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BAIRE ONE, NULL FUNCTIONS

.., (

A. M. Bruckner, J. Mar1k, a nd C. E. Weil

ABSTRACT. It is proved that a Ba ire one function which
is zero almost everywhere can b e written a s the product
of two derivatives. Moreover, if the function is non­
negative, then the factors can be se l e c t ed to b e non­
negative. In both cases the factors can be chosen to
have arbitrarily small LP norm fo r 1 <p < (X) •

1. INTRODUCTION. It has been known f o r some time now that

the class of derivatives does not b ehave well with respect to

multiplication. In fact since the turn of the century a number of

authors have obtained results which indicate when the product of

two derivatives is again a derivative. A relative ly complete sum­

mary of such results is contained in Fleissner [2].

More recently the focus of attention has turned towards the

question of determining the class of functions which can be

expressed as the product of two or more derivatives. Th i s work

contains results along these lines. Specifically it is first

shown that if q> is a bounded, Baire one function that is zero

.a l mo s t everywhere, then cp can be written as the product of two

bounded derivatives. Next it is shown that even if q> is not

bounded, it is still the product of two derivatives of arbitrarily

small rY norms, I <p < Q). In any case, if cp is nonnegative,

then the factors can be selected to be nonnegative.

2. PRELIMINARIES. Let R= (-Q),(X)). The only measure used is

Lebesgue measure in R and each integral should be interpreted as

the corresponding Lebesgue integral. For each se R, IS I denotes

its outer measure, and Xs its characteristic function. All func­

tions will be real valued functions of a real variable. If S is

an open set o r an interval, then ~ (S) is the family of all
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30 BRUCKNER, MARfk AND WElL

Gs sets.

on A,

finitely differentiable functions on S where differentiability
is one-sided in the case of an endpoint of S that belongs to S.

Further s et ~+ (S) = (F E 6 (S) : F' > 0 on S J I ..& (S) = (F' : F E Li (S ) }

and JJ+ (S) = (f E .&(5) : f > 0 on SJ. We write 6, 6+ etc. for ~(R),

6+ (R) etc. Further let .J = (f E JJ : 0 < f < 2 on R} •

The term "D--closed" refers to the Denjoy topology or the

density topology on R as it is often called. (See for example

(5]). Note that each set of measure zero is D-closed. Let Cap

denote the system of all functions approximately continuous on R

(that is, continuous relative to the Denjoy topology). It is well

known that each element of C is a Baire one function.ap
Let ~ be the collection of all sets S c R such that S is

both an Fa set and a G & set. Such sets are often called ambig­

uous sets. As is well known, a function f is of Baire class one

if and only if for each c E R (x : f (x) > c ] and (x: f (x) < c ] are

F a sets. Consequently S E ~ if and only if Xs is of Baire class

one. It follows from Proposition 3 and Theorem 2 of [1] that

sE21 if and only if there are F,G,HE6 such that X =F'G+H'.
S

The objective of the next section is to prove that there are

f,g E~ such that X s = fg if and only if S E m and S is D-closed.

This section is concluded with some facts that will be needed in

the rest of the paper. The first has an easy proof which is

therefore omitted. The second is a special case of the first.

2.1. THEOREM. Let V be open, A closed. Let f E .B(V\A) I

a E Cap. Let f and et be bounded and let et = 0 on V nA. Set

f* = 0 on V nA, f* = Cif on V\A. Then f* E ..8 (V)

2. 2. THEOREM. If f and et are bounded functions wi th f E J)

and et E C , then etf E .B •ap
The next result is a part of Theorem 3.2 in [5].

2.3. THEOREM. If IS I = 0 and if cp is a Baire one function

on R, then there is an Q' E C such that et = cp on S.ap
Our next assertion follows from a theorem on p. 257 of [3]

by letting et = I .

2.4. THOOREM. Let A be a G& set and B, an Fa set. If

A CB, then there is an M E ~ such tha t A c Mc B •

We now restate Lemma 12 on p. 29 of [6].

2.5. THEOREM. Let A and B be disjoing, D-c10sed,

Then there is an Ci E C such that 0 < Q' < 1 on R, Q' = 1ap
and Ci = 0 on B.

Finally we establish a consequence of the above which will

prove useful in the rest of the work.
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2.6. THEOREM. Let A and B be a s in 2. 5 . Then there are

Q',~EC such that O<a<l, O<~<l, O'e=O o n R, 0'=1 on A andap
e= 1 on B.

PROOF. By 2.5 t here is a YE C such that Y = 1 on A and
1 ap 1

y =0 on B. Let Al = ( x : y(x) >"2J , Bl = ( x : y (x) <"2J • Then A

and Bl are disjoint, D-closed, Go sets. Applying 2.5 again we

g e t an a E C such that 0 < Cl' < 1 on R, 0' = 1 on A and Cl' = 0 onap - -
B

l
• Similarly there is a ~ E C such that 0 < e < 1 on R, e = 0ap

on Al and a= 1 on B. Clearly O'e = 0 on R so that 0' a nd e
satisfy our requirements.

3. D-CIDSED AMBIGUOUS SETS. As was mentioned above the

objective of this section is to show t h a t those sets whose char­

acteristic functions are the products of two derivatives from J

are precisely the D-closed ambiguous sets. We begin with a lemma

which clearly establishes one direction of this characterization.

I t is actually an easy consequence of Theorem 5.5 of [4] but we

include a proof here for the sake of completeness.

3.1. LEMMA. Let m be a natural number, a,b ER, a < b : set
+ .

J = [a, b]. Let f 1 ' · · · , f m E J) ( J), f 1 ... f m = XS on J,

1 im sul5c~0 IS n (a, x) I / (x-a) > O. Then a E S.

PROOF. There is an e E (O,~) and numbers x E (a,b) such
n

that x -) a and IS n (a,x ) I> e (x -a) for n = 1,2,.... Choose an
n n n

n and set L = [a,xnJ. By Ho l d e r ' s inequality we have

1 J l/m m ( 1 J )l/m h i ·1e <ill L (fl ••• f m) < TIj=l TLT L f j • T a s eas a y implies

t h a t TI '~ 1 f. (a) > 0 so that a E S •
J= J

For the remainder of this section let S denote a fixed sub-

set of R. As a notational convenience for each interval J c R we

will let @(J) be the set of all pairs (f,g), where f,g E 1)+ (J) ,

f < 2, g < 2 on J, f = g = 1 on J nSand fg = 0 on J\S. Let; be

the system of all intervals J such that @(J):J 91 •
We now prove four lemmas followed by the other direction of

t h e desired characterization.

3.2. LEMMA. Let a
1,a2

, b
l

, b 2 E R, a 1 < a 2 < b l < b 2 • · Le t

( f . , g .) E @ ( [a . , b .]) (j = 1, 2 ) • Then there is a pa ir
J J J J

(f,g) E@ ([a
1,b2

] ) such that £=£1' g=gl on [a l , a 2 ] and £=£2'

g = g 2 on [bI' b 2] •

PROOF. If there is acE [a2,b l] ns , then

f l (c ) = ••• =g2(c) =1 and we set £=f1, g=gl on [al,c], f=f2,
g == g2 on [c,b

2].
Otherwise we have f l g 1 = f 2g2 = 0 on [a2,b l]·
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Then we choose acE (a2 ,b
l)

and construct functions f, 9 such

that f = f l' 9 = 9 1 on [a1 ' a 2]' f (c) = 9 (c) = 0, f = f 2' 9 = 9 2 on

[b
l,

b 2] and that f and 9 are linear on each of ~he intervals

[a2,c] and [c,bl]. It is easy to see that (f,g) E @(] a l,b2]).
3.3. LEMMA. Let L be an open interval. Suppose that for

each x E L there is an open interval I such that x E I E ~. Then

LE~.

PROOF. Choose numbers x E L (n = 0, +1, + 2, ••• ) such thatn

(1) x 1 < x, inf x = inf L, sup x = sup L •
n- n n n n n

for each n ,x -x <n n-l

It follows easily from 3.2 that [xn-l,xn+l] E~ for each n , Let

(f ,g ) E fi>( [x l'x +1] ). Applying 3.2 once more we get a pairn n n- n
(f,g) E @(L) such that f(x ) = f (x ), g(x ) = g (x ) for each n ,

n n n n n n
3.4. LEMMA. Let a,b E R, a <b, q E (O,b-a). Set J= [a,b] •

Let (fO,gO) E @(J). Then there is a pair (f,g) E .@(J) such that

f = f 0' 9 = goon [a,b], q < JJ f < IJ I and q < JJ 9 < IJ I •

PROOF. Choose a pE (0,1) such IJlp>q(2-p). Set

SI = (S nJ) U (a,b], So = J\Sl. It follows from 3.1 that SI is a

D-closed, Go set. If ISo I = 0 , we define A = B = 9. Otherwise

ISOI/(2-p) < 15
01

and we choose disjoint closed sets A,BCS
O

such

that IAI=IBI and that IAUBI>ISOI/(2-p). It follows from 2.6

that there are a,e,YEC with O<a<l, O<e<l, O<y<l,ap - - - - --
ae=CXy=ey=o on R, Q=l on A, e=l on Band y=l on SI.

Define f = 2p Ci + Y fa, 9 = 2p e + y go on J. It is easy to see that

(f,g) E tt>(J) and that f = fa, 9 = go on [a,b}. Since

21AI (2-p) > '80', we have q<~ (1801+1811)< 151 ' +2p1AI <JJf<

<IS ll+2pIAI+2(ISOI-2IAI)=IJI+ISOI-2IAI(2-p)<IJli
similarly

for g.

3.5. LEMMA. Let a,bER, a x b r set L= (a,b). Let LE~ and

let w be a positive, continuous function on L. Then there is a

pair (f,g) E @(L) such that for each x E L

(2) max( ISx
(f-l) I , ISx

(g-l) I) < SX w ,
a a a

, r-b Sb ) r b
max ~ I \ ( f-l) I ,I (g-l) I <\ w.

J x x ~x

PROOF. Set W = w/2. We may suppose that W < 1 on L. There

are numbers x E L (n = 0, +1, +2, ••• ) fulfilling (1) such thatn - -
x

. (\ n-l rb ')
nu.n J. W' \ WJ

a .... x
n
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Let (f*,g*) E t?(L). For eac h n s e t J = [x l ' X] . By 3.4 t h e r en n- n
are pairs (f ,g ) E g{J ) such that f = f * , 9 = g* on {x l'x Jn n n n n n- n
and that

~ (1-,) <S
J Jn n

f < IJ I ,n- n
\' ( I -V ) < \' g < I J I •
JJ jJ n - n

n n

that ex = 0

f* = g* = 0

g* E J}(V) •

Define functions f and 9 on L setting f = f , g = g on J •
n n

x x
Now let xEJ • Theii fXt<: f n f <x -a< r n-l{l+ Ill ) <Jx (l+w) ,n ea - a - n ·· a 'I' a

x x x x
JXf>J n-1 f >J n-l(l_W) >J n(l-V) - (x - x 1) >J n(l_w) > Jx{l-w) .

a - a a a n n- a - a

Similarly for J~ f and for g. This proves (2). It is obvious

tha t ( f , g) E (; (L) •

3.6. THEOREM. Let S be a D-closed ambiguous set. Then

R E tP.
PROOF. Let U be the set of all points x such that x E I

for some open interval I E ~. Let A = R\U. Then A is closed.

Suppose that A:f 91. Let w be a continuous function on R such

that w = 0 on A and w > 0 on U. Since Xs is a Baire one func­

tion, there is a bounded open interval I such that A n I:f ~ and

that Xs is constant on A n I. For each component L= (a,b) of

InU we have, by 3.3, LE; so that by 3.5 there i s a pair

(f,g) E ~(L) fulfilling (2). In this way we construct functions

f,g on I nu. Now we distinguish two cases.

Suppose first that A n le S. Define f* = f, g* = 9 on I nu,
f* = g* = 1 on I n A. If x l,x2 E I, xl < x 2 and if xl E A or x 2 E A,

x2 x2
then it follows easily from (2) that IJ (f*-l) I <J w ; Since w

xl xl
is continuous and w = 0 on A, f* E b(I) i similarly g* E .b (I). It

is obvious that (f*,g*) E@(I) so that lE;, ICU- a contradiction.

Now suppose that A n InS = 91. Let J be a closed interval

with interior V such that A n V f; ~ and J cl. Then A n J and S

are disjoint, D-closed, G~ sets. By 2.5 there is an a E C such
u ap

on A n J, ex = 1 on Sand 0 < ex <Ion R. Define

on V n x, f* =af, g* =cxg on V nu. By 2.1 we have s«,
It is obvious that (f*,g*) E~(V) so that VEtP,

v c: U - a contradiction.

It follows that A = ~. By 3.3 we have R = U E ; .

3.7. COROLLARY. Let S cR. Then the following four condi­

tions are equivalent:

1) There is a natural number m ·and functions

such that f l••• f m = Xs •
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2) S is ambiguous and D-closed.

3) There are f,gEJJ+ such that f=g=l on S, fg=O on

R\S and f < 2, g < 2 on R.

4) There are f,g E J such that fg = Xs .
PROOF. If 1) holds, then S is ambiguous and it follows

easily from 3.1 that S is D-closed. If 2) holds, then, by 3.6,

3) holds as well. The implications 3) <> 4) and 4) =) 1) are

obvious.

if i f j .

PROOF. For each j let S. =U.~ . A. • Then IS. I = O. Let T.
J 1.T J 1. J ]

be a G ~ set such that S. c r . and IT. I = O. Further let
u J J J

B. =T.\A .• Then S.cB.; B. and A. are disjoint, D-c1osed G~
J J J J J J ] u

sets. So by 2. 5 there are et":, e. E C such that for each j] ] af
Q'~ = 1 on A., e. = 1 on B. , and 0 < 0' . < 1, 0 < e. < 1, et": e. = 0 on R.

J J J * J - J- - J- ] J
Let 0'. =al··· e· 101.. If i < j I then 0'.0'. is a multiple of

J J- ] a J
OI~e. so that 01. ex. = O. The other requirements are easily verified.

1. 1. 1 J
4.2. THEOREM. Let Bl , B2 , ••• be pairwise disjoint elements

of ~ of measure zero and let Q E (2, (X). Let CPl' CP2' • •• be Baire

one functions such that I cp I < 1 for each n and that cP ~ 0n - n
uniformly on R. Then there are f,g E J) such that Ifl <Q, Ig I < Q

QC)

and fg = I: -1 et> XB on R. If, moreover, cp > 0 for each n, we
n- n n n-

may choose f > 0 and g > 0 •

PROOF. Let € 1 ' E: 2 ' • •• be pos i tive numbers such that e 1 = 1
QC)

and that I:. 1 2 € • < Q. There are integers r. such that
J= ] 2 ]

o = r O < r l < • •• and tha t I cp I < e • for each n > r. 1 (j = 1, 2, ••• ) •
n - J J-

Set S. = (r. 1 + 1,. • • , r . J, w· = I: E S CP XB ' and A. = U E B.
J J- J ] n j n n J n Sj n

Then A1,A2, ••• are pairwise disjoint elements of ~ of measure

zero. Let Q'. be as in 4.1. According to 2.3 there are
J 2

Yl'Y2' ••• EC such that y·=w· on A .• Since IW.I <e. , we may
ap J J J J - J

4. BOUNDED, BAIRE ONE, NULL FUNCTIONS. The goal of this

section is to establish that a bounded, [nonnegative] Baire one

function that is zero a.e. can be expressed as the product of two

bounded [nonnegative] derivatives. This fact follows easily from

Theorem 4.2 whose proof relies mainly on Theorem 3 .6. We begin

with a proposition based on 2.5 which is used in the proof of 4.2.

4.1. PROPOSITION. Let Al,A2,
••• be pairwise disjoint ele­

ments of ~ of measure zero. Then there are 0'1,0'2' ••• E Cap such

that for each j 0'. = 1 on A., 0 < 01. < 1 on Rand 01.01. = 0 on R,
J J -J- 1J
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f . , g . E;- s u c h t hat
J J

and ICi •g . e . I < 2 e . •
J J J - J

Then

assume I y . I < s .2. According to 3.6 there are
J - J

f.g.=x
A

• Obviously let.y.f. / e . 1 <2e .
J J j J J J J - J

Define f=!:~ lCt.y.f./e. and g=~~ l Ci .g .e .•
J= J J J J J = J J J

00

I f I < ~. 1 2 e . < Q and also Ig I < Q. The series that define f and
- J= J

g converge uni formly and by 2. 2 each term is in 17. Thus f, g E J).

Since A1,A2 , •.• are pairwise disjoint and Yj X
A

. =W j ' we have

CD 2 00 2 00 00 J
fg=~j=l Ci j Yjfjgj =~j=l Ci j Wj =L:k=l Wj =L:n=l <PnXBn· If CPn >0 for

each n, then we may choose y . > 0 and we obtain f > 0 and g > 0
J-

on R.

4.3. COROLLARY. Let cP be a Baire one function, Icp I <Ion

R, cp = 0 a. e. and let Q E (2, ex». Then there are f , g E J) such tha t

I f I <Q, Igl <Q and fg=cp on R. Moreover, if cp>O, we may

select f > 0 and g > 0 •

PROOF. Let an be numbers such that a O > a l > ••• , a l = 1 and

a ~ O. For n = I, 2, • •• let V = [ x : a 1 < I cp (x) I < a J andn n n+- -n
W =[x:O<lcp(x)l<a 1]. Then V cW, V is a GJ:. set and Wn n- n n nun
an F set. So by 2.4 there are M E~ such that V CMnCWn•ann

n-l
Let B =M \U. IM. for n=1,2, •••• We see that B1 , B2, ••• are

n n J= J
pairwise disjoint elements of ~ of measure zero,

00 00 (-/. ex>
Un= l Bn = Un=l Mn = x: cp (x) T 0 J, and cp = L:n=l CPXB

n•
Since Bn C Wn '

we have CPX B -) 0 uniformly on R. Now we apply 4. 2.
n

The next result shows that we would get a wrong assertion,

i f we admitted Q < 2 in 4. 3. If, however, the function cp in 4. 3

satisfies the relation cp(R) = {O, l } , then, by 3.6, it can be

expressed as the product of two nonnegative derivatives each of

which is bounded by 2. We do not know whether Q can be replaced

PROOF. Let

b = (y_x)-l J~ g.

that 41abl <Q2.

by 2 in 4.3.

4.4. THEOREM. Let Q E (0,00). Let f,g E », I f I <Q, Ig I <Q

and fg = 0 a. e. on R. Then Ifg I <Q
2

/ 4 on R.
. 1

x,yER, yfX. Let a= (y-x)- Jif,

Since If I + Igl <Qa.e., we have l a l + Ibl <Q so

Thus If (x) g (x) I <Q2/4 •

5. ARBITRARY BAIRE ONE, NULL FUNCTIONS. Throughout the rest
-1

of the paper .P will denote a number in (1, CD). We set Y = 1 - P •

If f is a function, Se R and if the integral M= f I f IP is

finite, we write Il fl ls = M
1/

p
• If, moreover, IS I < », Sthen, by

Holder's inequality,
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If the meaning of S is obvious from the context (if, e.g., S is

the domain of definition of f), we write I\flls = \\f \l. The class of

all functions cp for which to each € E (0, GO) there correspond

f, 9 E J) (17+ resp.) such that 11 fl\R + \Ig II R < e and fg = cp on S will be

denoted by R (S) (R+ (5) resp.). Moreover, Loc R (5) (.toe R+ (S) resp.)

is the family of all functions cp such that for each x E S there

is an open interval I with x E I and cp E R(S n I) (R+ (S n I) resp.).

In keeping with our previous conventions R(R) and R+ (R) will be

denoted s imply by Rand R+ respectively.

In terms of this notation our objective is to show that if

cp is a Baire one function which is zero a. e. on R, then cp ER.

If in addition cp > 0, then cp ER+. We begin with a useful lemma

and the treat the case where ep is bounded.

5.1. LEMMA. Let A be a measurable set and let e E (0, GO) •

Then there is a closed set Cc A and a ). E C such that lA\C I < e ,ap
o < ).. < 1 on R, ).. = 1 on C and ).. = 0 on R\A .

PROOF. Denote by S the set of a 11 points in A thatare

points of density of A. There is an F set T c S such that
a

IS\T I =0. There is a closed set CcT such that IT\CI <e.

Clearly IA\CI = IT\CI <e. Since R\T and C are disjoint, D-closed,

Gf. sets, by 2.5 there is a A E C such that X = 1 on C, )" = 0 on
v ap

R\T, and 0 < \. < 1 on R.

5. 2. THEOREM. Let cp be a bounded Ba ire one function such

that cp = 0 av e , on R. Then CV ER. If in addition cp > 0, then
if-

ep ER.
PROOF. Assume as we may that lo l <1. Let € E (O,GO). By 4.3

there are fl,gl E fJ such that Ifll < 3, Ig 1 1 < 3, and flg l = cp on

R. Let B= (x: cp(x) ~OJ. It follows easily from 5.1 that there

is an open set U~B and a A E C such that IUI = IU\BI < (e/6)P,ap
o < A. <1 on R, )., = 1 on Band )., = 0 on R\ U. Let f = Af 1 and

g=>-gl. By 2.2 f,gEJ). Since X=l on B, fg=f lg1 =cp. Finally

Ilfll+!lglI<2.3.lu,1/P<e. If cp>O, then we may select f
l

and

9 1 from .f}+ and we have f, g E .f}+ •

We now take up the process of showing that the assumption of

boundedness can be deleted from 5.2. We start with three asser­

tions the first of which will be used again later.

5.3. LEMMA. Let J = [a,b] and let e E (0, co). Let
+f 1 ' 9 2 ' 9 1 ' 9 2 E .f} ( J ) (J) ( J ) res p. ) · 5 uppose that f 19 1 = f 29 2 = er> on

J and that cp = 0 on a dense subset of J. Then there are a
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c E (a,b) and f,g E .&(J) (1)+ (J ) r e sp .) s u ch tha t £g = cp on J,

f (c) = 9 (c) = 0, f (a) = f 1 (a), 9 (a ) =9 I (a), f (b) = f 2 (b), 9 (b) = 9 2 (b) ,

I f I < I f 1 I + e , I9 I < I 9 1 I + s on [a, c] and I f I < I f 2 I + e ,

I9 I < I9 2 I + & on [c , b ] •

PROOF. There is acE (a,b ) such that f 1'£2,gl' and g2 are

all continuous at c. Since flg l = 0 on a dense subset of J,

f 1 (c)gl (c) = o. Since the roles of f l and gl are interchangeable,

we may assume that f
l

(c) = O. There is a Cl E (a,c) and a func­

tion h continuous on [a,c] such that h= 1 on [a,c
l],

h(c) = 0 ,

Ifl1/e <h<l on [cl,c) and gl is bounded on [c l , c ] . Set

f =f1/Jh, g=glJh on [a,c) and f(c)=g(c)=O. We define f

and g on [c,b] in a similar fashion. On [cl/c) we have

If I < sJh < e; in particular, f is continuous at c. Now it is

easy to see that f E '&(J). The res t of the proof is left to the

reader.

5.4. PROPOSITION. Let -oo<a
l

<a 2 <b I <b2 <co and let
+ +

cp E R ( [a1 ' b 1] ) nR ( [a2 ' b 2] ) (R ([aI' b 1]) nR ([ a 2 ' b 2]) resp. ) · Then

cp E R( [a
l,b2]

) (R+ ([a
l
,b

2])
resp.).

+PROOF • Let e E (0 , co). Therear e f 1 ' 9 1 I f 2 I 9 2 E J} (J} resp. }

such that f~gl = cp on [al,bl], f 2g2 = cp on [a2,b2] and

I\ f l llP + IlgllIP+ II f 211
P + IIg2 11P < (&/2)P. Let J= [a2,bl]. It follows

easily from 5.3 that there are f,g E J}(J) (.&+ (J) resp.) such that

fg=q) on J, f(a 2) = f
l(a2), g(a

2)
=gl(a

2},
f(b

l)
= f

2(bl),
9 (b I) = 9 2 (b1) and 11 f II~ + Ilg II~ < (e /2) P • Let f = f l' 9 = g 1 on

+(-00, a 2) and f = f
2,

9 = g2 on (bl, co) • Then f, 9 E.17 (1J resp.),

fg=cp on [al,b2] and Ilfl IP+ IIgIlP<2(e/2)P. So ( lIf11 + IIgll)P<

2P-1 ( 11 f liP + 11 9 liP) < eP •

The next statement follows easily from the above by a routine

compactness argument.

5.5. COROLLARY. Let J be a closed, bounded interval and

let cp E lac R(J) (toc R+ (J) resp.). Then cp E R(J) (R+ (J) resp.).

The preceding result and the next lemma are used in the

proofs of propositions 5.7 and 5.7.1.

5.6. LEMMA. Let J= [a,b]. Let M,N ER, f 1,gl E .17(J) ,

flg l = 0 a.e. on J and 11 f 1 11 + IIg1 11 < co. Then there are £,g E 1J(J)

such that f = f 1 , 9 = 9 on (a,b}, fg = f 1g1 on J, J Jf =M, JJg =N,

Il f ll <5I1 f
1 11 + IM I(4/ IJI)\, IIgll< lIg1 11 + INI(4/IJI)Y. If in addition

f l,gl EF(J), M>JJf1 and N>JJgl' then £ and 9 can be chosen

from .17+ (J) •
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PROOF. Let B = (x : f l (X)gl (x) ~ OJ U (x : f l or gl is not

approximately continuous at x} U (a,bJ. Then IB 1= O. There is a

KE (O,eo) such that ISI >IJI/2 where S=(xEJ\B: Ifl(x)l+ 19l(x)1 <

K]. There is a closed set AcS with IAI > IJI/2. According to

5.1 there is a closed set c c x and a ~'EC such that ICI>IJI/2,. . . ap .
o < ).. < 1 on R, A. = 1 on C and A = 0 on R\A. Note that Afl is

approximately continuous on A (since ACJ\B) and Af l =0 on J\A

which is open in J. It follows that Af l is approximately con­

tinuous on J. Since I\~ll < K on J, ~fl .E .&(J). Likewise

hg l E '&(J). Let f 2 = f 1 - Afl and g2 = g1 - . ~gl· Then f 2,g2 E .&(J)

and, as is easily verified from the properties of A, f 2g2 = f lg1,
If21 < Ifll and Ig21 < Igll. Since \I f l ll <CD, we have JJlf21 <JJlf11<

CD: similarly JJig2 1 < CD. It follows from 5. 1 that there are

a,aEC and disjoint, closed subsets C and C
Q

of C such that
ap cx ~

ICcxl>IJI/4, IC
al>IJI/4,

O<a<l, O<e<l, O'a=O on R, a=e=O

on R\C, a=l on Ca and 6=1 on Ca. Let s=(M-IJf2)/IJcx and

t= (N-IJg2)/fJe. Let f=f2+sa and g=g2+te. Obviously

aP<Q' and I Ja>IJ'/4; by (3), fJlf21 <\\flll·IJIY. Thus

/
-1

(JJ O'P) 1 P/ JJO' < (JJO') P -1 < (4/ I J I ) Y, 11f 11 < 11 f 2 11+ 11 0' 11 ( IM I +

I J 1f 2 I ) / f Jcx < 11 fIll + (4/ IJ 1) Y ( IM I + 11 fI"· 1J IY) < 511 fIll + (4/ IJ I ) Y1M I ·

A similar estimate is valid for g.

If the additional assumption is fulfilled, then f 2 > 0, g2 > 0,

s>O, t>O so that f>O and g>O.

5. 7. PROPOSIT ION. Let I be an open interva1, ill a pos i tive,

continuous function on I, F0' GO E fj (I), IIF 011 + \1Gb 11 < CD, cp E soc (I)

and let e E (O,CD). Then there are F,G E fj(I) such that

(4) F'G ' = q>, IF-FOI + IG-GOI <won I and

(5) IIF I liP + IIG I liP < e + aP- 1 (IIFbliP + 11GbliP) •
PROOF. There are numbers Yn E I (n = 0,+ I, + 2, ••• ) such that

Y <y +1 <Yn + 2
1,

inf y = inf I, sup Y = sup I and thatn n nn nn
Yn-l .

\' (IFO' I + IGO' ) 1 <~ =min(w(x) : x E [y l'Y IJ J/7.Jy n n- n+
n-l

Choose e E (0, ~p) such that L: ex> < e /2P- l • Since cp E Loc: R( I) ,
n n n=-CD n

S. S implies that cp ER ([y l'Y 1]). There are f l,g 1 E.& suchn- n+ n, n,
that fn,l,gn,l =q> on [Yn-l'Yn+l] and II f n,lllP+ Ilgn,lllP< en/SP• It
follows from 5.3 that there are x E (y l'Y) andn n- n
f n 2,gn 2 E 1J( [x ,x +1]) such that f 2,g 2 = q> on [x ,x 1]'
I' n n n, n, n n+

f 2=g 2=0 on (x,x+1J,andllf 2 11 P+ lIg 2 I1P<c/SP. Denoten, n, n n n, n, n
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[x ,x ..Ll] by J • According to 5.6 there are f ,g E 1J(J ) such
nn. n nn n

that f =9 = 0 on {x , X ..L 1 J, f 9 = cp on J ,n n n n. nn n

(6) SJ f n = SJ Fa' ~J gn = SJ Go '
n n n n

39

(7 ) I1 f 11 < 511 f 2 11+ 1\' F O' I (4/ I J I) Y ,
n n, JJ n

n

(8) Ilg 1\ < 511g 2 11 + I \' Go I (41 I J I) Y •n n, ..) J n
n

Using (3), (7), and the relation IJn ' <1 we get

JJ If 1<51J IYl\f 2 11+ 4 Y JJ IFo' l < e
l

/ P + 4 J J IFal,
n n n n, n n n

IIf I\P<2P- l
( 5Pllf 21IP+4PY\\Fo'IIPJ). Similarly,n n, n

JJ 19n ' <c~/p+4JJ IGb l, IlgnIlP<2P-l(5Pl\gn 211P+4PYIIGall~ i , There
n n ' n

are F,GE1J(I) such that F ' =f , G 1 =g on J , F(x ) =FO(X ), andn n n n n
G (x ) = GO (x ) for each n . If x E J , then (s ince e < ~P and

n n n n n

J C [y l'Y 1]) IF(X)-FO(X) I + IG(x)-GO(x) I <JJ (If 1+lg I+IFO' I +
n n- n+ - n n n

'Gb l) < 2 e lip + 4~ + ~ <w (x). Finally (note that py = p-l)

IIF' liP + IIG'IIP = En:~oo(\rfnIlP + IlgnllP) < 2P-l En:_ oo cn +

Sp-l E:=_oo (IIFa II~ + 11Gb II~ ) < e + aP-
l

(IIFalii + 11Gb lIi) •
n n

The version of the preceding theorem involving nonnegative

functions is somewhat different. Consequently we state it

separately.

5.7.1. PROPOSITION. Let I be an open interval, w a positive,

continuous function on I, FO,GO E b,+ (I), FaGo> 0 on I,

IIF611+ \!G611 <>. cpElocR+(I) and let € E (O,~). Then there are

F,G E 6+ (I) fulfilling (4) and (5).
1

PROOF. There are x ,y E I such that x <y <x ..Ll<x +-2n n n n n. n
(n=O,+1,+2, ••• ), infx =infI, sup x =supI and- - nn nn
FO(xn+ l) - FO(Yn-l) + Go (xn+ l ) -GO(Yn-l) <min(w(x) : x E [Yn-l'xn+ l] J
for each n , Choose e E (O,~) such that 2: ~ e <e/2p-l. Sincen n=-(X) n
cp E soc R+ (I) , 5. 5 implies that cp E R+ ([y I' x 1]). Consequently

n- n+
there are f l,g 1 E 1)+ such that f 19 1 = cp on [y _l'x +1] andn, n, n, n, n n
Il f n IIIP + Ilg lllP <c = mine /Sp, (F O(y )-FO(x »p, (GO (y )-G

o
(x ) )PJ., n, n n n n n n

It follows from 5.3 that there are z E (y ,x +1) and functions
+ . n n n

f n 2' g 2 E j} ([ z l' z ]) such tha t f 2g 2 = cp on [z I' z ],, n, n- n n, n, n- n
f n 2=g 2=0 on (z _l'z J, and IIf 2 11P+ Ilg 2\\P<, • Denote, n, n n n s z : n, n
[zn l'z ] by J • Since IJ I < I, we have (see (3» JJ f 2 <- n n n n -

n '
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11 f 2 11 < F O (y ) - Fa (x ) < F O(z ) - Fa (z l); s i.milarlyn, n n n n-
JJ gn 2 <GO(zn) -GO(zn_l)· According to 5.6 there are

n '
f ,g EJ}+(J ) fulfilling (6)-(8) such that f =g =0 on (z l'z J

n n n + n n n- n
and f g = q> on J • There are F,G E J) (I) such that F' = f I

n n n n
G I =g on J , F(z ) =FO(Z ) and G(z ) =GO(z ) for each n , Then n n n n n
estimate (5) follows just as it did in the proof of 5.7. It is

clear that F,G E b+ (I) and that FIG I = q> on I. If x E J , then
n

FO(zn_l) <F(x) <Fa(zn) so that IF(X)-FO(X) I <FO(Zn)-FO(zn_l) <

FO(xn+l)-Fa(Yn-l). Likdwise IG(x)-GO(x) I <GO(xn+l)-GO(Yn_l). This

completes the proof of (4).

5.8. PROPOSITION. Let C be a closed set, U=R\C, fo,gO EJ)

(J)+ resp.), 11 f O11 + 119
0

11 < aJ, cp E Loc R(U) (lac R+ (U) resp.) and let

'liE (O,eo). Then there are f,gEJJ (J)+ resp.) with f=fO' g=go on

C, fg = cp on U and

(9) 11 fliP + Ilg liP < T1 + aP-
1

(\lfOliP + Ilgo \lp) •

PROOF. Let B = 8P- l• There is a 0 E (0,00) with

B ( (\lfOIlu + 6)P + (1lgo Ilu + 6)p) < ~ + B (11fOII~ + \lgo \I~) • Choose an w E f:l

with w > a on U, w = ui ' = 0 on C and Ilw I1 < s , Let F0= f O + w,

G6=go+w. If fo,goEJJ+, then FbG6>0 on U. Applying 5.7

(5.7.1 resp.) to each component of U we get F,GE6(U) (6+(U) resp.)

such that F'G' =cp, IF-FOI+ IG-GOI <won U and \lFI\I~+ IIG'\I~<~+

B (IIFbII~ + 11GbII~) • Since IIF6 lIu < II f o Ilu+ 0 and 11 GblIu< IIgo Ilu + 0 , we

have

Define F=FO and G=G
O

on C. Since w=wl=O on C, we have

F, G E 6 and F' =F0' G' = GO on C. Let f =F' and 9 = G'. Then

F' = fa, G' = go on C and (9) follows at once from (10). If
~ E +fO,gO E JJ , then f,g j} as well.

509. THEOREM. Let cp be a function on R. Suppose that for

each nonempty closed set, C, there is an open interval I such

that C n 11= cj and cp E R(C n I) (R+ (C n I) resp.). Then cp ER (R+

resp.).

PROOF. Let U = (x: there is an open interval, I, with x E I

and cp ER (I) J I and let C = R\U. Our objective is to show that

C =~, for if so, then by 5.8 cp ER. SO suppose C f: 9. Then there

is an open interval, I, with C n I f: 95 and cp E R(C n I). Let

6 E (0, ",) • Then there are fO' go E.It such that aP-
1

( \IfOliP+ \lgo \lp) < 6

and fOgO = cp on C n I. By 5.8 there are f,g E J) such that f = f O'
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g = go on C, fg = cp on U, a nd Il fll P + IlgIIP < e , S ince f g = cp on

(Cn I ) U U , we have cpER(I) and hen c e l e D contrary to c nlf~.

consequently C = cj. The alternate assertion can be proved in the

s ame way.

We finally come to the objective of this section which, with

the help of 5.2, is an easy consequence of 5.9.

5.10. COROLLARY. Let cp be a Baire one function with cp = 0

a.e. on R. Then cpER. If in addition cp>O, then cpER+.

PROOF. Let C be a nonempty, closed set. There is an open

interval, I, such that C n If. c;J and cp is bounded on S = c n I •

By 5.2 cpxS ER. SO by definition cp E R(C n I). Thus 5.9 implies

that cp ER. The proof of the additional assertion is similar.
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