## EQUADIFF 6

## Rudolf Kodnár

A posterior estimations of approximate solutions for some types of boundary value problems

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [373]--378.

Persistent URL: http://dml.cz/dmlcz/700159

## Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# A POSTERIORI ESTIMATIONS OF APPROXIMATE SOLUTIONS FOR SOME TYPES OF BOUNDARY VALUE PROBLEMS 

R. KOIDNÁR<br>Institute of Applied Mathematics, Comemius Limiversit!y Mlynská dolina, 842 15 Bratislava, (izechoslowakia

\author{

1. Motive
}

[^0]$\left\|u_{n}-u_{0}\right\|_{A} \leq\left(F\left(u_{n}\right)+d\right)^{1 / 2}$.
Such a construction of numbers $d$ is possible, for example, in the following case:
Let us assume that there exists a functional $F_{1}(u)$ such that
$$
\inf _{\mathrm{H}_{\mathrm{A}}} \mathrm{~F}_{1}(\mathrm{u})=\left\|_{u_{0}}\right\|_{\mathrm{A}}^{2}
$$

Then it is possible to select $d=F_{1}(u), u \in H_{A}$. With the selection of $u$ being suitable, it can be achieved that $d$ is very near to $\left\|u_{0}\right\|_{A}^{2}$

Inequality (3) explicitly gives the error estimation of the approximate solution. In the case of equations with worse operators than those mentioned in (1), it is not always possible to obtain an estimation in the form of (3), but one gets estimations of some other types. In literature several constructions of the lower estimations d are described. But the majority of them is applicable for the singie special problems only.

Functions in the whole text are real.

## 2. Basic notions

Let $Q$ be a bounded domain in $R^{m}$ with the boundary $\partial Q$ which satisfies several conditions of smoothness. Let on $\bar{Q}$ be given a boundany value problem such that $u_{0} \in V$ is its weak solution if
$\forall v \in V:\left(\left(v, u_{0}\right)\right)=\langle v, f\rangle+Z(v, h)-((v, w))$.
Nearby ( $($,$) ) is a bounded bilinear form on H^{k}(Q), k \geqslant 1, V \subset H^{k}(Q),<,>$ is a duality on $V, w \in H^{k}(Q)$,

$$
\begin{aligned}
& Z(v, h)=\sum_{p=1} \sum_{l=1} \int_{Q_{p}} \frac{\partial^{t} v}{\partial n^{t} p l} h_{p l} d S \\
& \bigcup_{1}^{r} \partial Q_{p}=Q
\end{aligned}
$$

$f \in V^{*}, h_{p 1} \in L_{2}\left(\partial Q_{p}\right), n$ is a direction an outward normal to $Q$. Let
$\forall v \in V:((v, v)) \geqq a^{2}\|v\|_{V}^{2}, a R^{1}$,
$\forall u, v \in V:((u, v))=((u, v))$ 。
Theorem 1. Let
$\forall u \in V, \forall v \in H^{k}(Q):((u-v, u-v)) \geqslant 0$.
Let $v_{1} \in H^{k}(Q)$ be such that
$\forall u \in V:\left(\left(u, v_{1}\right)\right)=\langle u, f\rangle+Z(u, h)-((u, w))$.

Then

$$
\begin{align*}
\forall v_{n} \in V: a^{2}\left\|u_{0}-v_{n}\right\|_{V}^{2}= & \left(\left(v_{n}, v_{n}\right)\right)+2\left\langle v_{n}, f\right\rangle-2 Z\left(v_{n}, h\right)+  \tag{9}\\
& +2\left(\left(v_{n}, w\right)\right)+\left(\left(v_{1}, v_{1}\right)\right),
\end{align*}
$$

holds.
Proof. Immediately follows from (5), (6), (7), (8).
If the informations on regularity of solution of the starting boundary value problem are avalaible construction of the lower estimation may be simplified. Consider a linear boundary value problem
$A u=f$ in $Q$,
$B_{i} u=0$ on $\partial Q$,
where $A$ is a differential operator of $2 k-t h$ order. Denote
$K=\left\{u \in C^{(2 k-1)}(\bar{Q}) \cap \widetilde{U}^{(2 k)}(Q), A u \in L_{2}(Q)\right\}$,
$D_{A}=\{u \mid u \in K$, $u$ fulfills all the boundary conditions from (10) \}.
Suppose that $A, f, Q$ and the boundary conditions in (10) are such, that the solution $u_{0}$ of the problem (10) belongs to $D_{A}$. Let ( (, )) 1 be a symmetrical bilinear form such that
$\forall u \in K: \quad((u, u))_{1} \cong 0, \quad((u, u))_{1}=0 \Leftrightarrow u=0$,
$\forall u \in K, \forall v \in D_{A}:((u, v))_{1}=(A u, v)_{L_{2}}$.

Remark 1. It can be shown that such a form exists for the most of the boundary value problem with Laplace and also with biharmonic operator. Form ((,)), to the given problem is not uniquely defined. Theorem 2. $u_{0}$ minimizes in $D_{A}$ the functional

$$
F_{1}(u)=((u, u))_{1}-2(u, f)_{L_{2}}
$$

Let $v \in K$ be such that $A v=f$. Then

$$
F_{1}\left(u_{0}\right) \geqq-((v, v))_{1}
$$

Proof. $\forall u \in D_{A}, \forall v \in K:((v-u, v-u))_{1} \geqq 0$. Then
$((u, u))_{1}-2(u, f)_{L_{2}} \geqq-((v, v))_{1}-2(u, f)_{L_{2}}+2((u, v))_{1}$.
it follows
From it follows
$\forall u \in D_{A}, \forall v \in K: F_{1}(u) \geqslant-((v, v))_{1}-2(A v-1, u)_{L_{2}}$.
Denote $J(v)=((v, v))$. $J(v)$ is a functional defined on $H^{k}(Q)$. Let the assumptions of Theorem 1 be fulfilled. Then for $v \in H^{k}(Q)$ fulfilling (8) there is $J(v) \geqq\left(\left(u_{0}, u_{0}\right)\right)$. Let
$D_{J}=\left\{v \mid v \in H^{k}(Q)\right.$ and fulfil (8) $\}$.
Then $\left(\left(u_{0}, u_{0}\right)\right)=\frac{\min }{D_{J}} J(v)$.
Lemma 1. The minimizing sequence for the functional $J(v)$ converges to the solution $u_{0}$ of the equation (4) in the following sense

$$
\left(\left(u_{n}-u_{0}, u_{n}-u_{0}\right)\right) \rightarrow 0
$$

Proof. Denote the minimizing sequence $\left\{u_{n}\right\}_{1}^{\infty}$. Then $D_{J} \rightarrow z_{n}=u_{n}-u_{0}$. It holds $\forall u \in V:\left(\left(z_{n}, u\right)\right)=0$. From that

$$
\begin{aligned}
\left(\left(u_{n}-u_{0}, u_{n}-u_{0}\right)\right) & =\left(\left(u_{n}, u_{n}\right)\right)-2\left(\left(z_{n}, u_{0}\right)\right)-\left(\left(u_{0}, u_{0}\right)\right)= \\
& =\left(\left(u_{n}, u_{n}\right)\right)-\left(\left(u_{0}, u_{0}\right)\right) .
\end{aligned}
$$

Remark 2. Procedure formulated by Theorem 1,2 is a generalization of Trefftz method.

## 3. The construction of minimizing sequence

Denote
$U=\left\{v \in H^{k}(Q) \mid \forall u \in V: \quad((u, v))=\langle u, f\rangle+Z(u, h)-((u, w))\right\}$.
Lemma 2. The set $U$ is convex and closed.
Proof. By direct verifying.
Lemma 3. The functional $J(v)$ is convex on $H^{k}(Q)$ and its minimum on $U$ is attained at $u_{0}$
Proof. Convexity follows from differentiability.
Corollary 1. Relations
$\forall v \in U: J(u) \leqq J(v)$,
$\forall v \in U: J^{\prime}(u, v-u) \geqq 0$
are equivalent. The given problem can be solved by means of variational inequalities. The obtained minimizing sequence converges by given way to the solution $u_{0}$.

Thus we get further counter-direction methods to variational method of the solution of the primary problem.

## 4. Several special cases

Let $A$ be a linear, positively definite operator $A \in(H, H)$. Let be given further Hilbert apace $H_{1}$ with scalar product (, ) ${ }_{1}$. Let $\mathrm{A}=\mathrm{T}^{*} \mathrm{BT}$,
where $T$ is operator $T \in\left(D_{T} \subset H_{1} H_{1}\right), B$ is positively definite operator $B \in\left(H_{1}, H_{1}\right)$. $T^{*} \in\left(D_{T^{*}}\left(H_{1}, H\right)\right.$ is operator adjoint to $T$. Assume that
$D_{T}>D_{A}, D_{T}^{*}>B T D_{A}$.
Operator $T^{*} B T$ is thus defined at least on $D_{A}$. Let the problem $A u=P$ have solution $u_{0} \in D_{A}$, while $I=T^{*} g$, where $g \in D_{T}{ }^{*}$. Denote
$w_{0}=T u_{0}, w=T u, u \in D_{T}$,

$$
G(w)=(B w, w)_{1}-2(g, w)_{1}, w \in H_{1}
$$

Theorem 2. $w_{0}$ minimizes $G$ on $\mathrm{TD}_{\mathrm{T}} \subset \mathrm{H}_{1}$. If $\mathrm{T}^{*} \mathrm{v}=\mathrm{f}$, then

$$
\begin{equation*}
G\left(w_{0}\right)=-\frac{1}{a}(v, v)_{1}, \tag{14}
\end{equation*}
$$

where a is a constant from positively definiteness of operator $B$. Remark 3. In case $A=\Delta \Delta$ and Dirichlet boundary conditions we get from Theorem 3 the principle of the method of unharmonic residue [1]. Corollary 2. $U_{1}=\left\{v \in D_{T^{*}} \mid T^{*} v=f\right\}$ is convex and closed set. (v,v) is a convex functional on $H_{1}$. If there is $w_{0} \in U_{1}$ and $a \overrightarrow{=} 1$ (from (14)), then $w_{0}$ minimizes functional $(v, v)_{1}$ on $U_{1}$.

Example. Consider a boundary value problem

$$
\begin{equation*}
\Delta \Delta u=f,\left.\quad u\right|_{\partial Q}=\left.\frac{\partial u}{\partial} \frac{u}{n}\right|_{\partial Q}=0, f \in L_{2}(Q) \tag{15}
\end{equation*}
$$

Let the problem (15) have the solution $u_{0} \in C^{(1)}(\bar{Q}) \cap C^{(4)}(Q)$. Denote:
$\mathrm{H}=\mathrm{I}_{2}(\mathrm{Q})=\mathrm{H}_{1}$,
$D_{A}=\left\{u \mid u_{\in} C^{(4)}(Q) \cap_{C}{ }^{(1)}(\bar{Q}), \Delta \Delta u \in H\right.$, u fulfil the boundary conditions from (15)\},
$D_{T}=\left\{u \mid u \in C^{(1)}(\bar{Q}) \cap C^{(4)}(Q)\right.$, u fulfil the boundary conditions from (15)\},
$D_{T^{*}}=\left\{\nabla \mid v \in C^{(1)}(\bar{Q}) \cap C^{(2)}(Q), \Delta v \in H\right\}$.
Define
$\forall u, v \in D_{T^{*}}:(u, v)_{1}=\sum_{|i| \leqq 2} \int_{Q} D^{i} u D^{i} v d Q=(u, v)_{H^{2}}$.
Then there is in (13) $T=T^{*}=\Delta, B$ is an identic operator. On lower estimations of minimum of the functional

$$
u \in D_{A}:(\Delta \Delta \dot{u}, u)_{L_{2}}-2(u, f)_{L_{2}}
$$

Theorem 3 and Corollary 2 can be used.
Remark 4. Problem (15) is a mathematical model of clamped plate. Similarly the mathematical models of further kinds of boundary of plate and web we may investigated [2].
Remark 5. Procedures from sections 2,3,4 may also be used for nonlinear problem of the special type:
$u_{0} \in V$ is called the solution of the problem if
$f\left(x, u_{0}+w\right) \in L_{2}(Q)$,
$\forall v \in V:\left(\left(v, u_{0}\right)\right)+\int f\left(x, u_{0}(x)+w(x)\right) v(x) d Q=Z(v, h)-((\nabla, w))$.
At the same time it is supposed that function $\rho: \bar{Q} \times R^{1} \rightarrow R^{1}$ is continuous and for fixed $x \in Q$

$$
f\left(x, r_{1}\right) \leqq f\left(x, r_{2}\right) \quad \forall r_{1}, r_{2} \in R^{1}, \quad r_{1} \leqq r_{2}
$$

holds.

All the rest notations are the same as in (4).

## 5. Slobodyanskii procedure

In [3] Slobodyanskii proposed procedure to get lower bound assessment. Generalization of this procedure for further, even nonlinear problems, is described in [4].

## REFERENCES

[1] Michlin, S. G.: Variationsmethoden der Mathematischen Physik. Berlin: Akademie Verlag 1962.
[2] Kodnár, $R_{0}: A$ posteriori estimation of approximate solution for mathematical models of plate and web. (in preparation).
[3] Slobodyanskii $M_{0} G_{\bullet}$ : On corvension of the problem of minimum of a functional into the problem of maximum. Doklady Akad. Nauk SSSR 91, Nr. 4 (1953) (Russian).
[4] Djubek, J., RoKodnár, M.Škaloud: Limit state of the plate elements of steel structures. Basel-Boston-Stuttgart: Birkhäuser Verlag 1984, 298p.


[^0]:    When any approximate method is employed, it is of importance to know an estimation of the error involved in the approximate solution. In general, there exist two kinds of such estimations (i) a priori and (ii) a posteriori. The a priori assessments are obtained from the qualitative properties of the problem. They ussually possess an asymptotic character, are pessimistic and are used chiefly in theoretical considerations. The a posteriori assessments are carried out on the basis of already constructed approximate solution. Among the ways of construction of a posteriori estimations, a significant role is played by s.c. counter-direction methods. They are based on the following simple considerations:
    Let $A$ be a linear positively definite operator in a real Hilbert space $H$. Then the problem to find a generalized solution of the equation

    $$
    \begin{equation*}
    A u=f, \quad \rho \in H \tag{1}
    \end{equation*}
    $$

    and minimization of the functional

    $$
    \begin{equation*}
    F(u)=[u, u]_{A}-2(u, f)_{H} \tag{2}
    \end{equation*}
    $$

    are equivalent $[1]$. In (2) $[,]_{A}$ denotes a scalar product in the space $H_{A}$ of the generalized solution to equation (1). It holds

    $$
    \begin{aligned}
    & \min _{H_{A}} F(u)=-\left\|u_{0}\right\|_{A}^{2}, \\
    & \left\|u_{n}-u_{0}\right\|_{A}^{2}=F\left(u_{n}\right)+\left\|u_{0}\right\|_{A}^{2},
    \end{aligned}
    $$

    where $u_{n}$ is an approximate solution constructed by the variational method and $\left\|\|_{A}\right.$ is the norm in $H_{A}$. Usually the numbers $d$ can be constructed greater than $\left\|u_{0}\right\|_{A}^{2}$ but close to it (lower bound estimation of $F\left(u_{0}\right)$ ). Then with their aid we get

