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O N A G E N E R A L I S A T I O N O F L A G R A N G E ' S S E R I E S 

By M . K Ô S S L E R . 

[Re.id January 13th, 1921.—Received February 5th, 1921.] 

THE solution due to Lagrange of equation (2 .1) of this paper gives 
only one root of the equation. By forming the slightly modified equa-
tions (2 . 9), (3 . 1), and (4 . 2), we get other roots, and, in some cases, all 
the roots of the original equation. 

One of the consequences of this result is that we are thereby enabled 
to solve any given algebraic equation by means of series of polynomials ; 
I therefore hope that the contents of this paper are of some interest. 
The methods are a novel application of the method of variable parameters, 
which has proved to be a powerful weapon in attacking the theory of in-
tegral equations. 

2. Lagrange's solution of the equation 

when /(») is a function of ¡a;, which is analytic at the point r = a, such 
that / (a) 0. The radius of convergence of the series may be deter-
mined without difficulty. 

Two generalisations of this expansion are possible. lu the case of the 
first, we take the equation to be 

( 2 . 1 ) x — a—uf{x) = 0 

is given by the formula 

(2 .3 ) (x-a)n-vf(x) = 0, 

(x—a)n 
or 

U = -fW 

By writing f(x) =f(a) + (x-a)f'{a)+..., 
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we get u = (x — a)" +P(x—a)J, 

where P denotes a power series. When this expansion is reverted, x—a 
is expressed fis a function of u with a branch-point at u = 0. We thus 
obtain n values of x, say a;0, xu ..., a;a_i, where 

(2 . 4) xt-a = 2 a„u? (k = 0, 1, 2, ..., « - 1 ) , 
m=i 

Uk = Ml/«C2fari/« 

and M1'» = 11/.1 | el* (0 < 0 < 2TT/M). 

To evaluate the coefficients «„„ we write equation ^2. 3) in the form 

xk-a-ukfln(xk) = 0, 

whence, by (2 . 2), we have 

3. It is now possible to solve the equation 

(3.11 <p{x)-uf{x) = 0, 

where </>(x) and /(x) are functions of x which are both analytic in a well-
defined region of the z-plane, if the roots of the equation <j>(x) = 0 are 
supposed known. If these roots of multiplicities 
ru r.h respectively, and if the functions <p{x) and f(x) have no 
common zeros, then we transform equation (3 . 1) into 

In this equation, the coefficient of a is analytic at ak, and it does not 
vanish at that point. Hence, by the formula of § 2, we obtain rk roots of 
the equation, and then, by putting k = 1, 2, ... , n, we get n sets of roots 
of equation (3 .1). 

The radii of convergence of the series (2 . 2) and (2 .4) are given by 
the distance of the point it = 0 from the nearest singularity of the 
functions inverse to 

x—a _ (x—a)n 

u ~ W fix) ' 
respectively. 
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When, as is frequently the case, we can solve the equation 

c l a = o dx ' 

the radius of convergence is obtained by taking the roots fa, /Q2, . . . of 

this equation and constructing the set of expressions 

- , , ! / » _ «J = r.n, . = /(A) * ' ~ >jm 

in the respective cases, and selecting that one which has the smallest 
modulus ; the modulus in question is the radius oE convergence. 

We apply to the expansions now obtained the well known theorem, 
due to Mittag-LefHer,* by which the power series 

F(u) = a0+ax u+aa li1 -f-... 

is transformed into a series of polynomials 

(M) F{u) = £ Pk(u), 
k-= i 

where the coefficients in the polynomials Pk are linear functions of the 
coefficients a0, alt a2, . . . . This series is convergent throughout Mittag-
Leffler'a star (étoile). 

The application of Mittag-Leffler's transformation to the generalisa-
tions of Lagrange's series leads directly to the solution of the algebraic 
equation. 

4. Let f{x, y) be an analytic function of both of the variables x, y, and 
suppose that there exists a constant a such that the roots of the equation 

m fix, a) = 0 , 

are known; let these roots be a^ o2, ..., n„. 

Suppose also that the roots of the equation in x, 

(4 .1) fix, y) = 0, 

are not independent of the variable y. 
To solve the last equation we consider the modified equation 

(4 . 2) fix, a)—11 [fix, a) -fix, y)] = 0, 

• Acta Mathematica, Vol, 23 (1899), pp. 43 et scq. 
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which reduces to (4 .1 ) when u = 1. By (2.2) , q, solution of the last 
equation, valid near u — 0, is 

(4 .3) xi = ak+ £ OnuT, 
771 = 1 

provided that aj„- is a simple zero of f(x, a) ; the modification to be made 
in the case of a multiple zero is evident. 

The circle of convergence of (4 . 3) either does or does not contain the 
point u = 1. If it does, we may calculate n roots of the equation (4. 1) 
by putting u = 1. If it does not, we must transform the power series by 
using the formula (M). 

This transformation cannot fail by reason of the point u = 1 being a 
summit of the star of convergence, provided that equation (4. 2) has no 
multiple roots in x, for the system 

u - / t e . a ) _ j ~ — o 
~~ f(x, a)—f{x, y) ~ ' dx~ ' 

which forms the conditions that u = 1 should be a summit of the star, is 
equivalent to the system 

f(x, y) = 0, fx(x, y) = 0, 

and this system is not satisfied if there is no multiple root. 

5. Now take any trinomial equation 

(5 .1) xn—u{ax-\-1) = 0, 

in which n is a positive integer. 
The formulre (2 . 4), (2 . 5) give immediately all the roots of the equa-

tion in the form 

(5.2). x, = — 2 — ( ml7\)aV"le2l,"H"\ 
a m=i m \vi—1/ 

where u1'" — \«1/n 0 <-?!>< 2TT/?I, 7C = 1, 2, . . . ,n . 

The roots are algebraic functions of -it whose only singularities are at the 
branch-points, which are given as the solutions of the system 
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The only value of u besides zero which satisfies this system is 

_ ( - w V  
U an(n-1)»"1' 

Hence the series (5 . 2) is convergent when 

If u does not satisfy this inequality, we put 

1 1 x = —, u = —, 
y v 

BO that (5 . 1 ) transforms into 

yn~x{y+a)-v = 0. 

When v = 0, the roots of this equation are 0 and —a, the former having 
multiplicity n—1. Hence in the neighbourhood of v = 0 we obtain the 
solutions 

(K — 1 , 2 7 1 — 1 ) , 

. " f—m{n—1)\ ( — L ) ™ " - 1 ! ) » 1 

Y" = - a + I A M—1 ) ma^ • 

It iB eaBy to verify that these series converge when 

|q|"(7i—l)"-1 _ 1 
1 nn ~ p ' 

i.e. when | u | < p. 
We have thus obtained the fundamental theorem: 

The roots of the trinomial equation (5 .1) are given by (5 . 2) when* 
| «| < p, and they are given by (5 . 8) when \ u | ^ p, if Xk = 1 ¡yi,-

The only case of exception occurs when 

( - » ) * u — — 
1)" 

* It has been proved by Riesz, Palermo Rendiconti, t. 30 (1910), pp. 339-345, that suoh a 
series is convergent on the circumference oi the circle of convergence. 

BEB. 2. VOL. 20. NO. 1400. 2 B 
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but, in this case, the equation has a repeated root 

— ~ n 

X ~ a ( n- l ) ' 

and the degree is reducible by elementary methods. 
The convergence is sufficiently rapid for numerical applications when-

ever | it | is appreciably less than or greater than p. 
The special case in which v = 5, u = — 1, gives the solution of the 

general quintic equation when reduced to the trinomial form by the 
method of Bring and Jerrard. The method just described is obviously 
simpler than Hermite's well known solution of the quintie equation. 

6. Now take the general algebraic equation in the form 

(6.1) xn-u(c1xn~1+c2xn-2+ ...+cn) = 0, 

where n is a positive integer, and clt c^, ..., c,t are constants of which c„ 
is not zero. By formulae (2 . 4) and (2 .5) , the solution is 

(6.2) xk = 2 amu1"ln c2"'"^1" (k = 1, 2, ... , n), 

To determine the radius of convergence, we have to solve the equation 

(6.3) nf(x)-xf'[x) = 0, 

where f(x) = c lsn _ 1-fc i !a;u"2-f . . .+c ,„ 

and construct the set of expressions 

(6 .4) u = xnlf(x), 

where x is given the values of these roots in turn ; we then select that 
value of u which has the smallest modulus ; and the modulus in question 
is the radius of convergence. 

This procedure evidently involves the solution of an algebraic equation 
of degree «—1. 

The values of u which are determined by (6. 8) and (6 . 4) are the only 
singularities of the functions xk defined by the series. It is therefore 
possible to construct the star for each of the functions xk, and then trans-
form the power series into the expansions of polynomials (M), which are 
convergent at all points of the star with the exception of pointB on the 
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boundary. But it has been shown by Painleve* that it is possible to effect 
a transformation of the expansions (M), such that the transformed ex-
pansions converge at all points of the star, including points on the 
boundary, with the sole exception of the summits of the star. 

For values of u which correspond to one of the summits, the equation 
(6 .1) has a repeated factor, and it is consequently reducible. 

Hence, for all values of u, the equation (6 .1) has been solved by an 
expression of the form 

(6 .5) xk = 2 Pm(u1,n e2kviln) (k = 1, 2, . . . . »), 
m=l 

where the coefficients in the polynomials Pm are linear functions of the 
coefficients am of equation (6.2). 

The formation of the expansion (6 . 5) does not depend upon the 
critical values of u. Hence, if the variable u is so chosen that equation 
(6 .1) has no repeated roots, the form of the solution given by (6 .5 ) is 
independent of the solution of an equation of lower degree. If the co-
efficients cv ca, ..., cn in the equation are not constants, but functions of 
a variable, the Bame remark holds good. 

It is evident that this solution of the general algebraic equation is 
complicated and it is not adapted for numerical applications, though it is 
B i m p l e and short in comparison with the solution due to F. Lindemann.t 

7. The application of the general formulre to equations involving in-
tegral transcendental functions leads to interesting results, but in this 
paper I shall confine myself to stating two formal examples. 

(I) Let f(x) be an integral function with simple zeros, none of which 
has any of the values 0, + 1 , + 2, ... . The equation 

(7 . 1) sin 7rx—it ĵ sin irx—f{x)~] = 0 

is of the form (2 .1). We thus obtain the solution 

7r Air 

<* = 0, ± 1, ± 2 , ...). 

If the radii of convergence of these power series are different from zero,! 

* Cf. Borel, Leçons sur les fonctions de variables réelles (1905), Note 1, pp. 140-145. 
t Nachrichten der k. Oes. der Wiss. Güttingen, 1884, p. 245. 
{ Tbia is by no meanB an essential restriction. 

2 b 2 
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we can transform them into polynomial expansions (M) which are valid at 
the point u = 1 ; we have thus calculated an infinite set of zeros of the 
equation f M _ n 

(II) Consider the equation 

(7 . 2) P(x)—ue<i{x) = 0, 

where P(x) = a0xn+alx,l'1 + ...-\-am 

Q(x) = b0x>>+blx?-' + ...+br. 

When u = 0, this equation has n roots ax, a2, ..., a„, and therefore, 
by (2 .2) , 

(7 .3 ) xfc = o, ;+ 2 (k = 1, 2 n). 
HI=] 

The radii of convergence and the Mittag-Leffler stars of these series can 
be constructed by solving the equation 

du 

Tx = °' 

which, when written in the form 

P'(x)-P{x)Q'(x) = 0, 

is obviously algebraic, and substituting the roots in 

_ P ( T ) 

But the n roots (7 . 8) are, of course, not all of the roots of the proposed 
equation. We therefore form from (7 .2) 

Q{x) = log P (.T)—log ii + 2 Jciri — log P(x)—v, 

where log P(x) denotes any definite branch of the multiform function. 
We know n roots of the last equation when v = 0, and hence we oan 

find a Bet of n roots for every value of k (by putting v = log u ± 2kiri) by 
using the expansion (2 .2) . 

The equation 

P (sin x, cos x) — ne* = 0, 

where P is a polynomial in both variables, may be treated in a similar 
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manner, and many similar equations which are soluble by these methods 
oan be constructed without difficulty. 

The solution of the last equation is of some theoretical interest, though 
it is of little use in numerical applications. But a slightly modified 
method is effective in the asymptotic calculation of zeros of functions of 
types discussed by G. H. Hardy. * I hope to return to this topic in a 
subsequent paper. 

In conclusion I have to express my thanks to Prof. G. H. Hardy for 
his kind help, and to Prof. G. N. Watsou for the trouble he has taken by 
revising the equations and my imperfect English. 

* Proceedings, Ser. 2, Vol. 2 (1905), pp. 1-7, 401-431. 
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