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CLASSICAL BOUNDARY VALUE PROBLEMS 
FOR MONGE-AMPERE 
TYPE EQUATIONS 
N. S. TRUDINGER 
Centre for Mathematical Analysis, Australian National University 
Canberra, A.C.T. Australia 

This report is concerned with recent work on the solvability of classical 

boundary value problems for elliptic Monge-Ampere type equations with p a r t i c u l a r 

attention to that of the a u t h o r , P-L. Lions and J.I.E. Urbas [20] on Neumann type 

problems. The D i r i c h l e t problem fo r these equations, 

2 
det D u = f (x ,u ,Du ) in ft , ( 1 ) 

u = (J) on 3ft , (2) 

has received c o n s i d e r a b l e 

attention in recent y e a r s . For the s t anda rd Monge-Ampere equation, 

det D2u = f ( x ) in ft , (3) 

Pogo re lev [21,22] and Cheng and Yau [7] proved the existence of a unique convex 

solution u € C (ft) 0 C ' (ft) , p r o v i d e d ft is a u n i f o r m l y convex C ' domain in 

]R and the functions <J),f € C ' (ft) with f positive in ft . T h e i r methods 

depended on establishing i n t e r i o r smoothness of the g e n e r a l i z e d solutions of 

Aleksandrov [1]. These results were extended to equations of the more gene ra l form 

by P-L. Lions [17,18] using a d i r e c t PDE a p p r o a c h . Lions' approach led to the 

following classical existence theorem of T rud inge r and Urbas [26], which we f o r m u l a t e 

explicitly f o r compar i son with l a t e r results. Here we assume that the function f 

in equation ( 1 ) belongs to the space C ' (OxRx F ) , is positive and n o n - d e c r e a s i n g 

in z , f o r all ( x , z , p ) fcftx]Rx;Rn and satisfies the following growth limitations: 

f ( x , N , p ) < g ( x ) / h ( p ) (4) 

f o r all ( x , p ) € ftx]Rn p where N is some constant and g€ L (ft) , h€ l>1 (-R ) are 

positive functions such that 



< Һ ; (5) 

f ( x , N ' , p ) < K [ d i s t ( x , 3 f t ) ] a ( 1 + I P I 2 ) 6 7 2 (6) 

for a l l x^W, p fc 1R where N1 = max <J) , K, a and § a r e n o n - n e g a t i v e c o n s t a n t s 
oft 

such that 6in+l+a and W is some neighbourhood of 8ft . Then we have 

Theorem 1 [26] Let ft fo^ a uniformly convex C ' domain in R , cj) fc C ' (ft) 

and suppose that f satisfies the above hypotheses. Then there exists a unique 
2 0 1 -

convex solution u^C (ft) ("IC ' (ft) of the Dirichlet problem (1), ( 2 ) . 

Conditions (4) and (6) were introduced by Bakelman [2] in his treatment of 

generalized solutions and they are both sharp [2],[26]. For the special case of 

the equation of prescribed Gauss curvature, 

det D
2
u = K(x)(l+|Du|

2
)

( n + 2 ) / 2
 , (7) 

conditions (5) and (6) become respectively, 

K < co , (8) 

n ^
 J 

K = 0 on 9ft. (9) 

Moreover condition (8) is necessary for a C ' (ft) solution of equation (7) to exist 

[9],[26] while if condition (9) is violated there exist arbitrarily smooth boundary 

values (j> for which the classical Dirichlet problem (7), (2) is not solvable, [26]. 

The above developments shed no light on the global regularity of solutions beyond 

being uniformly Lipschitz in ft . This was an open problem, in more than two 

dimensions, for many years and was finally settled, for uniformly positive f, 

through the c o n t r i b u t i o n s of Ivochkina [10], who proved global bounds for second 

derivatives for arbitrary (j)6C
3,1
(ft), 8ft i C ' l

, Krylov [14],[15] and Caff arelli, 

Nirenberg and Spruck [5] who independently discovered the hitherto elusive global 

Holder estimates for second d e r i v a t i v e s . As a particular consequence of this work, 

we can infer the following existence theorem for globally smooth solutions of the 

classical Dirichlet p rob lem . 

Theorem 2 Let ft be a uniformly convex C * domain in ]R
n
 <j> £ C * (ft) and 

suppose that f €C ' (ftxlRxR j is positive and non-decreasing with respect to z, 

for all (x,z,p) € ftx]RxRn and satisfies conditions (4) and (6) with a=0. Then there 
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3 Y -exists a unique convex solution u € C ' (ft) for all y< 1 of the Dirichlet problem 

(D,(2). 

More genera l results are in fact formulated in [5] , [12] but the condition 

6<n+1 cannot be improved [26]. The situation with regard to oblique boundary value 

problems of the form 

3-Du = (J>(x,u) on 3ft , (10) 

where 3*v>0 on 9ft and v denotes the unit i nne r normal to 3ft , t urned out to 

be more s a t i s f a c t o r y in that condition (6) is not required for the estimation of 

f i r s t d e r i v a t i v e s . For the case 3 = v, that is fo r the usual Neumann case, 

vDu = (j)(x,u) on 3ft , (11) 

we proved in c o l l a b o r a t i o n with Lions and Urbas in [20], the following existence 

theorem, 

Theorem 3 Let ft be a uniformly convex C ' domain in R and <j) fc C ' (ftx]R) 

satisfy 

<J>z(x,z)>= Y 0 (12) 

for all x,z, € 3ftxR and some positive constant Y Q • Then if f£C ,X(ftx]Rx]Rn) 

is positive and non-decreasing with respect to z for all (x,z,p) £ ftx]Rx]R 
3 Y -and satisfies condition (5)^ there exists a unique convex solution u£C (ft) 

for all y < 1 of the boundary value problem (1),(11). 

Fu r t he r regularity of the solutions in Theorems 2 and 3 follows by v i r t u e of 

the Schauder t heo ry of l i n e a r equations [9] , when 3ft ,(j> and f are a p p r o p r i a t e l y 
oo oo oo _ r» 

smooth. In p a r t i c u l a r when 3ft € C , <M C (3ftxlR) and f SC (ftx]Rx]R ) we 

deduce u€C (ft). The proofs of Theorems 2 and 3 both depend, through the method 

of continuity as d e s c r i b e d for example in [9], on the establishment of global 
2 ex C * (̂ ) estimates for solutions of related problems. However the techniques 

employed by us to obtain these estimates in the Neumann boundary value case d i f f e r 

c o n s i d e r a b l y from those used fo r the D i r i c h l e t problem, p a r t i c u l a r l y with respect 

to the estimation of f i r s t and second d e r i v a t i v e s . For the estimation of sup norms 

we make use of the following maximum p r i n c i p l e which does include that of 

Bakelman [2,3] fo r the D i r i c h l e t problem as a special case. 

Theorem 4 [20] Let ft be a C bounded domain in ]Rn and u € C (ft) fl C (ft) a convex 

solution of the boundary problem (1),(10) in ft where f satisfies condition (5), 
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3*v t 0 on 9ft and <$> satisfies (12) . Then we have the estimate 

min JN, - sup ф (x,0)/ү
Q
 - (З^/YQ+d^R^У < u < sup ф"(x,0)/ү

Q
 (13) 

Әft ' Эft 

where d = diam ft, 3-, = sup|3| , and R
0
 is given 

9ft 

* 
n |

P
|<R

0 

The gradient estimation in the oblique boundary condition case is a consequence 

of convexity as any convex C (ft) function satisfies an estimate 

sup|l)u| <= C (14) 

ft 

where C depends on 3Q,3-, , |uL .
Q
, sup|3'Du| and ft , provided 3

#
v^3

0
 where 

oft 

$ is a positive constant and ft € c*»l[20] . In contrast, a gradient estimate for 
1 1 1 1 -

solutions of the Dirichlet problem (1),(2) holds provided 9ft € C ' , <$> £ C ' (ft) 

and condition (6) is fulfilled [26]. 

In both Dirichlet and Neumann problems the global estimation in ft of second 

derivatives is reduced to considerations at the boundary 9ft , by means of an approach 

which goes back to Pogorelev [21] , although its implementation in the Neumann case 

[20] is substantially more involved than in the Dirichlet case [9], [5]. The 

boundary considerations are different as the Dirichlet problem is handled through 

barrier constructions [10], [5], whereas in [20] we employ different techniques 

including a device which necessitates our restriction of the vector 3 to the normal 

vector. The consequent estimates may be formulated as follows. 

Theorem 5 Let ft be a C ' uniformly convex domain in 1R and u t C (ft) D C (ft) 

a convex solution of the boundary value problem (1),(11) where ftC ' (HxJRxjR ) 
2 1 

is positive and <j> t C ' (9ftxIR) satisfies (12). Then we have 

sup|D2u| < C (15) 

where C depends on n,ft,f,(f) and |u| A similar estimate holds for solutions 
3 1-

of the Dirichlet problem (1),(2) provided cj> 6 C ' (ft). 

We remark that the restriction (12) can be weakened to <j> - 0 and the case when 

f is convex with respect to p is simpler. We do not know whether one need only 
2 1 -

assume (f> t C ' (ft) in the Dirichlet case. Once the second derivatives of solutions 
of the boundary value problems (1), (2), (10) are bounded, we obtain a control on 

the uniform ellipticity of equation (1) , and further estimation hence follows from 
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the theory of fully nonlinear uniformly elliptic equations. In particular interior 
2 a 

C ' (ft) estimates were derived by Calabi [4] for Monge-Ampere equations and by 
2 a -

Evans [8] and Krylov [13] for general uniformly elliptic equations. Global C ' (ft) 

estimates for the Dirichlet problem then arose from combination with key boundary 

estimates discovered by Krylov [14] and Caffarelli, Nirenberg and Spruck [5]. Global 
2 a -

C ' (ft) estimates for oblique boundary value problems were proved by Lions and 

Trudinger [19], with more general results being given by Lieberman and Trudinger [16] 

and Trudinger [24]. The global estimates of Krylov [14] and Trudinger[24] are 

also applicable to classical solutions of uniformly elliptic Hamilton-Jacobi-Bellman 

equations. We may in fact formulate these estimates for general second order 

equations of the form 

F[u] = F(x,u,Du,D2u) = 0 in ft , (16) 

subject to general boundary conditions 

G[u] = G(x,u,Du) = 0 on 9ft , (17) 

where either G is oblique so that 

G -v > 0 (18) 

P 

for a l l ( x , z , p ) € 9ftx]Rx]Rn, o r G i s Divichlet so t h a t 

G ( x , z , p ) = z-(j)(x) (19) 

for some func t ion <J> € C2 >l (9ft) . Here F € C^fexjRx ]Rnx(j) , G € C ^ a f t x R x ]Rn) w here 

U i s some open convex s u b s e t of t h e l i n e a r space $ of nxn r e a l symmetric 

m a t r i c e s , and F i s : ( i ) elliptic so t h a t t h e m a t r i x , 

F r = [ F r ] > 0 , (20) 
i j 

for a l l ( x , z , p ) 6ftx]Rx]R y r = [ r . . ] i U ; and ( i i ) concave wi th r e s p e c t t o r 

for a l l ( x , z , p ) t ftx]R x]Rn , r £ (j. Then we have 

Theorem 6 Let ft be a bounded C ' domain in ]R and u € C (ft)flC (ft) a 
2 

solution of the boundary value problem (16), (17) such that D u(ft) c (J . Then 
we have 

^uK-,u£ c (21) 
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where a< 1 and C are positive constants depending only on n,ft,|uL ~ and 

the first and.second derivatives of F and G (excluding F r r ) , (and | <f>| * '̂ n 

t h e Dirichlet case). 

We remark here that the solution u in Theorem 6 need only lie in the space 

C ' (ft) and the smoothness of dYl, G, F, <J> can be reduced, [25]. For application 

to Monge-Ampere type equations the convex set U becomes the set of positive 

symmetric matrices. 

Finally we note that the sharpness of condition (8) is strikingly demonstrated 

by the following result of Urbas [28] concerning extremal domains for the equation 

of prescribed Gauss curvature. 

Theorem 7 Let Q be a uniformly convex domain in IR and K^C ' (ft) be positive 

in ft and satisfy 

K = co (22) 
ft n 

2 

Then there exists a convex solution u £C (ft) of equation (7) in ft . Furthermore 

the function u is vertical at 8ft and is unique up to additive constants. If 

K is positive in ft _, then t h e solution u is bounded; if K vanishes on 3ft 

then t h e solution u approaches infinity at 8ft . 
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