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ALGORITHMS FOR THE INCLUSION 
OF SOLUTIONS OF ORDINARY INITIAL 
VALUE PROBLEMS 
H. J. STETTER 
Technical University Vienna 
A-1040 Wien, Austria 

Introduction 

Customary numerical algorithms do not produce bounds for the true so

lution of the specified problem but an approximate solution. Information 

about the remaining error is obtained from a 6e.conda.siy problem: 

Given the original problem and an approximate solution, find an ap

proximation to its error. 

It is obvious that this does not eliminate the uncertainty about the 

quality of the approximate solution. This is tolerable because most prob

lems are only approximations of real-life situations. Nevertheless, there 

arise situations where rather concise information about the error of an 

approximate solution must be obtained. In the following, we will analyze 

the structure of this task for initial value problems for systems of 

first order ordinary differential e q u a t i o n s . 

The Problem 

We formulate our task in analogy to the secondary problem above. The 

original problem is (y(t) € IR ) 

y'(t) = f(t,y(t)), y(0) = yQ , t € [0,T] , (1.1) 

with sufficient regularity in a sufficiently large neighborhood of the 

unique solution trajectory (t,y(t)). 

lnclui6lon problem: Given an approximate solution y : [0,T] -> IR of (1.1) 

Find E : [0,T] -> IPlRS such that 

e(t) := y(t) - y(t) € E(t) , t € [0,T] . (1.2) 

Here IP denotes the power set; normally we have to restrict the range of 
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2 to an easily r e p r e s e n t a b l e subset of fflRs like the set niRs of all i n 

tervals i n IR~ . While the c o m p u t a t i o n of norm bounds for e is a spe

cial case of (1.2), we will primarily be i n t e r e s t e d i n componen twise 

lower and upper bounds which may well be of equal s i g n . Of ten we will 

be satisfied with p r o d u c i n g values of £ at a sequence of a rgumen t s 

t o , t 1 , . . , t n e [ 0 , T ] . 

It is clear that the i n c l u s i o n (1.2) of e implies an i n c l u s i o n 

y(t) € y(t) - E(t) (1.3) 

for the true s o l u t i o n y of (1.1). The algorithms which we will c o n s i d e r 

are also immediately applicable to the case of 6tilp6 of true s o l u t i o n s 

(y(t) £ ff]Rs) as they appear for a set-valued i n i t i a l c o n d i t i o n y(0) €Y 

€ IPlRS i n (1.1). 

Naturally, the i n c l u s i o n problem becomes the more delicate the tight

er an i n c l u s i o n we request. It is clear, however, that we c anno t gene 

rate an i n c l u s i o n of a prespecified maximal width i n a o n e - p a s s step-by-

step procedure for a g e n e r a l i n i t i a l value problem. 

The g e n e r a t i o n of numerical s o l u t i o n s for the i n c l u s i o n problem (1.2) 

has been studied by many s c i e n t i s t s and a good number of algorithms have 

been proposed. One of the early i n v e s t i g a t i o n s is by N.J. Lehmann [4]; 

it is remarkable that he has already suggested the use of symbol man ipu

l a t i o n systems i n this c o n n e c t i o n . 

For lack of space, we c anno t systematically list and comment the va

rious c o n t r i b u t i o n s . A very e x t e n s i v e bibliography on the subject is to 

be found, e.g., i n Nickel [7]. Our own bibiliography c o n t a i n s on l y some 

typical examples of specific approaches. 

Rather t h a n s k e t c h i n g the historic d eve lopmen t , we will attempt to 

display a common c o n c e p t u a l framework for most of the algorithms which 

have been proposed. This should help i n their u n d e r s t a n d i n g and evalua

t i o n and stimulate the further a n a l y s i s and deve lopmen t of the area. 

Local A n a l y s i s 

Except i n trivial s i t u a t i o n s , a numerical algorithm for (1.2) c anno t 

cover the i n t e r v a l [0,T] at o n c e . Hence we c o n s i d e r at first OYKL btdp 

i n a forward s t e p p i n g algorithm: We have arrived at t _., and obtained a 

set E 1 such that e(t -,) G E 1 . In the construction of a corresponding v-1 v v - 1 J v-1 v 6 
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set E at t = t .+h , we have to regard ail s o l u t i o n s v(t;t , ,y ,) 
v v v-1 v b ' v-l'^v-l 

of (1.1) which pass through a n admissible value y - at t _.. 

Local pnobldm: F i n d E such that (see Fig -1) 

y(t ) - y(t ;t ,,y J £ E for all y - € y(t J - E , . (2.1) / v v ' v v - 1 v - 1 v / v- 1 } v-1 v-1 v 

Obviously, the use of the £oca^ exac£ Xnc^u-i^orc 

E := {y(t )-y(t ;t y ,y -) : y - € y(t J-E -} (2.2) 
v J v vy y v v-1 yv-l 'v-1 7 v-1 v-1 v 

for E would keep the i n c l u s i o n optimally tight. By (2.1), we have 

E <= E and we can use the intcnioh. diAAe.fie.nce. 

v v u u 

:= E Є IP1R (2.3) 

to r e p r e s e n t the excess of E over E . 

r
 v v 

(For two sets i n a l i n e a r space, with AcB, the i n t e r i o r d i f f e r e n c e B-A 

is the u n i q u e set C which satisfies A + C = B. Obviously, 0 € BvA. The 

norm of BTA is the Hausdorff d i s t a n c e of A and B.) 

У(t J-E л 7 к
 v- \J

 v-1 Fig. 1 

It appears that the local e.xce.66 D of (2.3) is the natural a n a l o g o n 

to the local efifiofi in a stepwise algorithm for (1.1). Its size, expres

sed e.g. by 

I I D II max II d I 

dЄD 

may be used as a quantitative measure bf the (local) accuracy of an in

clusion algorithm. For s >1 and E _-,E €II1RS, D will generally not be 

an interval because E $ niR . 
v ̂  

Typically, the computation of B will be based,, at best, on 



- correct r e p r e s e n t a t i o n of a few derivatives w.r.t. t 

- correct r e p r e s e n t a t i o n of tinnaK terms i n the d e v i a t i o n e be tween y 

and y (first order pe r tu rba t ion analysis) 

- strict bounding of r ema inder terms, nonlinearities, etc. 

Round-off error effects will be caught by the use of directed r o u n d i n g . 

We assume that their i n f l u e n c e is negligible compared to the l e a d i n g lo

cal excess terms. 

A local excê -6 analy^i* for an algorithm of this k ind leads to 

D = 0 ( n P + 1 ) + 0(h e 2.^ + higher order terms (2.5) 

where c . := diam B .. The a p p e a r a n c e of the second term seems unavo id -v-1 v-1 r r 

able, even if quadratic terms i n e are evaluated: 

2 2 2 
Take y' =y so that y' (y +e) = y + 2 y e+e . Assume e £ [-e,e] = : E 

and compute bounds for yf(y +e) by i n t e r v a l e v a l u a t i o n of y +2y E +E . 
-} <•} o o o 

With E = [0,e ], one o b t a i n s 

I 2 2 21 
hy1 (Y0 + e) Є h • |̂ y

o
 - 2y

Q
є, y

Q
 + 2y

Q
є + є J 

2 
whose lower bound creates an excess of -he . The r e a s o n is the depen
dence b e t w e e n the multiple o c c u r e n c e s of E i n a quadratic e x p r e s s i o n . 

Stability 

If our algorithm a c c o u n t s for the l i n e a r terms ( l i n e a r i z e d about 

y(t)) i n the d e v i a t i o n s correctly, the excess D g e n e r a t e d i n the step 

towards t should propagate like a local p e r t u r b a t i o n at t d u r i n g the 

further i n t e g r a t i o n . I n other words, our local excesses should accumu

late like the local errors in a one-step algorithm for (1.1), at least 

for sufficiently small steps h and a sufficiently narrow inclusion 

strip. 

However, computationally there arises the necessity to X2,pn.&£>2.nt in

clusions in terms of a AdrntoKdax of the 1R babdd on component*, e.g. 

by componentwise intervals. Not always such a semiorder is preserved by 

the differential system (1.1): The initial value problem (1.1) is cal-

led qua* tmo no tone, w.r.t. a semiorder £ in IR if 
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w ' ( t ) Ъ f ( t , w ( t ) ) , t Є [ 0 , T ] , 

w(0) г yn 

i m p l i e s w ( t ) £ y ( t ) , t € [ 0 , t ] . 

(Criteria for quasimonotony and related theorems may be found in Wa l t e r 

[9].) 

If (1.1) is not quasimonotone w.r.t. componentwise semiorder, the 

following happens (see Fig.2): 

Consider an inclusion interval E A = e < + [-1,+1] -d ., with 
v - 1 v - 1 v- 1 

d _1 £ 0. The variational equation of (1.1) (near the solution trajec
tory) maps £ . into E, = G E 1 + ..., but E is not represented or in-

/ / r v - 1 v v-1 v l 

eluded by ev + [-1,+1] • Gd -. 

Jv-1 

v-1 
variational 
equation 

Fie. 2 

The smallest interval including E is rather specified by 

ÏÏ = ІGІ • d v-1 * (3.1) 

S i n c e G « I + h J Лì (3.1) simulates the use of the modified Jacobian 
v v-1 J 

v-1 
\ IRI 

Rl \ 

(3.2) 

i.e. only diagonal elements are not replaced by their modulus. For a 

non-quasimonotone problem we have J *J which implies 

P(IGI) > p(G) ; (3.3) 

hence the excess of an inclusion is amplified mon.2. violently than small 
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per turbat ions. 

This "w rapp ing" effect (see e.g. Jackson [3]) equally appea r s in a 

d i r e c t use of the v a r i a t i o n a l equation: To include a solution of 

e'(t) = J(t) e(t) + ... , 

the bound of e must be used with negative elements of J in the upper to 

UDD6 r 
computation of the , i F bound of e. This c o r r e s p o n d s to the use of the 1 lower r 

2 s x 2 s - m a t r i x 

D+R 

R" 

R 

D+R4 

which has the combined spec trum of J = ( D + R +R ) and J 

= ( D + R+ - R" ) = ( D + IRI ) . 

A well-known remedy (cf. e.g. Moore [6]) is the following: Rep resen t 

the inclusion at each t by E = A E , A € IRSXS . If 

G л ïï ., v , v-1 v-1 + C 

is the exact local inclusion (see (2.2)), compute 

A := G л A л , v v , v-1 v-1 

- + W[A C ] , 
v-1 v V ' 

(3.4) 

(3.5) 

where W is t'he wrapping o p e r a t i o n which maps a bounded set in IR into 

the smallest enclosing i n t e r v a l . Now the c o r r e c t p r o p a g a t i o n is main

tained by (3.4), and each inclusion inclement C is only wrapped twice 

(instead of n-v times), by (3.5) and in the "output" f o r m a t i o n 

ïï = W[A E ] 
v V V 

(3.6) 

(3.6) is needed f o r the evaluation of various terms in the step pro

ceeding from t . Hereby, C may be distorted by a factor l|A II ||A || 

= cond(A ) , see (3.5) and (3.6). 

Hence, in the use of (3.4)/(3.5) the growth of cond(Av) has to be 

monitored and the representation must be restarted if necessary: 

Ћ = A Ô =: I Ê 
v v v V 
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Other tricks to c o u n t e r a c t the effect of (3.2) - see e.g. Con radt 

[1, s e c t i o n 6] - also suffer if the c o n d i t i o n of A of (3.4) grows 

with v. 

None of the p r e s e n t l y suggested algorithms is suitable for 6ti&& 

pioblmA (1.1) because po lynomia l a p p r o x i m a t i o n s i n t are used. 

The Accumulated Excess 

At some t , we compare the computed i n c l u s i o n E to the true error 

e(t ) (cf. (1.2)) or the true i n c l u s i o n set E(t ) i n case of a set i n i 

tial c o n d i t i o n Y for (1.1) and d e f i n e 

global (=accumulated) excess X := I? T E(t ) . (4.1) 

The c o m p u t a t i o n a l c o n t i n u a t i o n of the i n c l u s i o n s from t - to t 

- propagates the excess X _1 p r e s e n t i n E - , 

- g e n e r a t e s the a d d i t i o n a l excess D =: h D , cf. (2.3), 
o V V V 

- may i n t r o d u c e further excess by w r a p p i n g . 

Let us assume that (1.1) is quas imonotone w.r.t. componen twise semi-

order so that we may disregard the wrapping effects and that all devia

t i o n s are s u f f i c i e n t l y small so that a p e r t u r b a t i o n approach is justi

fied. Then we have (cf. "Local A n a l y s i s " and "Stability") 

X = X , + h J X , + h D . (4.2) 
v v - l v v v - l v v 

For s u f f i c i e n t l y small h , X « X(t ) where 
J v v v 

X'(t) = J(t) X(t) + D(t) , X(0) = {0} , (4.3) 

if we assume that we start the i n c l u s i o n correctly. From (2.5) we have, 

with appropriate A and r, 

D(t) = A(t) hp + r(t) (diam E(t))2 + small terms . (4.4) 

Case 1: Point initial condition for (1.1) 

Here E(t) = e(t) + X(t) so that diam E(t) = diam X(t). This leads, 

with (4.4) and (4.3) , to 
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X(t;h) = X(t) h p + 0(h P + 1) (4.5) 

as long as the "small terms" do not become dominant. 

This means that the tiahtn<ii>6 of our inclusions (of the error as well 

as of the true solution) depends on the order p of the algorithm and on 

the stepsize used, as in usual in o.d.e. algorithms. 

Case 2: Interval initial condition Y for (1.1) 
o v J 

(4.6) 
diam E(0) = diam E(0) = diam Y =: e > 0 , 

V. J V. o o 

diam E(t) £ diam E(t) = diam Y(t) = r(t)e + O(e^) . 

Substitution of (4.4)/(4.6) into (4.3) now yields 

X(t;h,e ) £ X 1(t)h
p + X2(t)e^ + higher order terms . (4.7) 

This means that a reduction of h cannot improve the inclusion beyond the 

second term. However, this unavoidable, excess from the quadratic terms 
2 

in the deviation is 0(e ) while the error (and solution) tube diameter 
is 0 ( e ) , see (4.6). 

The behavior (4.5) and (4.7) is well displayed in numerical computa

tion; results of some experiments are shown in Table 1. 

Methods 

We can only sketch the two fundamental approaches and, must refer to 

the literature for more detail: 

1) Defect Correction: Let d(t) := y'(t) - f(t,y(t)) denote the dz-

itct of y. Then we have (cf. (1.2) and (2.2)) 

t t 

e(tv) = e(tv_-) + / [f(T,y(T)) - f(T,y(T) -e(T) ) ldT + $ d(x) dT , 
tv-1 tv-1 

t t 
V V 

E
v E Bv_i

 + J J (T)E(T) dT + J incl. {d(T)} dT 
tv-1 tv-1 (5.1) 

t 
v 

+ J incl. {2nd deriv. terms w.r.t. e} dT 

V i 
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The solution of the integral inequality (5.1) may be bounded by ap

proximating the resolvent kernel and bounding the remainder. In the last 

term of (5.1), an a priori estimate for e in [t -,t ] must be used. 

This approach was initiated by Schroder (e.g. [8]) ; an elaborate al

gorithm has been described by Marcowitz [5] and Conradt [1]. 

2) Local Expansion: Let y be a truncated Taylor-expansion about 

t v - 1; denote y
(l)(t;t,y) =: fi(t,y). Then 

p-1 h1 

e(t ) = e(t J + T -^ [f.(t .. ,y -,) - f. (t 1 ,y .,-e J] v v v-1 > . l! i v v-1 7v-1 l v-1 , 7v-1 v-1 y 

h? 
- ^ fp(T,y(T)) 

p-1 h1 

E c E ,• J 4 f!(t .,y .)E n v v-1 .£;.. l! l v v - 1 , 7 v - K v-1 

p-1 h 1 hP ^ ' ^ 
+ T -^ [f!(t ,,y ..-£ .,) - f . ' ( t .,,y .,)] E ., - -r f ([t 1ft ],Y ) . £;.. l! i^ v-1wv-1 v-\J iv v-1,7v-V v-1 p! pv v-1 ' v ' vJ 

where Y is an a priori estimate for y in [t i,t ]. The approach was 

initiated by Moore (e.g.[6]); a detailed analysis of an algorithm based 

upon (5.2) has been presented by Eijgenraam [2]. 

Obviously, an efficient implementation of an inclusion algorithm for 

(1.2) must rely on a powerful ComputeK AlgebKa t>ut>t<im for the automatic 

generation of procedures for derivatives and bounds of various kinds, 

and it must also use an IntzKval kKitkmztio. bubtem which automatically 

handles intervals properly (with correct rounding). As both kinds of 

programming tools are becoming more widely available in standardized 

forms, the design of transportable and easily usable software for the 

inclusion problem (1.2) should now become feasible. 
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