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FREE BOUNDARY PROBLEMS IN FLUID
DYNAMICS

A. FRIEDMAN
Northwestern University
Evanston, Illinois 60201, U.S.A.

The velocity potential of a 2-dimensional ideal incompressible

and irrotational fluid satisfies A¢ = 0; further, Bernoulli’s law
|V¢12 + 2p = const. yields |V¢| = const. on the (free) boundary of the
fluid in contact with air., Since V¢ is tangential to the free bound-
ary, the stream function u (i.e., the harmonic conjugate of ¢)

satisfies:

Au = 0 in the fluid
(1)

u = c, g% = X on the free boundary
where c,X are constants. If we take gravity into account, then A is
replaced by va + gy (a > 0, g > 0) where the gravitational force is in

the upward direction.
In addition to (1) we must impose boundary conditions

- du _
u =, or 3 ° 9 (2)

on the fixed boundary

as well as a condition at infinity. For example
(i) for a symmetric jet flow from a nozzle £ we have:

0 =~ ) u = Ay at oo,
\h =

h =0

u=0 Figure 1

where h is the asymprotic height of the free boundary as x - °;

(ii) for a symmetric cavitational flow with nose £ we have:

u =20 - -7



u=yd +o0()). Yu= & + o(1)) where @ = (0,1) and o(1) = 0 if
x2 + y2 - oo,

Problems such as (i), (ii) have been solved by several methods
over the last 100 years. The general procedure has been to use con-
formal mappings or the hodograph transformation in order to reduce
problems such as (i), (ii) to nonlinear integral equations (of a rath-
er complicated type) and then apply the Leary-Schauder fixed point
theorem; for details see [14][23][24] and the references in [12],[22].
Another approach based on a variational principle was developed in
[19],[20].

In the last few years Alt, Caffarelli and Friedman have developed
a new variational approach to establish existence of solutions for
free boundary problems. of general ideal fluids [2-4,8,91.This work has
also been extended to two fluids (flowing side-by-side)[2-4,89], We shall ex-
plain the essence of themethod in the simplest case (i) (Figure 1, above).
Consider the functional

- 2
- _ €
J(v) 0 JI1Vv AeX(v<Q}XEul dxdy, vV Ku
u
where
£ :y =g(x), =< x <0, g monotone (b = g(0), A =(0,b)),
Eu: {((x,¥); —u < x <> 0<y<bl 2= {{xy); 0<y<glx),

- < x < 0},
Ri = {(x,y); x>0, y > 0},

2
x Y R+, Qu = QN {x > -y},

Ku = {v € Hl(Rz), v=Qif y 2 g(x), x <0 ory=b, x> 0;
v(x,0) = 0 if = < x < °°,
0

v(-u,y) = hu(y), and < v <Qa.e.} ;

here hu(y) is a given function monotone in y, hu(O) =0, hu(g(—u)) = Q.
Consider the problem: Find v = vA in Ku such that
td
min J(v) = J(u ) .
vek Asu
u

It is easily seen that this problem has a solution. The solution is
harmonic in n*\Eu and is a local minimizer in Eu of

sCivvi?

[}

~ 2
J(v) + A X{v<Q})dXdY .

Alt and Caffarelli [1] studied the local minimizer v of J and
proved that ¥V is Lipschitz continuous and that the free boundary

(V<o N Eu is locally analytic.
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LEMMA 1. The minimizer is unique.

Indeed, suppose u u, are two minimizers and introduce

e A ]
ul(x,y) = ul(x - ¢,y) and
=ut A = uf
Vit W 20 V2 T U VU, o

Denote by J6 the functional J = JA u corresponding to the translation
’
x - x + ¢ of Qu’ Ku' One verifies that

JEE) + Tuy) = I%(vy) + I(vy)

which implies that J(u,) = J(vy), i.e., ui vV u, is a minimizer. Conse-
quently ui v u, is smooth, which implies that either ui > u, or

ui < u2 everywhere. Since ui < u, near the boundary, we deduce that

ui < u, throughout the domain., Taking € - 0 we get u; < u,, and
similarly u, <u

1
Taking “1 = u2 in the above argument we get:

)

3% uX,U >0 .
Thus the analytic free boundary T = FA " has the form

k]
T H = .
A, X fx’u(y)

Next we have:

LEMMA 2. f, u(y) is continuous and finite if and only if

£
h < y < b, where h = Q/A.

LEMMA 3. A - £ u(b) is continuous (fx

(b) = £ (b + 0)).
As H u

A?

3

LEMMA 4, If A is sufficiently small then fA,u(b) < 0; if
A < Q/b and Ix - Q/bl is small enough, then fl’u(b)‘> 0.

From Lemmas 3, 4 we deduce that there is a value A = A(u) such
that fA,u(b) = 0, i.e., there is a "continuous fit" at A. Fro this
value of i, (ux’u, FA,u) "almost" solves the jet problem. In order to
complete the construction of a solution we let u = %, A(u) - A and

denote the limiting u, us Ty u by u,r.
2 k]

LEMMA 5. Continuous fit implies smooth fit.

More precisely the curve £ U T is not only continuous at the
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point of detachment A, but it is also Cl at A, and Vu is uniformly
¢t in {u < Q}-neighborhood of A.

THEOREM. There exists a unique classical solution of the

symmetric jet problem (i).
Existence was already outlined above; uniqueness is proved by a

comparison argument [21].

The above procedure has been extended to three-dimensional axi-
ally symmetric jets [2], 2-dimensional asymmetric flows [3], to flows
in a gravity field [4], to rotational flows [16] and to compressible
fluids [8][9]; some cavity problems are treated in [13][18].

Two-fluid problems are treated in [5-7]. Here u’ and u~ are har-
monic and

aut  au”

3§— - F%_ = A on the free boundary. (3
In a two-fluid flow in a porous media of a rectangular dam, the free
boundary condition can be reduced to

+ -—

%%— - g%— = cos(x,v) 4)
which is similar to (3); in (3) X is not a priori given, whereas in
(4) a degeneracy occurs at points where cos(x,v) = 0. Problem (4) is
studied in [ 10] where existence of a solution is proved having a ct
free boundary.

Lemma 5 has been extended in [11] to quasilinear elliptic opera-

tors and to more general boundary conditions du/dv = f., The assertion
is that either TI' U £ is C2 at A or it is only in C3/2 and the

curvature of T goes to * @ as x ¢ 0.
Other physical flow problems lead to free boundary conditions as

above. We mention the problem of freezing in a channel because of heat

sink at the origin [25]. Thus
Au = -M§ in {u > 0}

where 6 = Dirac measure, -u is the temperature, and
u > 0 in the ice,

%% = A on the free boundary;

A and M are given positive constants. Assuming that the channel Q is



symmetric with respect to teh y-axis it was recently proved by Fried-
man and Stojanovic [17] that the problem has a unique solution with

free

boundary concave to the ice. This implies that if 3R consists of

P curves Zi convex to @ then the free boundary consists of at most p

arcs

£i+l'
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