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DETERMINISTIC AND STOCHASTIC
VECTOR DIFFERENTIAL EQUATIONS
APPLIED IN TECHNICAL SYSTEMS
THEORY

F.FAZEKAS Section D
Department of Mathematics, Technical University
I{-1111 Budapest, Hungary

1. This paper will give a choice from different systems of tech-
nics, physics, fight, astronautic etc. treated mainly by vector dif-
ferential equations (vDE) in our papers, books, bulletins [1-13], ha-
ving various results. These can illustrate the mathematical and tech-
nical variety and complexity of such problems, of course, without the
claim to totality. A firm use of matrix analysis & algebra will accom-
pany the following research.

1.1. As well known [4,14], the models of (deterministic) danymic
systems are often described in the state (S) space by its SvDE and by
its output algebraic one OVAE (which remains here in background):

z = flz,x(t),t], y = glz,x(t),t], (1,11a,b)
Ctg < &, 2p0k)) = 255 z5(t) = 2 y,(e) = 2)
where SVDE 1is supposed as satisfying the existency & unicity conditions
This generally non-linear (nl.) SvDE can have special forms occasio-
nally, namely [4-14]

2 = flz,x(t)] time-invariant (t.inv.), 2 = f(z) autonomous, % =
= A(t)z + Bx(t) linear (1.), z = Az + Bx(t) l.t.inv., % = [-e p*(t) +
- - n-1
_ _(i-1) _ (n) (1) _
+ Kl oz +e x(t) (z, =2 , K = [6i,j-1]’z + 1§opl(t)2 = x(t))

phase-vDE of a 1.DE. etc. and similarly the OvVAE.

1.2, A system can have better and worse models [4a]_so such SvDEs
too, according to more, or less abstractions from the reality; but the
truth of model to reality and the mathematical handling of SvDE is

often compatible by compromise only.

1.3. As a hepl for the further treatment, let be mentioned our dy-

namic transform algorithm (DTA) for a matrix A 2 Ay in p(< r) steps

p-1 (q) k 1
(in a spring: B, = Bo- fqu(glq -ex )(g(g)+g 9 =
[2,5] (D) 4= @ g
= A,- (A.- E )T (AK+EL): =FKL iKL:.I}KJ .
207 217 ZK’zKL 2 E Ao .
=IL=KL =1J
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(vqu K different, vqu L too;

-1
(@) . _aq -
vakq 1q = 1/7q #0, IT 1 = qfqu #0, L %A ) (1,31

- The xrank p(A) is r, if the p = rth step let vanish the free block:

215 = Qij"'°(1'32) - For a negulan A having n =m = r, the p = nth
step furnishes (with Yakgkq # 0 at different k_ € K) its {nvexrse
matrix: Ap = é-l= T....(1.33) - This DTA is suitable in algebras (A)
m ¢ -

to solve arbitrary 1.vAE [5], l.programming [2] and is generalized
(gDTA) to solve nl.vAE [5] too. ...(1,34a-c) - If 2': §0+ EQ* =
= A + AB.S*A = A(E + gg*), then é'—lé I’ can be found flS] in the
form and with the scalar factor

T'= T - xB6(E - xBd*)I, x = (1 + da*g)"! (d#*p + -1, (1.35)
as easy to control (A'[’ =...= g). - We have created a set of matrix

algorithmic methods (MAM) [5,6,8,13] for various purpose; e.g. STA,
SMA, OMA, TAD, IAW, ITA, OTA, FA, SoTA etc.

2. Let us make some remarks on the non-£inean SDEs and their
solutions!

2.1, Such ones can be solved exactfy in exceptional cases only. -

A such problem in [4e,14] is the pursuiting motion of an averting roc-

ket Rl in trace of an attacking on R2 (in the vertical plane); namely -
at radial velocity v, distance r = ?IRZ and incl. angle ¢ of Rl’ at

horizontal velocity c of R, and at ratio m £ v/c > 1 - the SDEs are as

follow:
cosp _v1|
0 2z 2|E|- |© T F Telix| o A(z)z=[°°°sm Tol &), 2t )-[rO ](2 1)
- == | - sing 4]|e T =227 -csing+0] T 200 23507 q/2 .
r
and the exact solution:
—fwccosw'—v B tgml
i ’
I . e"/?2 csine = —2 (m> 1). (2.12
ry sing

2.2. A nl,.SvDE is often solved approximately by (local) f£ineari-
zation around its equilibry (EL) points., - It is proposed in our [ 4el
for the growth VDE of two rival rasses with Zy populations

z K.z .-M.z.2z K.z _(1-z_./n.)
z ¢ [il}=[ 171 717172 ]=[ 11 2’1 ]5 f(z) (M,> 0,K.> 0;
= 5 == i i

2 -M22122+K22 Kzzz(l—zl/nz)

(2.21)
(@] <)K2/K1= k’ni= Ki/Mi)
with EL-sitvations (K = I,II) n
2

2, = £(zp) =0 at zp =0 and z;; :[nl] . (2.22)
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The ’I‘l Taylor-polynom gives the approximate SVvDE at Zy

(n.-z, )M _-M, 2z dz K O
. . 1727 i, .-
Zg ¥ 0 + E(zgl)dzy 2 l-Mzz (nz-zl)MJ [dz ] i Ey= [0 K ]'

2 20 2
0 -M.n
A 112 _ ) -
Frr° [-M n., 0 ]' (R = I,II; E(z) = Ey)y
271
then the eigen-values (l.at 3,2) and approximate solutions around 2%
= - - = = - 2 2_ =
IAE EII = (a Kl)(x xz) 0, xi Ki> 0 IAE EIII A KlK 0,
)\i: tKS 0

(i=1,2): z_ is labil node point;l(K:vf K,):
=5 172
Kyt (Kyt)
dz. = ce = ce

is saddle point;

k m Kt -Kt
= = t = =
c(dzl) (k >1) d22 ;ﬁdzl and d;2d:1 e e c=c.

211

These asymptotes through EII_and the smoothing hyperboles too - show

the limit z2 - 0, or z,

However, the fight of two uniformly armed forces and areas -with

- 0 at t - *©, so a rasse will be died. -

Lancaster’s and Diener’s components [4e,14] (and at 'Kl"Kz) - is a
math. analogous problem... cen (2,24)

2.3. The analytical difficulty of a nl. SvDE (1,1la) can sometimes
invert to an algebraical facility by the difference method, as appro-
ximation, or if the problem itself has a structure of difference. -
This is the case at the bending and moving equations of a chain bridge

treated in our [4e,1]. The chain connected with links from rigid

bars let be characterized at the end links by horizontal strains h/H =
i
= i = = i € (S
h + Ah, at link xi jilei ia by hangs down vy x/yi+ vi y + v,

Ax .,
=i

loads p = P/a € p (own) q; = ai/a € § (useful); its bafance vEs (using

the continuant matrix C = [gl]%_l: [0,...,0,1,?,—1,...,0], the vector
A2y. 1

e = (11! and the fact - %gx = ———% and remarking in ¢...)the (at

1/n = a - 0) correspondant DEs appear as follow [1]:

STy B oy ey R @ ) SgleEoD.

The Eggg of rigiditz EI carries at x, a (useful) load a;- ai =

= (Qi— Qi)/a €q-4g m; € m bending strain and has the balance vE (DE)
Sem=g-d (a0 -0, 2,32)

The rigid pendant bars at Xy transfer the emotions vy of the loaded

chain to the beam and establish with m, the nelation [ 1]

A
m =

A

1)
]

s

Al
]
ar

2 6

2
)m = l—CX ( L (m+2 mrr) = —yr7 ), (2,33)
a2= a2gI
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With union of (2,31a-2,33), the basic vE of bending for the
chain will be formed as follows:

Qv/a2
2 —_——=
1 2 1 Ha 1 - (> _ bh oy L _ Ah_ 2
azg(Q m a—2[<__3+——(EI g-gg)]m (-9 +(g - 5R) =d-7R-L
5 (2,34)
(L(-a%)m & -m’ "+ %I(m + &mr )= (g%— -m’ '+ g-rm=q(x)— ﬁ—hp 2 ro) ).
Its formal solution m = zéul(g)g can be surely realized, becau-
se the eigen-values -vectors are well known [ 16]:
} it ﬁ ikm k=1 ) o
Aj= 2008 1= by n[Sln n 11 (Cu = AiE’EiEj— 6ij)'
(2,35a,b)

(vi € {1,2,...,n-1})
2
-1 H Ay, -1 . :
then L "(A) 2 [ + E%—(l - E)] is rational function, finally the

form r = E(ufr)ui ¢ ojuy is ready, so the s.c. canonical formed
r =iz { u canonical forme

bending vector m can be writte as follows [4e]:
n-1 -1 n-1 azpig.
m =L (e i) = L ————— (2,36)
T =1 -t == iz=1 Ha® A5.)
MrYET (%

Having it, the solving emotion vector appears so:

2 2
a” -1 _a -1 1
v=ge Km= g & (E - ¢gOm . (2,37)

Remarkable, that the our upper procedure (1. in m) is more simple and

suditable as other ones (nl. in v) [15].

2.4, Omitting the various numerical methods of Euler, Euler-Adams,
Milne, predictor-corrector etc. [17], let be mentioned only the Runge
-Kutta method (RKM) to solve the nl. SvDE (1,1lla). Namely - for an in-
terval [t,t+t] of length t £ dt ~ 0 and with signs £ % dx ~ 0, 19 2

2 dz = zdt = f(z,x,t).t - a procedure step advances as an algorithm of

4 substeps e.g. by our recurrent formula [4el.

4 4
2 = o = o R
¢, ZEs r.lflg(xi_l) s; T.iflg(xo +1nF 0) sy
(2,41)
(s 2 %{1,2,2,1] *, 12 00,1/2,1/2,1) %, 3% 2 [z,x,t], A% % [c,  ,&,7]

having - verificablv [17]- the excellent accuracy /(with. suppl. 0-s)
A A A . 5
lg.- 3ol S 1E£(RF + AD - £(FF + AH 111 = colnl”. (2,42)
2,5, Look at a problematics, where the former RKM is often used.
- This is the motor vehicle as complex vibrating system treated in our
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[9]. Its (deterministic) model can be characterized very generally by

the Lagrangean VvDE of motion (one of second kind)

5 t t
d_ oL _ 3L , 3R | ’ - 1yge’ =
at 3§ ~ 3g + 3q ° P(t) at :f L(g,§,t’)dat’ = 0 for [ L(g,§,t’)dt’'s=
0 %o (2,51

= Extr!,
where (2,51a) is just the Eulerian vDE (as necessary condition) of the

variation and extremum problem (2,51b,c), namely with T/U kinetic/

potential energy, L = T - U L-function, R dissipation, g = l[ql]%‘
vector of generalized coordinates, p(t) = 1[pl(t)]§ external forces,
f degree of freedom (e.g. at a car model can be f = 7)., - The detailed

form of (2.51) will be - after total derivation - as follows [ 10]:

o L BL

—E—qu —g—g w{ + T g(—q—g — ag)g‘g p(t), (2,52a)

which can be translated - by the signs for coefficient matrices
ék(g,é,t) = A+ Aék(gfé’t) at k = 0,1,2 - into the quasilinear (gl.)

k
form >
- (k) 2 L5 .
B, + A+ Bgg - Lx(e) = & M (g,g,t)g " 2 AZ(g,4,§,t), (2,52b)

k=0

or - with éZ = M inertia, A, 2 D damping and éo B s
stiffnes matrices of fZinear modef (got: Aa = 0), then supposing g_l
and x(t) as reduced p(t) to 4 wheels - into the hyper-vector form [10]

a1 _[o E qajfo L co
[Q]_ mt ‘E_lB] . [g]+LM—1:| (Lx + A2) = [Az+Bx(t)]+Cai(z,2,t) =

(2,52¢)

[

z

fitn

A

(t) F flz,z,x(t),t].

[

iz, x(v)] +

B

(z,

]N

This is solved every now as nf.SvDE e.g. by the upper RKM [17,4e],
then as q&. one: firstly z = 1{z,x(t)] by 4,1 to Eo(t)' secondly 2z =
= g[go(t),éo(t),t] by integration to Az (t) etc.

2,6. The stability of a nl. system is often contolled by
Ljupanov’s dinrect method [ 18] .- We use here it for an astronave (N)
with linear help-rocket (R) treated in [4e]. N is considered as a spin,
whose known autonomous nl.SvDE - at R’s 1.vAE (of C\> 0)— follows
here: %=z x I\ z+I\ x(t)— z X I\ z I\ C\z—(z X I\ —I\ C\)z SF(z)z
with the angular velocity’s vector z=w € E3 (through the centre of

mass) and with the main inertia moments <Il,Iz,I3) = g\. Choosing
B\ = ;3, the L.-function V(z) and its derivative W(z) 2 V(z) =

= grad*v(z). 2 will be: V(z) = z*P\z > 0 (for vz # 0, def. pos.),
W(z) = 2*B\z+z*B\Zz = z*[E*(2)B\+ B\F(2)]z £ z*M (z)z=-2z*Q I\ z<0
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(vz # 0), which last quadratic form is def. nagative. Consequently,the
equilibry point z = 0 has globally asymptotic stability.

3. The point 2 had shown, there is a natural gravitation into the
direction of linearity at the SvDE, for its relative simplicity (e.g.
for the superponability ets.).

3,1. The homogeneous form of generaf 1. SvDE (1,12c) 2z = A(t) z
can be solved simply in possession of a basic mataix (bM) g(t) =
= 1[§j(t)]n (Ig(t)f 2 2(t) # 0 for vt ET = [ty,*)), when its general
and a particular solution appears as
2(t) = 2(t)g and z (£) = Z2(t)gy= 2(0)Z "(tz ® 4
.= ,11)
= g(t,t0)§0<g(to) = zg>
with the (by g(to,to) = E) noamed (n. ; bM [ 6] .- Having a phase SYDE
(1,12e) %z + P(t)i =0, orL [E] =z + p¥(t)z = 0 with z = [z.] =

"y

= [2(1_1)]1, the bM is Z(t)r (t ) (Green vector) <at I, (t ) C R(t )
2 (t)) [6] - Our algorlthm SoTA [13] advances e.g. from aL, [z]— 0
- by transforms z = z Judt, u = u, fvdt, v = v jwdt - into L [w] =0,

giving the factorlzatlon Z4W) =c .z (t)uz(t)v (Bwy () etc. (3.13)

3,2. At a time-invariant hom. form of 1.vDE (1,12d) z - Az = 0,

so at the gl. motor vehicle problem of 2,5 (at x = 0, 4z = 0) too

[9], exponential solutions z = extg are supposed, which guides to the
eigen-value problem [ 4c]

3

(xg - Mu=0atD ()2 AE - Al = 1 O- A) “9. 0 and M (A 2

o=1

2 ﬂl(x A) fo = 0,... (3,21) where the case vla 2 )8 =1
g

furnishes to an eigen value Ac 1. independent eigen-vecters Eou(vaSaa)
and solutions

A
A =
bt - Ue be c = eétc and z,(t) = Ue tgo =

A (3,22)
- = -1 . A(t-tg) !

Je grzy=e Zg
with exponential nbM Z(t,t,) = Z(t-ty). (L. at [40] for 38, > 1.)

For the stability, all Ac = ug ot ivU must have My 2 ReAc < 0. (3,23)

3,3. A problem of type 3,2 can be also very complicated one. This
is illustrated by the rotating system of a rotor (R) and n ~ n axles

{a;), as a turbine’s model reached by matrix method in our [7]. It was
our lecture’s theme at the Equadiff-6; so let be enough here to refer

it only!
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3,4. In the general case of 3,1 2 = A(t) z, there {s’nt generally
an exponential bM g(t) = efé(r)dT = &2(E) (because 2z £ e§§g + Retc 2

2 Az, gen.) To find a bM for the SVDE or for its matrix variant
zj(r) = g(r)gj(r) (for vj € {1,2,...,n}, so &(t) = A(x)2(x) (3,41)

and g(r,to) = é(r)g(r,to), the 4integnral equation of Volterra-type [4cl
t

Z(t,t ) = E + [ A(1)Z(t,t )dr (3,42-43)
2 0 = = = 0
t
0
will be solved by the Picard-{fteration (vt,toe T)
Zoltity) = E, 2, (t,60) = B+ SA(0)Z, Cr,0)dr (k=0,1,2,..,n,..)(344)

to N
: . g _ K ~
obtaing so the Neuman-series é(t'to) = E + KEI§ (t,to) ~ %(t,to).
- A regulay transform z = U(t)v (U(t) # 0 for vt € T) and a 1. MDE

U(t) = Q(t)U(t) sometimes guide to a diagonalized form [13] ¥ =
U-I(A - QUv 2 4\ (t), so to an exp. nbM g(t,to) =

—tj't/_l\(‘[)d‘r
= e 0 e+ (3,45) if one can solve the eigen-value problem
[aCe) - Q(t) - xj(t)glgj(t) =0, vj EN .

4. Let pass over to fLinear homogeneous systems.

4,1. In the general case of (1,12c), the solution (3,11la) of hom.
1.SvDE z(t) = Z(t)c will be applied - by variation of constant ¢ into
c(t) = 2 - to the 4inhom. one [4] (at Z(t) = 1[gj(t)]n, z(t) # 0).

. t
(Zom2)c + %c = Bx, c = Z_lgx, so z (¢) 2 z(t)e(t) = [ z(t,1)B(r)x(1)dt
= =N Se— S -_— = =— = = -_ t = =
0
appears as (at t, with 0 conditioned) particufar sofutions. - In the

0
phase case (1,12e) and (3,12), the (4,1lc) formula is simplified [4]

A

to the form (at B(x) £ 27 (x) and z (v,7) = e)

t
z (£) = [ g(0)R (e x(v)dr = ffz()r (tIx(r)ar 2
-n t = = -n t 0 = -n

o

t (4,12)

/ z(t,7)x(x)dx.
“n
0
4,2. In the time-invariant case of (1,12d) and 3,2, so at the mo-
tor vehicle problem of 2,5 and 3,2, the nb.M §(t,t) = eé(t_i) let

n

t

write the ordinary and eiden forms (with §n(t5 = g'lgn(t), §s= g_lg):
t _ t -

2 (&) = us (0 = 1 &2 pg(nrar, or s (0= 2R x(x)

- =n t - n (4,21)

0 ™ <at s(-=9)=0>-
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4,3. Let us treat - following [4e,18] - the dynamical optimaliza-
tion cf a linear control system on the basis of quadratical criterium
(QC). - Here must minimalize a Lijapunov-function of QC V(EO) beside
the 1.SvDE’ éo = §£o+ gzo(t) at an optimal feed-back §O(t) = —ggo(t)
(with K = 2): v(z)2 17z%%pz% x%x"rar= 172*0p+x*Qr)z’ar = min!

i B £ i £ T (4,31)
(p=p*, g*ggoz 0 (+s.def.); @=0%, x*°0x% 0 at x%+ 0 (+def.), so Q1)
Supposing V(z ) = z° 0RZO> 0 at R=R*=? and zo¢ 0(+def.), its deriva-
tive has double form: W(z ) = é 0 +K*Q§)20= £*0§EO+ E*Ogéo = (4,32)

(P
=z 0(§—gg)g+g(@—g§) 50 (< 0 for VEO: asympt. stab. supposed),

similarly the coefficient matrix too:

W(K) % (A-BK)*R + R(A-BK) = -(P+K*QK), (4,33)
where from 8W/3K* = -B*R = -QK follows § = Q~ @ “R (R = 2),
as the optimal feed-back matrix. With this K(R), one obtains

(8
(WIK(R)] — WIK(R)] =) Q(R) 2 (RA+A*R) - RBQ "

B*R + P = 0 (=-R),
as a degenerated Riccatian MDE (R const.) being nl. (quadr.) MAE and
with its solution B (e.g. by our gDTA of (3,14c) [5]) the optimal
control in final form: Eo(t) = —Q_lg*g z(t) = —ggo(t).

5. Finally, let us turn shortly to the stochastic systems!

5,1. To avoide the complications of stochastic analysis, there is
advantageous to transform linearly an arbitrary £(t) into its random
basic product (Rbp) [8](with ordinary coordinate factor X(t))

£(E) = m (£)+ I x)(£)g)= m (£) + X(t) ¢ (B(e) 2 E(tr-m (£ (5,11)

~(m) 1=1 (mxe) (%)

where m, (£) & M[£(t)];m 2M(5)=0, gggém(gg*)=m<g?)£¥ (V= g0§ >0,

so E(t) consist of incovariant components (white n01ses) xl(t)g

has the covariance functions: 'EE'(t St = x(t)v K "), §(t):gg(t)yg.

- One uses it in an finite (approximate) form (but with former §l(t)).

O 2 (£)g+ p (£)= X(8) £+ p (£) ~ X(£)E (at o’ =y, (t)-
“(m) 1=17 - U = Y =F

(mXy ) (u)

- 3(OYE (1)

and the suitable random vector & can be realized e.g. by our algorithms
ITA (probable) or OTA (statistical) [8], e.g. giving for Tu: 1{t)\(<t>‘+)
the exact (sample) values E*(?u) = g*gﬂ(Tu),... (5,15) but for
tE€T - Tu the approximates ones only.

5,2. This method can be used also at our motor vehicle problem of
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4,2, namely with the Rbp-form (5,11) and with (4,22), its stoch. one:

t -
Cn(t) . s eé(t T)

Blm (1) + §(T)£]dr=mc(t) +z(0)g. (5,21a,b)

—00

From our [10], its covariance is for a general and stac. & ergodic
case: T

(t,t")= %(t)ygf*(t’), Cppr ()= 5%— ; ToergH(esriat,  (5,22)

Ceer -
then the spectral density matrix and its inverse, by Fourier-/
&-inverse

+00 +00

s (wi= [ eTTe (0, ¢ (0 o o e'Ts (uw)au, (5,23)
w

1
whose approximate form (at t = 0) gEE(O) ~ o7 / 2§C(w)dw, can be
w
1

applied as criterium of optimality, e.g. an element of it will be min.
5,3. At the end, let us mention the Markov-chains treated by
matrix analysis in our bulletin [11] with problems of mass service,
demography, random walk etc., then our investigations [13] on para-
metrical and noisy Gaussian process and white noise, which promis an

advance at the optimalization of noisy control systems.
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