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RECENT RESULTS 
IN THE APPROXIMATION 
OF FREE BOUNDARIES 
F. BREZZI 
Instituto di Analisi Numerica del C N. R.y Universita di Pavia 
Cso Carlo Alberto, 5 - 27100 Pavia, Italy 

§ 1. We present here a short survey on results recently obtained in 

the approximation of free boundaries. For examples of free boundary 

problems that are interesting in physics and engineering we refer for 

instance to |1| 9|7|,|8|. Here we shall stay at a very abstract level, 

without considering, essentially, the nature of the free boundary pro

blem under consideration nor the type of discretization which is employ 

ed. In that we are rather following |3| or the first part of |9|. For 

practical cases in which the following results apply we refer to |4|, 

|10| and |9|. 

In the next section we present the framework in which the theory 

will be developed and in the third section we shall present some ab

stract results, most of them without proof. The proofs can be found in 

the corresponding references. 

§ 2. For the sake of simplicity we shall consider the following "model" 

situation. We are given a bounded domain D in IRn with piecewise Lips-

chitz boundary (to fix the ideas). We are also given a function u(x) in 

C ° ( D ) . The function u(x) will be the solution of our free boundary pro 

blem. The nature of the problem itself is immaterial at this stage. 

We assume that 

(1) u(x) ̂  0 V x £ D 

and we assume that the continuous free boundary F is characterized by 

( 2 ) F:= D f \ 9 ( D + ) 

where 

( 3 ) D + := { x | x € D , u ( x ) > 0 } ; 

We assume t finally that we have constructed a sequence {u^(x)> , for 

0<h^h of "approximating solutions", whi ch converges to u(x) in C ° ( 5 ) : 

Again, the procedure employed to construct {u. } is irrelevant at the 

moment. We set 

(4) F (h): = ||u-u.|| Isps- . 
P n L p ( D ) 

and we remark that we have already assumed 



286 

(5) lim E j h ) = 0 
h+0 

We would like to construct a "discrete free boundary" Fh as in (2) and 

then to estimate the distance of Fh from F in terms of E (h), defined 

in (4). In order to make our life even easier, we assume that, as in 

(1), 

(6) uh (x)£0 V x e D , V h<hQ 

and we s e t , as a f i r s t t r i a l , 

(7) D+:={x|x t D , uh(x)>0} 

(8) F h:=D09(D
+) 

Unfortunatly, elementary examples show that Fh can be very far from F 

even for uh yery close to u. For instance if D=|-1,1| and u(x)=(x)+ 

(that is u(x)=0 for x<0 and u(x)=x for x>0) we have F={0}. If now 

u_(x) =u (x) + hs (x + 1 ) the F.={-1} no matter how small is h or how big 

is s. It should be clear now that the setting (1)...(8) does not al

low the proof of any bounds on the distance of Fh from F. In the next 

section weshall present a few remedies that (under suitable additional 

assumptions) have been proposed to improve the situation. 

§ 3. The first trial in this direction has been done about ten years 

ago in |2|. Assume that g(h) is a function of h such that 

(9) E j h X g f h ) 0<h<h^h 0 

(10) lim g(h)=0 
h+0 

and set 

( Ц ) D ' h , g " { x
l

x e 5
' u

h
(x)>g(h)}. 

Then we have |2|. 

Theorem 1-Under the above assumptions we have, for h<h. 

(12) D h
> g

C D
+
, 

and, for all x € D + , there exists h9>0 such that x€D. „ for h<h0. 
l n,g c. 

The proof is immediate. We point out that, in other words, D h 

converges to D + "from inside". At our knowledge theorem 1 is still 

among the best result that one can obtain without additional informa 

ti on. 

A tipical additional information that one can get, in many cases, 

is the behaviour of u(x) in D +, near the free boundary. To fix the 

ideas, assume from now on that F is a smooth (say, C1) surface. For 
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any point x of F one can look at the restriction of u a l o n g the dire

ction norma l to F and pointing into D . If 

(13) u{x)žc(x-x)i f or | x-x | <a (s e IR ) 

with c,a and s independent of x we s h a l l say that "u(x) grows like ds 

near F" (d is for distance to the free boundary). For instance in the 

particular case of a nice o b s t a c l e p r o b l e m , it has been proved in 1SI 

that u(x) grows like d near F. If one can prove a s i m i l a r property 

for the approximations u,(x), one can use such an information to get 

estimates on the distance of F, from F. This has been done in |4| for 

the case of a nice obstacle problem with a piecewise linear finite 

element approximation that satisfies the discrete maximum principle. 

The result in |4| is essentially that the distance of F, from F be

haves like (ETO(h)) . This idea has then been extended in |10| to the 

one-phase Stefan problem in several dimensions, and in |11| to para

bolic variational inequalities of obstacle type. The major drawback 

of this technique, however, is that it is often very difficult to 

prove growth properties for the discrete solutions u h ( x ) , while the 

behaviour of u(x) itself is easier to analyze (see |8|,|7| for seve

ral growth properties proved on the continuousproblem). 

A new and interesting set of results has been then obtained in 

|9| by combining, somehow, the two previous techniques: to change 

Dh into a suitable Dh and to use some growth property on u(x). 

In order to give the flavour of this procedure we shall present 

here two results in this direction. More detailed results and 

examples can be found in |9|. 

Theorem 2 |91 With the notations and assumptions (1)...(11), i f 

u(x) has the growth property (13) for some s>0, then there exist 

c>0 and h3>0 such that for all h with 0<h<h3 

(14) dist (F h j g,F)<(cg(h))
1 / s, 

where 

(15) F h > g : - D n 8 ( D * > g ) 

and (14) means 

(16) V x h € F h 3 x € F such that | x-xh | s(cg(h))
1 /s 

P 

re 

roof - Let x h € Fh . This implies uh(xh)=-g(h)>Eoo(h). and therefo-

e x . € D + . From (13) one has now that, for h small enough, 

(17) u(xh);>c|x-xh|
s 
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for some x £ F . Since un(x.) = g(h) one has from the triangle inequality 

(18) u(xh)^g(h)+ECX)(h)<2g(h) 

and (16) follows from (17) and (18). 

Theorem 3 Under the same assumptions of theorem 2, -j_f 

(19) g ( h ) > E p ( h )
s p / ( 1 + s P ) 

then there exist c>0 and h->0 such that 

(20) meas(D +AD+ > g)<c(g(h))
1 / s 

where in (20) the symbol A indicates as usual the symmetric difference 

of sets. 

The proof can be found in |9|. 

We would like to conclude with a somehow phylosophical remark (see |3|). 

In general, condition (13) implies that the global regularity of u(x) 

in D is, at best 

(21) u e c s ( D ) . 

If one uses, for instance, finite element methods in order to appro

ximate u, one has, at best (see e.g. | 6 | ) : 

(22) E (h) = ||u-u. || schr||u|| r 0<r<mi n( k+1 ,s) 

C° C 

where k is the degree of the polynomials. Using now theorem 2, say, 

with g(h)=2E (h) one has from (14) 

(23) dist ( F ^ g . F j s c f E j h ) ) 1 7 5 

and from (23) and (22): 

(24) dist (F. n,F)<ch
r / s (at best). 

n 9 g 

One can now make the following observations. 

1) Since r<s in (24), the error cannot beat the mesh size. 

2) For s "big" one need a "big" k (that is, polynomials of high 

degreee) so that the case r=s can be achieved in (22) (and hence 

in (24)). 

3) For s "small" the error that one gets from (24) is surprising good. 

Unfortunately, for irregular u, (22) is often difficult to prove 
in practical cases. 
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