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PERIODIC SOLUTIONS OF PARTIAL 
DIFFERENTIAL EQUATIONS 
WITH HYSTERESIS 
P. KREJCI 
Mathematical Institute, Czechoslovak Academy of Sciences 
115 67 Prague 1, Czechoslovakia 

Introduction. 

In mechanics of plastic-elastic bodies or in the theory of electro

magnetic field in ferromagnetic media we are led to the consideration 

of hysteresis phenomena. There are various approaches to the mathemati

cal description of hysteresis (cf. [l]). Existence results for PDE's 

with hysteresis nonlinearities are due to Visintin (see e.g. [5]). We 

give here a survey of results of [2] , [3J, [4] , where we prove the exis

tence of periodic solutions to the problems 

u t t - u x x ± F(u) = H(t,x) , u(t,0) = u(t,7r) = 0 ([?]), (P1) 

ut - (F(ux))x = H(t,x) , u(t,0) = u(t,1) = 0 ([3]), (P2) 

u t t - (
F<ux))x = H(t,x) , ux(t,0) = ux(t,7r) = 0 ([4]), (P3) 

where F is the Ishlinskil hysteresis operator and H is a given time-

-periodic function with an arbitrary period w > 0 . 

1 . Ishlinskil operator (cf. [l] , [2]). 

We first define simple hysteresis operators v •> £. (v) , f, (v) 

for h > 0 and for piecewise monotone continuous inputs v : [O,T] -> R 

as follows: 

max {£h(v)(tQ), v(t) - h} , t e [tg-t..] , 

/ if v is nondecreasing in [tn,t1] 
-e h(v)( t ) =< o i . ( 1 > 1 ) 

min { £ h ( v ) ( t Q ) , v ( t ) + h } , t € D-Q.t..] , 
i f v i s nonincreasing in [ t 0 , t / ] , 
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0 , if |v(0)| ^ h 

£h(v)(0) = ̂  v(0) - h , v(0) > h 

v(0) + h , v(0) < - h . 

fh(v)(t) = v(t) - £h(v)(t) . (1.2) 

For v , w continuous and piecewise monotone we have (see [ll, 

p. 16) 

K h(
v)(t) - £h(w)(t) | ̂  max { |v(s) - w(s) | ; s e [o, t] } . (1.3) 

This property enables us to define £, (v) , f, (v) for arbitrary 

continuous inputs. Moreover, it follows from (1.3) that t, , f, map 

continuously the space C ( [ O , T ] ) of all continuous functions into it

self. 

Let us introduce the space C , GO > 0 , of all continuous co-pe-
1 1 w 

riodic functions v : R -* R with sup-norm | | • | | . For v e C the 

functions t, (v) , f, (v) are co-periodic for t > m , hence t, , f 
n n - = h n 

can be considered as continuous operators C -> C 

Let further g : [o,°°) -> [0,°°) be a function of class C (0,°°) 

satisfying 

(i) g is increasing3 g(0) = 0 , 0 < g'(0 + ) < °° . 

and for every h ̂  0 . 

(iii) Put y(r) = inf {-g''(h); 0 < h 4 r} . We require the 

existence of constants b > 0 , 6 6 (0,oT| such that 

lim inf y(r) r2"3 = b . 
r->°° 

(iv) 3 > 1/3 , 3a < 43 . 

For v £ C we define 

(1.4) 

(i) F(v)(t) = - fh(v)(t) g"(h) dh 

0 
(1.5) 

(ii)t L(v)(t) = J г
h
(v)(t) (g V ' ( h ) dh + (g

 1
)'(0 + ) v(t) 

0 • 

where g(g"
1
(h)) = g

 1
(g(h)) = h 

Roughly speaking ,the dependence of F on v (L on v) can be 

represented by a system of hysteresis loops constituted by parts of the 
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-1 -1 

graph of g (g , respectively) for v nondecreasing and -g (-g , 

respectively) for v nonincreasing. The operators F , L have the fol

lowing properties: 
(i) F, L : C -> C are continuous 

OJ 0) 

( i i ) L = F"1 

( i i i ) | | F (v ) | | = g ( | |v | |) 

(iv) g'(max {| | v | | , | | w | | } ) | | v - w| | < | |F (v ) - F ( w ) | | 

4 g '(0+) | | v - w| | 

(v) For v absolutely continuous F(v) , L(v) are absolutely 

continuous and the inequalities 

|(F(v))'(t)| < g'(0+) |v'(t)| , 

| (L(v))'(t) | < (g~V(| |v| |) |v'(t)| (1*6) 

are satisfied almost everywhere. 

(vi) For v' absolutely continuous we have 

2o) 03 

F(v))'v" > { Y(||v||)f|v'l3 

0 

03 

:L(v))'v" < - \ Y(||v||)J|v'|3 , 
03 0 

where y(r) = inf {(g~1)"(h); 0 < h 4 r} . 

1 
For functions of two variables -u(t,x), t £ R , x e I , such that 

u(.,x) € C for each x e I we define 
03 

F(u)(t,x) = F(u(.,x))(t) , L(u)(t,x) = L(u(.,x))(t) . 

2. Existence results. 

We introduce the Banach spaces or t ime-per iodic functions u ( t , x ) , 

u : R1 x ~0,£] -> R1 , I > 0 , u ( t + 03, x) = u ( t , x ) , 03 > 0 : 

C ([o,£~|): the space of a l l continuous functions with norm 

| | |u| | | = max { | u ( t , x ) | ; t R1 , x e [o,£]} ; 

Lp(0,£), 1 4 p 4 °°: the space of all measurable functions such that 

^ £ 1 /r, 

|u| = (j J |u(t,x) |p dx dt) < oo for p < - , 

0 0 

lul^ = sup ess { | u ( t , x ) | ; t R , x £ [o,£]} < °° , 
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with norm • ; i i p 

L 2 (0 ,£; iJ ) = {u e 1^(0,£); | u | 2 > 1 = ( j ( j | u ( t , x ) | dt) dx) 

with norm I * I o i • 

Theorem. (2.1) 

2 3/2 
( i ) Let H G L (0,TT) i?e given such that H 6 L ' (0,TT) and 

OJ t t 0) 
Z-et (1.4) ( i ) - ( i i i ) hold. Then there exists at least one 

i*, x. ~ u t t xx solution u € C ( To, TT"] ) , u . . - u € L ( 0 , T T ) , 

3 « . U4_ £ L (0,TT) to t/ze problém (P1) suc/z t/zat (P1) £s s a t t s -
t OJ 

fied almost everywhere. 

(ii) Let H 6 C (F0,11) £e given such that H. e L (0,1) aná 
OJ u J t U) 

£et (1.4)(i) - (iii) hold. Then there exists at least one 

classical solution u 6 C (£0, í] ) , u , u , (F(u )) £ 
C
u([°.

1]) > U t t e L " ( 0 , 1 ) , u t x 6 L 3 ( 0 . 1 ) , u x x eL^(0 (1) 
to t/ze problém (P2) . 

( i i i ) Let H 6 L (0, TT) fce given such that H 6 L ' ( O . T O H 
U> X (0 

U) TT 

L2(0,TT; L1) , i ÍH(t,x) dx dt = 0 , and let (1.4)(i) - (iv) 

0 0 

hold.. Then there exists at least one solution u E C ([p,Tr]) , 

ux « V ^ 0 ' 1 ^ ' utt> (F(ux»x e L > > * > • utx e ^J0'^ *° 

t/ze problém (P3) such that (P3) is satisfied almost every

where . 

Sketch of the proofs. 

(i) We use the classical Galerkin method. We denote 

w.,(t,x) = e.(t) sin kx , j integer, k natural, (2.2) 
3K 3 

where e.(t) = sin —^ t for j > 0 and cos —^ t for j < 0 . 

For m > 1 put 

m m 
u(t,x) = E E u . v w.v(t,x) , (2.3) 
m j=-m k=1 

where the coefficients u., are solutions of the algebraic systém 

2(A) TT 2(JÚ TT 

|(utt - u x x ± F(u))wjk dx dt = | JH w j k dx dt , (2.4) 

OD 0 
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-m,...,m , k = 1 , . . . ,m 

9 -ł 3 

"-jk 
2 i 3 

Multiplying (2.4) by (—̂ ) u_., , summing over j and k and 
using (1.6)(vi) we get 

Y ( | | | u | | | ) | u |2 < c o n s t , 
m mL J 

Similarly we have |u - u

X x ' 2 =
 c o n s t - (1 + IHF(u)l|D * Classical em-

m m m 
bedding theorems and (1.4), (1.6) (iii) yield |||u||| •£ 

m 
c o n s t . ( | u - u x x l 2 + | u | 3 ) < c o n s t . ( H | u | | | 1 - B / 2 + | | | u | | | a + 1 ) , h e n c e 

m m m m m 
llluHl , | u t | , | u - u x x l 2 < c o n s t . 

m m m m 

These estimates imply the solvability of (2.4). On the other hand 

there exists a subsequence {u} of {u} such that u - u -> 
n m n n 

2 3 
u__ - u in I/> (0,-) weak, u, -> u^ in L (0,TT) weak and u -»- u 
tt XX 0) t t U) n n 
in C (_0,T_D strong. Thus, we can pass to the limit in (2.4) and the 

proof is complete. 

(ii) We replace the problem (P2) by the following system of ordinary 

differential equations (space discretization): 

vГ - n(F(n(v
j + 1
 -

 V j
)) - F(n(v. - v^^))) = h 

3
 (2.5) 

0 , 

(j+1)/n 

where h.(t) = n H(t,x) dx , j = 1,...,n-1 . 

j/n 

Using (1.6)(iv), (vi) we derive apriori estimates for v. independent 

of n which ensure the existence of periodic solutions of (2.5). We 

further put 

u(t,x) = v (t) + (nx - j)(v
j+1
(t) -

 V j
(t)) + \ [(v

j+1
(t) -

 V j
(t)) 

+ (nx - j)
2
(v

j + 2
(t) - 2v

j + 1
(t) + v_.(t))] , 

t _ R
1
 , x e [j/n, (j + 1)/n] , j = 0,1,...,n-1 , v

n + 1
 = - v ^ . 

A straigtforward computation and the compactness argument show 

that there exists a subsequence of u which converges in suitable to

pologies to a solution u of (P2). 

(iii) We first solve the auxiliary problem 

L(V
t
 " l|;)

t
 - V ^ = Il

x
 , V(t,0) = V(t,TT) = 0 , 
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where y (x) = - H(t,£) dt dC , x £ [0, TQ , 

0 0 

t 00 

ft(t,x) = JH(T,X) dT - ^ JH(x,x) dx , t £ R1 , x 6 [0, ir] . 

0 0 

We use again the Galerkin approximation scheme of the type (2.2), (2.3), 

(2.4). In an analogous way we derive the following estimates: 

Y < III v - <HII ) |vtt|3 < const, 
m m 

|vxtl2 < (g"
1)'(|||vt - *|||)|v |* + const.|v |3 . 

m m ' m m 
Following (1.4) there exists 6 > 0 such that 1/y(r) ^ 

const, (r '^ + 1 ) for every r > 0 . The space (u £ L (0,TT); U e 

L (0,TT) , u € L (0,TT)} is compactly embedded into C ( [*0, TT! ) , hence 
0J ' X OJ J ^ 2 OJ L J 

| | | v t - ^ | | | < c o n s t . ( | v | 3 + |v | 2 + 1 ) 4 c o n s t . ( | | | v - ^ | | | 1 " 6 / 2 + 1 ) . 
m m m m 

S i m i l a r l y a s above we g e t 

HI v. HI , | v . . | _ , | v. | .-, , | v I-, < c o n s t . , IM t i u » i t t ' 3 ' ' t x ' 2 ' xx ' 2 = * 
m m m m 

so that we can repeat the argument of (i). 

The solution u of (P3) is then given by the formula 

t 2OJ 

u(t,x) - f(v + S)(T,X) dx - - f (v + ft)(x,x) dx + 
x 

ш X 

+ 

0 

L(v - ip)(oj,0 d£ + const., t € R , x e [o , TT] 
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