EQUADIFF 6

Jozef Kačur

Method of Roth in evolution equations

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. 23--34.

Persistent URL: http://dml.cz/dmlcz/700142

Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

METHOD OF ROTHE IN EVOLUTION EQUATIONS

J. KAČUR
Institute of Applied Mathematics, Comenius University Mlynská dolina, 84215 Bratislava, Czechoslovakia

Abstract

The aim of this paper is to present Rothe's method (also called method of lines, or the method of semidiscretization) as an efficient theoretical tool for solving a broad scale of evolution oroblems . Using time discretization , evolution problems are approximated by corresponding ellintic problems by means of which an approximate solution for the original evolution problem is constructed. By a relatively simple technique convergence of the approximate solution to the solution of the original evolution problem is proved. Thus, unlike some abstract methods for the analysis of existence and uniqueness problems for evolution equations, Rothe's method has a strong numerical aspect. At the same time it gives a first good insight into the structure of the solution of the investigated evolution problems.

Rothe"s method introduced by E. Rothe in 1930 has been used and developed by many authors , e.g. O.A. Ladyženskaja; T.D. Ventcel ; A.M. Iljin, A.S. Kalašnikov, O.A. Olejnik; S.J. Ibragimov; P.P. Mosolov; K. Rektorys [10] in linear and quasilinear parabolic problems . Nonlinear and abstract parabolic problems has been studied by J. Kačur [2]-[6]; J. Nečas[9] ; A.G. Kartsatos , E.M. Parrott[7], [8] etc. Linear and quasilinear hyperbolic equations has been considered by J. Jerome ; E. Martensen ; !1. Pultar ; J. Kačur , etc. A modification of Rothe ${ }^{\circ}$ s method (discretization in x - variable) has been used by V.N. Faddeeva ; W. Walter ; C. Corduneanu , etc. Time and space discretization for solving evolution problems has been employed by many authors , e.g. R. Glowinski , J.L. Lions , R. Trémoliéres[1] ; M. Zlámal[11] ; A. Zeníšek[12]; H.W. Alt, S. Luckhaus etc. , using similar technique to that of Rothe's method . For the more complete references we refer the reader to [6].

Efficiency of Rothe's method we demonstrate in solving : I. A nonlinear parabolic problems ; II. Variational inequalities ; III. Higher order equations .

I. A nonlinear parabolic problems.

Let V be a reflexive B-space with its dual V^{*} and let H be a Hilbert soace. Let $||.||,|$.$| be the norms in V, H$, respectively. We assume that $V \cap H$ is a dense set in V and H. By $\langle f, V\rangle$ we denote the dualitv for $f \in V^{*}$ and $v \in V$. Scalar product in H we denote by (.,.) . Let S_{t} be the interval $[-q, t]$ for $t \in[0, T] \equiv I . q \geq 0$.

An operator $F: L_{\infty}\left(S_{T}, H\right) \rightarrow L_{\infty}\left(S_{T}, H\right)$ is a Volterra operator iff $u(s)=v(s)$ a.e. in S_{t} implies $F(u)(t)=F(v)(t)$ for any $t \in S_{T}$. We assume $A: V \rightarrow V^{*}$ to be a coercive maximal monotone operator. Consider the equation (1.1) $\frac{d u(t)}{d t}+A u(t)=f(t, F(u)(t)) \quad$ a.e. $t \in I, u=\phi \quad$ in S_{0} where $\phi: S_{O} \rightarrow H$ is a given Lipschitz continuous function ($\phi \in \operatorname{Lip}\left(S_{O} \rightarrow H\right)$ and $f \in \operatorname{Lip}(I \times H \rightarrow H)$. Coerciveness of A we assume in the form
(1.2) $\langle A u, u\rangle \geq||u|| p(| | u| |)-C_{1}|u|^{2}-C_{2} \quad \forall u \in V$
where $\mathrm{P}: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$and $\mathrm{p}(\mathrm{s}) \rightarrow \infty$ for $\mathrm{s} \rightarrow \infty$. Lipschitz continuity of f is expressed in the form
(1.3) $\left|f(t, v)-f\left(t^{-}, v^{-}\right)\right| \leq C\left(\left|t-t^{-}\right|+\left|t-t^{-}\right||v|+\left|v-v^{-}\right|\right) \forall t, t^{-} \in I$, $\forall v, v^{-} \in H$. We assume that $F \operatorname{maps} \operatorname{Lip}\left(S_{T} \rightarrow H\right)$ into $\operatorname{Lip}\left(S_{T} \rightarrow H\right)$ and (1.4) $\left||F(u)-F(v)|\left\|_{C\left(S_{T}, H\right)} \leq C| | u-v \mid\right\|_{C}\left(S_{T}, H\right)\right.$ (1.5) $\left|F(u)(t)-F(u)\left(t^{-}\right)\right| \leq\left|t-t^{-}\right| L\left(| | u| |_{C\left(S_{T}, H\right)}\right)\left(1+\left|\left|\frac{d u}{d t}\right|\right|_{L_{\infty}}\left(S_{t^{\prime}}, H\right)\right)$
$\forall \quad t, t^{-} \in S_{T}, t^{-}<t$ and $u \in \operatorname{Lip}\left(S_{T} \rightarrow H\right)$ where $L: R_{+} R_{+}$is cont.f.
Solving (l.l) we apply Rothe's method in the following way : Let n be a positive integer, $h=T^{-1}, t_{i}=i h$. Successively for $i=1, \ldots, n$ we look for the solution $u_{i} \equiv u_{i, n} \in V \cap H$ of the elliptic equation
(1.6) $\left(\frac{u-u_{i-1}}{h}, v\right)+\langle A u, v\rangle=\left(f\left(t_{i}, F\left(\tilde{u}_{i-1}\right)\left(t_{i}\right)\right), v\right) \quad \forall v \in V \cap H$
where $u_{o}=\phi(0)$ and $\tilde{u}_{i-1} \epsilon \operatorname{Lip}\left(S_{T} \rightarrow H\right)$ is defined by

$$
\tilde{u}_{i-1} \equiv \tilde{u}_{i-1, n}=\left\{\begin{array}{lc}
\phi & \text { on } \\
\phi(0) & \text { on } \quad[0, h] \\
u_{j-1}+ & \left(t-t_{j-1}\right) h^{-1}\left(u_{j}-u_{j-1}\right), t_{j} \leq t \leq t_{j+1}
\end{array}\right.
$$

$$
\left(\begin{array}{ll}
& \text { for } j=1, \ldots, i-1 \\
u_{i-1} & \text { on }
\end{array}\right.
$$

The existence of $u_{i} \in V \cap H$ is assured bv the following argument. The element $u_{i-1} h^{-l}+f\left(t_{i}, F\left(\tilde{u}_{i-1}\right)\left(t_{i}\right)\right)$ is in H and the operator $A_{h}: V \cap H \rightarrow V^{*}+H$ defined bv $\left[A_{h} u, v\right]=\frac{l}{h}(u, v)+\langle A u, v\rangle$ is a coercive maximal monotone. Hence theory of monotone operators guarantee the existence of u_{i}. Uniqueness of u_{i} is a consequence of strict monotonicity of A_{h}. By means of $u_{i} \equiv u_{i, n}$ we construct Rothe's function $u_{n}(t)$ and the corresponding step function $\bar{u}_{n}(t)$
(1.7) $u_{n}(t)=u_{i-1}+\left(t-t_{i-1}\right) h^{-1}\left(u_{i}-u_{i-1}\right), t_{i-1} \leq t \leq t_{i}, i=1, \ldots, n$
(1.8) $\bar{u}_{n}(t)=u_{i} \quad$ for $t_{i-1}<t \leq t{ }_{i}, i=1, \ldots, n, \quad \bar{u}_{n}(0)=u_{0}$.

Then (1.6) can be rewritten in the form
(1.9) $\left(\frac{d u_{n}(t)}{d t}, v\right)+\left\langle A \bar{u}_{n}(t), v\right\rangle=\left(f_{n}\left(t, F\left(\tilde{u}_{n-1}\right)(t)\right), v\right) \quad \forall v \in V \cap H$
where $f_{n}(t, v)=f\left(t_{i}, v\right)$ for $t_{i-1}<t \leq t_{i}, i=1, \ldots, n$. First, we prove a priori estimates for $\left\{u_{n}\right\}$ (see Lemmas $1,2,3$) and then we take the limit as $n \rightarrow \infty$ in (1.9) . We obtain

Theorem 1. Let $A: V \rightarrow V^{*}$ be maximal monotone and let $A \phi(0) \in H$. If (1.2) - (1.5) are satisfied then there exists the unique solution u of (1.l) in the following sense : $u \in L_{\infty}(I, V), u \in \operatorname{Lip}(I \rightarrow H)$, $\frac{d u}{d t} \in L_{\infty}(I, H)$ and $A u \in L_{\infty}(I, H)$. Moreover, the estimate

$$
\left\|u_{n}-u\right\|_{C(I, H)}^{2} \leq \frac{C}{n}
$$

takes place where $\left\{u_{n}\right\}$ is from (1.7).
A priori estimates we obtain in the following way.

Lemma 1. The estimate $\left|u_{i}\right| \leq C$ takes place for all $n, i=1, \ldots, n$. Proof. We put $u=u_{i}, v=h u_{i}$ into (1.6). We sum it up for $i=1, \ldots, j$. Using (1.2) -(1.4) we estimate

$$
\left|u_{j}\right|^{2} \leq c_{1}+c_{2} \sum_{i=1}^{j} \max _{l \leq k \leq i}\left|u_{k}\right|^{2} h
$$

and hence

$$
\max _{1 \leq k \leq j}\left|u_{k}\right|^{2} \leq c_{1}+c_{2} \sum_{i=1}^{j} \max _{1 \leq k \leq i}\left|u_{k}\right|^{2} h .
$$

Thus Gronwall's Lemma implies the required result.
Lemma 2. The estimates
(1.10)

$$
\left|\frac{u_{i}-u_{i-1}}{h}\right| \leq c, \quad\left\|u_{i}\right\| \leq c
$$

hold for all $n, i=1, \ldots, n$.
Proof. We subtract (1.6) for $u=u_{j}, v=\delta_{h} u_{j} \equiv \frac{u_{j}-u_{j-1}}{h}$ from (1.6) for $u=u_{j-1}, v=\delta_{h} u_{j}$. Owing to the monotonicity of A and (1.3) -(1.5) we obtain
(1.11) $\left|\delta_{h} u_{j}\right| \leq\left|\delta_{h} u_{j-1}\right|+C\left(h+\max _{1 \leq k \leq j}\left|\delta_{h} u_{k}\right| h\right)$
because of Lemma 1 . From (1.6) for $i=1, u=u_{1}, v=\delta_{h} u_{1}$ we conclude

$$
\left|\delta_{h} u_{1}\right| \leq c
$$

since $u_{0}=\phi(0)$ and $A u_{0} \in H$. Thus successively from (1.11) we obtain

$$
\left|\delta_{h} u_{j}\right| \leq c_{1}+c_{2} \sum_{i=1}^{j} \max _{l \leq k \leq i}\left|\delta_{h} u_{k}\right| h
$$

which similarly as above implies $\left|\delta_{h} u_{i}\right| \leq C$. Using this estimate and (1.10) in (1.6) for $u=u_{i}, v=u_{i}$ we obtain $\left\|u_{i}\right\| \leq c$ because of (1.2) .

As a consequence of (1.10) and (1.6) for $u=u_{i}$ we have

$$
\mid\left\langle A u_{i}, v>\right| \leq C|v| \quad \forall n, i=1, \ldots, n .
$$

The previous a priori estimates can be rewritten in the form
(1.12) $\left|\frac{d u_{n}(t)}{d t}\right| \leq c,\left|\left|u_{n}(t)\right|\right|_{V \cap H} \leq c, \mid\left\langle A \bar{u}_{n}(t), v>\right| \leq c|v|$ (1.13) $\left|u_{n}(t)-u_{n}\left(t^{-}\right)\right| \leq C\left|t-t^{-}\right|,\left|u_{n}(t)-\bar{u}_{n}(t)\right| \leq \frac{C}{n} \quad$.

Lemma 3. There exists an $u \in L_{\infty}(I, V), u \in \operatorname{Lip}(I \rightarrow H)$ with $\frac{d u}{d t} \in L_{\infty}(I, H)$ such that

$$
\left|\mid u_{n}-u \|_{C(I, H)}^{2} \leq \frac{C}{n}, \quad \frac{d u_{n}}{d t} \rightarrow \frac{d u}{d t} \text { in } L_{2}(I, H) \text { and } A \bar{u}_{n}(t) \rightarrow A u(t) \text { in } V^{*}\right.
$$

(also in H) $\forall t \in I$.
Proof. Subtract (1.9) for $n=r$ from (1.9) for $n=s$ where $v=\bar{u}_{r}(t)-\bar{u}_{s}(t)$. Using (1.12) and (1.13) we estimate

$$
\left|\left|\tilde{u}_{r-1}-u_{r}\right|\right|_{C\left(S_{t}, H\right)}^{2} \leq \frac{c}{r^{2}} \sup _{\tau \in[0, t]}\left|\frac{d u_{r}(\tau)}{d \tau}\right|^{2} \leq \frac{C}{r^{2}}
$$

we conclude $u_{n} \rightarrow u$ in $C(I, H)$ and the estimate $\left|\left|u_{n}-u\right|_{C(I, H)}^{2} \leq \frac{C}{n}\right.$. Hence and from (1.12), (1.13) we obtain
$\bar{u}_{n}(t) \rightarrow u(t),\left|\left|A \bar{u}_{n}(t)\right|\right| \leq C,\left(\left|A \bar{u}_{n}(t)\right| \leq C\right)$ and

$$
\left\langle A \bar{u}_{n}(t), \bar{u}_{n}(t)-u(t)\right\rangle \rightarrow 0 \quad \forall t \in I
$$

Hence maximal monotonicity of A implies $A \bar{u}_{n}(t) \rightarrow A u(t)$ in $V *$ (moreover in H).
Proof of Theorem 1. We integrate (1.9) over (τ_{1}, τ_{2}) and take the limit as $n \rightarrow \infty$. Owing to Lemma 3 we conclude that u is a solution of (l.l) since $\tau_{1}, \tau_{2} \in I$ are arbitrary. Uniqueness follows from (1.1) by standard arguments .

Remark 1. Theorem 1 holds true also when $A: V \rightarrow V$ is nonstationary under the following assumptions :

$$
A(t): V \rightarrow V^{*} \text { is maximal monotone } \forall t \in I ;
$$

$A(t) u=\nabla \Phi(t, u)$, i.e. $A(t)$ are potential ($\Phi: I \times V \rightarrow R)$ $\langle A(t) u, u\rangle \geq||u|| p(| | u| |), p(t) \rightarrow \infty \quad$ for $t \rightarrow \infty$
$\left|\left|\frac{d}{d t} A(t) u\right|_{*}+\left|\left|\frac{d^{2}}{d t^{2}} A(t) u\right|\right| * \leq C_{1}+C_{2} p(| | u| |)\right.$.
For the proof it suffices to combine the technigues used in the proof of Theorem 1 with those used in [3].

Remark 2. A modification of Theorem 1 with m-accretive operators
$A(t): D C V \rightarrow V^{*}(t \in I)$ satisfying

$$
\left|\left|A(t) v-A\left(t^{-}\right) v\right|\right| \leq\left|t-t^{-}\right| L(| | u| |)(1+||A(t) v||)
$$

and with the right hand side $f=G\left(t, u_{t}\right.$) (at fixed t the operator G transforms the values of $u_{t}(s)=u(t+s), s \quad[-q, 0]$ into $\left.H\right)$ satisfying Lipschitz like condition has been obtained by A.G. Kartsatos and M.E. Parrott in [7].
II. Variational inequalities .

Let \downarrow be a proper $(\Phi: V \rightarrow(-\infty, \infty], \Phi \neq \infty)$, convex and lower semicontinuous (l.s.c.) function on V. We assume A : $V \rightarrow V^{*}$ to be a bounded maximal monotone operator . Consider the variational inequality (2.1) $\left(\frac{d u(t)}{d t}, v-u(t)\right)+\langle A u(t), v-u(t)\rangle+\Phi(v)-\Phi(u(t)) \geq$

$$
(f(t, F(u)(t)), v-u(t)) \quad \forall v \in V \cap H, \text { a.e. } t \in I, u=\phi \text { on } S_{o}
$$

where ϕ and F are the same as in Section I. We use the approximation scheme
(2.2) $\left(\delta_{h} u_{i}, v-u_{i}\right)+\left\langle A u_{i}, v-u_{i}\right\rangle+\Phi(v)-\Phi\left(u_{i}\right) \geq\left(f\left(t_{i}, F\left(\tilde{u}_{i-1}\right)\left(t_{i}\right)\right), v-\right.$ $\left.u_{i}\right), \forall v \in V \cap H$
where \tilde{u}_{i-1} is the same as in Section I . It is elliptic variational inequality with respect to u_{i} provided u_{1}, \ldots, u_{i-1} are known. Coerciveness of A is assumed in the form : There exists $v_{0} \epsilon V$ with $\Phi\left(\mathrm{v}_{\mathrm{o}}\right)<\infty$ such that.
(2.3) $\left(\left\langle A u, u-v_{0}\right\rangle+\Phi(u)\right) \cdot\left|\mid u \|^{-1} \rightarrow \infty\right.$ for $\|u\| \rightarrow \infty$.

Then, existence of $u_{i} \in V \cap H$ satisfying (2.2) is guaranteed by the well-known results from ellintic variational inequalities . Here , instead of $A u_{0} \in H$ we assume : There exists $z_{0} \in H$ such that
(2.4) $\left(z_{0}, v-u_{0}\right)+\left\langle A u_{0}, v-u_{0}\right\rangle+\Phi(v)-\Phi\left(u_{0}\right) \geq\left(f\left(0, F\left(\tilde{u}_{0}\right)(0)\right), v-u_{0}\right)$

$$
\forall v \in V \cap H \text { where } u_{0}=\phi(0)
$$

Since we have less possibilities in the test function v than in Section I , we assume

$$
\left\{\begin{array}{l}
\text { either } \Phi(0)<\infty, \text { or } \tag{2.5}\\
\left|F(u)(t)-F(u)\left(t^{*}\right)\right| \leq c\left|t-t^{-}\right|| | \frac{d u}{d t}| |_{L_{\infty}\left(S_{t}, H\right)}
\end{array}\right.
$$

for $u \in \operatorname{Lip}\left(S_{T} \rightarrow H\right)$. Let us put $i=j, v=u_{j-1}$ into (2.2) and then $i=j-1$, $v=u_{j}$. Adding these inequalities the values with Φ are eliminated and we are in the same situation as in the case of equations. Thus, we obtain the same a priori estimates (except of $\left|\left\langle A u_{i}, v\right\rangle\right| \leq C|v|$) as in Section I . Since $\bar{u}_{n}(t) \rightharpoonup u(t)$ we have $\Phi(u(t)) \leq \lim \inf \Phi\left(\bar{u}_{n}(t)\right)$ (Φ is also weaklv l.s.c. on V). From this information and from

$$
\begin{array}{r}
\left\langle A \bar{u}_{n}(t), \bar{u}_{n}(t)-v>\leq \Phi(v)-\Phi\left(\bar{u}_{n}(t)\right)+\left(\frac{d u_{n}(t)}{d t}, v-\bar{u}_{n}(t)\right)-\right. \tag{2.6}\\
\left(f\left(t, F\left(\tilde{u}_{n-1}\right)(t)\right), v-\bar{u}_{n}(t)\right)
\end{array}
$$

for $v=u(t)$ we conclude $\lim \sup \left\langle A \bar{u}_{n}(t), \bar{u}_{n}(t)-u(t)\right\rangle \leq 0$. Since A is a pseudomonotone onerator we obtain

$$
\left\langle\operatorname{Au}(t), u(t)-v>\leq \lim \inf \left\langle A \bar{u}_{n}(t), \bar{u}_{n}(t)-v>\quad \forall v \in V .\right.\right.
$$

Then integrating (2.6) and taking lim inf in (2.6) we obtain the solution of (2.1) by the same arguments $\overrightarrow{\mathrm{a}}^{\infty}$ in Section I.

Theorem 2. Let $A: V \rightarrow V^{*}$ be a bounded maximal monotone operator. If (1.3) , (1.4), (2.3)-(2.5) are satisfied then there exists the unique solution of (2.1) with the same properties as in Theorem 1 .

Remark 3. Theorem 2 holds true also in the case of the operator A being nonstationary under the assumptions of Remark l.

Similarly , the following types of evolution variational inequali ties can be solved
a) $\left(\frac{d^{2} u(t)}{d t^{2}}, v-\frac{d u(t)}{d t}\right)+b\left(t ; \frac{d u(t)}{d t}, v-\frac{d u(t)}{d t}\right)+a\left(t ; u(t), v-\frac{d u(t)}{d t}\right)+$

$$
\Phi(v)-\Phi\left(\frac{d u(t)}{d t}\right) \geq\left(f(t), v-\frac{d u(t)}{d t}\right) \quad u(0)=u_{0}, \frac{d u(0)}{d t}=U_{1} ;
$$

b) $\left(\frac{d u(t)}{d t}, v-\frac{d u(t)}{d t}\right)+a\left(t ; u(t), v-\frac{d u(t)}{d t}\right)+\Phi(v)-\Phi\left(\frac{d u(t)}{d t}\right) \geq$

$$
\left(f(t), v-\frac{d u(t)}{d t}\right) \quad u(0)=U_{0} ;
$$

c) $\quad a\left(t ; u(t), v-\frac{d u(t)}{d t}\right)+\Phi(v)-\Phi\left(\frac{d u(t)}{d t}\right) \geq\left(f(t), v-\frac{d u(t)}{d t}\right), u(0)=U_{0}$ $\forall \quad v \in V \cap H$, a.e. $t \in I$.

Here V, H are Hilbert shaces and $b(t ; u, v), a(t ; u, v)$ are continuous bilinear forms in $u, v \in V \quad(t \in I)$. We use the approximation scheme
a_{1})

$$
\begin{aligned}
& \frac{1}{h}\left(\delta_{h} u_{i}-\delta_{h} u_{i-1}, v-\delta_{h} u_{i}\right)+b\left(t_{i} ; \delta_{h} u_{i}, v-\delta_{h} u_{i}\right)+a\left(t_{i} ; u_{i}, v-\delta_{h} u_{i}\right)+ \\
& \Phi(v)-\Phi\left(\delta_{h} u_{i}\right) \geq\left(f\left(t_{i}\right), v-\delta_{h} u_{i}\right)
\end{aligned}
$$

$\left.b_{1}\right)\left(\delta_{h} u_{i}, v-\delta_{h} u_{i}\right)+a\left(t_{i} ; u_{i}, v-\delta_{h} u_{i}\right)+\Phi(v)-\Phi\left(\delta_{h} u_{i}\right) \geq\left(f\left(t_{i}\right), v-\delta_{h} u_{i}\right)$
$\left.c_{1}\right) \quad a\left(t_{i} ; u_{i}, v-\delta_{h} u_{i}\right)+\Phi(v)-\Phi\left(\delta_{h} u_{i}\right) \geq\left(f\left(t_{i}\right), v-\delta_{h} u_{i}\right)$
$\forall \quad v \in V \cap H, i=1, \ldots, n$. If we express $u_{i}=u_{0}+\delta_{h} u_{i} h+\sum_{j=1}^{i-1} \delta_{h} u_{i} h$
and $a\left(t_{i} ; u_{i}, v\right)=h a\left(t_{i} ; \delta_{h} u_{i}, v\right)+\sum_{j=1} h a\left(t_{i} ; \delta_{h} u_{j}, v\right)+a\left(t_{i} ; u_{0}, v\right)$
in $\left.\left.a_{1}\right), b_{1}\right), c_{1}$) then we obtain the ellintic variational inequalities
with respect to $\delta_{h} u_{i}$. We shall assume
(2.7)
(2.8)

$$
a(t ; u, u)+\alpha|u|^{2} \geq c| | u| |^{2} \quad(\alpha \geq 0)
$$

$$
a(t ; u, v)=a(t ; v, u)
$$

$$
\begin{equation*}
b(t ; u, u) \geq-C|u|^{2} \tag{2.9}
\end{equation*}
$$

$$
\begin{array}{r}
\left.\left|\frac{d^{p}}{d t^{p}} a(t ; u, v)\right| \leq c| | u| || | v| |(p=1,2 \text { in the cases } a), b\right) \tag{2.10}\\
p=1 \text { in the case } c))
\end{array}
$$

$$
\begin{equation*}
\left|\frac{d}{d t} b(t ; u, v)\right| \leq c| | u| || | v| | \tag{2.11}
\end{equation*}
$$

We assume that there exist $s_{O} \in H, z_{O} \in H$ such that
$(2.12) a\left(S_{O}, v-U_{1}\right)+b\left(0 ; U_{1}, v-U_{1}\right)+a\left(0 ; U_{O}, v-U_{1}\right)+\Phi(v)-\Phi\left(U_{1}\right) \geq$

$$
\left(\mathrm{f}(0), \mathrm{v}-\mathrm{U}_{1}\right) ;
$$

$(2.12)_{b}\left(z_{0}, v-z_{O}\right)+a\left(0 ; v-z_{O}\right)+\Phi(v)-\Phi\left(z_{0}\right) \geq\left(f(0), v-z_{O}\right) ;$
$(2.12)_{C} \quad a\left(0 ; U_{O}, v-z_{O}\right)+\Phi(v)-\Phi\left(z_{O}\right) \geq\left(f(0), v-U_{O}\right)$
$\forall V \in V \cap H$. By the same way as above (see also [5]) we obtain
Theorem 3. If (2.7) - (2.12) are satisfied and if $f, \frac{d f}{d t}, \frac{d^{2} f}{d t^{2}} \in L_{2}\left(I, V^{*}\right)$ (or $f, \frac{d f}{d t} \in L_{2}(I, H)$ in a), b) then there exists the unique solution of $a), b), ~ c)$, respectively, with the following properties :

$$
u \in C(I, V), \frac{d u}{d t} \in L_{\infty}(I, V), \quad\left\|u_{n}-u\right\|_{C(I, V)}^{2} \leq \frac{C}{n}
$$

where $\left\{u_{n}\right\}$ is the corresponding sequence of Rothe's function. Moreover, in the cases a) , b) we have

$$
\frac{d u}{d t} \in C(I, H), \frac{d^{2} u}{d t^{2}} \in L_{\infty}(I, H), \quad\left|\frac{d u_{n}(t)}{d t}-\frac{d u(t)}{d t}\right|^{2} \leq \frac{C}{n} \quad \forall t \in I .
$$

Remark 4. In the fact in the cases a), b) a perturbed symmetry of $a(t ; u, v)$ can be assumed. Let $a_{o}(t ; u, v)$ be continuous bilinear form in $u, v \in V(t \in I)$ satisfying $\left|a_{0}(t ; u, v)\right| C||u|||v|$. It suffices to assume $a(t ; u, v)+a_{o}(t ; u, v)$ is symmetric.
Remark 5. In the cases of variational inequalities a) , b) a more general problem (corresponding to problem (2.1)) with a right hand side $\mathrm{f}(\mathrm{t}, \mathrm{F}(\mathrm{u})(\mathrm{t}) \mathrm{)}$ can be considered. If (1.3),(1.4),(2.5) are satisfied then Theorem 3 holds true.

Remark 5. Using time and space discretization the variational inequalities a), b) have been solved in [1]. A special case of (2.1) (A is asymptotically linear,$\Phi \equiv \Phi_{K}$ - indicatrix of the closed convex set K in V) have been solved in [12].

In this section we apply Rothe's method to the equations of the form (3.1) $G(t) \frac{d^{m} w(t)}{d t^{m}}+\prod_{k=0}^{m-1} A_{k}(t) \frac{d^{k} w(t)}{d t^{k}}=g\left(t, w, \ldots, \frac{d^{m-1} w}{d t^{m-1}}\right)$

$$
\frac{d^{k} w(0)}{d t^{k}}=W_{k}, k=0, \ldots, m-1, \quad \text { where } A_{k}(t) \in \mathscr{L}\left(v, v^{*}\right), G(t) \in \mathscr{L}(H, H)
$$

$\left(\epsilon \mathscr{L}\left(V, V^{*}\right)\right), g \in \operatorname{Lip}\left(I \times[V]^{m} \rightarrow H\right)$ and V, H being Hilbert spaces with $V \cap H$ dense in V and H. The equations of type (3.1) include the governing equations of quasistatic and dynamic problems of viscoelastic plates and shallow shells (see [13]). We assume that either i) $A_{m-1}(t)$ is V-elliptic, or ii) $A_{m-2}(t)$ is V-elliptic. Operator $G(t)$ is supposed to be symmetric and $H-e l l i p t i c$. Using transformation

$$
u=\frac{d^{m-1} w}{d t^{m-1}} \text { in the case i), or } u=\frac{d^{m-2} w}{d t^{m-2}}(m \geq 2) \text { in the case ii) }
$$

the equation (3.1) can be reduced to the form

$$
\begin{array}{ll}
\text { E) } & G(t) \frac{d u(t)}{d t}+A(t) u(t)=f(t, u, F(u)(t)) \quad \text { or } \\
E)_{i i} & G(t) \frac{d^{2} u(t)}{d t^{2}}+B(t) \frac{d u(t)}{d t}+A(t) u(t)=f\left(t, u, \frac{d u}{d t}, F(u)(t)\right)
\end{array}
$$

where

$$
F(u)(t)=\left(\int_{0}^{t} u d s, \ldots, \int_{0}^{t}(t-s)^{p} u(s) d s\right) \quad \begin{align*}
& (p=m-2 \text { in i), } \tag{3.2}\\
& p=m-3 \text { in ii) })
\end{align*}
$$

The problem E) ${ }_{i}$ has been considered in Section I. Now, we formulate Problem 3.1 which includes the problem E) ii .

Let $V, V_{1} ; H, H_{l}$ be Hilbert spaces and let $\langle u, v\rangle_{V},\langle x, y\rangle_{H}$ be the continuous pairings between $u \in V_{1}, v \in V$ and $x \in H_{1}, y \in H$, respectively. Let $a(t ; u, v), b(t ; u, v)$ be the same as in Section I and let $G(t ; u, v)$ be a continuous bilinear form for $u, v \in H$. Consider the operators $f_{V} \in \operatorname{Lip}\left(I \times V \rightarrow V_{l}\right), f_{H} \in \operatorname{Lip}\left(I \times V \times H \rightarrow H_{l}\right)$ and Volterra type operators $\mathrm{F}_{\mathrm{V}}: \operatorname{Lip}\left(\mathrm{S}_{\mathrm{T}} \rightarrow \mathrm{V}\right) \rightarrow \operatorname{Lip}\left(\mathrm{S}_{\mathrm{T}} \rightarrow \mathrm{V}\right), \mathrm{F}_{\mathrm{H}}: \operatorname{Lip}\left(\mathrm{S}_{\mathrm{T}} \rightarrow \mathrm{H}\right) \rightarrow \operatorname{Lip}\left(\mathrm{S}_{\mathrm{T}} \rightarrow \mathrm{H}\right)$. Problem 3.1. To find $u \in C(I, V \cap H)$ with $\frac{d u}{d t} \in L_{\infty}(I, V \cap H)$, $\frac{d u}{d t} \in C(I, H)$ $\frac{d^{2} u}{d t^{2}} \in L_{\infty}(I, H)$ such that
(3.3) $G\left(t ; \frac{d^{2} u(t)}{d t^{2}}, v\right)+b\left(t ; \frac{d u(t)}{d t}, v\right)+i a(t ; u(t), v)=$

$$
\left\langle f_{V}(t, F(u)(t)), v\right\rangle_{V}+\left\langle f_{H}\left(t, F_{V}(u)(t), F_{H}\left(\frac{d u}{d t}\right)(t)\right), v\right\rangle_{H}
$$

holds for all $v \in V \cap H$ and $u=\phi, \frac{d u}{d t}=\psi$ on S_{o} where $\phi \in \operatorname{Lip}\left(S_{0} \rightarrow V\right)$, $\psi \epsilon \operatorname{Lip}\left(S_{o} \rightarrow H\right)$ are given functions.

To solve problem 3.1 we use the approximation scheme

$$
\begin{aligned}
& \text { (3.4) } \quad \frac{1}{h} G\left(t_{i} ; \delta_{h} u_{i}-\delta_{h} u_{i-1}, v\right)+b\left(t_{i} ; \delta_{h} u_{i}, v\right)+a\left(t_{i} ; u_{i}, v\right)= \\
& \quad\left\langle f v\left(t_{i}, F\left(\tilde{u}_{i-1}\right)\left(t_{i}\right)\right), v\right\rangle_{v}+\left\langle f_{H}\left(t_{i}, F_{v}\left(\tilde{u}_{i-1}\right)\left(t_{i}\right), F_{H}\left(\delta_{h} \tilde{u}_{i-1}\right)\left(t_{i}\right)\right), v\right\rangle_{H}
\end{aligned}
$$

$\forall v \in V n H$ where \tilde{u}_{i-1} is the same as in section I and $\delta_{h} \tilde{u}_{i-1}$ is constructed bv means of $\psi,{ }^{\prime} h_{1}, \ldots, h_{i-1}{ }_{i}$ by the same way as \tilde{u}_{i-1}. Similarlv as above (3.4) can be transformed to the elliptic equation with respect to ${ }^{\prime} h_{i}$ nrovided ${ }^{\delta_{h}}{ }^{u}{ }_{1}, \cdots, \delta_{h}{ }_{i-1}$ are known.

The solution of problem 3.1 and the converqence of our approximation scheme we obtain under the following assumptions
(3.5) $G(t ; u, v)=G(t ; v, u) ;$
(3.6) $C_{1}|u|^{2} \leq G(t ; u, u) \leq C_{2}|u|^{2} ;$
(3.7) $\left|\frac{d}{d t} G(t ; u, v)\right| \leq C|u||v|$;
(3.8) $\left\|F_{R}(u)-F_{R}(v)\right\|_{C\left(S_{T}, R\right)} \leq C\|u-v\|_{C\left(S_{T}, R\right)}$ for $R=V, H$;
(3.9) $\left\|F_{R}(u)(t)-F_{R}(u)\left(t^{-}\right)\right\|_{R} \leq\left|t-t^{-}\right| L\left(| | u| |_{C\left(S_{T}, R\right)}\right)\left(1+\left|\left|\frac{d u}{d t}\right|\right|_{L_{\infty}}\left(S_{t}, R\right)\right.$
where $L: R_{+} \rightarrow R_{+}$is continuous, $t, t^{*} \in I, t^{*}<t$ and ${ }^{L_{\infty}} t^{\prime} R^{\prime}$
$F(u)$ is from (3.2). Analogously to (2.12) we assume :
There exists $s_{O} \in H$ such that
(3.10) $G\left(0 ; s_{O}, v\right)+b(0 ; \psi(0), v)+a(0 ; \phi(0), v)=\left\langle f_{V}(0,0), v\right\rangle_{V}+$

$$
\left\langle\mathrm{f}_{\mathrm{H}}\left(0, \mathrm{~F}_{\mathrm{V}}(\widetilde{\phi})(0), \mathrm{F}_{\mathrm{H}}(\widetilde{\psi})(0)\right), \mathrm{v}\right\rangle_{\mathrm{H}} \quad \forall \mathrm{~V} \in \mathrm{~V} \cap \mathrm{H} .
$$

Theorem 4. Suppose $f_{V} \in \operatorname{Lip}\left(I \times V \rightarrow V_{1}\right), f_{H}\left(I \times V \times H \rightarrow H_{1}\right)$ (see (1.3)) and $\psi(0) \epsilon V$. If (3.5) -(3.10) are satisfied then there exists the unique solution of Problem 3.l . Moreover, the estimates
(3.11) $\quad\left\|u_{n}-u\right\|_{C(I, V)}^{2} \leq \frac{C}{n},\left\|\frac{d u_{n}}{d t}-\frac{d u}{d t}\right\|_{L_{\infty}(I, H)}^{2} \leq \frac{C}{n}$
hold where $\left\{u_{n}\right\}$ is the corresponding sequence of Rothe's functions.
By a similar technique used in Sections I and II, successively we obtain a priori estimates

$$
\left|u_{i}\right| \leq c,\left|\delta_{h} u_{i}\right| \leq c
$$

and then

$$
\left|\delta_{h}^{2} u_{i}\right| \leq c,\left\|\delta_{h} u_{i}\right\| \leq c, \| u_{i}| | \leq c .
$$

Similarly as in Lemma 3 a priori estimates (3.11) can be proved. Then taking the limit as $n \rightarrow \infty$ in approximation scheme (3.4) we conclude Theorem 4 .

Examole. Problem 3.1 can be interpreted in the following way. We put $V=\dot{W}_{2}^{2}(\Omega), V_{1}=W_{2}^{-2}, H=L_{2}(\Omega)=H_{l}$ where $\Omega \subset R^{N}$. Consider $a(t ; u, v)=|i| \sum_{|j| \leq 2} \int_{\Omega} a_{i j}(x, t) D^{i} u D^{j} v d x$ for $u, v \in{\underset{W}{2}}_{2}^{2}(s i)$; $b(t ; u, v)=|i| \dddot{U}_{j \mid \leq 2} \int_{\Omega} b_{i j}(x, t) D^{i} u D^{j} v d x \quad$ (or $\left.b(t ; u, v)=\int_{\{ } u v d x\right)$; $\left\langle f_{V}(t, F(u)(t)), v\right\rangle_{V}=\int_{S} \Delta v \int_{0}^{t}(t-s)^{P} \Delta u(s) d s d x \quad(p \geq 1) ;$ $\left\langle f_{H}\left(t, F_{V}(u)(t), F_{H}\left(\frac{d u}{d t}\right)(t)\right), v\right\rangle_{H}=\left\{\begin{array}{l}\int_{\Omega} v \Delta u(\omega(t)) d x \quad \epsilon \operatorname{Lip}\left(S_{T} \rightarrow S_{T}\right) \\ \int_{\Omega} v \int_{-q(t) \leq t ;}^{\omega(t)} K(s, t) \Delta u(s) d s d x ; \\ \int_{\Omega} v \int_{-q}^{\omega(t)} K(s, t) \frac{d u(s)}{d s} d s d x \quad .\end{array}\right.$ Bilinear form $G(t ; u, v)$ can be interpreted in the following way. 1) $\quad H=L_{2}(\Omega)=H_{1}, G(t ; u, v)=\int_{\Omega} u v d x$. Then the first term in (3.1) is of the form $\frac{d^{m} w}{d t^{m}}$;
 where $\alpha(x)>0, \alpha \in L_{1}(\Omega)$. We consider $C_{1} \alpha(x) \leq g(x, t) \leq C_{2^{\alpha}}(x)$ Then $G(t ; u, v)=\int_{\Omega} g(x, t) u v d x\left(u, v \in L_{2, \alpha}(\Omega)\right)$ generates a degenerate first term in (3.1) in the form $g(x, t) \cdot \frac{d^{m} w}{d t^{m}}$;
3) $H=V=\stackrel{\circ}{W}_{2}^{2}, H_{1}=V_{1}=W_{2}^{-2}$. Then $G(t ; u, v)$ generates the first term in (3.1) in the form $G(t) \frac{d^{m} w}{d t^{m}}$ where $G(t) \in \mathscr{L}\left(V, V^{*}\right)$ is a symmetric, V-elliptic operator .

References

[1] R. Glowinski, J.L. Lions, R. Tremoliéres : Analyse numérique des des inéquations variationnelles . Dunod, Paris 1976 .
[2] J. Kačur : The Rothe method and nonlinear parabolic equations of arbitrary order . Theory of nonlinear operators - Summer schoolNeuendorf 1972 . Akademie-Verlag . Berlin 1974, 125-131.
[3] - : Application of Rothe's method to nonlinear evolution equations . Mat. Casopis Sloven. Akad. Vied 25, 1975, 63-81.
[4] - : Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order . Czech. Math. J., 28103 , 1978
[5] - On an aporoximate solution of variational inequalities. Math. Nachr. , 123 , 1985, 63-82.
[6] - Method of Rothe in Evolution Equations . TEUBNER-TEXTE zur Mathematik, Leipzig, to appear.
[7] A.G. Kartsatos, 3.E. Parrott: A method of lines for a nonlinear abstract functional differential equations. Trans. Am. Mth. Soc. $\mathrm{V}-286, \mathrm{~N}-1,1984,73-91$.
[8] - Functional evolution equations involving time dependent maximal monotone orerators in Banach spaces. Nonlinear analysis Theorv, Methods and Applications. Vol. 8 , 1984, 817-833.
[9] J. Nečas : Applications of Rothe's method to abstract parabolic equations . Czech. Math. J. 24, 1974, 496-500.
[10] K. Rektorys : On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables. Czech. Math. J. , 21, 1971, 318-339.
[11] M. Zlámal : Finite element solution of quasistationary nonlinear magnetic fields . RAIRO , Anal. Num., V-16, 1982, 161-191.
[12] A. Zenišek : Approximation of narabolic variational inequalities. Aplikace matematiky, to appear.
[13] J. Brilla : New functional spaces and linear nonstationary problems of mathematical physics. EOUADIFF 5 - proceedings of the conference held in Bratislava, 1981 . TEUBNER-TEXTE zur Mathematik, Band 47 , Leipzig, 1982 .

