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FREE BOUNDARY PROBLEMS IN FLUID 
DYNAMICS 
A. FRIEDMAN 
Northuwestern Un iversity 
Evanston, Illinois 60201, U.S.A. 

The velocity potential of a 2-dimensional ideal incompressible 

and irrotational fluid satisfies A0 = 0; further, Bernoulli's law 
2 

IV0I + 2p = const, yields I V0 I = const, on the (free) boundary of the 

fluid in contact with air. Since V0 is tangential to the free bound­

ary, the stream function u (i.e., the harmonic conjugate of 0) 

satisfies: 

Au = 0 in the fluid 

3u
 (1 } 

u = c, -J-J = A on the free boundary 

where c,A are constants. If we take gravity into account, then A is 

replaced by \/a +
s
 gy (a > 0, g > 0) where the gravitational force is in 

the upward direction. 

In addition to (1 ) we must impose boundary conditions 

au 
(2) 

on the fixed boundary 

as well as a condition at infinity. For example 

(i) for a symmetric jet flow from a nozzle Z we have: 

u = Лy at °°, 
Лh = Q 

u
 -

 u
 Figure 1 

where h is the asymprotic height of the free boundary as x - °°j 

(ii) for a symmetric cavitational flow with nose Z we have: 

u > 0 
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u = y(l f 0(1 )) . Vu = e(l + o(l )) where e = (0,1 ) and o(l ) -• 0 if 
2 2 x + y - «. 

Problems such as (i), (ii) have been solved by several methods 

over the last 100 years. The general procedure has been to use con-

formal mappings or the hodograph transformation in order to reduce 

problems such as (i), (ii) to nonlinear integral equations (of a rath­

er complicated type) and then apply the Leary-Schauder fixed point 

theorem? for details see [14][23][24] and the references in [12],[22]. 

Another approach based on a variational principle was developed in 

[ 19] ,[20] . 

In the last few years Alt, Caffarelli and Friedman have developed 

a new variational approach to establish existence of solutions for 

free boundary problems, of general ideal fluids [ 2-4,8 ,91 ..This work has 

also been extended to two fluids (f lowing side-by- side) [2-4, $9l. We shall ex­

plain the essence of the method in the simplest case ( i ) ( Figure 1, a b o v e ) . 

Consider the functional 

J(v) = ̂  /IVv - *e X { v < Q }x E l2dxdy, v G K^ 

y P 

where 
£ : y = g(x), - ° ° < x < 0 , g monotone (b = g(0), A =(0,b)), 

E = {(x,y)? -y < x < °°, 0 < y < b} , 8,,.= {(x,y)j 0 < y < g(x), 

-°° < x < 0} , 
R+ = {(x,y)f x > 0, y > 0}, 

n = a}V u R
2, o = 8 n {x > -y} , 

K = {v e H 1(R 2), v = Q if y > g(x), x < 0 or y > b, x > 0; 

v(x,0) = 0 if -°° < x < °°, 

v(-y,y) = h (y), and 0 < v < Q a.e.} j 

here h (y) is a given function monotone in y, h (0) = 0, h (g(-y)) = Q. 

Consider the problem: Find v = v in K such that 
A,y y 

min J(v) = J(u ) . 
veK A'y 

y 

It is easily seen that this problem has a solution. The solution is 

harmonic in fl^E and is a local minimizer in E of 
* y y 

J(v) = /(IVvl2 + X2
X{v<Q})dxdy . 

Alt and Caffarelli [1] studied the local minimizer v of J and 

proved that v is Lipschitz continuous and that the free boundary 

3{v < Q} O E is locally analytic. 



19 

LEMMA 1. The miniraizer is unique. 

Indeed, suppose u1, u9 are two minimizers and introduce 

u^(x,y) = u1(x - e,y) and 

ul A u 2 ' v2 = ul v u2 • 

Denote by J1, the functional J = J corresponding to the translation 
A , y 

x - x + e of fi , K . One verifies that 

Je(u^) + J(u2) = J
G(vx) + J(v2) , 

which implies that J(u2) = J(v2), i.e., u-ĵ  v u2 is a minimizer. Conse­

quently u v u? is smooth, which implies that either u > u« or 

u*: < u everywhere. Since u^ < u9 near the boundary, we deduce that 
ul < u2 throughout the domain. Taking e - 0 we get u1 < u2, and 

similarly u9 < u . 

Taking u = u9 in the above argument we get: 

kux,v * ° • 
Thus the analytic free boundary r = V has the form 

A , y 

Ty : x = f, (y) . 

X ,y X ,-y 

Next we have: 

LEMMA 2. f., (y) is continuous and finite if and onlv if 

X,y J 

h < y < b, where h = Q/X. 
LEMMA 3. X - f, (b) is continuous (f, (b) = f, (b + 0)). 

X,y X,y X ,y 
LEMMA 4. If X is sufficiently small then f (b) < 0; if 

X,y 
X < Q/b and IX - Q/b I is small enough, then f (b)' > 0. 

A , y 

From Lemmas 3, 4 we deduce that there is a value X = X(y) such 
that f (b) = 0, i.e., there is a "continuous fit" at A. Fro this 

X,y 
value of X, (u , r ) "almost" solves the jet problem. In order to 

x , y x , y 
complete the construction of a solution we let y - °°, X(y) - X and 
denote the limiting ux , r̂  by u,r. 

LEMMA 5. Continuous fit implies smooth fit. 

More precisely the curve I U r is not only continuous at the 



point of detachment A, but it is also C at A, and Vu is uniformly 

C in {u < Q]-neighborhood of A. 

THEOREM. There exists a unique classical solution of the 

symmetric jet problem ( i ) . 

Existence was already outlined above? uniqueness is proved by a 

comparison argument [21], 

The above procedure has been extended to three-dimensional axi-

ally symmetric jets [2] , 2-dimensional asymmetric flows [ 3] , to flows 

in a gravity field [ 4] , to rotational flows [ 16] and to compressible 

fluids [8][9] \ some cavity problems are treated in [ 13] [ 18] . 

Two-fluid problems are treated in [5-7]. Here u + and u~ are har­

monic and 

•*—— - -5---— = x on the free boundary. ( 3) 

In a two-fluid flow in a porous media of a rectangular dam, the free 

boundary condition can be reduced to 

... + -. -
3u 3u , x , . . x 

"Sv ~~r~ = cos(x/v) (4) 

which is similar to ( 3) j in (3) X is not a priori given, whereas in 

(4 ) a degeneracy occurs at points where c o s ( x , v ) = 0. Problem (4) is 

studied in [ 10] where existence of a solution is proved having a C 

free boundary. 

Lemma 5 has been extended in [11] to quasilinear elliptic opera­

tors and to more general boundary conditions 3u/3v = f. The assertion 
2 3/2 

is that either r U I is C at A or it is only in C and the 

curvature of r goes to ± °° as x 4- 0. 

Other physical flow problems lead to free boundary conditions as 
above. We mention the problem of freezing in a channel because of heat 

sink at the origin [25]. Thus 

Au = -M6 in {u > 0} 

where 6 = Dirac measure, -u is the temperature, and 

u > 0 in the ice, 

— = X on the free boundary? 

A and M are given positive constants. Assuming that the channel ft is 



symmetric with respect to teh y-axis it was recently proved by Fried­

man and Stojanovic I 171 that the problem has a unique solution with 

free boundary concave to the ice. This implies that if 3ft consists of 

p curves I. convex to ft then the free boundary consists of at most p 

arcs ("fingers") concave to ft, each connecting an adjacent pair I., 

R e f e r e n c e s 

[ ll H.W. Alt and A.Caffarelli, Ex.i6te.nce. and Ke.Qulan.ity ioK a minimum 

pKoble.m voitk iKte. boundaKy. J. Reine Angew. Math. 105 (1981), 

105-144. 

[ 2l H.W. Alt, L.A. Caffarelli and A. Friedman, kxially 6ymme.tKic je.t 

ilov06, Arch. Rat. Mech. Anal. £1 (1983), 97-149. 

[ 3l H.W.Alt, L.A.Caffarelli and A. Friedman , k6ymme.tKic je.t ilov06 , 
Comm. Pure Appl. Math. 35. (1982), 29 - 68. 

[ 4l H.W.Alt, L.A.Caffarelli and A. Friedman , Je.t ilov06 voitk gKavity, 

J. Reine Angew. Math. 331 (1982), 58-103, 

[ 5l H.W.Alt, L.A. Caffarelli and A. Friedman, MaKiational pKoble.m6 

voitk two pka6e,6 and tke.iK iKe.e. boundaKie.6 , Trans. Amer. Math. 

Soc, 282 (1984), 431-461. 

[ 6l H.W.Alt, L.A.Caffarelli and A. Friedman pJe,t6 voitk tvoo &luid6 I: 

one. iKe.e. boundaKy, Indiana Univ. Math. J., _33 (1984), 213-247. 

[ 7l H.W.Alt, L.A.Caffarelli and A. Friedman , Jê -6 voitk tvoo &luid6 II: 
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