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ALGORITHMS FOR THE INCLUSION
OF SOLUTIONS OF ORDINARY INITIAL
VALUE PROBLEMS

H. J. STETTER
Technical University Vienna
A-1040 Wien, Austria

Introduction

Customary numerical algorithms do not produce bounds for the true so-
lution of the specified problem but an approximate solution. Information

about the remaining error is obtained from a secondary problem:

Given the original problem and an approximate solution, find an ap-

proximation to its error.

It is obvious that this does not eliminate the uncertainty about the
quality of the approximate solution. This is tolerable because most prob-
lems are only approximations of real-life situations. Nevertheless, there
arise situations where rather concise information about the error of an
approximate solution must be obtained. In the following, we will analyze
the structure of this task for initial value problems for systems of

first order ordinary differential equations.

The Problem

We formulate our task in analogy to the secondary problem above. The
original problem is (y(t) € R®)

y'(t) = £(t,y(t)), y(0) =y, , t€I[O0,T], (1.1

with sufficient regularity in a sufficiently large neighborhood of the
unique solution trajectory (t,y(t)).

S of (1.1)

Tnclusion probLem: Given an approximate solution y : [0,T] - R
Find E : [0,T] » PR® such that

e(t)

y(t) - y(t) € E(t) , te€[0,T] . (1.2)

Here IP denotes the power set; normally we have to restrict the range of
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¥ to an easily representable subset of PPR® like the set IR° of all in-
tervals in R° . While the computation of norm bounds for e is a spe-
cial case of (1.2), we will primarily be interested in componentwise
lower and upper bounds whiich may well be of equal sign. Often we will
be satisfied with producing values of E at a sequence of arguments
tystys..,t €10,T].

It is clear that the inclusion (1.2) of e implies an inclusion
y(t) € ¥y - E(v) (1.3)

for the true solution y of (1.1). The algorithms which we will consider
are also immediately applicable to the case of stnips of true solutions

(y(t) EIPRS) as they appear for a set-valued initial condition y(0) EYO
€ PR® in (1.1).

Naturally, the inclusion problem becomes the more delicate the tight-
er an inclusion we request. It is clear, however, that we cannot gene-
rate an inclusion of a prespecified maximal width in a one-pass step-by-
step procedure for a general initial value problem.

The generation of numerical solutions for the inclusion problem (1.2)
has been studied by many scientists and a good number of algorithms have
been proposed. One of the early investigations is by N.J. Lehmann ([4];

it is remarkable that he has already suggested the use of symbol manipu-
lation systems in this connection.

For lack of space, we cannot systematically list and comment the va-
rious contributions. A very extensive bibliography on the subject is to
be found, e.g., in Nickel [7]. Our own bibiliography contains only some
typical examples of specific approaches.

Rather than sketching the historic development, we will attempt to
display a common conceptual framework for most of the algorithms which
have been proposed. This should help in their understanding and evalua-
tion and stimulate the further analysis and development of the area.

Local Analysis

Except in trivial situations, a numerical algorithm for (1.2) cannot
cover the interval [0,T] at once. Hence we consider at first one step
in a forward stepping algorithm: We have arrived at t,oq and obtained a

set ﬁv_1 such that e(tv_1) €fv_1. In the construction of acorresponding
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set £ att =t +h , we have to regard af{f solutions y(t;t Y )
v v v-1 "y v-127y-1
of (1.1) which pass through an admissible value Yo-1 at tv_1.

Local probfem: Find ﬁv such that (see Fig.1)

y(t)) - y(t st _q,y,_q) € %v for all y _; € ¥(t _;) - T;'V_l .(2.1)
Obviously, the use of the focal exact {inclusion
E\) o= {)’(tv)‘)’(tv;tv_1,)’v_1) : y\)-] € Y(tv_])'Ev_]) (22)

for Ev would keep the inclusion optimally tight. By (2.1), we have

E < Fv and we can use the {ntenion diffenence

D :=8% <E € PR® (2.3)

to represent the excess of gv over Ev'

(For two sets in a linear space, with AcB, the interior difference B=zA
is the unique set C which satisfies A+C = B. Obviously, O € BzA. The
norm of BsA is the Hausdorff distance of A and B.)

Fig. 1

It appears that the Local excess Dv of (2.3) is the natural analogon
to the Locaf ernon in a stepwise algorithm for (1.1). Its size, expres-
sed e.g. by

D 1 := maxlidll
dEDv

may be used as a quantitative measure bf the (local) accuracy of an in-
clusion algorithm. For s >1 and gv_1,ﬁv EIIRS; Dv will generally not be

an interval because E ¢ IRS.

Typically, the computation of Ev will be based,, at best, on
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- correct representation of a few derivatives w.r.t. t

- correct representation of finmean terms in the deviation e between y

and y (first order perturbation analysis)
- strict bounding of remainder terms, nonlinearities, etc.

Round-off error effects will be caught by the use of directed rounding.
We assume that their influence is negligible compared to the leading lo-

cal excess terms.

A Local excess analysis for an algorithm of this kind leads to
D = 0omP*") + 0(h e? ,) + higher order terms (2.5)
v v v ov-1 g *

where €,-1 °% diam EV_1. The appearance of the second term seems unavoid-

able, even if quadratic terms in e are evaluated:

Take y‘=y2 so that y'(yo+e) = yg +2y0e +e2. Assume e € [-e,e] =: E
and compute bounds for y'(yo+e) by interval cvaluation of yg +2yoE +E2.
With E2 = [0,52], one obtains

hy!' (y0+e) € h . lyé - ZyOe, y(z) + 2yog + 52}

2 .
whose lower bound creates an excess of -he”. The reason is the depen-
dence between the multiple occurences of E in a quadratic expression.

Stability

If our algorithm accounts for the linear terms (linearized about
y(t)) in the deviations correctly, the excess D, generated in the step
towards t, should propagate like a local perturbation at t, during the
further integration. In other words, our local excesses should accumu-
late like the local errors in a one-step algorithm for (1.1), at least
for sufficiently small steps hv and a sufficiently narrow inclusion
strip.

However, computationally there arises the necessity to represent in-
clusions in terms of a semiorden of the R® based on components, e.g.
by componentwise intervals. Not always such a semiorder is preserved by
the differential system (1.1): The initial value problem (1.1) is cal-

. . . s .
led quasimonotone w.r.t. a semiorder 2 in IR” if



w'(t) 2 f(t,w(t)) , t € [0,T] ,
implies w(t) = y(t), t€[0,t]

w(0) =2 Yo

(Criteria for quasimonotony and related theorems may be found in Walter
[91.)

If (1.1) is not quasimonotone w.r.t. componentwise semiorder, the
following happens (see Fig.2):
o1 ¥ [-1,+1] -dv_], with

Consider an inclusion interval Ev_] =%
.1) (near the solution trajecc-

dv_1 2 0. The variational equation of (1
tory) maps ﬁv_1 into E, = G Ev_ + ..., but EV is not represented or in-

1
cluded by e +[-1,+1] ‘de_1.

Ev—1
—0
G
V-1 —_
. Y. variational
e equation
vtl
Fig. 2

The smallest interval including Ev is rather specified by

.d . (3.1)

Since G~ 1 +thv-1’ (3.1) simulates the use of the modified Jacobian

. [Rl]

i.e. only diagonal elements are not replaced by their modulus. For a

non-quasimonotone problem we have J* +J which implies
o (1G1) > p(G) (3.3)

hence the excess of an inclusion is amplified more viofentfy than small
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perturbations.

This '"wrapping" effect (see e.g. Jackson [3]) equally appears in a
direct use of the variational equation: To include a solution of

e'(t) = J(t) e(t) +... ,

the ig;:z bound of ¢ must be used with negative elements of J in the

computation of the TESE: bound of e. This corresponds to the use of the

2sx2s-matrix
p+R"  R”
- +
R D+R

which has the combined spectrum of J = ( D +RY+R” ) and gt =
= (D+R"-R7 ) = (D+IRI ).

A well-known remedy (cf. e.g. Moore [6]) is the following: Represent

~ A
the inclusion at each t by E = AE , A € RS*S . 1f
H H TR u
E =6 g + C
v v,v-1 "v-1 v
is the exact local inclusion (see (2.2)), computé
Av = Gv,v—1 Av—] ’ (3.4
A A -1 "
E, := E _; *+ WA C]1, (3.5)

where W is the wrapping operation which maps a bounded set in R® into
the smallest enclosing interval. Now the correct propagation is main-

tained by (3.4), and each inclusion {ncrement Cv is only wrapped twice
(instead of n-v 'times), by (3.5) and in the "output" formation

A
E = WIAED . (3.6)
(3.6) is needed for the evaluation of various terms in the step pro-
ceeding from t,- Hereby, C, may be distorted by a factor IIAvHIIA;1H
= cond(Av), see (3.5) and (3.6).

Hence, in the use of (3.4)/(3.5) the growth of cond(AQ) has to be
monitored and the representation must be restarted if necessary:
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Other tricks to counteract the effect of (3.2) - see e.g. Conradt
[1, section 6] - also suffer if the condition of Av of (3.4) grows
with v.

None of the presently suggested algorithms is suitable for sti44
probfems (1.1) because polynomial approximations in t are used.

The Accumulated Excess

At some t,, we compare the computed inclusion EV to the true error
e(tv) (cf. (1.2)) or the true inclusion set E(tv) in case of a set ini-
tial condition Yo for (1.1) and define

global (=accumulated) excess X := EV = E(t) - (4.1)
The computational continuation of the inclusions from t _, to t

- propagates the excess Xv_1 present in

Ev-l’
thv, cf. (2.3),

- generates the additional excess Dv =:

- may introduce further excess by wrapping.

Let us assume that (1.1) is quasimonotone w.r.t. componentwise semi-
order so that we may disregard the wrapping effects and that all devia-
tions are sufficiently small so that a perturbation approach is justi-
fied. Then we have (cf. "Local Analysis'" and "Stability"')

X, = X,; *hJX 4 *hB . (4.2)

For sufficiently small hv, Xv ~ X(tv) where
X'(t) = J(t) X(t) + D(v) , X(0) = {0} , (4.3)

if we assume that we start the inclusion correctly. From (2.5) we have,
with appropriate A and T,

D(t) = a(t) hP + r(t) (diam B(t))% + small terms . (4.4)

Case 1: Point initial condition for (1.1)

Here E(t) = e(t) + X(t) so that diam E(t) = diam X(t). This leads,
with (4.4) and (4.3), to
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X(t;h) = X(t) hP + onP*h (4.5)

as long as the "small terms'" do not become dominant.

This means that the ftightness of our inclusions (of the error as well
as of the true solution) depends on the order p of the algorithm and on
the stepsize used, as in usual in o.d.e. algorithms.

Case 2: Interval initial condition YO for (1.1)

diam ¥(0) = diam E(0) = dianm Y, =t e, >0,

(4.6)
diam E(t) 2 diam E(t) = diam Y(t) = r(t)ao + 0(55)
Substitution of (4.4)/(4.6) into (4.3) now yields
X(t;h,e ) 2 Y1(t)hp + Yz(t)cg + higher order terms . 4.7

This means that a reduction of h cannot improve the inclusion beyond the
second term. However, this unavod{dable excess from the quadratic terms
in the deviation is O(eg) while the error (and solution) tube diameter
is O(eo), see (4.6).

The behavior (4.5) and (4.7) is well displayed in numerical computa-
tion; results of some experiments are shown in Table 1.
Methods

We can only sketch the two fundamental approaches and must refer to
the literature for more detail:

1) Defect Correction: Let d(t) := y'(t) - f£(t,y(t)) denote the de-
§ect of y. Then we have (cf. (1.2) and (2.2))
. t t
y ~ ~ v
e(t) =e(t )+ [ [f(,y(0))-£f(r,y()-e(x))ldr + [ d(7) dr,
t t
v-1 v-1
t t
v + v
E c Ev—] + [ J(0E(x) dt + [ incl. {d(1)} dt
to-1 to-1 (5.1)
t

<

+ f incl. {2nd deriv. terms w.r.t. e} dr

v-1
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The solution of the integral inequality (5.1) may be bounded by ap-
proximating the resolvent kernel and bounding the remainder. In the last
term of (5.1), an a priori estimate for e in [tv—l’tv] must be used.

This approach was initiated by Schréder (e.g. [8]); an elaborate al-
gorithm has been described by Marcowitz [5] and Conradt [1].

2) Local Expansion: Let y be a truncated Taylor-expansion about

t ; denote y ‘Y (t;T,y) =: £.(%,y). Then
v-1 y i Y
p=1 h} -
ety = ety )+ L ogr Wty = (8 0y qmey ]
hP
v -
' T T fp(t,)’(T))
p-1 ht
_— 1
E, = E 4+ Ly Tr Ei(Yy DE,
p-1 hi hP (5.2)

v ~ ~ v -
* .21 il [fi(tv%’yv—l_ﬁv%) - fi(tv~1’yv-1)] Ev—1 T pr fp([tu—1’t\)]’Y\))

where Y’v is an a priori estimate for y in [t\’_1,t\)]. The approach was
initiated by Moore (e.g.[6]); a detailed analysis of an algorithm based
upon (5.2) has been presented by Eijgenraam [2].

Obviously, an efficient impfLementation of an inclusion algorithm for
(1.2) must rely on a powerful Computern Algebra system for the automatic
generation of procedures for derivatives and bounds of various kinds,
and it must also use an Interval Andithmetic system which automatically
handles intervdls properly (with correct rounding). As both kinds of
programming tools are becoming more widely available in standardized
forms, the design of transportable and easily usable software for the
inclusion problem (1.2) should now become feasible.
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