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SOME PROBLEMS CONCERNING 
THE EQUIVALENCES OF TWO SYSTEMS 
OF DIFFERENTIAL EQUATIONS 
M. SVEC 
Faculty of Mathematics and Physics, Comenius University 
Mlynskd dolina, 842 15 Bratislava, Czechoslovakia 

Consider two systems 

(1 ) x(t) = f (t,xt) 

(2) y-U) G f(t,yt) + g(t,yt) 

where t G J = <0,°°) , x : R - Rn, y : R - Rn, xt = x(t + s), yt= y(t + s), 

s G (-°°, 0> . Denote by C = C(-°°, 0?Rn) the space of all functions 

<p : (-°°, 0> -• Rn which are bounded and continuous with sup normII . II . 

Then f : JxC - R , g : JxC •* (the set of all nonempty subsets of Rn} . 

Further properties of f and g will be given later. However, we will still 

assume that f and g are such that the existence of the solutions of (1 ) 

and (2) is guaranteed on J. I.I is the vector norm in Rn. If A C Rn
/ 

then IAI = supflal : a G A} . 

Our aim is to estabilish the conditions which give the possibility 

of pairing of the solutions x(t) of (1) and y(t) of (2) in such a way 

that we will be able to say something about the asymptotic behaviour 

of the difference y(t) - x(t) = z(t). Assume that x(t) is given. Then, 

proceeding formally, substituting y(t) by z(t) + x(t) in (2), we get 

(3) z(t) e -f(t,x ) + f(t,z + x ) + g(t,z + x ) 

We have to prove the existence of such solution z(t) to the functio­

nal differential inclusion ( 3) that lim z(t) = 0 as t - °° (the case 

of asymptotic equivalence) or that z ( t ) € = L ( J ) , p > l (the case of 

p-integral equivalence). There are many methods how to do it, e.g. use 

the viability theory, method of fixed point, method of Liapunov function. 

First we will use the viability theory. 

Theorem 1. a) Let be f : JxC - R continuous and let it satisfy the 

Lipschitz condition 

(4) |f(t,<p1) - f ( t , ( p 2 ) | < L(t)ll(p1- »2I, L(t) e L1(J) 

for each (t,<p), (t,cp) G JxC. 

b) Let g be an upper semicontinuous map from JxC to the nonempty 

compact convex subsets of R and let 

|g(t,ф)l < G
0
(t, M ) a.e. on J 
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where G (t,u) : JxJ — J is monotone nondecreasing in u for each fixed 

t G j and is integrable on J for each fixed u G j. 

c) Let x : R - R be a bounded solution of (1). 

d) Let there exist a solution u : J - J to the differential 

equation 

(5) u(t) = -L(t)u - G (t,u + Hx ID = -G(t,u), u(0) > 0 

e) Let be 

K(t) = {x G Rn
: |x| < u(t)}, t G j 

f) Let be 

vt G J, K(t) = {cp G C : cp(0) G K(t)} 

g) Let be the image of the graph (K) by the map 

F(t,<p) = -f(t,xt) + f(t,q> + xt) + g(t,cp + xt) 

relatively compact, 

h) Let for 

vt G j,Vcp such that cp(0) G K(t),vx G K(t) 

F(t,cp) O DK(t,*(0))(l ) * <t> 

where DK(t,cp(0)) is the contingent derivative of K at (t,(p(0)). Then 

for each (p G K(0) there exists a solution z(t) to the functional 

inclusion such that 

(6) for almost all t G j, z( t) G F(t,z ) 

(z)Q = cp 

which is viable in the sense that 

(7) vt G j, z(t) G K(t) (lz(t)| < u(t)) 

Remark 1. Evidently, if lim u(t) = 0 as t -> °°, then also lim z(t) = 

- 0 as t - °° and if u( t) G L (J), p > 1, then also the restriction 

z(t)I G L (J) holds. 
IJ p 

Remark 2. It follows from the properties of f and g that F is an 

upper semicontinuous map from JxC to the nonempty compact convex sub­

sets of R and 

(8) |F(t,<p)| < L(t)H<pll + G0(t,U<p« + llxtH) = G(t,»(pll) 

Evidently, G : JxJ — J is nondecreasing in u for each fixed t G j and 

integrable in t for each fixed u G j. 

Remark 3. In our case the basic space is Rn. The set valued map K 

defined by e) is upper semicontinuous and therefore its graph is clo­

sed. 

The proof of the Theorem 1. follows immediatly from the time depen­

dent Viability Theorem. (See e.g. [ IV . ) 

Remark 4. The most important condition is the condition h) which 
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is necessary in our case because R has a finite dimension. This fol­

lows from the viability theory. If t > 0 and |<p(0)l < u(t) then (t,<p(0)) 

€ int (graph (K)) and therefore the contingent cone T , .(t,<p(0)) = 

= R . Evidently, in this case the condition h) is satisfied. 

As to what concerns the existence of the solution u(t) from the 

condition d) we have the following lemma. 

Lemma 1. Let be satisfied a) from the Theorem 1. Let i ) G n ( t , c ) £ 
_1 oo u 

£ Ln(J) for each c > 0? i i ) lim inf(c n/ GA(s,c)ds) = 0. Then there ex-1 c "** °° 0 0 
ists a solution u : J — J of the equation (5) such that lim u(t) = 0 as 

t - °°. If, moreover, iii) tGQ(t,c) G L, (J) for each c > 0, then this 

solution u(t) e L (J), p > 1. 

The proof of this Lemma 1 can be made via Schauder fixed point 

theorem. 

Theorem 2. Let be satisfied a) and b) from the Theorem 1. c ' ) Let 

y : R — R be a bounded solution to the functional differential inclus­

ion (2). 

d') Let u : J - J be a solution of the equation 

(9) u(t) = -L(t)u - G (tfly I) -- -G (t,u), u(0) > 0 

e') Let be 

K = (x e Rn
: |x| < u(t)}, t e J 

f ) Let be 

vt e j, K = {(p e c : 9(0) e K (t)} 

g') Let be the image of the graph (K ) by the map 

F1(t,cp) = f(t,<p + yt) - f(t,yt) - g(t,yt) 

relatively compact, 

h') Let for 

vt € J,v<p such that <p(0) e K (t),vx e ^(t) 

F1(t,(p) O DK1(t,<p(0))(l ) * 0 

where DK1(t,(p(0)) is the contingent derivative of K-̂  at (t,q>(0)). Then 

for each <p G i< (0) there exists a solution z(t) to the functional 

differential inclusion such that 

(lo) for almost all t G J, z(t) € F1(t,zt) 

(Z) Q = , 

which is viable in the sense that 

t e j, z(t) e K2(t) (Iz(t)l < u(t)) 

The similar remarks as Remark 1 - 4 hold also in this case. The proof 

of the Theorem 2 follows also immediatly from the time dependent Via­

bility Theorem. 
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Lemma 2 . Le t be s a t i s f i e d a ) from t h e Theorem 1 and i ) from 

Lemma 1. Then 
t oo s 

u ( t ) = e x p ( - / L ( s ) d s ) / exp( / L( v)dv)G n ( s , By II) ds 
0 t O ° s 

is a solution of (9) such that lim u(t) = 0 as t - <*>. If, moreover, 

iii) from Lemma 1 holds, then also u(t) G L (J), p > 1 holds true. 
The proof can be made immediately. 

From Theorem 1, Theorem 2, Lemma 1 and Lemma 2 we get 

Theorem 3. Let be satisfied all conditions of Theorem 1 and 2. 

Then the conditions i) and ii) from Lemma 1 guarantee the asymptotic 

equivalence between the set of all bounded solutions of (1) and the set 

of all bounded solutions of (2). If. moreover, the condition iii) from 

Lemma 1 is satisfied, then there exists also the p- integral equiva­

lence, p > 1, between the above mentioned sets of solutions. 

Now, we will consider the same problem of asvmptotic and integral 

equivalences for the svstems (1) and (2) bv use of fixed point method. 

Henceforth' we will assume that the following assumptions are satisfied: 

(F) |f(t,q)1) - f(f,<p2)l < L(t)w(H(p1 - <P2-) 

where L(t) G L (J), w : J - J is a continuous function, / L(t)dt = S, 

sup w(r) < S'^u, a < 1; ° 
<0,u> 

(H ) g(t,<p) is nonempty compact convex subset of Rn for each (t,(p)G 

GJxC? 

(H2) for every fixed t G J g(t,<p) is upper semicontinuous in q> ? 

(H3) for each measurable function z : R - Rn such that zl/ ^ Q) e C 

there exists a measurable selector v : J — R such that 

v(t) G g(t,z) a.e. on J 

We set M(z(t)) = {all measurable selectors belonging to z(t)}. 
(H . ) there exists a function Gn: JxJ - J such that a) Grt(t,u) is mo-4 0 0 
notone nondecreasing in u for each fixed t G J and GQ(t,u) G L. (J) for 

any f i x e d u G j ? 3 ) l g ( t ,<p) l < GQ ( t , II <pll) a . e . on J? 
y ) l im i n f ( u ^ 1 /°°G ( t , u ) d t ) = 0 un i formly f o r t G J . 

u - oo 0 ° 

Lemma 3. Let z : R -> R be a measurable and bounded function. Then 

for each v(t) € M(z(t)) we have v(t) G L (J). 

Proof. It follows from (H,). 
4 

Lemma 4. Let be satisfied (F), (^ ) - (H4). Let be B = {z:R-*R
n: 

continuous and bounded} and B = {z G B : BzU < u} . Let x : R -* Rn be a 

bounded solution of (1 ) and let be <p £ C given. Then the operator T 
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defined on B by the r e l a t i o n : for z G B i t i s 
oo oo 

( T z ) ( t ) = {- / [ f ( s , z + x ) - f ( s , x ) l d s - / v ( s ) d s : v( t ) G 
t S S S t 

G M(z(t) + x(t))} for t G J 

(Tz)Q = (cp(t) - *(0) - /°°lf(s,zs+ xg) - f ( s , x s ) l d s -

- /°°v(s)ds] , for t < 0 
0 

maps B -> 2 , is compact and upper semicontinuous in B and there exists 

such u G J that T maps B into cf(B ). (cf(B ) is the set of all 
^ u u u 

closed and convex subsets of B .) 
u 

Proof. Let be z(t) E B. Then II z II = 8 < °° and oy (F) we have 

.°° oo 
/ |f(s,z_ + x ) - f(s,x)|ds < / L(s)w(llz Dds < 0 s s s Q s 

oo 

< max W ( T ) / L(s)ds < «> . 
0<T<8 0 

By Lemma 3 v(t) G M(z(t) + x(t)) is from L (J). Thus the operator T is 

well defined. Evidently, for z(t) G B (Tz)(t) is a subset of B. 

Let be llx(t)ll = p. Consider the set B . Let be z(t) G B and le' 

be €(t) G (Tz)(t). Then there exists such v(t) G M(z(t) + x(t)) that 

Ç(t) = - / [f(s,z + x ) - f(s,x )Jds - / v(s)ds, t Є J 
t s s s

 t 

ç(t) =
 Ф
(t) - Ф(0) - /°°[f(s,z + x ) - f ( s , x ) l d s -

0 s s s 

- /°°v(s)ds, t Є <-oo
/0
> 

0 
and 

(*) U(t)| < max w(r) / L(s)ds + / G (s,p + u)ds = K < °°, 
0<r<u 0 0 ° 

t G J 

Thus the functions £(t) G (Tz)(t) are uniformly bounded by the constant 

K and because for each z(t) G B we get the same constant Kf we may 

conclude that TB is the set of continuous and uniformly bounded 
u 

f u n c t i o n s . 

Let b e 0 < t < t 2 . Then f o r s^t ) G ( T z ) ( t ) , z ( t ) G Bu we have 

U ( t 2 ) - ? ( t 1 ) | < r i f ( s / Z s + x s ) - f ( S / x s ) i d s + / ^ | v ( s ) | d s < 
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fc2 * 2 
^ max w ( r ) / L ( s ) d s + / G (s,p- + . u * d s 

0<x<_:u t fci 

From t h i s we c o n c l u d e t h a t a l l f u n c t i o n s from TB a r e e q u i c o n t i n u o u s 
u ^ 

on J. Moreover, to each e > 0 there exists tQ(e) > 0 such that for 

t (e) < t < t2 we have 

U(t 2) - £(t ) I < max w(r) /°° t(s)ds + /°° Gn(s , p + u)ds < e 1 0<r<u t t u 

Then from this, from the uniform boundedness and from the equiconti-

nuity of all functions of TB it follows that TB is compact in the 

topology of uniform convergence. 

Evidently, to each oounded set A C B there exists such u G J that 

A C B and TA C TB . From this it follows that T is compact in B. 
u u ^ 
Let be z (t), z(t) G B and let {z (t)} converge to z(t) in B, i.e. 

n n 
uniformly on R. Therefore, the set {z (t), z(t), n = 1,2,..} is 

bounded in B. Thus there exists u > 0 such that z (t) G B , z(t) G B 
n u ' u 

and TBU i s a compact s e t . Le t h R ( t ) G ( T z ) ( t ) , n = 1 , 2 , . . . E v i d e n t l y 
h ( t ) € TB , n = 1 , 2 . . . The s e t TB b e i n g compact t h e r e e x i s t s a 
subsequence { h n . ( t ) } of {h ( t ) } , which c o n v e r g e s u n i f o r m l y t o a A i i n 
f u n c t i o n h ( t ) G TB . Then t o each h ( t ) t h e r e e x i s t s v ( t ) G M(z ( t ) + u n n n 
+ x ( t ) ) , n = 1 , 2 , . . . such t h a t 

h ( t ) = - /°° [ f ( s , ( z ) + x ) - f ( s , x ) ] d s - J°° v ( s ) d s , 
n x. n s s s i _ n 

t G J , n = 1 , 2 , . . . 

h ^ ( t ) = cp(t) - (p(0) - /°° [ f ( s / ( z „ ) e + x c ) - f ( s , x ) ] d s -n /-. n s s s 

- /°° v n ( s ) d s , t G (-oofo>. 
0 

By Lemma 3 we have 

l l v n ( t ) » 1 < /°° G Q ( s , u + p )ds < oo 

It means that the sequence {v_(t)} is bounded in L (J). Furthermore, if 
n l oo 

{E, } , E C J, is a nonincreasing sequence of sets such that n E = <f>, 
, K k k=i K 

tnen 

lim |/ v (s)ds| < lim / |v (s)|ds < lim / G (s,u + p)ds = 0 
k-°° E k

 n k-«> E k k-~> E k
 U 

Then (see [2], Th. IV. 8.9) it is possible to choose from {v (t)} a 
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suhsequence {v (t)} which weakly converges to some v(t) G L- (J). 
nk l 

Now, because {znk(t)} converges to z(t) in B and vnk(t) G 

g(t,znk(t)), k = 1,2,..., using (H-), to given e > 0 and t G j there 

exists N = tt(t,e) such that for any n > N we have 

g(t,zn (t)) C 0(g(t,z(t))) 
k 

where 0 (g(t,z(t))) is e-neighbourhood of the set g(t,z(t)). It means 

that for all nR > N vnk( t) G 0£(g(t,z(t))). 

Consider the sequence {vnk(t)}, nk > N. Then (see I2l , Corollary 

V.3.14) it is possible to construct such convex combinations from vnk' 

n, > N, denote them g (t), m = 1,2,... that the sequence {g (t)} 
k m ^ m 
converges to v(t) in L (J). Then by Riesz theorem there exists a 

subsequence {gm.(t)} of {gm(t)} which converges to v(t) a.e. on J. 

From the convexity of 0 (g(t,z(t))) and from the fact that vnk(t) G 

G 0 (g(t,z(t))) it follows that gmi(t) G o (g(t,z(t))), i = 1,2,... and, 
therefore, v( t) G U (g(t,z(t))). For e- 0 we get that v(t) G g(t,z(t)). 

e 
Recall that t was a fixed point and that g(t,z(t)) was a compact 

- ~n 
convex subset of R . 

Thus 

h(t) = - /°° [f(s,z_ + xQ) - f ( s , x Q ) l d s - r°° v(s)ds t s s s t 

is well defined and h(t) G (Tz)(t) for t G J. It follows from the weak 

convergence of {vn](t)} to v(t) in L (J) that the subsequence {hn (t)} 

of the sequence {h (t)}, i.e. for t G J 

h (t) = - r [f(s,(z_ ) + xQ) - f(s,x )lds - r v_ (s)ds 
nk t nk S ' S S t nk 

converges to h(t) a.e. on J. However, the functions hn (t) belong to 

the compact set TB . Therefore, there exists a subsequence of the 

sequence {hnk(t)} which converges to a function h(t) uniformly on J. 

It means that h(t) = h(t) G (Tz)(t) a.e. on J. With this we end the 

proof of the upper semicontinuity of the operator T. 

Consider now B . Let be z( t) G B , £(t) € (Tz)(t). Then from (*), 

(F) and y) from (H.) we get for 0 < c < 1 Z ,a. the existence of such 

u > 0 that 

U(t)| < au + (p + u)c < (a + 2c)u < u 

Thus ^(t) G B u and TBu C Bu. We have already proved that TBU and also 

(Tz)(t), z(t) G B , are compact and, therefore, also closed. From the 

hypotheses (H ), (H ) it follows that M(z(t)) is nonempty and convex, 
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therefore, (Tz)(t) is also nonempty and convex. Thus T maps B in 

cf (B ). 
u' 

Lemma 5. Let be satisfied (F), (E± ) - (H4). Let B, B^ be as in 

Lemma 4. Let y : R -> Rn be a bounded solution of (2) on J. Let q> G C 

be given. Then the operator T defined on B by the relations: for 

z( t) e B it is 

(T z)(t) = {- ;°°[f(s,z + y ) - f(s,y ) J ds + 
1 s s s 

+ ;°°v(s)ds, v(t) e M(y(t))}, t e J 
t 

oo 

(T.z)n = {q>(t) - cp(0) - ; [f(s,z + y ) - f(s,y J l d s + 
J. U n S S S 

oo 

+ ; v(s)ds}, t < 0 
0 

maps B — 2 , is compact and upper semicontinuous in B and there exists 

such u € J that T maps B in cf(B ). ^ u u 

The proof of this Lemma can be made in the same way as the proof 

of Lemma 4. 

From Lemma 4 and Lemma 5 follows 

Theorem 4. Let te satisfied (F),(^ )-(H4). Then between the set of 

all bounded solutions of (1) and the set of all bounded solutions of 

(2) there is the asymptotic equivalence. Moreover, if 

(11 ) tL(t) e î  (J), tGQ(t,c) e î  (J) for each c > 0 

then there is p-integral equivalence, p > 1, between the above mentio­

ned sets of bounded solutions of (1) and of (2). 

Proof. Let be x(t) a bounded solution of (1 ) on J and let q> E c be 

given.Then by Lemma 4 there exists a ball B C B such that T maps B 
u u 

into cf(B ),T is upper semicontinuous and TB compact. Thus by Fan 

fixed point theorem T has a fixed point z(t) G B , i.e. there exists 

v(t) e M(z(t) + x(t)) such that 
z(t) = - ;°°[f(s,zc+ xc) - f ( s , x c ) l d s - ;°°v(s)ds, t G J 

t S S S t 

(z)n(t) = cp(t) - cp(0) - ;°°[f(s,zc+ x c)-f ( s , x c ) l d s - ;°°v(s)ds,t<0 
0 s S 0 

Evidently, lim z(t) = lim(y(t) - x(t)) = 0 as t - °° and y(t) = x(t) + 

+ z(t) is a bounded solution of (2). Moreover, if (11) is satisfied, we 

get 
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| z ( t ) l < sup w ( r ) / L ( s ) d s + / G П (S, l lx l l + llzll)ds 
< 0,Ö ZІI > t t 0 

Thus by Lemma 2 from [ 3l z(t) G L (J), p > 1. 

Let now y(t) be a bounded solution of (2) and let cp £ C be given. 

Then by Lemma 5 there exists a ball B C B such that the operator T-_ 

maps B into cf(B ), T is upper semicontinuous and T B is compact. 

Thus Fan fixed point theorem gives the existence of a fixed point of 

T in B , i.e. there exists v(t) E M(y(t)) such that 

z(t) = - /°°[f(s,z + y ) - f(s,y ) 1 ds + /°°v(s)ds, t e j 
t s s s t 

(z) (t) = <p(t) - cp(0)- /°°[f(s,z + y )- f(s,y ) l ds + /°°v(s)ds, 
u Q s s s Q 

t < 0 

Evidently, lim z(t) = lim(x(t) - y(t)) = 0 as t - °° and x(t) = y(t) + 

+ z(t) is a bounded solution of (1). Moreover, if (11) is satisfied, 

t h e n _ ^ 
| z ( t ) | < sup w ( r ) / L ( s ) d s + / Gn ( s , Hy II) ds 

<0 , i z i> t t U 

which by Lemma 2 from [ 3l means t h a t z ( t ) £ L ( J ) , p > 1. 
P 
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