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DETERMINISTIC AND STOCHASTIC 
VECTOR DIFFERENTIAL EQUATIONS 
APPLIED IN TECHNICAL SYSTEMS 
THEORY 
F.FAZEKAS Section I) 
Department of Mathematics, Technical Unirersity 
II-llll Budapest, Hungary 

1. This paper will give a choice from different £y6te.m6 of tech

nics, physics, fight, astronautic etc. treated mainly by vector dif

ferential equations (vDE) in our papers, books, bulletins [ 1-13] , ha

ving various results. These can illustrate the mathematical and tech

nical variety and complexity of such problems, of course, without the 

claim to totality. A firm use of matrix analysis & algebra will accom

pany the following research. 

1.1. As well known [4,14], the models of (deterministic) danymic 

systems are often described in the state (S) space by its SvDE and by 

its output algebraic one OvAE (which remains here in background): 

i = f[z,x(t),t], £ = £[z,x(t),t], (1,11a,b) 
(t0 * *' W = -V V ° = ' * 0 ( t ) = ? > 

where SvDE is supposed as satisfying the existency & unicity conditions 

This generally non-linear (nl.) SvDE can have special forms occasio

nally, namely [4-14] 

z = f[z_,x(t)] time-invariant (t.inv.), i = f(z) autonomous, i = 

= A(t)z + Bx(t) linear (1 . ) , z = Az + Bx( t) 1. t.inv., z = [-e n£*(t) + 

+ K] z + e x(t) <z. = z(i""1), K = [6. . J,z(n)+ I Pl(t)z
(1)= x( t) > 

n I - i,D-i 1 = 0 

phase-vDE of a l.DE. etc. and similarly the OvAE. 

1.2. A system can have better and worse models [4a] so such SvDEs 

too, according to more, or less abstractions from the reality? but the 

truth of model to reality and the mathematical handling of SvDE is 

often compatible by compromise only. 

1.3. As a hepl for the further treatment, let be mentioned our dy

namic transform algorithm (DTA) for a matrix A = AQ in p(< r) steps 

p-1 ( . k 1 
(in a spring: A = AQ- I y^a^ -ek )(aA+e

 q) = 

[2,5] (D) q=° q q 

(âlГ ÏK^KL^^І 1
"^ 

£KL IKL^KJ 

L"=IL£KL =IJ 
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( v k G K d i f f e r e n t , v l G L too? 
q q 

*a£\ - 1/T * 0, irKL. = Vy * o, rKL a £ j > (i,3i) 
q q ^ q=0 ^ 

- The lianfe p(A) is r, if the p = r step let vanish the {n<L<L block: 

-IJ = 9i-i • • • • ( 1 « 3 2 ) ~ F o r a *£flU-£a>iL A having n = m = r, the p = n 

step furnishes (with vai, v * 0 at different k e K) its inv&lAz 
_•! *q*q q 

matrix: An = A = £....(1.33) - This DTA is suitable in algebras (A) 
(D) T 

to solve arbitrary l.vAE [5], 1.programming [21 and is generaliZed 
(gDTA) to solve nl.vAE [5] too. ,..(l,34a-c) - If A'= A + bd* = 

= h + A3.6*^ = A(§ + 3d*), then A'""1* I' can be found [ 15] in the 

form and with the scalar factor 

r'= r - X36*»(E - x3d*)r, x = d + d^e)""1 <d*e * -i> , (i.35) 

as easy to control (A'C =...= E> . - We have created a set of matrix 

algorithmic methods (MAM) [5,6,8,131 for various purpose? e.g. STA, 

SMA, OMA, TAD, IA*, ITA, OTA, FA, SoTA etc. 

2. Let us make some remarks on tkz non-linzah. SVE* and their 

solutions 1 

2.1. Such ones can be solved exactly in exceptional cases only. -

A such problem in [4e,l4] is the pursuiting motion of an averting roc

ket R in trace of an attacking on R2 (in the vertical plane)? namely -

at radial velocity v, distance r = ITR and incl. angle <p of R , at 

horiZontal velocity c of R2 and at ratio m = v/c > 1 - the SDEs are as 

follow: 

(0 >)ž 

' COSq? _V 

r _ r q> 

* ~ -c sin(p 0. 

and the exact solution: 

= A(z)z,[---],f(z), ^(to) = ̂ J(
2
.И) 

-/ ccosy'-v,- , m£ 
r_ = en/2 csin.' * = J_2 > 1 # 

rQ smcp 

2.2. A nl.SvDE is often solved approximately by (local) lineari

zation around its equilibry (EL) points. - It is proposed in our [4el 

for the growth vDE of two rival rasses with z^ populations 

# \z] [ K Z . - M . Z Z J [K Z ( 1 - Z JTL. )1 
Z - Z i = M Jr =L M / J " f ( 2 ) ( M > 0 ' K > °f 
" L 2J L-M2Z1Z2+K2Z2J L K 2 Z 2 ( 1 - Z l / n 2 ) J " X 

(1 OK 

£(.ZK) = £ a t z l = £ a n d z n =LnlJ • (2.22) 

(2 .21) 
(1 OK^/K^^ k , n ± = KL/M±) 

w i t h E L - s i t u a t i o n s (K = 1,11) 
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The T^ Taylor-polynom gives the approximate SvDE at z„ 

fdz^ 

±K -І « 0 + F(z„)dz 

F = 
= 11 

Гo 

-
M
2

П
1 

к' 

-M-n 1"2 

(n -z^ )M -M z 

-M
2
z

2
 (n

2
-

Z l
)M

2 

•, (K = 1,11; F(z
R
) 

dz. 
K 

K 0 
1 

0 K
2 J 

Sк>' 

then the eigen-values (l.at 3,2) and approximate solutions around zv 

.2 
ІXE Si 1 (X - к )(x V 0, X.= K.> 0 

1 1 

(1=1,2): zT is labil node po 
K
2t (K^)

 k 

dz = ce = ce = c(dz ) 

These asymptotes through z_ 

the limit z
2
 - 0, or z 

I 
intřj(K=v^1K2): z^ i 

I' 

|XE-|lIl=X^-KlK2= 0, 

X . = ±K5* 0 
l 

s saddle point? 
Kt -Kt (k >1) dz 

•and the smoothing hyperboles too 

2= ^-дdz^ and dr^dç^e e c= c. 

- show 

0 at t - °°, so a rasse will be died. -

However, the fight of two uniformly armed forces and areas - with 

Lancaster's and Diener's components [4e,l4] (and at -Kx,-K2) - is a 

math, analogous problem... ... (2,24) 

2.3. The analytical difficulty of a nl. SvDE (1,11a) can sometimes 

invert to an algebraical facility by the di.^^e.n.e.nce. mctkod, as appro

ximation, or if the problem itself has a structure of difference. -

This is the case at the bending and moving equations of a ckain bridge 

treated in our [4e,l]. The chain connected with links from rigid 

bars let be characterized at the end links by horizontal strains h/H = 
i y 

= h + Ah, at link x. = Z Ax. = ia by hangs down y.G y/y. + v.G y_ + v, 

loads p = P/a e £ (own)/q. = Q./a e c[ (useful) ? its balance, vE6 (using 

the continuant matrix £ = [c1]1 = [0,...,0,1,2,-1,...,0], the vector 

e = [ 1] and the fact - •-££ = 
Гл2 Л^y. 

Лx. 
—i 

and remarking in (...) the (at 

1/n = a — 0) correspondant DEs appear as follow [ l] : 

i £ <-y" = E ) , i_ C( z + v) = i(£ + £) <-(y"+v") =i[ p+q( x) ] ) 
a 

The beam of rigidity EI carries at x. a (useful) load q.- q. -
— L i 1 1 

= (Q±- Q±)/a G cr - g, m. e m bending strain and has the balance. vE (DE) 

T £ m = a 
a 

< -m" = q( x) - q( x) > . ( 2 , 3 2 ) 

The rigid pendant bars at x. transfer the emotions v. of the loaded 

chain to the beam and establish with m. the he.lati.on [ l] 
I 

2 
1 Km = i_ (E - i c ) m = i-Cv < - i — (m + ?_ m " ) = -v" > . ( 2 , 3 3 ) 
EI =- EI = 6= - a2=- a 2 E l 6 
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With union of (2,31a-2,33), the ba*ic vE o& banding for the 

chain will be formed as follows: 

Cv/a2 

2 
h L(C) m = ̂  [c + §f-(E - |c)]m= (_-_)+(_ - £_) = _ - ̂ £ = £ 
a a *-

2 2 (2,34) 

<L(-d2)m = -m" + gjdn + f-m") = (§_- -l)m"+ j__m=q(x)- j~p = r(x) ) . 

2 -1 
Its formal solution m -. a _ (g)r can be surely realized, becau

se the eigen-values -vectors are well known [16]: 

o i-71 _ / 2 r . i k i . - , k = l ,_ , ... . v 
A.= 2cos — , u.- V-lsin — ] n__ (_u = A.u,u_u.= 6..), 

(2,35a,b) 
(vi e { l , 2 , . . . , n - l } ) 

then L (A) = [A + — _—( 1 - —)] is rational function, finally the 

form r = E(u*|sr)ui - I P̂ u. is ready, so the s.c. canonical formed 
_ _ —J. j. _ x__L 

bending vector m can be writte as follows [ 4e] : 

2 
n-1 n-1 a P.U. 

m = Z L-1(A. )u. (ufr) = I i-n — " (2,36) 
l = 1 x _ | _ < i - - £ ) 

Having it, the solving emotion vector appears so: 
2 2 

v = f f ? " 1 ^ = |j C_1(E - __)m . (2,37) 

Remarkable, that the our upper procedure (1. in m) is mono, ixlmplo, and 

suitable as other ones (nl. in v) [ 15] . 

2.4. Omitting the various numerical methods of Euler, Euler-Adams, 

Milne, predictor-corrector etc. [17], let be mentioned only the Runge 

-Kutta method (RKM) to solve the nl. SvDE (1 ,11a ) . Namely - for an in

terval [t,t+x] of length T = dt ~ 0 and with signs _ = dx ~ 0, £ = 

= d_ == zdt = f(z,x,t).T - a procedure step advances as an algorithm of 

4 substeos e.g. by our fiQ.cu.Kti2.vit loKmula [ 4el . 

cs = _s - x. ____<_}__> s_ - - j ^ s + \n^ si 
(2,41) 

<s * |[ 1,2,2,1]*, 1 = [0,1/2,1/2,1]*, _* = [z,x,t] , _*__= [____,§,T]> 

havinq - verificablv [17]- the excellent accuracy /(with, suppl. 0-s) 

l£T- £ s' " '-
(i6C + f{l) " ~ (£o + 1-s0 ' ' |T| = C- I T I 5 . (2,42) 

2.5. Look at a problematics, where the former RKM is often used. 

- This is the motor vehicle as complex vibrating system treated in our 
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[9] . Its (deterministic) model can be characterized very qenerally bv 

the Lagrangean vDE of motion (one of second kind) 

d ðL ӘL ЗR t t 

dt 85 " 95
 + IE ~- P ( t ) a t 6/

 L(
a
,a,t')dt' = 0 for / L(c_,e_,t')dt' = 

^ * *
 t

0
 fc

0 (2,51) 

= Extri, 

where (2,51a) is just the Eulerian vDE (as necessary condition) of the 

variation and extremum problem (2,5lb,c), namely with T/U kinetic/ 

potential energy, L = T - U L.-function, R dissipation, ___ = [ q-A * 

vector of generalized coordinates, p(t) = ̂  [ p-, ( t) l |f external forces, 

f degree of freedom (e.g. at a car model can be f = 7). - The detailed 

form of (2.51) will be - after total derivation - as follows [ 10] : 

9
2
L .. ̂  9

2
L. « ^ 1 . 9

2
L 3L 8R._ . ,^. _

 0
 _ n ._ 

WW** +
 apa*

3 + ^i(WW - ai +
 aa^SL

 = £(t)' (2'52a) 

which can be translated - by the signs for coefficient matrices 

A, (c[,c_,t) = A,+ AA, (q,q,t) at k = 0,1,2 - into the quasilinear (ql.) 

form 2 

A9§ + A & + Anq - Lx(t) = I AA (q,__j,t)q(k; = Az_ (_J,_J,§, t), (2,52b) 
- Z " " U " k = 0 ~ k 

or - with A„ = __? inertia, A1 = D damping and An = S 

stiffnes matrices of Ltniah. modzl (got: Aa = £), then supposing M 

and x(t) as reduced £>(t) to 4 wheels - into the hyp^ti-vzctoti ^oim [ 10] 

-& [Іl^V 1 ! V X i ] ' [aH-H (Lx + Лź) = [ Az+Bx( t ) l +CДŻ(_z,z,t) = 

( 2 . 5 2 c ) 
- l - z , x ( t ) l + n ( z , z , t ) = f [ z , z , x ( t ) , t l . 

This is solved every now as n£.SvDE e.g. by the upper RKM [ 17f4el , 

then as ql. one: firstly z = U z , x ( t ) l by 4,1 to z~(t), secondly _z = 
= Ĥ .?.(/ ̂  '£r/ ^ '^ b v integration to Az_n(t) etc. 

2,6. The stability of a nl. system is often contolled by 

Ljupanov's dt/izct method [ 181 .- We use here it for an astronave (N) 

with linear help-rocket (R) treated in [ 4el . N is considered as a ipin, 

whose known autonomous nl.SvDE - at R's l.vAE (of C\> 0 ) - follows 
here: _5=_z x I\ z+|\ x(t)= _z x I\ z.~"I\ Q\JL-(.z x J. -if C\) z_=|(_z)_z 
with the angular velocity's vector z_ = w G E (through the centre of 

mass ) and with the main inertia moments <I ,I2,I_> = I\ . Choosing 

P\ = I\ , the L.-function V(z) and its derivative W(z) = V(z) = 
= grad*V(z). i will be: V(z:) = z*P^z > 0 (for vz * 0, def. pos.), 
W(z) = z*P\z+z*E\z = z*[|*(z)P\+ E\f(z)]z = z*E\ (z)z = -2z*fixI\z<0 
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( vz * 0), which last quadratic form is def. nagative. Consequently,the 

equilibry point z = fj has globally asymptotic stability. 

3. The point 2 had shown, there is a natural gravitation into the 

direction of linearity at the SvDE, for its relative simplicity (e.g. 

for the superponability ets.). 

3.1. The homoQQ.no.ouLt> form of Qznzfial 1. SvDE (1,12c) z = £(t) z 

can be solved simply in possession of a ba&io. matrix (bM) Z(t) = 

= l'lj* ̂ In < ' 8 ( t ) • " z ( t ) * ° f o r vt e T = [ t 0 , °°)> , when its general 
and a particular solution appears as 

z(t) = Z(t)c and z (t) = Z.(t)c = Z(t)Z~1(t )z = 
^ = ° = 0 = - U U (3,11) 
= Z(t,tn)zn<z(tn) = z:n> 

with the (by Z(t0,tn) = E) notimzd (n. ) bM [6] .- Having a pha&o. SvDE 

(l,12e) z + P(t)z = 0, or L [ z] = z(n)+ p*(t)z = 0 with z = [z.] 1 = 
— = — — n — --• — — i n 

= [ z ^ 4 ^ 1 , the bM is Z(t)r (tn) (Green vector) <at r (tA) C R(t ) = - n = —n 0 —n U = 0 
= Z (t)> [6].- Our algorithm SoTA [13] advances e.g. from a L.[z]= 0 

- by transforms z = z. /udt, u = u^/vdt, v = v~jwdt - into LAw] = 0, 

giving the factorization Z4(w) = c . z1(t)u2(t)v--.(t)w4 (t) etc. (3.13) 

3.2. At a time.-invariant horn, form of l.vDE (l,l2d) z - Az = 0, 

so at the ql. motor vehicle problem of 2,5 (at x = fj, Az = 0) too 

[ 9] , exponential solutions z = e u are supposed, which guides to the 

eigen-value problem [ 4c] 

s a 
(XE - A)u = 0 at D (X) = |XE - Al = n (X-X ) °- 0 and M (X) = 
- - — — n = = a v 
s 3 °-1 

= -I (X-X ) a = 0,... (3,21) where the case v(a > )3 = 1 
a=l a ao 

furnishes to an eigen value X 1. independent eigen-vecters u (va<a ) 
a c 3 ~aa a 

and solutions 
s Л 

z(t) = ř y
п
e = oЬ cn = U e =

 ť c = e=ťc аnd z
n
(t) = üe=tcn = 

a = l 

U e = = -=0 —0 

with exponential nbM Z(t,tQ) = Z(t-tQ). (L. at [40] for 3&a > 1.) 

For the stability, all X = p + iv must have y = ReX < 0. (3,23) 

-1 o a a a a ' 

3,3. A problem of type 3,2 can be also very complicated one. This 

is illustrated by the rotating system of a rotor (R) and n ~ n axles 

(A. ), as a tuhbine,'6 model reached by matrix method in our [ 7] . It was 

our lecture's theme at the Equadiff-6? so let be enough here to refer 

it only! 
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3,4. In the general case of 3,1 z = £(t) z, there <L6'nt generally 

-- • 1 i..w nfi.\ /A(x)dx A(t) ,, . A A_ . _ & A 

an exponential bM §(t) = e = = e= (because z = e=£c * Ae=£ = 

= Az, gen.) To find a 6M for the SvDE or for its matrix variant 
t . (T) = A(T)Z. (T) (for vj e {l,2,...,n}, so 2(x) = A(x)Z(x) (3,41) 

and Z(x,t ) = A(x)Z(x,t ), the intzgnal equation of Volterra-type [ 4cl 

t 
Z ( t , t Q ) = E + / A ( x ) Z ( x , t Q ) d x ( 3 , 4 2 - 4 3 ) 

t0 

will be solved by the Picard--L£estation (vt,tnG T) 

Z 0(t,t Q) = E, ? k + 1^t,t 0) = | + /tA(x)Z]cCx,t)dx (k = 0,l ,2,..,n, . .)(3/i4) 

~ - > ~ ~ 
obtaing so the Neuman-series Z ( t , t ) = E + I A (t,tQ) « Z ( t , t ) . 

K = I 

- A regular transform z = U(t)v <U(t) * 0 for vt e T ) and a 1. MDE 

U(t) = Q(t)U(t) sometimes guide to a diagonalized form [13] v = 
= U~ (A - Q)Uv = A \ ( t ) , so to an exp. nbM V(t,tn) = 

t / A\ (T)dx 

= e ,... (3,45) if one can solve the eigen-value problem 

[^(t) - Q(t) - X.(t)Elu.(t) = 0, vj € N . 

4. Let pass over to linzan. komoge.ne.ou6 6y6tzm6. 

4,1. In the general case of (1,12c), the solution (3,11a) of horn. 
l.SvDE z_(t) = 2(t)c will be applied - by variation of constant c into 

c(t) = ? - to the inkom. one [4] (at ?(t) = a - ?-j( t) - n#
 z ( t ) * 0)« 

(>Z-:AZJc + Zc = Bx, c = Z_1Bx, so z (t) = Z(t)c(t) = / ?(t,x)B(x)x(x)dx 
= = = - = = n = . 

t0 
appears as (at t with £ conditioned) pantidulan 6olution6. - In the 

pka6z case (l,l2e) and (3,12), the (4,11c) formula is simplified [ 41 
A. "I ~ 

to the form (at g(i) = Z (x) and z (x,x) = e) 
- = —n — 

t . 
z (t) = / Z(t)Rx(x)e x(x)dx = / Z(t)r (x)x(x)dx = —n , = = \ —n . = —n 

°fc ° (4,12) 

^ / Z(t,T)x(T)dT. 

to"* 

4,2. In the time-invariant case of (l,12d) and 3,2, so at the mo

tor vehicle problem of 2,5 and 3,2, the nb.M Z(t,x) = e=
 ) let 

— 1 —1 
write the ordinary and eiden forms (with s (t) = U z (t), B = U B): 

-n = —n =s = = 

z (t) = Us (t) - / e=(t""T)Bx(x)dx, or s (t)= / e=(t~T }B x(x) 
~n =—n , =— —n - s— , A 0 . N 

fc0 <at s(-~)=0>. ( 4' 2 1 ) 
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4,3. Let us treat - following [ 4e,18] - the dynamical optimaliza-

tion cf a linear control system on the basis of quadiaticat criterium 

(QC). - Here must minimalize a Ljapunov-function of QC V(z_ ) beside 

the l.SvDE0 z° = Az°+ fx°(t) a t a n optimal feed-back x°(t) r -Kz°(t) 

(with K = ?): V(z ) = / (z :;Pzu+ x Qx )dt= / z:: (P+K::QK) z/di = Mini 
t " ' t " (4,31) 

<P = P*, z*Pz°> 0 (+s.def.); Q = Q*, x"°Q2i0> 0 at x°* 0 (+def.), so Q - 1), 

Supposing V(z ) = z_* Rz > 0 at R = R* = ? and z =1= 0(+def.), its deriva

tive has double form: W(z°) = -z*0(P+K*QK)z°= z*°Rz + z* Rz = (4,32) 

= z*°(A-BK)R+R(A-BK)*z (< 0 for vz : asympt. stab, supposed), 

similarly the coefficient matrix too: 

W(K) = (A~BK)*R + R(A-BK) = -(P+K*QK), (4,33) 

where from 8W/9K* = -B*R = -QK follows K = Q_1B*R (R = ?), 

as the optimal feed-back matrix. With this K(R), one obtains 

<^lK(R) l - ^ lK(R) l = > Q(R) = (R£+^*R) - R|Q_1 |*R + P = Q (="§), 

as a degenerated Riccatian MDE (R const.) being nl. (quadr.) MAE and 

with its solution R (e.g. by our gDTA of (3,14c) [5l) the optimal 

control in final form: x (t) = -Q~" B*R ẑ (t) = -Kz (t). 

5. Finally, let us turn shortly to the AtochaAt-ic 6y6tdm6i 

5,1. To avoide the complications of stochastic analysis, there is 

advantageous to transform linearly an arbitrary £(t) into its random 

basic product (Rbp) [8](with ordinary coordinate factor X(t)) 

£(t) = m (t)+ ? x,(t)£= m (t) + X(t) £ <t(t) = t-(t>-m (t)> (5,11) 
"(m) ^ 1=1 L *> !mX°°)C^) " " * 

where m (t) * M[K(t)J ?m =M(£)=0, C =M(£§*)=M<£2>-V <V = Ra^ > 0> , 

so £(t) consist of incovariant components (white noises) x . . ( t ) F and 

has the covariance functions: C ,(t,t') = X(t)V x"(t'), X(t)=C (t)V . 

- One uses it in an finite (approximate) form (but with former x,(t)). 

y 9 

t ( t ) = E x,(tH,+ p (t)= X(t) £ + p ( t ) * X(tK <at az =V (t)-
-(m) l-^l-1 1 ^ = ~ -V = - py ^ 

(mX vi) (u ) 
- X(t)Y?X*(t) 

and the suitable random vector £ can be realized e.g. by our algorithms 
ITA (probable) or OTA ( s t a t i s t i c a l ) [81, e.g. giving for T = (t (<t. } 

.Vi l \ A + y 
the exact (sample) values t*(T ) = i*X (T ), . . . (5,15) but for 
t e T - T the approximates ones only. 

5,2. This method can be used also at our motor vehicle problem of 
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4,2, namely with the Rbp-form (5,11) and with (4,22), its stoch. one: 

c (t) = / e=(t B[mr(T) + X(THldT=m (t) + Z(t)£. (5,2la,b) 
- n _OQ = -E = - r, = 

From our [ lOl , its covariance is for a general and stac. & ergodic 

case: T 

Crr,(t,t')= Z(t)VrZ*(t' ), Cfr,(T)= ^~- / °°c(t)c.*(t+T)dtf (5,22) 
•'•oo 

then the spectral density matrix and its inverse, by Fourier-/ 

&-inverse 

4-00 -|-oo 

S U ) = / e~ia)TC ,(T)dT, C , ( T ) = — / e i TS U)du>, (5,23) 
"^ __oo -*>*> -ZZ> 2 l I _ o o -Z 

1 2 
whose approximate form (at T = 0) C (0) % -- / S (io)dto, can be 

% •._ =c 

applied as criterium of optimality, e.g. an element of it will be min. 

5,3. At the end, let us mention the Markov-chains treated by 

matrix analysis in our bulletin [ ll] with problems of mass service, 

demography, random walk etc., then our investigations [13] on para-

metrical and noisy Gaussian process and white noise, which promis an 

advance at the optimalization of noisy control systems. 
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