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BAIRE ONE, NULL FUNCTIONS
A. M. Bruckner, J. Maf{k, and C. E. Weil

ABSTRACT. It is proved that a Baire one function which
is zero almost everywhere can be written as the product
of two derivatives. Moreover, if the function is non-
negative, then the factors can be selected to be non-
negative. In both cases the factors can be chosen to
have arbitrarily small LP norm for l<p<w.

1. INTRODUCTION. It has been known for some time now that
the class of derivatives does not behave well with respect to
multiplication. In fact since the turn of the century a number of
authors have obtained results which indicate when the product of
two derivatives is again a derivative. A relatively complete sum-
mary of such results is contained in Fleissner [2].

More recently the focus of attention has turned towards the
question of determining the class of functions which can be
expressed as the product of two or more derivatives. This work
contains results along these lines. Specifically it is first
shown that if ¢ is a bounded, Baire one function that is zero
almost éverywhere, then ¢ can be written as the product of two
bounded derivatives. Next it is shown that even if ¢ is not
bounded, it is still the product of two derivatives of arbitrarily
small IP norms, l<p<w. In any case, if ¢ is nonnegative,
then the factors can be selected to be nonnegative.

2. PRELIMINARIES. Let R= (-o,®») . The only measure used is
Lebesgue measure in R and each integral should be interpreted as
the corresponding Lebesgue integral. For each SCR, IS| denotes
its outer measure, and )(.S its characteristic function. All func-
tions will be real valued functions of a real variable. If S is

an open set or an interval, then A(S) is the family of all
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30 BRUCKNER, MARIK AND WEIL

finitely differentiable functions on S where differentiability
is one-sided in the case of an endpoint of S that belongs to S.
Further set A+(S) ={FEA(S) : F'>0o0on S}, BH(S)=(F' :FE€A(S))
and .B+(S)={f€.8(s) : £>0 on S} . We write A4, A+ etc. for A(R),
AT (R) etec. Further let J=(f€5:0<f<2 on R} .

The term "D-closed" refers to the Denjoy topology or the
density topology on R as it is often called. (See for example
[5]). Note that each set of measure zero is D-closed. Let Cap
denote the system of all functions approximately continuous on R
(that is, continuous relative to the Denjoy topology). It is well
known that each element of Cap is a Baire one function.

Let ¥ be the collection of all sets ScR such that S is
both an FB_ set and a (36 set. Such sets are often called ambig-
uous sets. As is well known, a function f is of Baire class one
if and only if for each c€R {x: £(x) >c} and {x: f(x) <c} are
FG sets. Consequently S €U if and only if Xg is of Baire class
one. It follows from Proposition 3 and Theorem 2 of [1l] that
s€¥ if and only if there are F,G,H € A such that XS=F'G+ H'.
The objective of the next section is to prove that there are
f,g € J such that xS=fg if and only if S €Y and S 1is D-closed.
This section is concluded with some facts that will be needed in
the rest of the paper. The first has an easy proof which is
therefore omitted. The second is a special case of the first.

2.1. THEOREM. Let V be open, A closed. Let £ € H(V\A) ,
aGCap. Let £f and o be bounded and let =0 on VNA. Set
f*=0 on vNA, f*=qgf on VNA. Then f*¢€ 5(V).

2.2, THEOREM. If f and o« are bounded functions with f €5
and aECap, then of € 5.

The next result is a part of Theorem 3.2 in [5].

2.3. THEOREM. If IS|=0 and if ¢ is a Baire one function
on R, then there is an aECap such that a=¢ on S.

Our next assertion follows from a theorem on p. 257 of [3]
by letting ao=1.

2.4, THEOREM. Let A be a G6 set and B, an Fc set. If
AcCcB, then there is an M€Y such that AcCMcCB.

We now restate Lemma 12 on p. 29 of [6].

2.5. THEOREM. Let A and B be disjoing, D-closed, G6 sets.
Then there is an aécap such that 0<¢<1 on R, a=1 on A,
and =0 on B.

Finally we establish a consequence of the above which will

prove useful in the rest of the work.
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2.6. THEOREM. Let A and B be as in 2.5. Then there are
oa,B ECap such that 0<o<1l, 0<Bp<1l, =0 on R, oa=1 on A and
=1 on B.

PROOF. By 2.5 there is a Iécap such that Y=1 on A and
y=0 on B. Let Al=[x:y(x)2-?:-}, Bl={x:y(x)5%}. Then A
and B,
get an ozGCap such that 0<a<1l on R, =1 on A and o=0 on
By Similarly there is a BECap such that 0<B<1 on R, B=0
on Al and B=1 on B. Clearly aB=0 on R so that o and B8

are disjoint, D-closed, G6 sets. Applying 2.5 again we

satisfy our requirements.

3. D-CIOSED AMBIGUOUS SETS. As was mentioned above the
objective of this section is to show that those sets whose char-
acteristic functions are the products of two derivatives from J
are precisely the D-closed ambiguous sets. We begin with a lemma
which clearly establishes one direction of this characterization.
It is actually an easy consequence of Theorem 5.5 of [4] but we
include a proof here for the sake of completeness.

3.1. LEMMA. Let m be a natural number, a,b€R, a<b; set
J=[a,b]. Let f,...,f €5 (J), £y +ev £ =Xg
lim sug  ,!S N (a,x)|/(x~a) >0. Then a€s.

PROOF. There is an ¢ € (0,«) and numbers an (a,b) such
that X, ~a and IS N (a,xn) I >e(xn-a) for n=1,2,... . Choose an
n and set L= [a,xn]. By Holder's inequality we have
¢ SI—;_"—I'J"L(fl fm)l/m5 “jm=1(T%.T e fJ.)l/“‘ . This easily implies
that H'jm=l fj(a) >0 so that a€s.

For the remainder of this section let S denote a fixed sub-

on J,

set of R. As a notational convenience for each interval JCR we
will let &(J) be the set of all pairs (f,g), where f,g€ﬁ+(J) ;
f<2,g<2 on J, f=g=1 on JNS and fg=0 on J\S. Let J be
the system of all intervals J such that &(J) #§.

We now prove four lemmas followed by the other direction of
the desired characterization.

3.2. LEMMA. Let al,az,bl,bZER, al<a2<bl<b2. Let
(fj,gj) Gé’([aj,bj]) (3=1,2). Then there is a pair
(f,9) Eé’([al,bz]) such that f£=f£,, g=g; on [al,a2] and f=f£,,
g=g, on [bl,b2].

PROOF. If there is a c¢€ [a2'b1] NS, then
fi(c) =...=g,(c) =1 and we set £=f,, g=g; on [a;,c], £=£,,
g=g, on [c,bz]. Otherwise we have flgl=f2g2=0 on [a2,bl].
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Then we choose a c € (az,bl) and construct functions £f,g such
that f=fl, g=g; on [al,a2], f(c)=g(c) =0, f=f2, g=g, on
[bl’b2] and that £ and g are linear on each of t.he intervals
[a2,c] and [c,bl]. It is easy to see that (f,qg) EG’(]al,bzl).

3.3. LEMMA. Let L be an open interval. Suppose that for
each x €L there is an open interval I such that x€I€g. Then
LEg.

PROOF. Choose numbers an L (n=0,+1,+2,...) such that

(1) X 1 < X s ;|.nfnxn =inf L, sup X = sup L «

It follows easily from 3.2 that [xn—l’xn-l-l] €g for each n. Let
(fn,gn) Eé([xn_l,xm_l] ). Applying 3.2 once more we get a pair
(f,g9) € (L) such that f(xn) =fn(xn), g(xn) =gn(xn) for each n.

3.4. LEMMA. Let a,b€R, a<b, g€ (0,b-a). Set J=[a,b].
Let (fo,go) € #(J). Then there is a pair (f,g) € #(J) such that
f=f,, g=g, on [a,b], q<ij5|J| and q<ng5|J|.

PROOF. Choose a p€ (0,1) such IJIp>qg(2-p). Set
S,= (snNJg)uf{a,b}, SO=J\Sl. It follows from 3.1 that S, is a
D-closed, G, set. If IS,1=0, we define A=B=¢. Otherwise
ISOI/(Z-p) <154l and we choose disjoint closed sets A,BCS, such
that |Al =Bl and that IAUBI >IS,1/(2-p). It follows from 2.6
that there are a.B.YECap with 0<a<1l, 0<B<1l, 0<vy<l,
aB=ay=By=0 on R, =1 on A, B=1 on B and y=1 on Sq-
Define f=2pa+yf0, g=2pB+yg0 on J. It is easy to see that
(f,9) € (J) and that f=f0, g=g, on {a,b}. Since

" _B_
21a1(2-p) 2151, we have q<3zE5 (IS)1+15)1) <1S)1+2plal <[ £<

< ISlI + 2plAal + 2(ISOI -2IAl)=1J1+ ISl =2IAl(2=-p) < IJ!l; similarly
for g.

3.5. LEMMA. Let a,b€R, a<b; set L= (a,b). Let L€g and
let w be a positive, continuous function on L. Then there is a

pair (f,g) € (L) such that for each x €L

(2) max(le(f-l) 1, ISx(g—l) 1) < gxw ,
a a a

0

. b b b
max( 15" (£-1)1, 1§ (g-1)1) < " w.
Dy s — 9y
PROOF. Set {§y=w/2. We may suppose that §y<1 on L. There

are numbers anL (n=0,+1, +2,...) fulfilling (1) such that

X
n-1 (,b \
- 1 \
X X1 < m1n<d Vo 5 ¢/ for each n.

a X
n
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Let (f*,g*) € #(L). For each n set Jn= [xn_l,xn] . By 3.4 there
i = =qa*
are pairs (fn,gn) GO(Jn) such that fn p i gn g* on [xn_l,xn}
and that
(*. e . e
\ (1-y) <\ £ <131, .\) (1-\|,)<3 g <131 .
J J J J
n n n n
Define functions f and g on L setting f=f , g=gn on Jn =

el S X - - xn» = xn'—l X
Now let x€J . Then [J£f<[ "f<x —a<[ "7 (1+y) <[] (1+w),

Xes Pl el ) S PRy — (kex 1) > [P (1mw) > X (1mw)
Jat=Jda a ¥ a v n Ja —Ja -

n—l)
Similarly for fif and for g. This proves (2). It is obvious
that (f,g) €€(L).

3.6. THEOREM. Let S be a D-closed ambiguous set. Then
REJ.

PROOF. Let U be the set of all points x such that x€1I
for some open interval I€g. Let A=R\U. Then A is closed.
Suppose that A#@. Let w be a continuous function on R such
that w=0 on A and w>0 on U. Since Xg is a Baire one func-
tion, there is a bounded open interval I such that ANI#@ and
that Xg is constant on ANI. For each component L= (a,b) of
INU we have, by 3.3, L€g so that by 3.5 there is a pair
(f,9) € (L) fulfilling (2). In this way we construct functions
f,g on INU. Now we distinguish two cases.

Suppose first that ANIcS. Define f*=f, g¥x=g on INU,

f*=g*=1 on INA. If Xq X €I, x,<x, and if x, €A or xzéA,

2 il 2 1
X X
then it follows easily from (2) that lfxz(f*-l) I _<_fx2w. Since w
1 1

is continuous and w=0 on A, f* € H(I); similarly g* € 5H(I). It
is obvious that (f*,g*) € #(I) so that I€g, IcU- a contradiction.

Now suppose that ANINS=@. Let J be a closed interval
with interior V such that ANV#@ and JcI. Then ANJ and S
are disjoint, D-closed, G6 sets. By 2.5 there is an aECap such
that a=0 on ANJ, oa=1 on S and 0<aog<1l on R. Define
f*=g*=0 on vNA, f*=¢9of, g*¥=0g on VNU. By 2.1 we have f£f¥%,
g* € #(V). It is obvious that (f*,g*) € (V) so that VE€g,
VCc U-a contradiction.

It follows that A=@¢ . By 3.3 we have R=U€g.

3.7. COROLLARY. Let ScR. Then the following four condi-
tions are equivalent:
1) There is a natural number m and functions fl,...,fm€ﬁ+

such that fl cee fm=xs .
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2) S is ambiguous and D-closed.

3) There are f,g€57 such that f=g=1 on S, fg=0 on
R\S and f£<2, g<2 on R.

4) There are f,g €J such that fg=xs.

PROOF. If 1) holds, then S is ambiguous and it follows
easily from 3.1 that S is D=-closed. If 2) holds, then, by 3.6,
3) holds as well. The implications 3) =>4) and 4) =>1) are
obvious.

4. BOUNDED, BAIRE ONE, NULL FUNCTIONS. The goal of this
section is to establish that a bounded, [nonnegative] Baire one
function that is zero a.e. can be expressed as the product of two
bounded [nonnegative] derivatives. This fact follows easily from
Theorem 4.2 whose proof relies mainly on Theorem 3.6. We begin
with a proposition based on 2.5 which is used in the proof of 4.2.

4.1. PROPOSITION. Let BiiBysen. be pairwise disjoint ele-
ments of U of measure zero. Then there are CIRLOYERE €Ca such

P
that for each j aj=1 on Aj' Ogajgl on R and aiaj=0 on R,

if i#3.
PROOF. For each j let S.={.,.A.. Then IS.| =0. Let T.
jooCiFici j 3

be a G6 set such that SjCTj and ITjI = 0. Further let

Bj=Tj\Aj. Then Sjch; Bj and A. are disjoint, D-closed G

sets. So by 2.5 there are a;,sj Eca such that for each j

*=1 on A. .=1 on B. d 0<a®<1l, 0<B.<1l, o*B.=0 on R.
%3 j* Py jo and O=oy=<l, 0=By=1, ajBy n

Let aj =Bl Bj_lo:’; . If i<j, then aiaj is a multiple of

&

a’i‘ai so that °’i°’j = 0. The other requirements are easily verified.
4.2. THEOREM. Let Bl’BZ"“ be pairwise disjoint elements
of ¥4 of measure zero and let Q€ (2,«) . Let I DYRRE be Baire
one functions such that Icpnl <1 for each n and that cpn->0
uniformly on R. Then there are f,g€ 5 such that |fl <Q, Igl < Q

@
and fg-—zn=l cpann on R. If, moreover, qanO for each n, we

may choose £>0 and g>0.
PROOF. Let €1r€nrees be positive numbers such that =1
and that 2;=l 2 ej <Q . There are integers rj such that

(3=1,2,...).

=1

_ 2
O—r0<rl<... and that lcpnl__<_sj for each n>rj_l

j = zn & SJ ‘-anBnl and Aj =Un = SJ Bn o
Then Al’AZ'”' are pairwise disjoint elements of ¥ of measure

zero. Let o5 be as in 4.1. According to 2.3 there are

Set Sj= [rj_l+ l:o-'lrj]l W

N . 2
Y1eYorees Ecap such that yj—wj on Aj' Since leﬁej , we may
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assume ijl <e. 2 . According to 3.6 there are fj'gj € J such that

£ . Obviously | £ <2¢. and la.g.e.l <2€..
393 7 *ay Y lagvyfy/egls2ey "% =4

Define f= 2 f . and Z . Then
j=125Y45E5/¢5 I By=1 ¥594%4

[£1 52;___129:] <Q and also Igl <Q. The series that define f and
g converge uniformly and by 2.2 each term is in /. Thus f,g€ 5.

are pairwise disjoint and YjXA = Wj . we have

Since Al,A
J
If ¢ >0 for
n—=

2'--0
@® 2 ©
fg=Z4.) %5745%595 =24 j=1 93 ‘” Zye1 ¥4 = Zpop Op g *
each n, then we may choose yjzo and we obtaln £f>0 and g>0

on R.
4.3. COROLLARY. Let ¢ be a Baire one function, |9l <1 on
R, =0 a.e. and let Q€ (2,») . Then there are £f,g €, such that
Ifl <Q, Igl <Q and fg=¢ on R. Moreover, if ¢ >0, we may
select £>0 and g>0.
PROOF. Let a, be numbers such that a0>al>..., al=l and
= = . <
an-’O. For n=1,2,..s 1let v {x.a_i_l Icp(x)l<a } and
={x:0< Icp(x)l<an_l}. Then Vncwn, v is a G6 set and Wn
an F_ set. So by 2.4 there are M_€9U such that V_CM CW_.
o n n n n
_ =1L _ .
Let Bn—Mn\Uj=le for n=1,2,... . We see that Bl'BZ"" are
pairwise disjoint elements of U of measure zero,
(=<} .
U ~1 n—{x.cp(x)#o}, and o= Z) lcpr . Since B CcW_,

@

Un=l Bn=
we have PXp -0 uniformly on R. Now we apply 4.2.
n

The next result shows that we would get a wrong assertion,
if we admitted Q<2 in 4.3. 1If, however, the function ¢ in 4.3
satisfies the relation ¢(R) ={0,1}, then, by 3.6, it can be
expressed as the product of two nonnegative derivatives each of
which is bounded by 2. We do not know whether Q can be replaced
by 2 in 4.3.

4.4. THEOREM. Let Q€ (0,»). Let f,g€5, Ifl<Q, Igl<Q
and fg=0 a.e. on R. Then IfgI5Q2/4 on R.

PROOF. Let xX,y€R, y#%x. Let a= (y-x)"lj'}: £,
b= (y—x)-lﬁ:g. Since |fl + Igl <Qa.e., we have lal+ |bl €£Q so
that 4labl <Q2. Thus |f(x)g(x) | 502/4 .

5. ARBITRARY BAIRE ONE, NULL FUNCTIONS. Throughout the rest
of the paper p will denote a number in [l,®). We set Y=1- p-l .
If £ is a function, ScR and if the integral M= j' 1£1P is
finite, we write Hf” —Ml/p. If, moreover, IS| <w, then, by

Holder's inequality,
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(3) j'SIfI < lifllg - 1s17.

If the meaning of S 1is obvious from the context (if, e.g., S is
the domain of definition of f), we write [fllg =[/£||. The class of
all functions ¢ for which to each ¢ € (0,») there correspond

£,g €5 (5 resp.) such that ||fHR+ lglly <¢ and fg=¢ on S will be
denoted by #&(S) (P+ (S) resp.). Moreover, 4Loc R(S) (Loc€+ (S) resp.)
is the family of all functions ¢ such that for each x €S there
is an open interval I with xXx €I and 9 €R(SNI) (/?+ (SNI)resp.).
In keeping with our previous conventions A&(R) and E+ (R) will be
denoted simply by & and R+ respectively.

In terms of this notation our objective is to show that if
¢ 1s a Baire one function which is zero a.e. on R, then ¢ €RX.
If in addition ¢ >0, then cpEc‘?+ . We begin with a useful lemma
and the treat the case where ¢ is bounded.

5.1. LEMMA. Let A be a measurable set and let ¢ € (0,=) .
Then there is a closed set CcA and a 2 GCap such that IA\CI <e¢,
0<A<1l on R, A=1 on C and A=0 on R\A.

PROOF. Denote by S the set of all points in A that are
points of density of A . There is an Fc set TcS such that
IS\T| =0. There is a closed set Cc T such that IT\C! <e¢.

Clearly IA\C|=I1T\Cl <e. Since R\T and C are disjoint, D-closed,
G6 sets, by 2.5 there is a kECap such that =1 on C, =0 on
R\T, and 0<1 <1 on R.

5.2. THEOREM. Let ¢ be a bounded Baire one function such
that 9¢=0 a.e. on R. Then @€ /XK. If in addition ¢ >0, then
@ € &’+.

PROOF. Assume as we may that lol <1l. Let ¢ € (0,«»). By 4.3
there are fl,gléﬁ such that Ifll <3, Igll <3, and flgl=<p on
R. Let B={x:(x)#0}. It follows easilv from 5.1 that there
is an open set U>B and a A\ ECap such that Ul = IU\BI < (¢/6)P,
0<A<1l on R, A=1 on B and A=0 on R\U. Let f=)‘fl and
g=kgl. By 2.2 f,g€ /. Since A=1 on B, fg=flgl=cp. Finally
lell+ llgll<2 - 3+ 101t/

p<¢. If 9>0, then we may select fl and
91 from 5% and we have f,gG.B+ .

We now take up the process of showing that the assumption of
boundedness can be deleted from 5.2. We start with three asser-
tions the first of which will be used again later.

5.3. LEMMA. Let J= [a,b] and let ¢ € (0,») . Let
£149549,.9, € 5(J) (5" (J) resp.). Suppose that £,9,=£f,9,=¢ on
J and that @ =0 on a dense subset of J. Then there are a
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c € (a,b) and £f,g€ 5(J) (,B+(J) resp.) such that fg=¢ on J,
f(c) =g(c) =0, f(a) =£,(a), g(a) =g;(a), £(b) =£,(b), g(b) =g,(b),
1£1 < Ifll +e, Igl< lgll +e¢ on [a,c] and Ifl < If2I + €,
gl < Ig2I +e¢ on [c,b].

PROOF. There is a c € (a,b) such that fl'f2’gl' and g, are
all continuous at c¢. Since flgl=0 on a dense subset of J,
fl(c)gl(c) = 0. Since the roles of fl and g, are interchangeable,
we may assume that fl(c) =0. There is a clé (a,c) and a func-
tion h continuous on [a,c] such that h=1 on [a,cll, h(c) =0,
Ifll/e <h <1l on [cl,c) and g, is bounded on [cl,c]. Set
f=fl/JT1_, g=gl,\/ﬁ on [a,c) and f(c)=g(c)=0. We define f£
and g on [c,b] in a similar fashion. On [cl:C) we have
|Ifl <es/h<e ; in particular, f is continuous at c. Now it is
easy to see that f € 5(J). The rest of the proof is left to the

reader.
5.4. PROPOSITION. Let —w<al<a2 <bl<b2<co and let
® €R([a;,b;1) NR([ay.b,]1) @' ([a;,b,1) NRY ([a,,b,]) resp.). Then

9 € R([a;,b,]) w”ual.b 1) resp.).

PROOF. Let ¢ € (0,») . There are fl,gl,fz,g2 S (.B resp.)
such that flgl—cp on [a . 1], f2g2—cp on [a2,b ] and
I IP+ llgq IIP+ [I£511P + ||g2||P< (e/2)P. Let J= [az,bl] It follows
easily from 5.3 that there are £f,g € 5(J) (.B (J) resp.) such that
fg=9 on J, f(a,) =£f,(a,), g(a,) =g;(a,), £(by) =£,(by),

g(b;) =g, (b;) and ||£]B+ [lg]f < (¢/2)P. 1Let £= fl, 9=g, o=
(==, a, ) and f=f,, g=g, on (by, @). Then f,g€p (.B resp.),
fg=¢ on [a; bl and ||f|l«‘-’+|lg||1°<2<<-=/2>p so (€]l + llglh® <
2P~L(||£|P + ||g||P> <¢P

The next statement follows easily from the above by a routine
compactness argument.

5.5. COROLLARY. Let J be a closed, bounded interval and
let o€ 4oc R(J) (LocRY (J) resp.). Then o9 € R(I) R (J) resp.).

The preceding result and the next lemma are used in the
proofs of propositions 5.7 and 5.7.1.

5.6. LEMMA. Let J= [a,b] . Let M,NE€ER, fl,glEﬁ(J) .
f,9,=0 a.e. on J and ||fl||+||gll|<°°. Then there are f£,g € 5(J)
such that f=f£,, g=gly on {a,b}, fg=£,9; on J, fJf=M, j'Jg=N,
| £]] <slig 1+ 1 (4/131)7, ligll <llgqll+ INI(4/131)Y. If in addition
fl,glE_D"'(J), M>j'J , and N>j‘ng, then f and g can be chosen
from &' (J) .
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PROOF. Let B=(x: £, (x)g, (x) #0)} U ({x: £, or g; is not
approximately continuous at x} U{a,b} . Then IB|l=0. There is a
K€ (0,«) such that IS| >1J1/2 where S=({x€J\B: Ifl(x) | + Igl(x) | <
K}. There is a closed set AcS with |Al > IJI/2. According to
5.1 there is a closed set CCA and a :€C such that ICl| > 1J1/2,

ap
05).5_1 on R, A=1 on C and A=0 on R\A. Note that )\fl is
approximately continuous on A (since AcJ\B) and Af, =0 on J\A

1
which is open in J. It follows that kfl is approximately con-

tinuous on J. Since |.\fll <K on J, xfl € 5(J). Likewise
kglé.D(J). Let f2=fl-xfl and g, =9; =g, - Then f£,,9, € 5(J)
and, as is easily verified from the properties of 1, f2g2 =flgl'

|£,1 <I£;1 and Ig,l <lg;1. Since [|f|| <=, we have [ If,I <[ If,I<

J l
©; similarly J"Jlgzl <o, It follows from 5.1 that there are
o,B Ecap and disjoint, closed subsets Coz and CB of C such that
ICal>IJ|/4, ch|>|J|/4, 0<a<l, 0<Bp<l, aB=0 on R, a=B=0
on R\C, a=1 on c,and =1 on CB' Let s=(M—j'Jf2)/‘j"Ja and
t=(N- fng)/‘fJB. Let f= f2+sa and g= g2+tB. Obviously

o <o and Jye>131/4; fy (3), [1£51 <|l£qll-131Y.  Thus
(£, PIYR/] as (fLa® ~Laia/ianY, Nl <l + ol a1+

1€,/ f e < NIE |l + a/131)Y (1M1 + £, 1l 131Y) <s|lg, I+ 4/131)Y1MI.
A similar estimate is valid for g.

If the additional assumption is fulfilled, then f
s>0, t>0 so that £>0 and g>0.

5.7. PROPOSITION. Let I be an open interval, o a positive,
continuous function on I, F,,G, € a(I), [Fyll+ llogll <=, o€ Loc (1)
and let ¢ € (O,») . Then there are F,G € A(I) such that

2201 92201

(4) F'G' =9, I|IF-F,|+ IG-G,l <w on I and

0 0
(5) e 1P+ llo* P < e + 8272 (llEg 1P + [log IP) -

PROOF. There are numbers ynE I (n=0,+1,+2,...) such that
1 . .
yn<yn+l<yn+§ ’ 1nfnyn= inf I, Sup y = sup I and that
n-1
S (IFOI + lGé)I <p.n=m1n[w(x) : X € [yn-—l'yn+1] }/7 .
Yn-1
p = p-1 :
Choose ené (O,u.n) such that % =_mcn<e/2 . Since ¢ € LocR(I),
5.5 implies that cpee([yn_l.ym_l]) . There are fn 19q 16_8 such
that £, .9, ;=% on [y, ),y ;] and £, l||P+ Hg l[lp<e /5P, 1t
follows from 5.3 that there are X € (yn 1‘Yn) and
fn,Z'gn,Ze‘D([xn’xn+l“ such that f 209 2= on [x X
fn,2=gn,2=o on (x

ol

Xnt¥ne1l s and Hf 2||p+ ||g 2”p<¢ /5p Denote
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[xn,xn+l] by J . According to 5.6 there are fn,gné.ﬁ(Jn) such
that fn=g -O on {x ,xn+l}, fngn=cp on Jn’

6 \ £ Fe, =\ @,
e} BJ 5 3 In SJ 0
n
(7) |lfnl|55||fn,2||+ls F5|(4/'Jn'>Y:
Jn
(8) lg < 5lla, I+ 'SJ Gyl (8/13, )Y .
n

Using (3), (7), and the relation IJ | <1 we get

+4YIJ IF'1<el/P+4jJ IFA1

Y
j'Jnlf <513 IT||£ o

ol
£, IIP < 2P~ l(5p||f 2||P+ 4PY||FO||P ). Slmllarly,

0
are F,G € B5(I) such that F' —fn, G'=g,  on Jn’ F(xn) —Fo(xn), and
G(xn)=GO(x ) for each n. 1If xEJ , then (since € <p.P and

.rJ lg 1 <e /p+4fJ 1G4l ||g ”p<2p (SPHg 2Hp+4pY||G ”p ) . There
B In

I cly 1:¥p1]) IFX)-Fgy(x) 1+ 1G(x)-G (x)|<jJ (1f I+1g I+IFyl +

Gy 1) <2 en/P+ 4p, +p <w(x). Finally (note that py=p-1)

e P+ flo [P =22 CIE 1P+ llg I®) <22t e +

gP~ 1 ,,__wunFouP + lleg |P ) <e+8PTH(IFYIE+ g lID) -

The ver51on of the precedlng theorem involving nonnegative
functions is somewhat different. Consequently we state it
separately.

5.7.1. PROPOSITION. Let I be an open interval, w a positive,
continuous function on I, FO,GOE at (1), F0 0>0 on I,

HF | + ||G | <=, @ €tockt (I) and let ¢ € (0,=) . Then there are
F, GEA (I) fulfilling (4) and (5).

PROOF. There are x_,y. €I such that x <y <x
n‘‘n n n

2

1
< —
n+1l xn ¥

(n=0,+1,+2,...), infnxn=inf I, sup xn=supI and

Fo(Xpe1) = Folyp_ 1) +6o(x 1) =Gy, 1) <min{w(x) : x € [y _q.x, . ,]]
for each n. Choose € € (0,») such that % ____men<e/2p'1. Since
CPELOC,? (), 5.5 1mp11es that o Rt Ly l’xn+l]) Consequently

there are fn l'gn 16.8 such that fn 19n,1 =9 on [Y l’xn+l] and

Ig, 1P+ llg, 1P <'c, =min(e /5P, (F (v, )-F, (x,))P, (64 (y )=Gq (x_))F).

It follows from 5.3 that there are z. € (y i ) and functlons

n+l
fn,2’gn,2 ([zn 172p ]) such that f 2gn 5, =% on [zn 17%n 1,

fn,2=gn,2 0 on (z 4.2z }, and ”f 2||p+||g 2\\p<c . Denote

[zn—l’zn] by Jn. Since IJ | <1, we have (see (3)) IJ 25



40 BRUCKNER, MARIK AND WEIL

ngn 2 <Gg (z ) -G (zn 1)' According to 5.6 there are

n’In es (J ) fulfilling (6)=-(8) such that f =g, =0 on [zn_l,zn}
and fngn—cp on Jn. There are F, GE.D (1) such that F' =fn,
G'=g on J., F(zn)=Fo(zn) and G(zn)=Go(zn) for each n. The
estimate (5) follows just as it did in the proof of 5.7. It is
clear that F,G€A+(I) and that F'G'=¢ on I. If xEJn, then
Fo(zn_l) <F(x) sFo(zn) so that IF(x)—FO(x) | 5F0(zn)-F0(zn_l) <
Fo(xm_l)—Fo(yn_l). Likdwise IG(x)-GO(x)I<G0(xn+l)—G0(yn_l). This
completes the proof of (4).

5.8. PROPOSITION. Let C be a closed set, U=R\C, O,gOG.B

(87 resp.), ||f0||+ ||go||<°°, ® € Loc ,?(U) (Loc®Rt (U) resp.) and let
M€ (0,®). Then there are f,g€p (.D resp.) with f= fo, g=g, on
C, fg=¢ on U and

(9) IEIP+ lig]® <1+ 8P~ (Jl£y 1P+ llgoIIP) -

PROOF. Let B=8P71. There is a &€ (0,») with
B(([|£ylly+ 5)P + (llgglly + 5)P) <%1+ B(||f0||5+ “90“5)- Choose an w € A
with w>0 on U, w=w'=0 on C and |w|<6. Let F.=f. +w,

0 0
G(')—go+w. IE = € st , then F\G.>0 on U. Applying 5.7

0’90 0°0
(5.7.1 resp.) to each component of U we get F,G € A(U) (A+ (U) resp.)
such that F'G'=g, IF-Fjl+ IG-G I <w on U and [[F' ||P |\G'||§<—gl+

B(irg I+ oo IB). since Jleyll < lEglly+ 5 ana fleglly < llaglly + & - we

have

(10) e 1B+ e B < m+Bllg I8+ llgg )

Define F=FO and G=GO on C. Since w=w'=0 on C, we have
F,Ge€A and F'=F('), G'=G6 on C. Let f=F' and g=G' . Then

fO' G' =gy on C and (9) follows at once from (10). If
€ 55, then f,géﬁ as well.

5.9. THEOREM. Let ¢ be a function on R . Suppose that for
each nonempty closed set, C, there is an open interval I such
that CNI#¢@ and 9€R(CNI) (R (CNI) resp.). Then 9€R ®F
resp.).

PROOF. Let U= {x: there is an open interval, I, with xX€1I
and @ €R(I)}, and let C=R\U. Our objective is to show that
c=¢, for if so, then by 5.8 9 € R. So suppose C#(@ . Then there
is an open interval, I, with CNI#@ and @€ R(CNI). Let
¢ € (0,@). Then there are f,,gj€J5 such that 89-1(||f0||p+||g0||p) <e
and f =¢p on CNI. By 5.8 there are f,g€ p such that f£=f£f

£0r90

0% 0
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g=g, on C, fg=¢ on U, and IEIIP + |lg]|P <e. Since fg=¢ on
(CNI)UU, we have ¢ € £(I) and hence Ic U contrary to CﬂI;é¢.
Consequently C=¢ . The alternate assertion can be proved in the
same way.

We finally come to the objective of this section which, with
the help of 5.2, is an easy consequence of 5.9.

5.10. COROLIARY. Let ¢ be a Baire one function with ¢ =0
a.e. on R. Then 9€AR. If in addition ¢ >0, then cpE&’+.

PROOF. Let C be a nonempty, closed set. There is an open
interval, I, such that CNI#¢ and ¢ is bounded on S=CNI.
By 5.2 PXg € R. So by definition ¢ €R(CNI). Thus 5.9 implies
that ¢ € £. The proof of the additional assertion is similar.
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