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ON A CERTAIN BOUNDARY VALUE 
PROBLEM OF THE THIRD ORDER 
M. GREGUS 
Faculty of Mathematics and Physics, Comenius University 
Mlynskd dolina, 842 15 Bratislava, Czechoslovakia 

1. The boundary value problem of the form 

(1) y'" + [f(x) + Ag(x ) ]y ' + Ah( x) y = 0 

( 2 ) y(-a,A) = y(a,A) = 0, a > 0 

a t 
(3) A / [r(t)-k] (g(t)y(t,A) + / [h(x) - g'(T )] y (T ,A )dx}dt = 

-a -a 
a t 
/ [r(t)-k] (f(t)y(t,A) + / f(x)y' (T,X)dx}dt , 

-a -a 

where f'(x), g'(x), h(x), r''(x) are continuous functions on the in

terval <-a,a> and k is a constant, will be studied. 

The boundary condition ( 3) is in the integral form. For the first 

time, such a condition was formulated in [l] and the problem (1), (2), 

(3) is a natural generalization of the problem discussed in [ l] . 

It will be shown that under certain conditions on the function 

r(x), the problem (1), (2), (3), is equivalent to the boundary 

problem (1), (4), where 

(4) y(-a,A) = y"(-a,A) = 0, y(a,A) = 0 a > 0 . 

In order to solve the problem (1), (4), the theory of the third 

order linear differential equation [ 2] can be applied. Moreover some 

special results will be formulated. 

2. Consider the problem (1), (2), (3). Let the functions f, g, 

h, r fulfil the conditions formulated in Section 1. Then the following 

theorem is true. 

THEOREM 1. Tko. pn.obl2.rn (7), (2), (3) I* nqalvaldnt to tko, 

pn.0bl2.rn [1), [4) l{ tko. function n. = n[t) Aolve.* tkd pn.obl2.rn 

(5) j i " + rfUU = ferfU) 

( 6 ) n.[-a) - k, K[OL) - k . 
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Plooi. Integrating the differential equation (1), written in 

the form 

y"' + {('f(x) + X g ( x ) ] y } ' + {-f'(x) + X[h(x) - g'(x)]}y = 0 , 

term by term from -a to x, x < a, and considering (2), we get 
x 

y" + f x)y + Xg(x)y + / {-f'd) + XthU) - g'(T )] }y (T , A )dx = 
-a 

= y"(-a,X) . 

Now suppose that y"(-a,X) = 0, multiply the last equality by 

r(x)-k, where k is a constant, and integrate it from -a to a. 

We come to the equality 

a 
(7) / [r(t)-k][y"(t,X) + f(t)y(t,X)]dt = 

-a 

/ [r(t)-k] £g(t)y(t,A) + 
-a 

t 
+ / [h(T)-g'( T)]y(T,X)dT}dt -

-a 
a t 
/ [r(t)-k] {-f(t)y(t,X) + / f (T)y'(T,X)dT}dt . 

-a -a 

The right-hand side of (7) contains the expression which stands in 

condition ( 3). Therefore it is necessary to prove that.the integral 

on the left-hand side of (7) is equal to zero. 

Calculate this integral. Under the conditions (2), it follows 

that 

a 
/ [r(t)-k][y"(t,X) + f(t)y(t,X)]dt = y'(a, X )[ r (a)-k] -

-a a 
-y'(-a,X)[r(-a)-k] + / [r"(t) + f(t)r(t)-k f (t) ] y(t, X )dt . 

-a 

This implies that the boundary condition ( 3) will be fulfilled if 

y"(-a,X) = 0 and if the function r(t) solves the boundary problem 

(5), (6). Thus the theorem is proved. 

3. In [3] the problem 

(8) y'" + {[1 + Xg(x)]y}' = 0 

a 
(9) y(-a) = y(a) = 0 , / (cos t - cos a)g(t)y(t)dt = 0 

-a 
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and its generalization 

(10) y"' + [1 + Xg(x)ly' + Xh(x)y = 0 

a 
(11) y(-a) = y(a) = 0 , / (cos t - cos a){g(t)y(t) + 

-a 
x 

+ / [h(T)-g'(T)ly(T)dT}dt = 0 
-a 

where a > 0, g'(x), h(x) are continuous functions on <-a,a> , were 

discussed. 

REMARK 1. The problems (8), (9), and (10), (11) are special 

cases of the problem (1), (2), (3). 

Clearly, if we suppose f(x) = 1, h(x) = gr(x), k = cos a, we get 

that (8), (9) is a special case of (1), (2), (3) and from Theorem 1 

it follows hat r(x) = cos x. Similarly, if f(x) = 1 and k = cos a 

we get that (10), (11) is a special case of (1), (2), (3) if 

r(x) = cos x and k = cos a. But r(x) = cos x solves the problem 

(5), (6), where k = cos a and f(x) = 1 . 

In [ 3] it has been proved that under the condition a = ixj2 the 

problems (8), (9) and (10)* (11), respectively are equivalent to the 

problems (8), (4) and (10), (-O respectively. 

Now we prove the following theorem (the formulation will be only 

for the equation (8), in the case of the equation (1 0) the equation 

is similar). 

THEOREM 2. Let g(x) be continuous on (-a,a) and let 

0 < a < itj2. Tkcn tkc pKoblcm {&), (13), vokcKe 

(1 3) y(-a) - y(a) = o, / [K(t)-1] g(t)y(t)dt = o 
-a 

ih equivalent to tkc pKoblcm (S), (4) l^ 

a 
(14) K(X) = / G[x,S)d£ + q^U) + <P2U) , 

-a 

wkcKc G(x,K) i* tko. GKe.cn ̂ unctlon o i tkc pKoblcm 

K" + K = o, K(-a) = K(a) = o , o < a < £ , 

q»1(x), and ? 2 (x) , K<n>ptcti.\)tly, aKc tkc hotutionh oi tkc pKoblcm 

K* ' + K = o, K(-a) = 1, K(a) = o, and oi tkc pKoblcm K* ' + K = 0, 
K(-a) = o, K(a) = l Kc&pcctivcly. 
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The proof of Theorem 2 is similar to that of Theorem 1. Integrating 

(8) term by term from -a to x < a and considering (2), we get 

y " + y + Ag(x)y = y"(-a,A). 

Let y"(-a,A) = 0, multiply this equation by r(x)-l and integrate 

it from -a to a. We obtain 

a a 
(15) - / [y"(t) + y(t)][r(t)-l]dt = A / [ r (t )-l ] g(t )y (t)dt . 

-a -a 

It is necessary to find such an r(x) that the integral on the left-

hand side of (15) be equal to zero. 

Calculating it we get 

a 
/ [y"(t) + y(t)][r(t)-l]dt = y'(a)[r(a)-l] - y'(-a)[ r (-a)-l ] + 

-a 
a 

+ / y(t)[r"(t) + r(t)-l]dt . 
-a 

From this equality it follows that r(x) nvqst solve the problem 

r " + r = 1 

r(-a) = 1 , r(a) = 1 . 

Thus the theorem is proved. 
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