?) a(t+rc) n ea(t) (t € A) 
or 

( 9 0 g n o c , s) accent) « t(t). 
* 

Uhe function ~ o r_ / i s , by (4). the fundamental dispersion 
of (q ^ ) or the function inverse of this dispersion, according 
as OC' > 0 or oc'< O, 

Consequently! 
£(t)fc ^ is a dispersion phase, upper or lower, according 

as oc;> 0 or ot'< 0* 

The fundamental dispersion of the inverse equation (q 
and, therefore, every central dispersion of the latter, lies in 
the fundamental group ^ * 

These results suggest the question whether the above proper
ties of phases and central dispersions of the equations of the 
class A_ or of the corresponding inverse equations are charac-

«*2 - ^ — . - v » . — . u 
the sense of the following theorems t 

The equation (q) belongs to the class i f and only i f 
each of i t s phases oc satisfies the equation (7) with a dispezv 
aioa phase t ( t ) € $ . 



fhe equation (q) belongs to the class A^ i f and only i f 
a l l the central dispersions of each inverse equation of (q) l i e 
i n the fundamental group ^ • 

Furthermore, one may, i n this connection, prove the theo
rems i 

The fundamental dispersions of the equations inverse of the 
equations of the olass A^ are exactly a l l the upper phases of 
the fundamental group $. 

A l l the equations (q) of the same block simultaneously e i ~ 
ther belons or do not belong to the clasa A>. 

Remember that the class A^ consists of oscillatory equations 
(q) with periodic carriers: q(t+ at) » q(t), t e (-*oo,co)« 

2* Into our considerations there have entered, as an imp or* 
tant element, the central dispersions of the equations Inverse 
of those of V 

In this connection there arises the question concerning the 
properties of the central dispersions of the equations of the 
olaaa ̂  t h e s e s . The central dlspersiona of the equations 
(q) € Ap have, i n fact, the following remarkable property! 

A l l central diaperaiona of every equation (q) € ^ are ele-
mentary# 

In other words t 

A l l distance functions of every equation (q) € Ap are peri
odic. 

Indeed, l e t (q) £ Ap and cf be the fundamental dispersion 
of (q)* 



?e easily ascertain that? the proof need not be given but 
for the dispersion cy • 

Well, l e t oc(e, g. «/> 0) be a phase of (q), From (7) and 
(3) there follows 

OtCGp » &cxcf ss t e a tt c^oc « coco 

consequently, c cp » (a*^o oc)c a ^ c so that ^c « and the 
proof i s accomplished. 

3« In this place I have the opportunity to mention the class 
of the equations (q) characterised by the fact that their funda
mental dispersions are elementary* Let the class of these equa
tions be denoted by A, so that (q) £ A <j c = c Cj>. Fe have 
just seen that A^c A. 

The equations (q) € A may be characterised by the following 
geometric property* Let C be an arbitrary integral curve of the 
equation (q) € A, whose parametric expression i s given by some 
of the bases of (q) £ A. Let 0 stand for the origin of the coor* » 
dinates and OP(t) for the radius vector from the point 0 to the 
point P(t) € C determined by the value of the parameter (time) t» 
Then the oriented areas traced out by the radius vector QP(t5 > 
and the opposite radius vector 0P( c^(t)) i n the time from t to 
t+ 7T are the same* 

The equations (q) with elementary fundamental dispersions 
occur even i n other connections, e* g#, i f there i s a question 
of determining pairs of equations (q) with interchangeable fun-* 
domental dispersions* 

The theory of the equations (q) ( A i s extensive, so I can
not - for want of time - deal with i t i n detail but shall confine 
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myself to a few remarks. 

The theory of the equations (q) £ A i s fundamentally analo

gous to the theory of the equations (q) € Ap, the part of tho 

group ^ i n the lat ter being taken over by the group of the ele

mentary phases, ^ • 

In particular, there holds i 

The equation (q) belongs to the class A i f and only i f each 

of i t s phases a satisfies the equation a(t+ J T ) » hoc(t) (t t $) 

with a dispersion phase h(t) € ^ • 

The class A i s closed with regard to the operation of forming 

inverse equations. 

The equation (q) belongs to the class A i f and only i f the 

carriers q(t), q(t+Jr) have the same fundamental dispersion. 

I f (q) € A, then there exist, i n every interval Lt , <f(t)), 

at least four mutually different numbers t l t t 2 , t ^ , t ^ such that 

q C t ^ i r ) « qCtjt) ( i A 1,2,5,4). 

Hote that, by the f i r s t theorem, the class A i s wider than 

4. How we arrive at the last point of my lecture, where we 

return to the equations (q) with periodic carriers J (q) & Ap. It 

w i l l be a question of expressing real periodicity factors (charac-

ter is t ic roota) of tho equations (q)€ ^ by means of the values 

of the derivatives of central dispersions and, furthermore, of 

estimating the absolute values of tho periodicity factors by 

means of the extreme values of the function l q | . 

Well, l e t (q) € A^ be an arbitrary equation whose periodicity 

factors Qe ( ( T a + D are real* Denote 



A a 3^ + S ^ , 

so that the charaoteristic equation corresponding to (q) i s , by 
p 

Floquetfs theory, s - A.s + 1 a 0 and, according to the suppo
sition, we have I A) > 2. 

Let s be one of the roots s e • Then there exists a nontriv-
i a l integral y Q of the equation (q), with the property 
(8) y 0c a s.y0 . 

The equation (q) being oscillatory, the function y Q has at 
least one zero xs y 0(x) a 0. From (8) then follows y Q(x+Jc) a 0. 
e see that the point x+x i s right conjugate with the point x. 

So we have, for a natural ni 

(9) ° i f n ^ a X + 3 T , 

Let u,v denote the basis of the equation (q), determined by 
the i n i t i a l values: 

(10) U(x)al, U #(x)aO| V(x)«0, v'(x)al. 

Then A a U(X+TT )+V*(X+TT ) whence, by (9),(5)§(10), there 
follows 

1 _ 1 
A a (-l)a ( [<f £(x)] ? + Wi(x)l" 2 )• 

We see that the periodicity factors of (q) arei 

(11) s^ a (-D^aCx)! 2 (flr «tl). 

Now suppose that the carrier q of the equation (q) i s always 
different from zero* q(t) » 0 (t 6 j ) . 

Then, by (11) and (6), we havei 

(12) s^ a (-1) Iĝ xp-'SCSp- Wx4n-lJ 
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with convenient numbers 3 c 2 v ^ (ys&,...,2n), and which separate 
/ the zeros (x»)a0< a^< <an(«x4>Jr) of the integrals y Q and the 

zeros b^< , <b n of its derivative y*, lying in the interval 
(x,x+3C)t 

(x»)aQ< x x < b1< x 3 < a 1 < < ... < < b n< x ^ ^ < a^ax* * ) 

Denote 
m * min !q(t)l» M a max I q(t)| 

so that 
0<a4M, 

n stands for the number of zeros of the function y Q in the 
interval tx,x+?r) and therefore, by a classical theorem, satis
fies the inequalities 
(13) Vm £ n ^ V¥. 

From (6) we have 

(» * 4 (ff 
which, together with (11) and (1J), yields 

Thus we have arrived at the following results 
If the periodicity factors sff of the equation (q) « ^ are 

real (6"=itX), then their values are given by the values of the 
function cpn in a number * € d, in the sense of formula (11). If, 
furthermore, the carrier q i s always different from zero, then 
the numbers s c may be expressed by values of the carrier q in 
the sense of formula (12)* In that case there hold, for absolute 
values of the numbers ŝ . , the inequalities (14). 

Koto that the inequalities (14) may be employed to obtain 
information as to the absolute values of the periodicity factors 
for H i l l f s equation in case of instability. 



I V . F i n a l remark. 

L e t me now f i n i s h my l e c t u r e w i t h a shor t l ook a t the a l g e 

b r a i c theory o f ( o s c i l l a t o r y ) equations (q) and s t r e s s the c o n 

n e c t i o n o f the c l a s se s Ap and A w i t h other elements o f the theory 

i n question* 

The b a s i c n o t i o n of the a lgeb ra i c theory o f the equat ion (q) 

i s the group of phases. 

The group o f phases, i s the se t o f a l l phases o f a l l the 

equations (q) w i t h the group-operat ion g iven by the composing of 

f u n c t i o n s . The u n i t o f 1, i s the f u n c t i o n t U t , 

The i n c r e a s i n g phases form, i n an i n v a r i a n t subgroup
 <£J,Q, 

w i t h the index 2g the decreas ing phases form a cose t o f the f a c 

t o r group ^ / ^ j t denoted 

The upper phases a sire cha rac t e r i zed by the i n e q u a l i t y 

a ( t ) > t (€ J> | they form a subset i n c a l l e d the upper 

complex, K r The lower phases cL are c h a r a c t e r i z e d by the i n 

e q u a l i t y 0C(t) < t J ) | they too form a subset i n
 c0f 0, c a l l e d 

the lower complex, The complexes ( 6 « ± 1 ) are d i s j o i n t 

and c o n s i s t o f func t ions mutua l ly inverse* ^ i s composed o f the 

fundamental d i spe r s ions o f the equations ( q ) i c o n s i s t s o f 

func t ions i nve r se o f these d i spers ions* F o r f e % there a p p l i e s t 

The se t o f a l l phases o f the equat ion (-1) forms a subgroup 

i n <£J,t namely the above mentioned fundamental group ^ . The l a t 

t e r generates, on HJ.. the r i g h t decomposit ion ^ J / r ^ and the l e f t 

d e c o m p o s i t i o n * ^ . Each element o f the former has the form 

<̂ 06 C 016 ^ ) | i t i s the se t o f a l l phases o f the equat ion (q) 

w i t h the c a r r i e r g iven by the formula ( 1 ) . Each element o f the 
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latter i s of the form a,^ (<x* ^ ); i t i s the set of the func
tions inverse of the phases of (aa.<,) • Every element u s U of 
the least common covering U «s M j / r % i %] i s the union of 
the phases of some equations (q) [43 • The latter form the block 
corresponding to the element u. To u there exists exactly one 
inverse element u*"1 £ 5 composed of the functions inverse of the 
phases lying in u. Every equation (q) from the block correspond
ing to u i s inverse of every equation from the block correspond
ing to u and vice versa* 

The center of the group ̂ 0 n | . i s the infinite cyclic 
group ^ . s { c

nC*)} ( ° n ^ a *+nlt I n»0,tl,•••). The group O t ^ o c 

( ot€ c 0 p consists of the central dispersions of the equation 
(qa. )• The normalizer of ̂  in ̂  i s the group of elementary 
phases,^* There holdst • 

The class A consists of a l l the equations (q) characterized 
by the fact that the inner automorphisms of the group <0J,> formed 
by their phases ct , the so-called phase-automorphisms of the 
equations (q) 9 transform the center ̂  into i t s normalizer; 
0t~ 4^,0C C ̂  • The same class A consists of the equations (q) 
inverse of the equations of class A* 

The class i s a part of A i A ^ c A . The equations of the 
clasa ̂  are characterized by the fact that the phase-automor-
phisms of the inverse equations transform the center ^ into the 
fundamental group j£ . 
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