Mařík, Jan: Scholarly works

Jan Mařík; Clifford E. Weil Multipliers of spaces of derivatives

Real Anal. Exchange Suppl., 27th Summer Symp. Conf. Rep., 237-244

Persistent URL: http://dml.cz/dmlcz/502154

Terms of use:

© Michigan State University Press, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ:* The Czech Digital Mathematics Library http://dml.cz

Jan Mařík and Clifford E. Weil, Mathematics Department, Michigan State University, East Lansing, MI 48824-1027. email: weil@math.msu.edu

MULTIPLIERS OF SPACES OF DERIVATIVES

1 Introduction

Let I = [0, 1] and let

$$D = \{ f : I \to \mathbb{R}; \exists F : I \to \mathbb{R}, F' = f \}.$$

In 1921 Wilkosz showed that there is an $f \in D$ such that $f^2 \notin D$. So it is natural to ask what is the following set.

$$W=\{g\in D; fg\in D\ \forall\ f\in D\}.$$

Using integration by parts it's easy to show $C_1 \subset W$. On the other hand there are differentiable functions that don't belong to W and there are discontinuous functions that do belong to W. In 1977 Fleissner showed that

$$W = \{g \in D; \limsup_{h \to 0} \operatorname{var}(g, y + h, y + 2h) < \infty \forall \ y \in I\}.$$

Here the goal is to investigate a more general problem. For $X, Y \subset D$ let

$$M(X,Y)=\{g\in D; \forall \ f\in X, \ fg\in Y\}.$$

For simplicity M(X,D)=M(X). Thus W=M(D). The proof of the first assertion is easy.

Proposition 1. Let $X_1 \subset X_2 \subset D$ and $Y_1 \subset Y_2 \subset D$. Then $M(X_2, Y_1) \subset M(X_1, Y_2)$.

^{*}Presenter

2 Subspaces of D

The algebra $C_{ap} = \{g : I \to \mathbb{R}; g \text{ is approximately continuous on } I\}$ isn't a subspace of D, but as is well known, the bounded functions in $C_{ap} = bC_{ap} \subset D$. The subspaces of D of central interest as defined below. For $p \in (0, \infty)$ let

$$\begin{split} S_p &= \{g \in D; \lim_{x \to y} \frac{1}{x - y} \int_y^x |f - f(y)|^p = 0, \forall \ y \in I \}. \\ T_p &= \{g \in D; \limsup_{x \to y} \frac{1}{x - y} \int_y^x |f|^p < \infty, \forall \ y \in I \}. \\ S_0 &= D \cap C_{ap}, \ T_0 = D, \ T_\infty = bD, \ S_\infty = M(T_1). \end{split}$$

At first sight, the choice of $M(T_1)$ for S_{∞} looks strange, but it will seem quite natural in view of Theorem 4 below.

For $p \in (0, \infty]$ let

$$\overline{S}_p = \cap_{q \in (0,p)} S_q$$
 and $\overline{T}_p = \cap_{q \in (0,p)} T_q$

while for $p \in [0, \infty)$ let

$$\underline{S}_p = \{g \in D; \; \forall \; y \in I, \; \exists \; q > p \lim_{x \to y} \frac{1}{x-y} \int_y^x |f-f(y)|^q = 0 \}$$

and

$$\underline{T}_p = \{g \in D; \ \forall \ y \in I, \ \exists \ q > p \limsup_{x \to y} \frac{1}{x-y} \int_y^x |f|^q < \infty \}$$

Proposition 2. The following containments hold (and are easy to establish). Let $0 < p_1 < p_2 < \infty$. Then

$$T_{\infty} \subset \overline{T}_{\infty} \subset \cdots \subset \underline{T}_{p_{2}} \subset T_{p_{2}} \subset \overline{T}_{p_{2}} \subset \cdots \subset \underline{T}_{p_{1}} \subset T_{p_{1}} \subset \overline{T}_{p_{1}} \subset \cdots \subset \underline{T}_{0} \subset T_{0}$$

$$\cup \qquad \cup \qquad \cup$$

$$\overline{S}_{\infty} \subset \cdots \subset \underline{S}_{p_{2}} \subset S_{p_{2}} \subset \overline{S}_{p_{2}} \subset \cdots \subset \underline{S}_{p_{1}} \subset S_{p_{1}} \subset \overline{S}_{p_{1}} \subset \cdots \subset \underline{S}_{0} \subset S_{0}.$$

The two missing containments in the lower left hand corner; namely $S_{\infty} \subset \overline{S}_{\infty}$ and $S_{\infty} \subset T_{\infty}$, are true as well, but they are not trivial due to the unusual definition of S_{∞} .

Proposition 3. Let $p \in (0, \infty]$. Then $\overline{T}_p \cap C_{ap} = \overline{S}_p$. Let $p \in [0, \infty)$. Then $\underline{T}_p \cap C_{ap} = \underline{S}_p$. For $p \in (0, \infty]$, $S_p \subsetneq T_p \cap C_{ap}$.

3 Multiplier Spaces

The first theorem uses some standard notation. For $p \in [1, \infty]$, p' is defined by $\frac{1}{p} + \frac{1}{p'} = 1$ where $\frac{1}{\infty} = 0$. In addition S (and later \widetilde{S}) is used to denote any of the spaces \overline{S}_p , S_p , and \underline{S}_p defined above and similarly for T (and later \widetilde{T}).

Theorem 4. The spaces of multipliers M(S) and M(T) are displayed in the following two charts. Let $\infty > p > 1 > q > 0$.

_ ~							 			 				
$\mid S \mid$	$ S_{\infty} $	S_{\sim}		S_n	S_n	S_{π}	 S_{τ}	S_1	S_1	 S_{-}	S_{σ}	\overline{S}_{-}	 S_{α}	So
2.5(.5)						P	 			 —q	4	$\sim q$	~0	~0
M(S)	$\mid T_1 \mid$	T . \Box		T	11' 7	T ,	 T	T_{-}	W	 W	W	W	 17/7	W
(-)	1	-1		* p'	- p'	_ _p'	 ∞	- ∞	• • •	 **	rr	"	 VV	VV

T	T_{∞}	\overline{T}_{∞}	 T_p	T_p	\overline{T}_p	 T_1	T_1	\overline{T}_1	 T_{a}	T_{q}	\overline{T}_{σ}	 T_0	T_0
M(T)	S_1	\underline{S}_1	 $\overline{S}_{p'}$	$S_{p'}$	$\frac{S}{p'}$	 \underline{S}_{∞}	S_{∞}	W	 \overline{W}	W	W	 \overline{W}	W

Now the multiplier spaces M(X,Y) are investigated where X and Y are any of the spaces introduced above. There are four types: M(T,S), M(S,T), $M(T,\widetilde{T})$ and $M(S,\widetilde{S})$. The results are best expressed in charts which are displayed at the end of this report.

Theorem 5. $M(T_{\infty}, S_0) = \{0\}.$

The M(T, S) can be filled in as a result of Theorem 5 and Proposition 1. Together they assert that for every T space and for every S space, $M(T, S) = \{0\}$. That is, every entry of the M(T, S) chat is $\{0\}$.

Moving on to the M(S,T) chart first note that the last column, the one headed by $T_0 = D$, can be filled in using the bottom row of the second chart of Theorem 4. Similarly the last column of the $M(T,\tilde{T})$ chart is obtained from the bottom row of the first chart of Theorem 4.

Theorem 6. For $p \in [0, \infty)$, $M(S_p, \underline{T}_p) = \{0\}$ and for $p \in (0, \infty]$, $M(\overline{S}_p, T_p) = \{0\}$.

As a consequence of Theorem 6 and Proposition 1 each entry below the main diagonal in the M(S,T) chart and in each of the remaining charts is $\{0\}$. Such entries are denoted by leaving the corresponding places blank.

Theorem 7. Let
$$\overline{S}_1 \subset X$$
. Then $M(X,X) = W = M(D) = M(T_0)$.

Consequently every entry on the main diagonal below the \overline{S}_1 column is W and hence by Proposition 1 the lower right triangle of the M(S,T) chart consists of Ws. The same conclusion holds for each of the remaining charts as well.

Theorem 8. Let $X \subset T_1 \subset Y$. Then M(X,Y) = M(X).

This theorem says that the T_1 column = the T_0 column down to the \overline{S}_1 row and consequently by Proposition 1 the columns between also = the T_0 one. The corresponding conclusion is also true for the $M(T, \widetilde{T})$ chart. The same conclusion holds for the $M(S, \widetilde{S})$ once the two bounding columns are known.

To complete the remainder of the M(S,T) chart, the following notation is used. Let $1 \le q \le p \le \infty$. Define $r \in [1,\infty]$ by $\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$.

Theorem 9. For $p, q \in (1, \infty]$ with q < p

$X \setminus Y$	T_q	T_q	\overline{T}_q		$X \setminus Y$	$ T_p $	T_p	\overline{T}_p
\underline{S}_p	\overline{T}_r	\overline{T}_r	\overline{T}_r	and for $p \in (1, \infty]$,	\underline{S}_p	\overline{T}_{∞}	\overline{T}_{∞}	\overline{T}_{∞}
S_p	T_r	T_r	\overline{T}_r	and for $p \in (1, \infty]$,	S_p		T_{∞}	T_{∞}
\overline{S}_p	T_r	\underline{T}_r	\overline{T}_r		S_p			T_{∞}

The only cases not covered are the upper part of the column headed by \underline{T}_1 . Rather than state all of these results, the reader is referred to the M(S,T) chart, Figure 1, page 241.

To determine the $M(T, \tilde{T})$ chart, we need the analogue of Theorem 9 and some additional notation. For any T space let $\hat{T} = T \cap C_{ap}$.

Theorem 10. For $p, q \in (1, \infty]$ with q < p

$X \setminus Y$	T_q	T_q	\overline{T}_q		$X \backslash Y$	$ \underline{T}_p $	T_p	\overline{T}_p
T_p	$\overline{\overline{S}}_r$	\overline{S}_r	\overline{S}_r	and for $p \in (1, \infty]$,	\underline{T}_p	\overline{S}_{∞}	\overline{S}_{∞}	\overline{S}_{∞}
T_p	S_r	\hat{T}_r	\overline{S}_r	and for $p \in (1, \infty]$,	T_p		T_{∞}	S_{∞}
\overline{T}_p	S_r	\underline{S}_r	\overline{S}_r		T_p			S_{∞}

The complete $M(T, \widetilde{T})$ chart is on page 242 where all relevant results can be found.

The body of the $M(S, \widetilde{S})$ chart is similar to that of the $M(T, \widetilde{T})$ chart with some notable exceptions. The top row is identical to the corresponding column headings from S_{∞} to S_1 . For $p \in [1, \infty]$, $M(S_p, S_1) = M(S_p, S_0) = \hat{T}_{p'}$ thereby determining all corresponding rows from the S_1 column to the S_0 column. The $M(S, \widetilde{S})$ chart is on page 243.

T_0	T_1	T_1	i	Ţ,,	$T_{n'}$	$T_{n'}$		$\overline{T}_{a'}$	$T_{a'}$	$T_{a'}$		T_{∞}	T_{∞}	K		W	: M	: 1	:	A	<u> </u>
\overline{I}_0	T_1	T_1	i	$\overline{T}_{n'}$	$T_{n'}$	$T_{n'}$		$T_{a'}$	$T_{a'}$	$T_{a'}$	1	\overline{T}_{∞}	T_{∞}	W		A	: 2	: A		N N	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	<u> </u> .·	T	
\overline{T}_u	T_1	T_1		$\overline{T}_{n'}$	$T_{n'}$	$\overline{T}_{n'}$		$\overline{T}_{\sigma'}$	$T_{a'}$	$T_{a'}$		T_{∞}	T_{∞}	M		M	K	M	+		
T_u	T_1	\overline{I}_1		$\overline{T}_{n'}$	$T_{n'}$	$T_{n'}$		$\overline{T}_{\sigma'}$	$T_{\sigma'}$	$T_{\sigma'}$		T_{∞}	T_{∞}	W		K	A				
\overline{I}_u	T_1	\overline{T}_1		$\overline{T}_{n'}$	$T_{p'}$	$T_{n'}$		$\overline{T}_{\sigma'}$	$T_{\sigma'}$	$I_{\sigma'}$		T_{∞}	T_{∞}	И		Ŕ					
:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:							
\overline{T}_1	T_1	\overline{T}_1		$\overline{T}_{v'}$	$T_{p'}$	$\overline{I}_{v'}$		$\overline{T}_{q'}$	$T_{q'}$	$I_{a'}$		T_{∞}	T_{∞}	N							
T_1	T_1	\overline{T}_1		$\overline{T}_{v'}$	$T_{p'}$	$\underline{\underline{T}}_{p'}$		$\overline{T}_{q'}$	$T_{q'}$	$T_{a'}$		T_{∞}	T_{∞}								
\underline{I}_1	\underline{I}_1	$\underline{\mathcal{I}}_1$		$\overline{T}_{v'}$	$\overline{T}_{p'}$	$\overline{I}_{p'}$		$\overline{T}_{q'}$	$\overline{T}_{q'}$	$\overline{\mathcal{I}}_{q'}$		T_{∞}									
:			:	:	:	:	:	:	:	:	··										
\overline{T}_q	\overline{T}_q	\overline{T}_q		\overline{T}_r	\overline{T}_r	\overline{T}_r		\overline{T}_{∞}	\overline{T}_{∞}	\overline{T}_{∞}											
T_q	T_q	\underline{T}_q		\overline{T}_r	T_r	\overline{T}_r		\overline{T}_{∞}	T_{∞}												
\overline{T}_q	\underline{I}_q	$\overline{\underline{T}}_q$		\overline{T}_r	\overline{I}_r	\overline{I}_r		\overline{T}_{∞}													
:	:	:	÷			•••															
$\overline{T_p}$	\overline{T}_p	\overline{T}_p		\overline{T}_{∞}	\overline{T}_{∞}	\overline{T}_{∞}															
T_p	T_p	$\overline{\underline{T}}_p$		\overline{T}_{∞}	T_{∞}																
\overline{I}_p	\overline{T}_p	\overline{T}_p		\overline{T}_{∞}																	
$ \overline{T}_{\infty} $:	:	··																		
\overline{T}_{∞}	T_{∞}	T_{∞}																			
T_{∞}	T_{∞}																				
$X \setminus Y$	S_{∞}	S		$\frac{S_p}{S_p}$	S_p	\overline{S}_p		S_q	S_q	S_q		\underline{S}_1	S_1	\overline{S}_1		S_u	S_u	\overline{S}_u		S_0	S_0

Figure 1: The M(S,T) chart.

T_0	S_1	$\frac{S_1}{S_1}$		$\overline{S}_{p'}$	$S_{p'}$	$\frac{S_p}{a}$		$\overline{S}_{q'}$	$S_{q'}$	$\frac{S_{q'}}{}$		S	S_{∞}	W		W	W	W	 W	W
\overline{T}_0	S_1	S_1		$\overline{S}_{p'}$	$^{\prime^d}S$	$r^{d}\overline{S}$		$\overline{S}_{q'}$	$S_{q'}$	$S_{q'}$		S	S_{∞}	M		W	W	М	 W	
÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
\overline{T}_u	S_1	$\frac{S_1}{1}$		$\overline{S}_{p'}$	$S_{p'}$	$\frac{S_p}{S_p}$		$\overline{S}_{q'}$	$S_{q'}$	$S_{q'}$		S_{∞}	S_{∞}	M		W	M	W		
T_u	S_1	S_1		$\overline{S}_{p'}$	$S_{p'}$	$\frac{S_{p'}}{S}$		$\overline{S}_{q'}$	$S_{q'}$	$S_{q'}$		S_{∞}	S_{∞}	W		W	W			
\overline{T}_u	S_1	S_1		$\overline{S}_{p'}$	$S_{p'}$	$\frac{S_{p'}}{2}$		$\overline{S}_{q'}$	$S_{q'}$	$S_{q'}$		\overline{S}_{∞}	S_{∞}	M		W				
	:	:	:	:	:	:	:	:	:		•••		:	:						
$ \overline{T}_1 $	S_1	S_1		$\overline{S}_{p'}$	$S_{p'}$	$\frac{S_p}{}$		$\overline{S}_{q'}$	$S_{q'}$	$S_{q'}$		\overline{S}_{∞}	S_{∞}	M						
T_1	S_1	S_1		$\overline{S}_{p'}$	$S_{p'}$	$\frac{S_p}{}$		$\overline{S}_{q'}$	$S_{q'}$	S^{b}		\overline{S}_{∞}	S_{∞}							
I_1	S_1	$\frac{S}{1}$		$\overline{S}_{p'}$	$\frac{S}{D}$	$\frac{S_{p'}}{}$		$\overline{S}_{q'}$	$S_{q'}$	S^{b}		\overline{S}_{∞}								
	:	:	:	:	:	:		:	:	•••										
\overline{T}_q	\overline{S}_q	\overline{S}_q		S_r	S_r	\overline{S}_r		\overline{S}_{∞}	\overline{S}_{∞}	$\frac{\infty}{S}$										
T_q	\hat{T}_q	S_q		S_r	\hat{T}_r	$\frac{S_r}{r}$		\overline{S}_{∞}	\hat{T}_{∞}											
$ \overline{T}_q $	$\frac{S_q}{}$	S_q		S_r	$\frac{S}{r}$	$\frac{S}{r}$		\overline{S}_{∞}												
:	:	:	:	:	:	:	•												1	
\overline{T}_p	$\frac{S}{p}$	$\frac{S}{p}$		S_{∞}	S	S														
T_p	\hat{T}_p	$\frac{S}{p}$		23 8	\hat{T}_{∞}															
\overline{I}_p	$\frac{S}{p}$	$\frac{S}{p}$		S																
	:	:	·																	
\overline{T}_{∞}	S_{∞}	S																		
T_{∞}	\hat{T}_{∞}																			
$X \setminus Y$	T_{∞}	\overline{T}_{∞}		\overline{T}_p	T_p	\overline{T}_p		\overline{T}_q	T_q	\overline{T}_q		$\overline{\mathcal{I}}_1$	T_1	\overline{T}_1		\overline{T}_u	T_u	\overline{T}_u	 \overline{T}_0	T_0

Figure 2: The $M(T, \widetilde{T})$ Chart.

S_0	\hat{T}_1	S_1		$S_{p'}$	$\hat{T}_{p'}$	S _p /		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$\frac{S}{Q_{q'}}$		S	\hat{T}_{∞}	W		М	W	N	 K	W
S_0	\hat{T}_1	$\frac{S_1}{S_1}$		$S_{p'}$	$\hat{T}_{p'}$	$\frac{1}{S_p}$		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$S_{q'}$		S	\hat{T}_{∞}	W		×	И	W	 W	
:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:		
\overline{S}_u	\hat{T}_1	S_1		$S_{p'}$	$\hat{T}_{p'}$	$\frac{S_{p'}}{}$		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$\frac{S_{q'}}{}$		\overline{S}_{∞}	\hat{T}_{∞}	M		N	N	W		
S_u	\hat{T}_1	S_1		$\overline{S}_{p'}$	$\hat{T}_{p'}$	S _p '		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$S_{q'}$		\overline{S}_{∞}	\hat{T}_{∞}	W		W	N			
\overline{S}_u	\hat{T}_1	S_1		$\overline{S}_{p'}$	$\hat{T}_{p'}$	$\frac{S_{p'}}{S}$		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$S_{q'}$		\overline{S}_{∞}	\hat{T}_{∞}	W		W				
i	:		:	:	:	:	:	:	•••	:	:	:	:	:						
$\overline{S_1}$	\hat{T}_1	\underline{S}_1		$\overline{S}_{p'}$	$\hat{T}_{p'}$	$\frac{S_{p'}}{S_{p'}}$		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$S_{q'}$		S_{∞}	\hat{T}_{∞}	М						
S_1	S_1	\overline{S}_1		$\overline{S}_{p'}$	$\hat{T}_{p'}$	$\frac{S_{p'}}{}$		$\overline{S}_{q'}$	$\hat{T}_{q'}$	$\frac{S_q}{}$		\overline{S}_{∞}	\hat{T}_{∞}							
\underline{S}_1	\underline{S}_1	\overline{S}_1		$\overline{S}_{p'}$	$\frac{S_{p'}}{S_{p'}}$	$\frac{S_{p'}}{}$		$\overline{S}_{q'}$	$\frac{S_{q'}}{}$	$\frac{S_{q'}}{}$		S_{∞}								
i			:	:		:	:	:	:	:							1			
\overline{S}_q	\overline{S}_q	\overline{S}_q		S_r	\overline{S}_r	\overline{S}_r		S_{∞}	S_{∞}	S_{∞}										
S_q	S_q	\underline{S}_q		\overline{S}_r	\hat{T}_r	$\frac{S_r}{S_r}$		S_{∞}	\hat{T}_{∞}											
S_q	$\frac{S_q}{S_q}$	\underline{S}_q		\overline{S}_r	$\frac{S_r}{r}$	$\frac{S_r}{S_r}$		S_{∞}									-			
:	:		•••	:	:	:														
\overline{S}_p	\overline{S}_p	\overline{S}_p		S_{∞}	S_{∞}	S_{∞}														
S_p	S_p	$\frac{S}{p}$		\overline{S}_{∞}	\hat{T}_{∞}															
$\frac{S}{p}$	$\frac{S}{p}$	$\frac{S}{a}$		\overline{S}_{∞}																
:	:	:																		
S_{∞}	\overline{S}_{∞}	S_{∞}																		
S_{∞}	S_{∞}																			
$X \setminus Y$	S_{∞}	S_{∞}		S_p	S_p	S_p	• • •	S_q	S_q	\overline{S}_q		S_1	S_1	\overline{S}_1		$\frac{S_u}{N}$	S_u	\overline{S}_u	 S_0	S_0

Figure 3: The $M(S, \widetilde{S})$ Chart.