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CHARACTERISTIC FUNCTIONS AND
PRODUCTS OF DERIVATIVES

0. Introduction. The main result of this note is Theorem 18 that describes
in simple terms the system of sets S C R = (—o0,00) whose characteristic
function x, can be expressed as the product of two (or more) derivatives. Suppose
that S is such a set. Then X, is a function of Baire class 1 and, clearly, S =
{z € R;x,(z) > 0} = {z € R;x, = 1}. We see that S is at the same time an
F, -set and a Gj-set; such sets are called ambiguous. It has been proved in [1]
that x, can be expressed as the product of two nonnegative derivatives if and
only if S is ambiguous and each point of the set T = R\ S is a point of density
of T. Theorem 18 shows that we obtain a larger system of sets S, if we drop the
requirement of nonnegativity of the derivatives with product x,.

1. Notation. The outer Lebesgue measure of a set A C R will be denoted
by |A|. The word interval means a connected set A C R with |[A| > 0.

Let ¢ € R and let Jy, J,,... be intervals. We say that the sequence (J,,) has
property P, if diam(J, U{c}) — 0 and sup{diam(J,U{c})/|Jul; n=1,2,...} <
00. : '

Let T C R and ¢ € R. We say that T is porous at ¢ if there is a sequence
(J,) with property P, such that J, N T = @ for each n. If such a sequence does
not exist, we say that T is nonporous at ¢. A set T C R is called nonporous if it
is nonporous at each of its points. .

The word function means a mapping to R. For each interval J let A(J) be
the system of all functions (finitely) differentiable on J and let D(J) = {F'; F €
A(J)}. (At a boundary point of J belonging to J we mean the corresponding
unilateral derivative of F.) We write D = D(R). If a,b € R and if F is a
function defined at a and at b, then [F]’? means, as usual, F(b) — F(a). If
a,b € R, J = [a,b] and if f € D(J), then [} f or [, f means [F]’, where
F'=fonJ; [} f=0. A symbol like [, f sometimes means the corresponding
Lebesgue integral. It is well-known that these two definitions of integral do not
contradict each other.

If F is a function on a set A C R, then osc (F,A) means sup{|F(y) —
F(z)|; =,y € A}.
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For each A C R let int A and ¢£ A be the interior and the closure of A,
respectively.
In what follows S is a subset of R and T is its complement.

2. Lemma. Let S be ambiguous and let A be a nonempty Gs-set in R. Then
there is an open interval I such that I N A # @ and that either TN A4 C S or
INACT.

Proof. Since {z € R; x,(z) > o} and {z € R; x.(z) < o} are F,-sets for
each a € R, x, is a function of Baire class 1. Thus thereis a ¢ € A and an open
interval I such that ¢ € I and that x, is constant on I N A. This completes the
proof.

3. Lemma. Let ¢,an,b, € R, a, < b, (n = 1,2,...) and let the sequence
((@n,b,)) have property P,. Let F be a function differentiable at ¢. Then (F(b,)—
F(an))/(bn — an) — F'(c).

Proof. f z,y € R, z # ¢ # y # z and if F is defined at z and at y, then
Fly) - F(z) _ F(y) — F(e) Lroe (F(y)—F(C) _F(m)—F(C))_

y—=zx y—c y—zx y—c T—c

This easily implies our assertion.

4. Proposition. Let ¢ € R. Let T be a Lebesgue measurable set that is
porous at ¢ whose right and left densities at ¢ have common value §. Then 6§ = 0.

Proof. Let F be an indefinite integral of x,. Then F'(c) = 1 — 6. Let (J,)
be a sequence with property P, such that J, C S for each n. Let {an,b.} be the
boundary of J,,. Then (F(b,) — F(an))/(bs — as) = 1 for each n. By 3 we have
1=F'(c) =1- 6 whence § = 0.

Remark. A nonporous ambiguous set can have density O at some of its

points. Example: For n = +1,+2,... let J, be the open interval with boundary
11 Lhlet To =uJd,, T = {0} UT,. It is easy to prove that T is a nonporous

n'n
ambiguous set whose density at 0 is 0.

5. Proposition. Let ¢ € R and let T be porous at c¢. Let m be a natural
number, fi,..., fn € D and x, = I1f;. Thence€ S.

Proof. Let L be an interval, L C S. Since sgn f; is constant on L for each
J, we have by Hélder’s inequality 1 = |T1| ()Y <M |T1| Jy fi)"™. Now it
follows easily from 3 that 1 < [] f;(c). Hence ¢ € S.
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Remark. If x, can be expressed as the product of two (or more) derivatives,
then (as stated in the introduction) S is ambiguous and, by 5, T is nonporous.
Theorem 18 says that the converse of this assertion is also correct. To prove it
we shall first establish some further properties of sets S fulfilling the mentioned
conditions.

6. Proposition. Let S be ambiguous and let T' be nonporous. Let F' be the
boundary of S and let Fy be the set of all accumulation points of F. Then F
and Fj are closed and F \ F, C S.

Proof. It is easy to see that F and Fy are closed. Now let ¢ € F \ Fy. There
are u,v € R such that u < ¢ < v and that (u,v) N F = {c}.

Suppose that ¢ € T. Since T is nonporous, we cannot have (u,¢) C S;
hence (u,¢) C T. Similarly (¢,v) C T so that (v,v) C T, (v,v) NF =0-a
contradiction.

7. Proposition. Let S and T be as in 6. Let L be an open interval such
that LN S #0 # LNT. Then there are the following two possibilities:

(A) There is a ¢ € L such that LN S = LN [¢,0).
(B) There are p,q € L such that p< g, p€ S and (p,q) CT.

Proof. Let F' and F, be as in 6. Clearly LN F # (. We distinguish several
cases.

Case 1. LN F is a singleton, say {c}. By 6 we have ¢ € S so that either
LNnS=LN(-o0,clor LNS ={c} or LNS = LN|[c,00). Thus our assertion
holds.

Case 2. There are z;,z,,zs € L such that z; < z; < z3,(z1,23) N F = {z,}
andz; € Sorzs € T. By6wehavez, € S. Let z; € S. If (z1,22) C T, we choose
p = Z1,4 = z2. If (z1,25) C S, then (z3,25) C T and we choose p = 3,9 = 3.
Now let 3 € T. Since T is nonporous, we cannot have (z2,z3) C S. Thus we
may choose p = z3,q9 = z3 again.

Case 3. There is an open interval I C L such that each point of I N F' is
isolated and IN F has at least two points. Then there are z;, z3, s € I such that
T < Z3 < Z3, Z1,%2 € F and (z1,z3) N F = {z;}. By 6 we have z; € S and so
Case 2. :
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Case 4. L N Fy # 0 and each component of L \ Fy contains at most one
point of F. According to 2 with A = L N F; there is a ¢ € F; and an interval
M = (u,v) C L such that ¢ € M and that either MNF, CSor MNF, CT.

a) Let M N Fy C S. Let J; be the system of all components J of M \ Fo for
which v & ¢€ J. If there is a J € J; with J N F # 0, we have Case 2. Thus
suppose that JNF = @ for each J € J;.. ¥ J = (y1,¥2) € /1 and J C T, we
choose p = y;, ¢ = y3. Now let J C S for each J € J;. Then [r,v) C S for each
r € MNF,. In particular, [¢,v) C S so that (¢,v)NF = 0. If (u,c) N Fo = @, then,
by assumption, (u,¢) N F has at most one point so that ¢ ¢ Fp - a contradiction.
Hence there is an r € (u,¢) N Fp; thus [r,v) C S, ¢ € F - a contradiction again.

b) Let M N Fy C T. Let J; be the system of all components J of M \ Fo
for which v & ¢£ J. If there is a J € J; with J N F # @, we have Case 2. Thus
suppose that J N F = @ for each J € J;. Since T is nonporous, we must have
J C T for each J € J;. Therefore (u,r] C T for each r € M N Fp which leads to
a contradiction as in a).

Remark. Let S and T be as before and let @ # S # R. Proposition 7 says,
in particular, that, unless S = [c,00) for some ¢ € R, there are p,q € R such
that p < ¢, p € S and (p,q) C T. Similarly, unless S = (—oo, ¢] for some ¢ € R,
there are p,q € R such that p < ¢, ¢ € S and (p,q) C T. This might lead to the
conjecture that T always has an open component. This conjecture, however, is
false, as the following example shows:

Let Gy, Gs,. .. be the components of [0,1]\ C, where C is the Cantor set. Let
P be the midpoint of G, and let S = {p;,ps,...}. It is easy to see that S is
ambiguous and that T is nonporous, but no component of T is open.

8. Proposition. Let S and T be as in 6. Let J be an interval such that
JNT #0. Then JNT contains an interval.

Proof. Let I = int J. We may suppose that INS # @. If INT = @, then
we choose a ¢ € (J \ I) N T and we see that T is porous at ¢ - a contradiction.
Hence INT # @ and we apply 7.

9. Lemma. Let a,b,,8,7,6,6,P,Q € R, a<b, aff =~6 =0, € > 0. Then
there are functions f,g piecewise linear on J = [a,b] such that f(a) = a, g(a) =
ﬂ, f(b)='7a g(b)=5a fg=00nJa fJf:Pa fJg:Q’ fJ If| <IP‘+€and
Iy gl <1Q| +e.
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Proof. Choose numbers zy,...,z5 such that a < z; < ... < z5 < b, (|a| +
18))(z1 — a) + (|9] + |6])(b — z5) < € and set

P, = (2P - Oé($1 —a) —~(b— -"35))/(-'53 — z1),
Q1 = (2Q—PB(z1—a)—6(b—=5))/(z5 — z3).

Define f(a) = a, f(z1) =0, f(z2) = P1, f(zs) = f(za) = f(zs) =0, f(b) =
v, g(a) = B, g(z1) = g(zz) = g(zs) = 0, g(z4) = Q1, g(zs) = 0, g(b) = 6
and let f and g be linear on each of the intervals [z;_1,z;] ( = 1,...,6), where
To = a, T¢ = b. It is easy to see that fg =0on J. We have [; f = 1(a(z;—a)+
Py(zs — 21) + (b~ z5)) = P, J, |1] < lal(z1 — ) + [P| + |7l(b — 25) < |P| + <.
Similarly for g.

10. Notation. In 11-17 S is a fixed subset of R. For each interval J let f(J)
be the system of all pairs (f,g) such that f,g€ D(J), f=g=1onJNS and
fg=0o0n JNT. Let J be the system of all intervals J such that f(J) # 0.

11. Lemma. Let a,-,b,- €ER, a; < ay < by <by. Let (f,-,g,-) € f([a,,-,bj]) (_7. =
1,2). Then there is a pair (f,g) € f([a1,b2]) such that f = f;, g = g, on [ay, a,]
and f = fa2, ¢ = g; on [by, by).

Proof. If there is a ¢ € [az,b;] N S, we have fi(c) = -+ = g2(c) = 1. Then
we set f = fi, ¢ = g1 on [a1,¢] and f = f3, g = g2 on [c,b;]. Otherwise we have
f191 = f292 = 0 on [ay, b;]. Then we choose a number o € (az,b;) and construct
functions f,g such that f = f;, g = g; on [a1,a;], f(a) =g(a) =0, f=fo, g=
gz on [by,bs] and that f and g are linear on the intervals [a3, o] and [, by]. Tt is
easy to see that (f,g) € f([a1,bs]).

12. Lemma. Let L be an open interval. Suppose that for each = € L there
is an open interval I such that z€ I € J. Then L € J.

Proof. Choose numbers z, € L (n = 0,%1,+2,...) such that
(1) Tp-1 < Ty, inf{z,} = inf L, sup{z,} = sup L.

It follows easily from 11 that [z,_;,z,.1] € J for each n. Applying 11 once more
weget L € J.

13. Lemma. Let S and T be as in 6. Let L be an open interval. Let L € J

and let w be a positive continuous function on L. Then there are F,G € A(L)
such that (F',G') € f(L) and

|F(z) — z| < w(z), |G(z) — z| < w(z) for each z € L.
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Proof. Let Fy, G be functions such that (F§, Gy) € f(L). There are numbers
r, € L (n = 0,£1,%2,...) fulfilling (1) such that, if we define J, = [Zn-1,Zn),
we have

(2) 3|J,| + 4 osc(Fy, J,) + 4 osc(Go, J,) < minw(J,) for each n.

Choose an n. If J, C S, set f = g = 1 on J,. Otherwise, by 8, there are
a,b € R such that z,.; < @ < b < z, and that F{Gy = 0 on [a,b]. Set
P = |Jal — [Fofs,_, ~ [Foli*s @ = [Jal — [Gol2,_, — [Goli*s € = |Ja|. According
to 9 there are functions f,g such that f = F}, ¢ = G} on [Z,_1,a] U [b,z,], f
and g are continuous on [a,b], fg =0 on [a,b], [; f=[; 9=|Ja| and PIfl <

1P| +¢, [P |g] <|Q|+e. Thus [} |f] < 2|Jn| + 2 osc(Fo, Jn). If z € J,, then

z b
(3) l/ f| £ 2 osc(Fo, Jy) +/ |f| < 4 osc(Fo, Jn) + 2|Jy,;

similarly for g. In this way we define functions f and g on L. It is easy to
see that there are functions F and G such that F' = f, G' = g on L and that
F(z,) = G(z,) = z, for each n. If z € J,, then, by (2) and (3), |F(z) —
z| £ |F(z) = F(zp-1)| + |Za-1 — z| £ 4 0sc(Fo,Jn) + 3|Ja] < w(z); similarly
|G(z) — z| < w(z). Clearly (F',G") € f(L).

14. Notation. For each z € R let %(z) be the system of all intervals J
such that z € J C S. If 2(z) = 0, we set p(z) = 0; otherwise we define
o(2) = sup{|J]; J € A(z)}.

15. Lemma. Let ¢ € T and let T be nonporous at ¢. Then ¢'(c) = 0.

Proof. Clearly ¢(c) = 0. Suppose that our assertion fails. Then there is an
e € (0,1) and points ¢, # ¢ such that ¢, — ¢ and p(c,) > €len—¢| (n = 1,2,...).
There are intervals J, C S such that ¢, € J, and |e, — ¢| 2 |Ju| > €len — €.
Then diam(J, U {c}) £ |c — cn| + |Jn] £ [Jnl(1 + €7?) so that (Jy,) has property
P.. This is a contradiction.

16. Lemma. Let $,T,L and w be as in 13. Then there are F,G € A(L)
such that (F',G') € f(L) and that for each z € L there is a y € L with

(4) ly — z| < dist(z,R \ L)
and
(5) max(|F(z)|, |G(z)]) < o(y) + w(z).
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Proof. Let Fy, Gy be functions such that (F§,Gj) € f(L). There are points
T, € L (n = 0,%1,+2,...) fulfilling (1) such that, if we define J,, = [z,_1, Zy]
1

and €, =  minw(J,,), we have

(6) osc(Fo, Jp) + osc(Go, Jy) < €, and |J,,| < dist(J,, R\ L)

for each n. Set F(zo) = G(zo) = 0. Suppose that n is a natural number and
that F(z,-1), G(z,-1) have been defined. If J,, C S, we set F(z) = F(z,—1) +
T—2Zn_1, G(z) = G(zp-1) + T — z,,_; for each z € J,. Otherwise there are, by 8,
numbers a, b such that z,_; < a < b < z, and that F)G, = 0 on [a,b]. Set

Py = —F(2p-1) - [Fo]2,_, — [Fol") Qn = —G(zn-1) — [Golz, _, — [Gol;™

Tn-1 Tpn—-1

By 9 there are functions f,g on J, such that f = Fj, ¢ = G{ on [z,—1,a] U
[b,Z,], f and g are continuous on [a,b], [} f = Py, [’ ¢ = Qn, IEIfl < |Pa] +
€ns [219] < |Qu| + €, and fg = O on [a,b]. For each z € J, set F(z) =
— 2" f, G(z) = — [7* g. Thus we have defined functions F and G on [z,,sup L).
It is easy to see that F(z,) 2 O for each n > 0; we have F(z,) > 0 if and only if
Jn C S. Similarly for G.

Let z € J,, n > 0. If F(z,) > 0, we find an integer m < n such that
F(z,) = 0 and that F(z;) > 0 for k = m +1,...,n. Then [z,,z,] C S and
F(t) = G(t) =t —2, for t € [Ty, z,]. In particular, 0 £ F(z) = G(z) = £ —Zm <
Tn — Tm S @(2,). Thus the relation (5) is fulfilled with y = z,. If F(z,) =0,
then |F(z)| < 2 osc(Fo, Jy) + |Pa| + €n < F(zp-1) + 4 osc(Fo, Jp) + €n. By the
preceding argument we have F(z,-1) £ ©(z,-1) so that, by the first inequality
in (6), |F(z)| < ©(Zn-1) + w(z); similarly for G. Hence (5) holds with y = z,,_;.
The relation (4) follows from the second inequality in (6). On (inf L, zo) we
define F and G analogously. It is obvious that (F',G') € f(L). '

17. Proposition. Let S be ambiguous and T nonporous. Then R € J.

Proof. Let B = {z € R; there is an open interval J € J such that z € J}
and let A = R\ B. Then A is closed. Suppose that A # @. Let w be a function
continuous on R such that w = w' =0 on A and w > 0 on B. By 2 there is an
open interval I such that TN A # 0 and either INA C S or INA C T. It follows
from 12 that each component of I N B belongs to J.

(a) InA C S. On each component L of IN B we construct functions F and G
according to 13. This defines functions F and G on I N B. Set F(z) = G(z) ==z
for each £ € I'N A. Then |F(z) — z| £ w(z), |G(z) — z| £ w(z) for each z € I.

(b) INACT. On each component of I N B we construct functions F and
G according to 16. This defines functions F and G on IN B. Set F = G =0 on
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INA. Letac ANI, z €1, z # a. According to the construction of F there is
a y € I such that |y — z| < |z — a| and that |F(z)| £ w(z) + p(y). (If z € A, we
may choose y = z.) Obviously |y — a| < 2|z — a so that

F(z)

r—a

w(z) v (y)

y—a

< +2

r—a

By 15 we have ¢'(a) = 0. Hence F'(a) = 0. Similarly G'(a) = 0.
Now it is easy to see that in either case (F',G') € §(I). It follows that I C B
which is a contradiction. Hence A = §). By 12 we have R = B € J.

18. Theorem. Let S C R, T = R\ S. Then the following three conditions
are equivalent:

1) There is a natural number m and functions fiseeey fm € D such that

fivo = Xs.
2) S is ambiguous and T is nonporous.
3) There are f,g € D such that f=g=1o0n S and fg=0on 7.

Proof. Let 1) hold. Since x, is of Baire class 1, S is ambiguous and, by 5, T
is nonporous. The implication 2) = 3) has been proved in 17 and the implication
3) = 1) is obvious.

Remark. Suppose that x, can be expressed as the product of two derivatives.
It is natural to ask whether we can require something more of one or both of
these factors. For example, by 18, we may require both to be identically 1 on S;
in particular, we may require both to be continuous on int S. It is not difficult
to prove that we may also require both to be continuous on int 7. On the other
hand it is clear that at each boundary point of S at least one of the factors must
be discontinuous. This, however, does not yet exclude the possibility that one of
the factors could be continuous everywhere; but, according to 21, in nontrivial
cases this is actually impossible.

We may ask similar questions replacing continuity by, e.g., local summability
or boundedness (above and/or below) or nonnegativity of one or both factors.
It seems that it is not easy to answer some of these questions. For example,
I do not know whether the following assertion is true: Let S be ambiguous, T
nonporous. Then there are f,g € D such that f > 0 and fg = x..

What follows are some partial results that may serve as illustrations to the
mentioned problems.
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19. Proposition. Let S be ambiguous, T nonporous. Let ¢ € (¢£ S)N(ct T).
Let f,g € D, fg = x, and f(c) # 0. Then f is discontinuous at c. :

Proof. Suppose that f is continuous at ¢. There is an open interval L such
that ¢ € L and that f # 0 on L. By 7 there are p,¢ € L such that p <
¢, {p,g} NS # 0 and (p,q) C T. Then g = 0 on (p,q) so that g = 0 on
{p,q}, {p,q} C T which is a contradiction.

Remark. If ¢ € SN ¢l T, then both f and g are discontinuous at c. If,
however, ¢ € TNl S, then f may be continuous at ¢, as the following example
shows.

20. Example. For n = 1,2,... let 2, = 27", T, = 2, — 2a41/0% Yn =
(Tn+2s)/2. It is easy to see that z,, = z,41. Let fn, gn be nonnegative derivatives
such that f, = g, = 0on R \ (xmzn)’ fnVgn -<_: 2 on R, fn(yn) = gn(yn) =
1, fagn =0o0n R\ {y,}. Set f =¥ fa/n, g =X ngn. Let 2,41 < z < z,. Then
9S8, k2 g £ 52, 2k(zr — 7)) = T2 2k zen1/k? S Xl 2 =
2z, /n < 4z/n. This easily implies that g € D. It is clear that f € D and that f
is continuous at 0. We have fg = x,, where S = {y1,¥2,...} sothat 0 € TNel S.

21. Proposition. Let 0 # S # R, f,g € D and let fg = x,. Then f is not
continuous.

Proof. Let B be the boundary of S. Suppose first that BN S = @. Then S
is open. Let (a,b) be a component of S and let, e.g., a € R. Then T is porous
at @ which contradicts 5. Thus let ¢ € BN S. Then f(c) # 0 and, by 19, f is
discontinuous at c.

22. Proposition. Let f,g€ D, 0 # S # R, fg = Xx,- Let Q € R and let
IfIV]gl £ Q. Then Q 2 2.

Proof. According to 7 there are p,q € R such that p < ¢, (p,¢q) C T and
{p,q} NS # 0. Let, e.g., p € S. Then f(p)g(p) = 1. We may suppose that
f(p) > 0. Clearly |f| +|g| £ Q on (p,g). Hence for each z € (p,q) we have
Jg(f+9) £ Q(z — p) so that f(p) +g(p) S Q. Since ¢t + t~1 > 2 for each
t € (0,00), we have @ 2= 2.

23. Proposition. Let f,g € D, fg=Xs, c€T. Let f 20 on S and let f
and g be bounded below. Then the lower density of T at c is positive.
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Proof. Let M € Rand let fAg > —M. Let z € (¢,00), S, = SN(e,z), T, =

T (e,2). We have |S,1? = (fs, vI9) < Jo. f-fs. 9= UZ F—In, £)- (79—
Jr, 9) S (J7 [+ M|T.|) - (J7 ¢ + M|T;|). Let é be the right lower density of T
at ¢. Choose z;,73,... € (¢,00) such that z, — ¢ and |T;,|/(z. — ¢) — 6. Then
(1-6) < (fle) + M5) g(c) + M6) and f(c)g(c) = 0 so that 6 > 0. It can be
proved similarly that the left lower density of T at ¢ is positive.

Remark 1. It follows from 23 and from the example in 4 that the following
two assertions (where S is ambiguous and T nonporous) are false:

A1l. There are f,g € D such that f 20, infg > —oco and fg = x,.
A2, There are f,g € D such that f Ag > —1 and fg = X,.

Remark 2. Theorem 18 was stated without proof in [2].
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