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BOUNDARY INTEGRAL EQUATIONS 
OF ELASTICITY IN DOMAINS 
WITH PIECEWISE SMOOTH BOUNDARIES 
V. G. MAZ'YA 
Leningrad University, Petrodvoretz. Math. Mech. Faculty 
Bibliotechnaya pi. 2, Leningrad, USSR 

0. Introduction 

In the author's papers [1-3J a method for investigation of boundary 

integral equations arising in problems of mechanics of continuum in do­

mains with piecewise smooth boundaries was proposed. Traditionally, equa­

tions of the potential theory are studied directly by methods of the 

Fredholm and singular integral operator theories. In the case of a non-

smooth boundary this way leads to difficulties that have not been over­

come until now. In a sense our approach is opposite to the traditional 

one. It is based on the well-known fact that solutions of integral equa­

tions can be expressed in terms of solutions of some exterior and in­

terior boundary value problems. These are studied with the help of the 

theory developed in [4 - 8] and, as a result, theorems on solvability of 

equations of the potential theory are obtained. For these equations we 

can get differentiability properties and asymptotics of solutions near 

singularities of the boundary using the same approach [3, 9 - 11_] . In 

[3] our method of construction of the potential theory was illustrated 

by the example of three boundary value problems of linear isotropic 

elasticity, namely, the first, the second and mixed, as well as of the 

same problems for the Laplace operator under the hypothesis that there 

exist a finite number of non-intersecting smooth edges on the boundary. 

In the present lecture we study the first two boundary.value problems 

for the Lame system in domains with boundary singularities of the type 

of edges, conic points and polyhedral angles. New results on the harmo­

nic potential theory are also reported. 

1. Domains and function spaces 

Let G be a domain in R with compact closure and with the 

boundary S , Q = R \G . We suppose that S is the union of a 

finite number of "faces" {F} , "edges" {E} and "vertices" {Q} and that 

openings of all angles are non zero. Confining ourselves only to the 
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above visual description we refer the reader to [" 8 ] for the exact de­

finition of the class of domains to be considered. In any case it con­

tains domains with polyhedral boundaries. We place the origin into G 

Let {U} be a sufficiently small finite covering of G by open 

sets satisfying: a) U contains not more than a single vertex Q , b) 

if U does not contain vertices then U intersects not more than a 

single edge E . With any vertex Q and any edge E we associate real 

numbers 3~ and Y~ » respectively. 
Q -

By means of the partition of unity subordinate to the covering {10 

we define the space C ,a(G(l)) with 0 < a < 1 , 3 = {3Q} , Y
 = {YEI* 

If u7 intersects no singularities of S then the C ,ct(G )-norm of 
3,Y 

a function with support in U is equivalent to the norm in the usual 

Holder space C 1 , a . In the case (J fl E / 0 , U H {Q} = 0 and 

supp u C U w e have 

||u|| ^ sup |u(x)| + 
CJ;? ( G > x £ G

( i ) 

Y Y 
|r_(x) E Vu(x) - r_(y) E Vu(y)| 

sup , 
x,y6G

(i) U - y | a 

where r_(x) is the distance from the point x to E . If U contains _ 
the vertex Q and supp u C U then 

||u|| , . ^ sup |u(x)| + 
cl:>{)> xec ( i ) 

P 
PQ п - ,„/£„„,„, _ . ,„,PQ (x) w "I rp(x) vu(x) - pn(y)

 w |~l ^ ( x ) Vu(y)| 
s u p {E:Q 6E) U {E;Q 6E)  

x,y€G ( i ) l X " ^ | a 

where PQ(x) = |x - Q| . 

Replacing here G ' by G ' and sup |u(x)| by 

x e G ( i ) 

sup (1 + |x|)|u(x)| we obtain the definition of the space 

x-G ( e ) 

c],a(G(e)) . By c],a(S) we denote the space of traces on U F of 
3,Y 3,Y 

functions in cl'a (G{i) ) or c"!,a(G(e)) . 
P > Y P - Y 

Let us introduce another space C ,a(S) of functions on (J F . If 

O O E / 0 , I / n { Q } = 0 and supp u C U then 
^E"a-

u| | rj sup r (x) |u(x) 
B , Y ( s ' x e c F 
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YE YE 

|rE (x) u(x) - r£(y) u(y) | 
+ sup . 

I l a 

x,y £UF lx " yl 
If U contains the vertex Q and supp u C ti then 

I 1^1 I 0 a ^ SUP P 0 ( X ) Q II _ r
E

( x ) Y E ^ - ~ I U ( X ) I + 

C ^ ' a ( S ) x € U F g { E : Q e E } ^ { E : Q G E } r £ 
3 , Y E 

3 n YF B 0 YF 

I P 0 ( X ) u n _ r
F

( x ) u ( x ) - p n
( y ) n r

F
( y ) u ( y ) i 

s u p ^ ( E : Q e E ) ^ { E : Q £ E }  
x , y G U F | x - y | a 

If (J intersects no singularities of the boundary and supp u C ti then 

the norm in C ' (S) is equivalent to the norm in C ' (S) . 
P , Y 

2. Boundary value problems of elasticity 

We consider interior and exterior Dirichlet problems: 

yAu + (A + y) V div u = 0 in G(l) , u = g on U F ; (D(l)) 

(e) yAu + (A + y) V div u = 0 in Gv , u = g on (JF 

u(x) = 0((1 + |x|)"1) 

and interior and exterior Neumann problems: 

( D ( Є > : 

yдu + (A + y) V div u = 0 in G
( l )

 , Tu = h on (JF , (N
( l )

) 

yДu + (Л + y) V div u = 0 in G
( e )

 , Tu = h on (J F , 

u ( x ) = ø ( o + | x | ) 1; 
(N(e)) 

where T = T(3 ,n) is the matrix with elements T . (3 ,n) = y.e? d/dn + x • Kj x K . . 
An, d/dx. + yn. 9/8x, and n = ( n ^ n ^ n j is an outer normal to G 

We introduce a collection of reals {<$F} which appears in the sta­

tement of the next lemma and will be used in the sequel. Let <j>(z) £ 

(0,2TT) be the angle between the tangent half-planes to S at the 

point z £ E from the side of G . We put ou = 

inf (TT + | IT - <|>(z) |) . Let 6 be the root of the equation 
z GE * 

sin (u) 6) + 6 sin w = 0 with the least positive real part; 6p is 

real and decreases as u„ increases, 1/2 < 6„ < 1 . 

L> hi 

We formulate a theorem on solvability of all above mentioned boun­

dary value problems, which is sufficient to justify the boundary inte­

gral equations method. 

THEOREM 1. Let {y } and {& } satisfy 
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0 < 1 - y E + a < 6 E for all E , (1) 

|3 n + Y> Yn - a - 3/2 | < e n for all Q , (2) 
Q (E:Q £ E }

 h Q 

where {£n} ^s a collection of positive numbers in (0,1) which depend 

. * ) 
on the tangent cone to S with the vertex Q 

Then (i) (D(l)) and (D(e)) are uniquely solvable in C^,a(G(l)) 

and C^,a(G(e)) for all g ecJ,a(S) ; (ii) (N(e)) is uniquely sol­

vable in c],a(G(e)) for all h'€C°,a(S) ; (iii) (N(l)) is solvable 
1 ^ ? ̂  D 3 , Y 

in C ' (G^1') for all h € C ,a(S) with zero principal vector and 
3,Y 3,Y 

principal moment. Its solution is unique up to a rigid displacement. 

For (D(l)) and (D(e)) this result is contained in Theorem 11.5 

[ 8 ] . The proof for (N ) and (N ) requires minor technical 

modifications. 

3. Solution of (D ) and (D ) by a simple layer potential 

Let Va be the elastic simple layer potential with the density a . 

THEOREM 2. Let {Y £} and {$ ) satisfy (1) and (2). Then the opera­

tors C^a(S) 3 a - (Va)| (e) G cJ;a(G(e)) and C°,a(S) 3 a - (Va)| (±) 
G G 

£ C ' (G ) are bounded. There exists a bounded inverse V : 
p »Y 

c;j'a(s) -> c^,a(s) . 
3 , Y 3, Y 

The first part of the theorem can be checked directly. The second 

part follows from Theorem 2 and the identity 2a = Tu - Tu where 

u and u are restrictions of Va to G and G , respec­

tively. 

4. Solution of (D(l)) , (D(e)) , (N(l)) , (N(e)) by a double layer 

potential 

Let WT be the double layer potential with the density T , i.e. 

(WT)(X) =^((TO y )n y)r(x,y))\{y) dsy , 

* The numbers en can be defined by some spectral boundary value 

problems in spherical domains (cf. [ 8 ]) but we shall not use it 

in what follows. For the problems (D ') and (D ') it was shown 
in [12] that eQ > 1/2 . The validity of the last inequality for 

(N^1') , (N ) remains an open question. 
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where * denotes the adjoint operator and r is the Kelvin-Somigliana 

tensor. 

If u = WT then T satisfies the system of singular integral 

equations 

(- 1 + W ) T = g on (J F . (3) 

(e) The solution of (D ') can be expressed as the sum (WT)(X) + 

r(x,0)a + rot r(x,0)b where a , b are unknown constant vectors. Then 

the triplet (x,a,b) satisfies the system 

(1 + W)T + r(.,0)a + rot r(-,0)b = g (4) 

Representing the solutions of (N U )) and (N^e') as WT we arrive 

at the systems 

(1 + W * ) T = h , (5) 

(- 1 + W * ) T = h . (6) 

THEOREM 3. Let {YEJ and {3Q} satisfy (1) and (2). Then (i) the ope­

rators W and W* are bounded in C ,a(S) and C ,a(S) , (ii) if 

g G C ,a(S) then systems (3) and (4) are uniquely solvable in C ,a(S) 
p > Y P » Y 

and C ' (S) x R x R , respectively. 
p 

Let us describe a scheme of the proof of the solvability confining 

ourselves to system (3). Let u and u be the solutions of 

(D(l)) and (D(e)) . Then 2g = V(Tu(l) - Tu(e)) . We introduce the 

solution v of the problem (N(e)) where h = 1/2 (Tu(l) - Tu(e)) . 

Since v = 1/2(Wv - VTv) on G ( e ) , then (-1 + W)v= VTv = g on U F. 

Consequently, the vector-function T = vl.,_ is a solution of (3). The 
1 a " U F 

inclusion T e C ' (S) follows directly from Theorem 1. 
To prove the unicity of the solution of (3) it suffices to establish 

0 a the solvability in Cg' (S) of the formally adjoint system (6)y where 

h t£ C^,a(S) . Let v(e* be a solution of (N(e)) . We consider the 
3 , Y (e) (e) 

simple layer potential Va which coincides with v on G (see 
Theorem 2). It remains to note that the density a satisfies (6). 

The above argument contains all essential points for the proof of 

the following theorem on solvability of systems (5) and (6). 

THEOREM 4. There exists a bounded inverse: (- 1 + W )~ in C„,a(S) . 
. 0 a 3 , Y 

System (4) is solvable in C ' (S) for all h with zero principal vec-
3 > Y 

tor and principal moment. 

For solution of systems of integral equations under consideration 

theorems on increasing smoothness and changing collections {Y™} anc* 
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{$ } hold which are similar to the theorems of the same kind for solu­

tions of boundary value problems (cf. [8] ) . Before giving an example 

let us introduce some function spaces. 

Let I be an integer, £ .> 1 , 0 < a < 1 . if in the definition 

of C^ , a(G ( l )) we replace V by V^ = { 'd l/dx 13x 2
23x 3

3} then we obtain 

the definition of the space C , a ( G U J ) . By C ,a(S) we mean the space 
3 , y I a (i) 3 , y 

of traces on S of functions in C ' (G ). Here we can replace Ci) by (ex 
3 , Y 

The following assertion which completes Theorem 3 holds. 

THEOREM 5. Let {yE} , {3Q} , {y*, - I + 1 } and { 3* - I + 1} satis­

fy (1) and (2). If g € C^,a(S) O C ^ " * (S) and T e C^
,a(S) is a so-

t a lution of any system (3) and (4) then T £ C ^ * (S) 

Similar complements can be made to Theorems 2 and 4. 

The potential theory for plane boundary value problems can be deve­

loped with the help of the same arguments and even more easily. If by 

S we mean a piecewise smooth contour without cusps and by {Q} we de­

note the set of its angular points then the statements of Theorems 1 - 5 

remain valid up to obvious changes. 

For harmonic and hydrodinamic potentials results similar to Theorems 

1 - 5 can be obtained by the same method. 

5. The Fredholm radius of harmonic potentials 

Here we present a formula for the Fredholm radii of the double 

layer harmonic potential W and its formal adjoint W* in certain 

Holder spaces. We shall suppose that S contains no vertices. So the 

collection {3n} i n the notation of the function spaces is omitted. 

Let L be a linear operator in a Banach space. The Fredholm radius 

r(L) of L is the largest radius of a circle C = {\ & C : \\\ < r } 

such that for all A G C the operator 1 - AL is Fredholm and 

Ind (1 - AL) = 0 . 

We introduce the operators 

( W T ) (x) = i - [ c o s ( x - y , n ( y ) ) T ( y ) d g ( y ) > ( ? ) 

i I* - yl 

( W * T ) ( x ) = - L j ( c o s ( x - y , n ( x ) ) T ( y ) fls(y) 

J I V — \ 7 I 

( 8 ) 
Z ïf 1 I | z 

å Ix - y | 
WҺЄГЄ X £ U F . 
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The following result is proved in [9j : 

THEOREM 6, Let a 6 (0,1) , 0 < 1 + a - 3 < 1 , I > 0 and 

sin тт (1 + a - 3) 

ze U E
1 sin ( (тт - ф (z) ) (1 + a - 3) ) 

I a £+1 a 
Let W and W* be operators in C ',, (S) and Cn 9 ' (S) , respeait-p+L p+L 

y e l y . defined by (7) a n d (8). Then r (W) = r (W* ) = R . 

We note that R > 1 if and only if 

1 + a - 3 < , i * -77VT f o r a 1 1 z e U E . 
TT + I IT - (j) ( Z ) I 

The proof of Theorem 6 relies heavily on Theorem 7 where the fol­

lowing notation is used. 

Let G = G ( l ) U G(e) and let u ( l ) and u ( e ) be restrictions of 

the function u to G and G . By C ,a (G) we denote the space 

of functions u with u ( l )£ C^,a(G(l)) , u^e) e cf,a(G(e)) . The norm 
0 P P / • \ I \ 

in C ,a(G) is defined as the sum of the norms of u and u in 
cf,a(G(l)) and C^,a(G(e)) . For I >_ 1 , 0 < 3 < £ + a we put 
p P ~ 

C^,a(G) = {u € C^,a(G) : Au in G , u ( l ) = u ( e ) on S} 

X£,v.,~\ r s- ^£>&/^\ * ^ • ^ 3u du , „ i 

C * (G) = u 6 C ' (G) : Au = 0 m G , — = — on U F . 
3 3 on on J 

Clearly, for I ^ 0 the operators 

L. : c^+1'a(G) 9 u - d - x)i|i-i - d + xji^i e cJ'Ns) . 

L2 : cJ
+1'a(G) 9 u -> (1 - X) U

( i ) - (1 + A)u(e) 6 C^
 + 1'a(S) 

are bounded. 

THEOREM 7. Let a £ (0,1) , 0 < 1 + a - 3 < 1 , £ ^ 0 . 

1) If \\\ < R then L k = 1,2 , is Fredholm and 

ind (Lk) = 0 . 

2) If | A | = K t h e n t h e range of L, is not closed. 
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