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PRODUCTS OF POWERS OF NONNEGATIVE DERIVATIVES
BY
JAN MARIK AND CLIFFORD E. WEIL

ABSTRACT. This paper contains some results concerning functions that can be
written as ff1 --- fB», where n is an integer greater than 1, f; are nonnegative
derivatives and B; are positive numbers. If we choose 8, = -+ = B, = 1, we obtain
theorems about products of nonnegative derivatives.

1. Introduction. In the original version of [1] the first three authors proved that the
£

1t 1 tha nradn~t
characteristic function of a subset A of the real line can be written as the product

two nonnegative derivatives if 4 is closed, but cannot be so expressed if 4 is a
nontrivial open set. The first of these two assertions is a simple corollary of Theorem
4.2 and the second follows from Theorem 5.5. These two theorems are proved with
the help of two lemmas established in §3. To indicate the results of §6 let us suppose
that f is a positive function on the real line which is continuous at each point
different from 0. We construct numbers g, such that, for n = 2,3,..., f can be
expressed as the product of n derivatives if and only if f(0) = g,. (In the notation of
Theorem 5.5 we have g, = max(S"(g'/"), S"(h'/™)), where g(x) = f(x), h(x) =
f(=x) for x = 0.) In §6 we find the limit of the sequence {q,,}.

The work is concluded with some assertions involving approximate continuity. It
is easy to construct two derivatives that are not continuous whose product is
continuous (in fact, identically 1). However, according to Theorem 7.8, if the
product of two or more positive derivatives is approximately continuous, each factor
is approximately continuous.

n
A\ ¥

2. Notation and conventions. The real line is denoted by R. The symbol | 4 | stands
for the (Lebesgue) measure of a measurable set 4 C R. All functions are mappings
of a subset of R to R. Integrals are Lebesgue integrals. The letter J denotes [a, b]
where a, b € R and a < b. If S is an open set or an interval (not necessarily open) in
R, then A(S) is the system of all functions defined on S that have a finite,
nonnegative derivative relative to S at each point of S; further 9O(S) = {F’; F €
A(S)}. (If, e.g., S[O,1), then F’'(0) means here F'* (0).) We write A(R) = A and
D(R) =D

Throughout the paper, n is an integer greater than 1 and S,,...,8, are positive
numbers. If there is no danger of misunderstanding, we write 2 and II for 37_, and
I1%_,, respectively. We set

(0) B=3B, a,=B/B (j=1,...,n).
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362 JAN MARIK AND C. E. WEIL

3. Two lemmas. In this section we establish two lemmas which we need for the
proofs of the major theorems to come. This is accomplished by a series of
propositions.

3.1. PROPOSITION. Let A, B, v, § € (0, ). Let f and g be nonnegative functions on J
such that 0 < [,f< A and 0 < [;g < B. Then there are positive functions ¢ and
continuous on J such that [,fo = A, [;g¢ = B, ¢(a) = p(b) = 1 and ¢"y° = 1 on J.

PRrOOF. There are ¢, d € J such that ([°f)-(f2f) > 0 and ([%g)-(ftg) > 0. Since
the roles of f and g are interchangeable, we may assume that ¢ < d. There is a closed
interval L C (d, b) such that [, g > 0. There are functions p and ¢ continuous on J
such that p(a) = q(a) = q(b) =0,p>0o0n (a,c),p =0on|[c, bl,g=1o0n L and

0<<g<lonJ Foreach? C[Q l) there is a number X(t\ such that

VU SN Y == 1VViiv. 12Ul v ALBRIIU WL iV Suwwiar vl

fj(l +M(t)p — 19)-f = A.

Let ¢, = 1 + A(¢)p — tq. Obviously A(¢) = 0 so that ¢, > 0 on J. Therefore we may
define Y, = ¢,?/%. Then

fjgrP,?ngtlf,: (1- t)”/s-ng-

Since @, =1 on J, we have f,;gy, < B. Since [,gy, is a continuous function of ¢
which tends to co as ¢ increases to 1, there is a ¢t € [0, 1) such that [,gy, = B. Now

let o =@, and y =4,

3.2. PROPOSITION. For j =1,...,n let A; € R and let f; be a nonnegative function
on J such that 0 < [, f; < A,. Then there are functions @,...,q, on J such that

(1) g; is positive and continuous on J with ¢;(a) = ¢;( b) =1,

@ e =4,(j=1,...,n),
) llgyi=1onJ.

PrOOF. There are functions v,,...,y, continuous on J such that ¢;=1onJ
y(a) =y (b) =1 and [;fy; = A4, for j = 2,...,n. Define ¢, by Iy = 1. Obvi-
ously [,f;¥; < A,. By 3.1 there are functions ¢ and ¢ continuous and positive on J
such that p(a) = @(b) = 1, [, fiv.¢ = A4,, [;,¥,¥ = 4, and ¢*'y*2 =1 on J. Now
we set ¢, = ¢,9, ¢, =Y,y and ¢, = ¢, forj = 3,....n

3.3. PROPOSITION. Let f,,....f, be nonnegative functions integrable on J and let
Ay,...,A, be positive numbers such that [,I1f* <I1Ajs. Then there are functions
@y, - - P, fulfilling (1), (3) and

(4) j;fj<pj<Aj (j=1,..,n).

PrOOF. Replacing f; by f,/A; we may suppose that 4, = --- =4, = 1. Then
P = [jIIf*% < 1. Choose a Q € (P,1). Since each f is integrable on J, there is a
function f integrable on J such that f > f, V --- Vf . By the Lebesgue Dominated
Convergence Theorem thereis a § € (0, 1) such that

(5) fJ (s +8f)% < 0.
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Set K=1+§", g; =/, +06f, g=1Ilg, and h; = g/g;. Obviously [Ih%/ =1 and
df<g;<(1+38)f so that §f<g=<(1+9)f and K- <h, <K (j=1,..,n).
Using the absolute continuity of the integral and Lusin’s Theorem we get a set S C J
and functions ¢,,...,q,_, continuous on J such that ¢, = h; on J\ S, K'< <K

onJ, (Pj(a) = ‘Pj(b) =1,
(6) Kfsfj<1—Q (j=1,...,n—1) and K‘/a~fsj;,<1—Q.

Define a positive function ¢, on J by (3). Then ¢, is continuous, ¢,(a) = ¢,(b) = 1,
gor < K®*Fe4r <K on J and, since [[hY =1, @, = h, on J\S. Obviously
@, <K'/*and fh, < g h, = g for each j. Therefore, by (5) and (6),

J

(o =0 fh + (o < (o
jJJJ"’/ jJ\SJJ"J A
forj=1,...,n — 1 and, similarly, [, £, < [,g + K'/*{, f, < 1. This proves (4).

Propositions 3.2 and 3.3 prove the following assertion:

3.4. PROPOSITION. Let f, and A; be as in 3.3. If [;f,> 0 for j = 1,...,n, then there
are functions @; satisfying (1), (2) and (3).

In the proof of the first important lemma we will use the well-known fact that
[;F' = F(b) — F(a) for each F € A(J). We will also need the following

3.5. PROPOSITION. Let f € 9)(J) and let ¢ be a function continuous on J. Then
fo € D).

PROOF. Let F = fand let G(¢) = [, fo foreacht € J. If x, y € J and x < y, then
(F(y) — F(x))ming([x, y]) < G(y) — G(x)

< (F(y) — F(x))max ¢([x, y]).
These inequalities and the continuity of ¢ show that G’ = F'p = fp on J.

3.6. LEMMA. Let f,,....f, € D(J), Ay,..., A, € (0,0) and [,11 /% <I1AY. Then
thereareg,,...,g, € XD(J) such that gy = Il f* and that

/Jgj:Aja g/(a) =f(a), g(b)=f(b) forj=1,...,n.

PrOOF. If [, f; > 0 for each j, choose ¢, according to 3.4 and set g; = f¢,. Then, by
35,8, € %)(J) and, by (1)—(3), the remaining requirements are satisfied as well. In
the contrary case we may assume that [, f, = 0. Let F” = f,. Then F is monotone and
F(b) — F(a) = [,f, = 0. It follows that F is constant so that f, = F’ = 0 on J. Let
a < ¢ <d < b and let g, be a nonnegative function continuous on J such that g, =0
on J\[c,d] and [,g, = A,. Note that f(a) = g,(a) = f(b) = g(b) = 0. For j =
2,...,n there is a nonnegative function g; continuous on J such that g, = 0 on [, d],
g,(a) = f(a), g,(b) = f(b) and [;g; = A;. Obviously lIgj = 0 = [ f*.

3.7. LeMMA. Let F, H, € A(J) (j = 1,...,n) and let I(F))® <II(H;)" on J. Then
there are G, € A(J) such that H(Gj’)ﬁf = H(Fj’)ﬁf on J and that on the set {a, b} we
have G/ = F/ and G; = H,.
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PrROOF. Set A; = Hi(b) — Hi(a). It follows from Holder’s inequality that
[ICH])* < T14}5. Now it suffices to choose functions g, according to 3.6 and set
G(x)=Ha)+ [}, (x €J)forj=1,...,n.

4. First main result.
4.1. Notation. If S 1s an open set or an interval (which need not be open), let

B(S) = {ILf%; £, € N(S)}.

If B, =--- =B, =1, we write B(S) = D*(S). We set B = B(R), D" = D"(R). If
necessary, we write ® = B(8,,...,8,).

4.2. THEOREM. Let S be a closed set in R and let T = R\ S. Let u € B(T), v € B
and let u<v on T. Let w be the function on R such that w = uon T and w = v on S.
Then w € .

PrOOF. Let u = [I(£)% and v = [I(K))#, where F, € A(T) and K, € A. Let ¢ be
a function continuous on R such that¢g >0on Tandp = ¢’ =0on S. Let @’ = ¢
on R and let H; = K, + ® for j = 1,...,n. Let I be a component of T. There is a
strictly increasing sequence {A,}¥-_, of numbers in I such that sup, A, = sup/,
inf, A, = inf I and that, for each %,

max{H;(A,) = H(A,_); j=1,...,n} <min{p(x); x € [A,_, A ]].

Let k be any integer and let J = [A,_, A, ]. Obviously II(Fj’)ﬂf —u<v= H(K;)Bf
<II(H))* on J. Let G,,...,G, be as in 3.7 (with a = A\,_,, b = A,). Then G, — H,
< Gi(Ap) — H(A_)) = H(A,) — H(\,_)) < ¢ on J; likewise H -G <g¢onl.
Consequently, | G, — H;|< ponJ.

Since on the set {A, _,, A} we have G; = H, and G/ = F}, this procedure defines
functions G,,...,G, on I and hence on T such that [[(G))# = u and | G, — H|<e¢
on 7. Set G; = H;on S. Then |G, — H;|< ¢ on R. Since ¢ = ¢’ = 0 on S, we have
G/ = H] = K; on S. Therefore [I(G/)”, = v on S.

REMARK. Taking ¥ = 0 and v = 1 in 4.2 we see that the characteristic function of
every closed set belongs to 9. This result can be generalized as follows:

4.3. THEOREM. Let @ C B and let @ be closed under addition. Let m be a natural
number. For j = 1,...,m let f; € @ and let g; be the characteristic function of a closed
set. Then 27, f,g, € B.

PROOF. Let u, be the zero function and let &, = @ U {u,}. For j = 1,...,m set
u;=f,g +--- +fg; Trivially, uy+ f € B for each f € @,. Now suppose that
J€{l,...,m} and that u,_, + f € B for each f € @,. Choose such an f and set
u=u;,_+fo=u;_, +f +f It follows from our assumption that u, v € B. Let
S={xER;gi(x)=1}. Obviouslyu <vonR,u;+ f=vonSandu, +f=uon
R\ S so that, by 4.2, u; + f € B. This shows that u,, + f € B for each f € @,. In
particular, u,, € .

REMARK. It is easy to see that @ may be chosen as the system of all nonnegative,
bounded, approximately continuous functions on R. If B = )2, we may also choose
@ = and we see that under the corresponding assumptions there are ¢, y € 9
such that 37, f.g; = @y.
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5. The second main result. In this section we answer the following question: Let
u € B((0, 00)). When is it possible to define #(0) in such a way that u € B([ 0, 0))
and, if it is possible, what are the choices for u(0)? An easy consequence of the
answer is that

%(yl,...,yp) \B(B,,...,8,) * 2,

ifp>17v,....v,€(0,00)and vy, + --- +y,> B, + - - - +B,. This shows, in par-
ticular, that the obvious inclusion D" C ¢"*! is proper for each n.

The answer lies in a certain measure of mean values of a function on intervals
close to 0 which we investigate first.

5.1. Notation. We define addition and multiplication in the set R U {-o00, 00} in
the usual way. (In particular, oo + a = oo for each @ > —c0; 0 — o0 is undefined;

oo -a = oo for a > 0.) The letter J shall, as before, always denote a closed bounded
interval.

Let £ be the system of all functions u for which there is a ¢ € (0, o) such that [{u
makes sense allowing oo and —oo. Let u and ¢ fulfill this requirement. For each
1 € (0, 0) and each § € (0, ¢) set

S,.s(u) = sup{|J|"fJu; J C [0, 8] and | J |= 7 dist(0, J)}

Further define S («) = lim S, 5(«) (§°v0) and S(u) = lim S, (u) (7\0).
Let 9 be the system of all sequences § = {[a,, b,]}¥-, such that 0 <a, <b,,
b, —» 0 and sup, a, /b, < 1. For each u € £ and each § = {J,} € I define

Au,§) =tlimsup|J,[" [u (k- o).
Ji

Let £, be the system of all functions u € £ for which there exists a finite limit x~'fu
(x\0).
REMARK. Obviously ([0, o0)) C £,,.

5.2. PROPOSITION. Let u € . Then
(7) S(u) = sup{A(u, §); § €T ).

PRrROOF. Denote the right-hand side of (7) by L.

I. Let $ = {J,} € 9 and J, = [a,, b,]. There is an 7 € (0, 00) such that (1 + 7)™
= a, /b, for each k. Then |J, |= b, — a, = na, = ndist(0, J,). It follows that for
each sufficiently small positive number § we have A(u, ) < S, 5(u). Hence A(u, §)
< §,(u) < S(u). Thus L < S(u).

II. Let K € (~o00, S(u)). There is an 5 € (0, 00) such that S,(u)> K. For k
=1,2,... we can find an interval J, = [a,, b,] C[0,1/k] such that |J, |=
7 dist(0, J, ) and that | J, | ‘[,ku > K. It is easy to see that a, /b, < (1 + 1)”! so that
¢ = {J,}) €9.Obviously L = A(u, $) = K whence L = S(u).

REMARK. It follows at once from 5.2 that

S(u) >limsupx“/xu (x\0)
0
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for each u € £. If u € £, we can tell more, namely:
5.3. PROPOSITION. Let u €y, x'ffu—>y (x\O) and let {J,} €F. Then
| J& |"f,ku — vy (k - o0). In particular, S(u) = v.

PROOF. Let J, = [a,, b,] and o = sup, a,/b,. There are ¢, 7, € R such that
J&u=a(y+ &), [bxu=b(y+ n,) for each k and that |¢, | +|mn, |~ 0. Obvi-
ously

| Jk |—1f1“ - Y|=|bknk — aze, |/ (b — ay)

<(le| +|m])/ (1 —0)~0.

The relation S(u) = y now follows from 5.2.

L3 ALILLL OE AUV 10111

The assertions listed in the following proposition are easily verified.

5.4. PROPOSITION. Let u, v € £. Then

(@) S(u + v) < S(u) + S(v), if u + v € £ and if the right side is defined,
(b) S(u + v) = S(u) + S(v), ifv € L;

(©) S(u) < S(v), ifu<v;

(d) S(cu) = cS(u) for any ¢ € (0, 0);

@) | S(u)|<S(u).

We now prove the major theorem of this section.

5.5. THEOREM. Let u be a nonnegative function on [0, o0) such that its restriction to
(0, ) is in B((0, )). Then u € B([0, 0)) if and only if
(8) u(0) = SP(u'/).
If (8) holds, there are g; € ([0, 00)) such that u = 11 g% and that g,(0) = u'/#(0) for
each j.

PROOF. Set v = u'/A.
I. Let u €%([0, 00)). Then u = H)}Bf with f; € ([0, 00)). If J C [0, o), then, by
Holder’s inequality,

o =1 YIS <TI0 )
It follows from 5.2 and 5.3 that S(v) < II( £,(0))* = v(0) which proves (8).

I1. Let (8) hold. This means that S(v) < v(0). For each positive integer k there is a
8, € (0, o) such that | J |"'f,0 < S(v) + k!, whenever J C (0, §,) and dist(0, J) <
k|J|. Further we may assume that {§,} decreases to 0. Set p, = k/(k + 1). For
each k there is a positive integer r, such that §, pix <&, ,. Let y, € (0,8,) and
let y,., =y pi. Note that y, <4, for each k. Next, for k=1,2,... and i =

0,1,...,r, set z,, = y.p,. Let x, x,,... be the sequence of numbers
RIS IRTTURT TR SR TOPRNS SO SR TYRTE Obviously z,, = VisZip, = V2 = 220:25,, = V3
= z39,... SO thatx; > x, > --- and x,, > 0 (m - o). Define J,, =[x, ,, x,,] and

s =1+r+---+r_, (mk=12,...). Then y, = x, for each k. If 5, <m <
Se+1> thenx,, /X, = p, and

k I‘]m |: k(xm - xm+l) = Xm+1 = diSt(O’ Jm)
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so that, by the choice of §,,

(9) [ o<l (S(0) + &7).

I
Form=1,2,... sete, = k™', where s, <m <s,,,. Then x,,,,/x,,= (1 +¢,)",
hence x,,, ,/x,, = 1 (m - o), and, by (9),

(10) ju<|Jm|(u(o) +e,) (m=1,2,.).

I
Since v = II £, it follows from 3.6 that there are functions g,,...,g, € D((0, o0))
such that [Ig} = v on (0, 00) and that

(1) [ & =1l (2(0) +¢,)

for each j and m. Since x,,,/x, — 1 and since ¢, - 0 (m — o), we have
x7'f5'g; = v(0) (x\0). Thus, if g,(0) is defined to be v(0), we have g, € D([0, 0))
and [1g% = u.

REMARK 1. Let u be a nonnegative function on [0, o) that is continuous on
(0, 00). It follows from 5.5 that u € B([ 0, o)) if and only if u(0) = SA(u'/?). If, e.g.,
u(0) = S*(u'/*), then there are f,, £, g,, g, € D([0, 00)) such that u = f}f,2 = g,g3.

For each integer n > 1 let g, = S"(u'/"). Then u € D"([0, 00)) if and only if
u(0)=gq,. Since D> C D> C ---, we have g, >¢q,> --- so that we may set
q = lim g, It is obvious that if u(0) > g, then u € 9)"([0, c0)) for some n, and that if
u(0) < g, then u is in none of the systems %)"([0, 0)). In §6 we prove some assertions
concerning the limit g. We show that even the limit Q(u) = lim S'/*(u*) (x\0)
exists for each nonnegative function u € £ and in Theorems 6.10 and 6.12 we find
representations for Q(u).

REMARK 2. Suppose that ¥ € £, u = 0 and that the limit A = #(0+) exists and is
finite. Then, obviously, S(«!/") = N/" for each natural number n. If, moreover,
u(0) < A, then, by 5.5, we do not have u € 9"([0, o0)) for any n. This shows, e.g.,
that the characteristic function of a nontrivial open set cannot be expressed as the
product of any number of derivatives.

We conclude §5 by a theorem from which it follows that " 5 "*! for each n.

5.6. THEOREM. Let p be an integer greater than 1. Let vy,,...,Y, € (0, ) and let
nwt--ty,>B + - +B, Then

B(v1s-->1,)\B(By,...,B8,) * 2.

PROOF. Let ¢ € (1, 00). Define ¢(x) =In(¢c* + 1) (x € R) and y(x) =
(p(x) — 9(0))/x (x # 0), Y(0) = § Inc. Obviously ¢'(x) = (1 + ¢™*)'Inc. There-
fore Y(0) = ¢'(0) and ¢’ increases. It follows that ¢ is strictly convex so that ¢
increases as well.

Now let u be a function continuous on (0, c0) such that 1 < u < ¢ and that the
right-hand density at 0 of both sets {£; u(¢) = 1} and {£; u(t) = ¢} is 3. It is easy to
see that, for each x >0, t”![{u* - (¢* + 1)/2(¢\0). By 5.3 we have S(u*) =

(c* + 1)/2 so that In S'/*(u*) = Y(x) and S”(u'/*) = exp ¥(1 /) (x, y € (0, 0)).
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Now let y =y, + -+ - +7, and let f be a function on R such that f = exp y(1/v)
on (-00,0] and f = u on (0, 00). It follows easily from 5.5 that

FEB(vp,-- 1)\ B(By,-.-.B,)-

6. The function S'/*(u*). Throughout this section, u is a nonnegative measurable
function on (0, o). For each x € [0, o0) we have u* € £ so that we may define
Z(x) = S(u*). (Note that Z(0) = 1.)

6.1. PROPOSITION. Leta, BE (0,1),a + B=1,x,y €[0,0), x <y, and Z(x) +
Z(y) < oo. Then
(12) Z(ax + By) < Z%(x)ZF(y).
In particular, Z(t) < oo for each t € [x, y]. If, moreover, Z(x)Z(y) = 0, then Z = 0
on (x, y).

PROOF. Let J C [0, o0), f[,u” < co. Then, by Holder’s inequality,

|J|"j;u""‘+py < (|J|"fju")a(|.l|"j;uy)ﬁ.

It follows that for each ¢ € J we have

A8, 4) < (A(w, $))*(A(w, §))".
This and 5.2 easily imply (12). The rest is obvious.

6.2. PROPOSITION. Let y € (0, ), Z(y) < oo. Then the following assertions hold:

(a) Z(t) < oo for each t € (0, y);

(b) if Z(t) = 0 for somet € (0,y], then Z = 0 on (0, y);

(c) if Z(t) > 0 for some t € (0, y), then both functions In Z and Z are convex on
[0, yl.

PROOF. To show (a) we take x = 0 in 6.1; (b) follows from 6.1 in a similar way. If
Z(t) >0 for some t € (0, y), then, by (b), Z> 0 on [0, y] and (c) follows easily
from (12).

6.3. THEOREM. Let x, y € (0, 0), x <y, Z(y) < 00. Then
(13) Z'*(x) < ZV(y).
If equality holds in (13), then Z'/'(t) = Z'/*(y) for each t € (0, y).

PRrOOF. If Z(¢) = 0 for some ¢ € (0, y), we apply 6.2(b). Otherwise, by 6.2(c), the
function ¢ = In Z is convex. As ¢(0) = 0, we have c¢(x)/x < ¢(y)/y which proves

(13). If ¢(x)/x = c(y)/y, then c is linear on [0, y] whence ¢(¢)/t = c¢(y)/y for all
t € (0, y).

6.4. Notation. We set 00° = o0 for ¢ > 0, exp(-o0) = 0, and In0 = —o0.
According to 6.3 we may define
Q = Q(u) =1lim ZV/*(x) (xN\0).
The right-hand derivative at 0 of a function f defined on an interval [0, 8] will be
denoted by f(0).
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REMARK. It is easy to see that Q < oo if and only if Z(x) < oo for some
x € (0, 00). If Q < o0, then, by 6.2, the limit Z(0+) and the derivative Z’(0) exist
and we have 0 < Z(0+) < 1, —00 < Z’(0) < oo0.

6.5. PROPOSITION. If Q < oo, then
(14) Q = exp Z'(0).

ProOOF. If Z(0+) < 1, then Q = 0 and Z’(0) = -o0 so that (14) holds. If Z(0+)
= 1 (= Z(0)), then

InZ"*(x)=x"'lnZ(x) >(In Z)(0)  (x\0).

By the Chain Rule we have (In Z)'(0) = Z'(0)(Z(0))"! = Z'(0) so that (14) holds
again.

6.6. PROPOSITION. Let Q < oo and let inf u((0, 00)) > 0. Then

(15) Q0 =expS(lnu).
PROOF. First assume that ¥ > 1 on (0, 00). It is easy to prove that
(16) e<l+t+t2%/2<1+t+ 1%
and
(17) ni<i—1<¢

for each ¢t € (0, 00). Since Q < oo, there is a y € (0, c0) such that Z(y) < oo. Let
x € (0, y/3). Since u > 1, we have, according to (16) and (17), u* <1+ xIlnu +
u*x*In’* u and (y/3)lnu = In w?/3 < w?/3. Therefore u*In? u < u”/33/y)*u?/? =
(3/y)*u” and u* <1+ xInu + x2(3/y)*u” whence, by 5.4, Z(x) <1 + xS(In u)
+ x%(3/y)*Z(y) so that Z’(0) = lim x~'(Z(x) — 1) < S(In u).

It follows from (17) that xIn ¥ = In u™ < u* — 1. Again by 5.4 we have xS(In u)
< Z(x) — 1 (x € (0, 0)) from which the inequality S(In u) < Z’(0) follows easily.
We have proved that S(In ) = Z’(0). Now (15) follows from (14).

In the general case we choose an & € (0, o) such that u > ¢ and set v = u/e.
Then v > 1 so that, by what has just been proved, Q(v) = exp S(In v). For each x >
0 we have S'*(u*) = eS'/*(v*) whence Q(u) = eQ(v). Further exp S(lnu) =
exp(In ¢ + S(In v)) = eexp S(In v). This proves (15).

REMARK. We note that the condition inf #((0, c0)) > 0 was used only to establish
Z'(0) < S(In u). The opposite inequality holds for each positive measurable function
u with Q < oo. The next example shows that we may have —oco < S(In u) < Z’(0).
On the other hand, Theorem 6.12 shows that the condition inf u((0, c0)) > 0 can be
weakened.

6.7. ExAMPLE. There is a function ¥ continuous on (0, o) such that 0 <u <1,
Inu €Ly, S(Inu) = -1 and Z(x) = 1 for each x € [0, c0). Consequently, Z’(0) = 0
and Q = 1 > exp S(In u).

Proor. Let {a,}7-, be a sequence decreasing to 0 such that a,,,/q, — 1
(k > o). (For example, a, = 1/k.) For k =2,3,... let b, = a, + (a,_, — a,)/k.
Let ¢ be a nonnegative continuous function on (0, c0) such that ¢ =0 off
Ur_y(ay, b) and [>«¢ = a,_, — a,.Sincea, ,,/a, — 1, we have t"'[fp — 1 (1\0).
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Thus, by 5.3, S(—~p) = —1. Now define u = exp(—¢). Then u is continuous on (0, =),
0<u<1and S(Inu) = S(—¢) = -1.If x € [0, o), then

dy
ak_l_ak>fk lux>(1__'IC_])((zk__l——ak) f0rk=2,3,....
ay

Using the relation a,,,/a, - 1 again, we see that ¢~'f{u* - 1 (+\0) and hence
Z(x)=1.

REMARK. Our next goal is Theorem 6.10 where an expression for Q is found using
only the assumption that Q < co. We need some auxiliary assertions.

6.8. PROPOSITION. Let 8 € (0, 00),J = [0, 8] and let f, f,, f,,. .. be functions convex
on J. Suppose that f, = f on J, £,(0) = f(0) for each k and that f(x) - f(x) (k - 0)
for each x € J. Then

(18) £il0) = f(0) (k> o).

PROOF. Obviously £,(0) = f(0) for each k. Suppose that (18) does not hold. Then
there is a number L and an infinite set M of natural numbers such that f'(0) < L <
f{(0) for each k € M. There is an x € (0, §) such that f(x) < f(0) + xL. For each
k € M we have, however, f,(x) = f,(0) + xf{(0) > f(0) + xL which is a contradic-
tion.

6.9. PROPOSITION. Let u,, u,,... be measurable functions on (0, 00) such that
u, =u for each k and that u, — u uniformly. Then Q(u,) — Q(u) (k — o).

PROOF. Since Q(u,) = Q(u) for each k, we may suppose that Q(u) < oo. There is
a natural number p and positive numbers ¢,, €,,,... such that u, <u + ¢, for
k=p,p+1,.... Let x € (0, 1). It is easy to prove that (¢ + d)* < ¢* + d* for any
¢, d €0, ). Hence u; < u* + ¢f so that, by 5.4, S(u*) < S(uf) < S(u*) + €.
Since Q(u) < oo, thereis, by 6.2, a § € (0, o) such that S(#*) and S(u3) (x € [0, 8])
are convex functions (k = p, p + 1,...). Now we apply 6.8 and 6.5.

6.10. THEOREM. Let Q < 00. Then
Q =limexpS(y VInu) (y - -0).
PROOF. Let ¢ € (0,0), v =u Ve and y = Ine. Since Inv =y V In u, we obtain
from 6.6 the equality Q(v) = exp S(y V In u). Now we apply 6.9.

6.11. PROPOSITION. Let  be a nonnegative function on [ 0, 00) such that Y(t)/T = 00
(1 > ). Let 8 €(0,00) and let f be a measurable function on (0,8) such that

S(¥ o |f]) < 0. Then S(y V f) > S(f) (y ~ ~o0).

ProOOF. There is a 7, € (0, o) such that (1) > 7 for each 7 € (1,, o0). It is easy to
see that | f(¢) |< 7, V ¥(] f(2) ]) for each ¢ € (0, §). Therefore f € £.

For each z €[ 1), ) set ¢(z) = sup{7/Y(7); 7 = z}. Obviously ¢(z) -0 (z -
o0). Now let y € (-o0,-7,) and let ¢ € (0, §). If f(¢) = y, then, trivially,
(19) yVf() < f(2) + o(ly De(1 /() );
if f(t) <y, then

FD1=1y1 ey D =11, () =) <oy DH( A1) ),
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and y V(1) =y <0< f(t) + o(y¥(f(2)]) so that (19) holds again. Hence (see
54)S(yV)<S(f)+ o(yDSH e |f]) from which our assertion follows at once.

6.12. THEOREM. Let u > 0 on (0, o0) and let Q < oo. Let ¢ be a nonnegative function
on [0,00) such that o(t)/T - 00 (17— 0). Let S(p° (0V (-Inu))) < co. Then
Q = exp S(In u).

PROOF. Set Y(1) = 12 A p(7) (7 € [0, 00)). It is easy to see that ¢(1)/7 - o0
(7 — 00). Since Q < oo, there is a y € (0, 00) such that S(#’) < c0. Since InT < T
for each T € (0, ), we have (y/2)ln u = In /> < u?/?, so that In u < (2/y)u’/?.
Set A = {t € (0,0); u(t) > 1} and B = (0, 00) \ 4. On A we have

Yyo|lnu|= ¢°lnu<ln2u<(2/y)2uy;
on B,
Yyo|lnu|=yo(-lnu)<go(-lnu)=go (0V (-Inu)).

Therefore o |Inu|<(2/y)*u” + 9o (0 V (-lnu)) on (0,0). By 54 we have
S(Y o |Inu|) < oo. Now we apply 6.11 with f = In u and 6.10.

REMARK. If 4 > 0 on (0, 00), if Q < 0o and if S(|In u|°) < oo for some ¢ > 1, then
the assumptions of 6.12 are fulfilled, so that Q = exp S(In «). Example 6.7 shows
that we must not write here ¢ = 1.

7. Approximate continuity. In this section we show that a positive function in %
can be approximately continuous only in exceptional cases.

7.1. Notation. In this section symbols like lim f = ¢ or f(x) — ¢ always mean
¢ = lim f(x) (x\0); similarly for lim sup, lim ap etc. The letter J stands for [0, 1], B
is the set of all nonnegative, measurable functions on J,

‘Bl={fE‘B;/Jf<OO},

%A = {f€B; f(0) = limap f},
B=(f€B;0<f(0)<liminfap [},

m = {fe B,; £(0) :1imx"j:f],and

N = {fE B,; £(0) = limsupx"fxf}.
0
7.2. PROPOSITION. Let f,,....f, € R and v,,...,v, €[0,1], 2y, < L. Then [1 [ €
N.

PrOOF. We may suppose that [Iy; > 0 and that Zy; = 1. Set g = [l . For each
x € (0,1) we have, by Holder's inequality, x'fyg < H(x“/o"fj )Y whence
lim sup x~'f3g < [I( £(0)" = g(0).

7.3. PROPOSITION. Let f € B; set g(x) = xf(x) (x €J). Then g € N.

PROOF. Let ¢ € (0, 0). For each x € (0,1) let M, = {r € (0, x); g(¢) > ¢}. Then
M, |/x <&y f~0.
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7.4. PROPOSITION. Let g € N. Let L be an open interval containing g(J ). Let ¢ be a
positive, decreasing, and strictly convex function on L. Leth € B andleth-(p o g) €
N. Then g € A.

PROOF. Suppose that g & A. Let y, = g(0). There is a decreasing, linear function A
such that A(y,) = ¢(),) and that A < @ on L\ {y,}. There are ¢, §, n € (0, ) such
that the upper density at 0 of the set V = {r € J;| g(t) — g(0) |> ¢} is greater than §
and that g >A +non L\(y, — & y, t€). Set f=h-(pog)and k =Aog. Let
¢ € (0, h(0)) and M = {t € J; h(t) > c}. The right-hand density of M at 0 is 1. For
each x € (0, 1) define M, = M N (0, x). Obviously p o g=k + non V, k <A0) A
(pog)onl,c'f5f= [y@og=[yk+n|VNM,],and

f ksf k + A(0)[(0, x)\ M| .
0 M,
Thus

(20) n|VﬂMx|<c“f0xf—f0xk+)\(0)|(0,x)\M|.

Since A is an increasing linear function and g € R, we have lim sup x'/(-k) <
—k(0). Now it follows from (20) that 78 < ¢~'f(0) — k(0). Hence 96 < fO)h(O)! —
k(0) = 0—a contradiction.

7.5. PROPOSITION. We have ! N A C M.

PROOF. Let f € ! N A. Set g = f A £(0). Since g is bounded and g € A, we have
x"'g — g(0) = £(0) so that lim inf x~'[3f = f(0). Since f € N, we have x'[5f - f(0).

7.6. THEOREM. Let f, €N, v, €[0,1] (j = 1,...,n), 2y, <1, and let Nk es.
Then Il fm € M N A.

PrOOF. Let B and a; be asin (0). Set Y(x) = x (x €J), F=1Z{f¥, g = + ¥,
h = Fg,and P =1[I_, f,". By 7.2, we have F, f;», P € %t. Thus g € R and g > 0 on
J. It follows from 7.3 that Fy € %. Since Ff*» = (II"_, f%)'/# € B, we have h € B.
Since hg™' = F € N, we have, by 7.4, g € A. Thus f, € A. Similarly f,,....f,_, €A,
sothat P € A. By 7.5, P € M.

7.7. Notation. The symbol C,, stands for the system of all approximately continu-

ous functions on R.

7.8. THEOREM. Let v; €[0,1], f €D (j=1,...,n), and Zy; < 1. Ser f=T1fP'.
Suppose that f € C,, and that f > 0. Then [1 £ € D N C,,,. In particular, f; € C,,, for
j=1...,n.

(This follows easily from 7.6)

REMARK. The following example shows that the nonnegativity of the functions f;
in 7.6 is essential even in the case when y, = 8, = --- = B, = 1. We construct
functions F and G differentiable on J such that their derivatives f = F’ and g = G’
are continuous on (0, 1], fulfill the conditions f(0) = g(0) = 1,0<fg<1,-1<f<
2, -1 <g <2, fg €A(sothat fg € B), but are not approximately continuous on J.
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Let1 =y >y >,y = 0,y /3 — 1. Set
dy =yi1 = Vo & =4d,/ (90 + k),
Xpp =t 4d, /9, X =y T 8d,/9, X3 =y,
Lo = e+ 260, x00 — 28], Lp = [xi + 26, x4, — 28],

and

Ik3=[xk2+58k,xk3_58k] (k:1,2,...).
Let f and g be functions on J such that f(0) = g(0) = 1, f(x,;) = g(x,;,) =0
(j=123),f=2,g=3onl,,f=3,8=2onl,, f=g=-lonl,,andfand g
are linear on each of the intervals [y, y, + 2¢,], [x,, — 28, X0 ), [ X401, X + 28],
['x'k2 - 28"(9 .xk2]; [.xkz, -x.kz + 'SEkL a,.nd [xk3 - 581’(7 xk3]. Then ,(y);k-|f= ny{k~‘g - d
Since fg =1 on I,, U I,, U I,,, we have fg € U. It is easy to see that the functions
F(x) = [§f and G(x) = [g (x € J) have the desired properties.

I«
X
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