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ANALYSIS OF THACKER'S METHOD 
FOR SOLVING THE LINEARIZED SHALLOW 
WATER EQUATIONS 
J. DESCLOUX, R. FERRO 
EPFL - Department of Mathematics 
CH 1015 Lausanne, Switzerland 

1. INTRODUCTION. 

In their simplest form, the shallow water equations read 

9t0(x,t) = - b(x)vH(x,t) + fRU(x,t), x 6 n, t > o, (1.1) 

9tH(x,t) = - V-0(x,t), x 6 n, t > o, (1.2) 

3(x,t)-n(x) = o, x e an, t > o, (1.3) 

0(x,o) = u"0(x), H(x,o) = H0(x), x G n. (1.4) 

Here , n c IR2 is a bounded open domain with C°° boundary 9n and closure n. n is the 

outwards unit normal to 9n. 3(x,t) = (u^ (x,t),U2(x,t)) is a two components vector 

r e l a t e d to the average horizontal velocity. H(x,t) is the height of the surface of 

the basin. Up to a constant factor, b(x) is the depth of the basin. We shall assume 

that b(*)is a C°°(n) strictly positive function, f which represents the intensity of 

the Coriolis forces is taken to be constant. UQ and HQ are given invcial condi t ions . 

R is the (-n/2) rotation operator acting in IF? , i.e. R(x1,x2) = (x2,-xx). The tan

gential vector t at 9n is given by ? = - Rn. 

Equations (1.1),(1:2) can be easily set in the framework of the theory of semigroups. 

LetJf = (L2(n))
3 be the Hilbert space with scalar product 

((u,9),(v,h))^= J ^ u(x)-v(x) + g(x)h(x) (1.5) 

and associate norm |V |L^whe re u = (u1,u2), v = (v2,v2). We define the operator L 

with domain Q)(\.) by the relations: 

@(l) = {(u,g) 6 ^ v-u 6 L2(n), u-n = o on an, g € Hx(n)} (1.6) 

L(u,g) = (-bvg,-v.u), (1.7) 

where H (n) is the classical Sobolev space of order k. One can verify that L is a 

skewadjoint operator, i.e. the adjoint of L is -L which implies in particular for 

(u,g) and (v,h) in ̂ (L) the following relation: 

(L(u,g),(v,h)^= - ((u,g),L(v,h)^. (1.8) 
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It follows that L is the infinitesimal generator of a conservative group so that Pro
blem (1.1)-(1.4) possesses a unique solution with the property: 

||((J(-,t),H(.,t)|(^= constant; (1.9) 

furthermore , from (1.2), (1 .3) , one deduces immediately the law of mass conservation 

J H(x,t) = constant. OAO) 

Remarque 1 . 1 : In [4], we give some results concerning the regularity of solutions of 
Problems ( 1 . 1 ) - ( 1 . 4 ) . 

The purpose of this paper is to analyse a numerical method proposed by Thacker [1], 
[2] for solving Problems ( 1 . 1 ) - ( 1 . 4 ) ; more exactly, we shall consider in fact two va
riants of Thacker's scheme. 

2. DISCRETIZATION. 

We consider a sequence 0^} of standard triangulations of ft, as shown in the f i g u r e . 
h denotes the maximum length of the sides of the triangles of£0n . We assume that all 
angles of all triangles of all triangularizations are bounded from below by some po
sitive constant. For a particular-^, let N be equal to three times the total number 
of nodes minus the number of nodes belonging to the boundary 9ft, ftn will denote the 
interior of the union of the triangles o f ^ n . 

Let us consider a fixed triangularization ̂ n. For each node P^, let A^ be the polygon 
formed by the triangles containing P^ and let y^ be the measure of A^. Z^ will denote 
the set of indices j such that Pj6 9Ak; in the figure, Z 2 = (2,3,4,5), Z6= (7,8,9,10, 
11); clearly, k € Z^ if and only if Pk6 9ft. For some node Pk, let Pj 6 3A^, i.e. 
j 6 Z^; let Pa 6 9A^ be the node preceding Pj with respect to the trigonometric orien
tation and let Pg € 9Ajc be the node following PJ; we define the vector: 

<5jk = p : p
P ; < 2 . u 

in the figure, we have, for example, §8 6 = P?P5, <$5 2 = C
P 2 ' 2̂2 = P5P3 ' F u r t n e r m o r e » 

we introduce at Pk € 9ft the approximate tangent and normal vectors: 

tk = iil5kk' Nk = ***• (2'2) 

For a function <J> defined on ft, let $Q be the continuous, piecewise linear (with res
pect t o . ^ n ) function defined on ftn and equal to <J> at the nodes;fora vector functions, 
we define, in the same way, componentwise its interpolant tyQ . By Greens's formula, 
we have the identities: 
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il*o'fkihk«
9*){**)- (2-3) 

clearly, the right members of (2.3),(2.4) define a natural approximation of ̂ ( P k ) 

and ^-J(Pk) respectively. 

With the help of (2.3),(2.4), we now define a space semi-discretization of Problem 

(1.1)-(1.4). For all nodes Pk, Hk(t)is an approximation of H(Pk,t); for interior nodes 

P k 6 n, 0k(t)= (Uja(t),Uk2(t)) is an approximation of 0(P k,t); for boundary nodes 

P k 6 9fl, Ujk(t) is an approximation of the tangential component of lJ(Pk,t), i.e. of 

ft(Pk,t)-?(Pk). Method IS is then defined by the relations: 

S^Ůk(t)--i Z Hj(t)(R3jk)+^fRi}k(t), P k € й ; (2 .5) 

P k Є ЭQ ; (2 .6) 

P k 6 õ ; (2 .7) 

Pk 6 ЭO ; ( 2 . 8 ) 

P k Є ß ; (2 .9) 

J6Zk 

^ U T k ( t ) = -l.S k H j ( t ) ( R $ j k ) . t k , 

^M t ) * - i J g k
8 j < t , ' ( * j -c) -

3k(o) = tt0(Pk), Pk 6 Q; UTk(o) = 30<Pk)-?(Pk),
 pk 6 3n 

Hk(o) = H0(Pk) 

here the "dot" represents the time derivative, bk = b(Pk) and in (2.7), 

flj(t) = UTj(t)tj if Pj 6 3fl. 

By choosing any fixed order, all the unknown function U k l(t), U|c2(t), U-rk(t) and 

Hk(t) can be set in a single vector w(t) of dimension N. Then Problem (2.5)-(2.9) can 

be written in the compact form 

Dw(t) = Aw(t); w(o) = w0 ; (2.10) 

whereD is a diagonal matrix with diagonal elements of the form uk or uk/bk. Because of 

property (1.8) for L, one could expect that A is an antisymmetric matrix. Due to dif

ficulties at the boundary, which seem inherent to the problems and impossible to over

come in a natural way, A is only "almost" antisymmetric. By inspection of the figure, 

one can show: 



Lemma 2.1: Let P
k
 and Pj be two different nodes belonging to a same t r i a n g l e . We sup

pose that at most one of them belong to the boundary 3fi. Then 

% + з k j = o. (2.11) 

As easily seen from (2.5)-(2.7), A would be exactly antisymmetric if (2.11) would 

h o l d when if both P
k
 and Pj be long to 3fl. There are several ways to modify Scheme 

(2.5)-(2.7) for obtaining the desired property of an t i symmet ry .One of them consists 

in remplacing in (2,5),(2.6) ($j
k
 by -($

k
j; by Lemma 2 . 1 , ( 2 . 5 ) is not modified whereas 

(2,6) becomes 

^ Ů T k ( t ) = 1 S MtHR&fcJ-tfc , P k € 9í2. 
2 ÎP7 "3 

jezk 

(2 .12) 

Method IIS is then defined by Relations (2.5) ,(2.12),(2.7),(2.8),(2.9) and can be 

written as 

Dw(t) = Bw(t), w(o) = w 0 

where B is an antisymmetric matrix of order N. 

(2.13) 

For a vector v 6 1RN and a matrix G of order N, let 

м . (|í I,IV» w . a a . 
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By using the smoothness of 8ft and the angle property of the sequence {- n̂}, one can 

verify: 

Lemma' 2.2: There exist three constants c1,c2,c3, independent of h such that 

a) | |D" 1 / 2 (A-B)D"1/2|| < cx , b) c^h"1 < ||D" 1 / 2 BD" 1 / 2 || < c 3 h ' 1 . 

By using Lemma 2.2a, the antisymmetry of B, Relations (2 .7 ) , ( 2 .9 ) in connection with 

the def ini t ion (2 .2) of f k , one can deduce the following properties of Methods IS 

and I I S . 

Proposition 2 . 1 : 

a) I f w is solution of (2 .13) , then ||D1/2w(t) ||2 = | |D 1 / 2w 0 | ( 2 . 

b) There is a constant c, independent of t and of h, such that i f w is solution of 

(2 .10) , then ||D1/2w(t) ||2 < ec t | |D1 / 2w0 | |2 . 

c) I f w is solution of (2 .10) or of (2 .13) , then z _ ukHk(t) = Z_ ukHQ(PkV 
Pk6n Pk6n 

Remark 2.1: Since the sum is all yk's is equal to three times the area of Qk, Propo

sition 2.1 appears to be, up to a factor 3, the discrete counterpart of Properties 

(1.9),(1.10) of the exact s o l u t i o n . 

We now turn to the time d i s c r e t i s a t i o n . Let T > o be the time increment and set 

tn = nT. We shall apply to ( 2 .10 ) and ( 2 .13 ) the two-step method, sometimes called 

"leap-frog" scheme. Method I is then defined by the relations: 

wi/2 = wo + | D " l A w o <2-14> 

wx = w0 + T D
_ 1 A W 1 / 2 (2.15) 

wn+i = wn-i + 2'rD"1Awn , n = 1,2,3,... (2.16) 

Method I I is defined by replacing in (2 .14 ) - (2 .16 ) . A by B. 

The s t a b i l i t y analysis of Method I I is t r i v i a l since D*"1 B or D~1/2 BD"1/2 have a pure 

imaginary spectrum. By using Strang's Lemma [3] in connection with Lemma 2.2a, we 

easi ly deduce the s tab i l i ty of Method I from that of Method I I . 

Proposition 2.2: There ex ist a function a: (o , l ) -> IR and a constant c, both indepen

dent of h,T and n such that i f T < 1/||D" 1 / 2 BD" 1 / 2 ||, we have: 

a) ||D~1/2wn||2 < a(T(|D"1 / 2BD"1 / 2) | | ) | |D1 / 2w0 | | fo r Method I I , 

b) ||D1/2wn||2< a(T|p-1 /2BD"1 /2 | |)ec tn||D1 /2w0N fo r Method I . 



300 

Remark 2.2: Methods I and II satisfy a law of mass conservation as Methods IS and IIS 

(see Proposition 2.1c). 

Remark 2.3: Proposition 2.2a,b prove the stability of both Method I and II; however 

Method II appears to be "more" stable than Method I. 

Remark 2.4: wn can be written as a vector of order N with components U k n i, U k n 2, U T k n 

and H k n . If the Coriolis term f = o, then for Methods I and II, it is possible to 

compute U k n i, U k n 2, U T k n only at even values of n and H k n at odd values of n which 

reduces the computer time and the storage requirements by a factor 2; real Thacker's 

scheme, which is somewhat more difficult to analyse, keeps this property even for 

f f o. In fact, if f = o, Method I is identical to Thacker's scheme (10),(11),(1T) 

in [2] p.683. 

Remark 2.5: Thacker [2] has remarked that his scheme can be considered, to some ex

tend, as a lumped version of a Galerkin method. In [4], we briefly analyse the effect 

of "lumping" on stability. 

Remark 2.6: The stability condition T < 1/||D" 1/2 BD"1/2|| in Proposition 2.2, implies, 

by Lemma 2.2b that T = 0(h). 

3. ERROR ESTIMATES 

Our estimates will be based on the standard consistency+stability argument. Stability 

has already been analyzed in Section 2 . 

We begin with a classical study of consistency by assuming that the components of the 

solution of Problem (1.1)-(1,4) belong toC°([o,T]; C3(ft)). We first associate to this 

solution a vector u(t) 6 IRN in the following way; let w(t) the solution of the semi-

discritized problem (2.10); we set: u^t) = U£(Pk,t) if w ^ t ) = Ukll, I = 1,2; 

Ui(t) = 3(Pk,t)-t(Pk) if W i(t) = U T k(t); u ^ t ) = H(Pk,t) if W i(t) = Hk(t). 

Clearly, the time discretization which is of order two, will induce errors of size 

0 ( T 2 ) , which, by Remark 2.6, can be written as 0(h2). Let us define for T > o: 

£ i ( T ) =
 0

m^TlP
1/2(u(t)-D-1Au(t))|(, e n(T) = ̂ a^HD^luJtJ-D^Buft))!!, 

Ri(ii) ( T) = max ||D1/2(u(tn)-wn)|| if wn is obtained by Method 1(11). 
ostn-.T 

For i = I,II, R.j(T) is the error of Method i, whereas, by using (1.1),(1.2), e.j(T)is 

the space consistency error 
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In the f o l l o w i n g , we sha l l say that for a node Pk, Ak is symmetric, if for each 

P.- € 9ftk, there exists P^ 6 9Ak which is symmetric to P. with respect to P k . C l e a r l y 

if Pk G 9ft, Ak cannot be symmetr ic . The basic difference schemes defined by ( 2 . 3 ) , 

( 2 . 4 ) are of order 2, with respect to h, if Ak is symmetric; otherwise there are on ly 

of order l. We sha l l say that the sequence of triangularizations £#h} possesses Pro

perty G if there exists a constant c, independent of h such that for a l l Pk € 9ft one 

has |^k"?(P|<)| - cn2 5 Property G imp l ies a certain r e g u l a r i t y in the distribution 

of the nodes on the boundary. Elementary but tidious ca lcu lat ions a l low to es tab l i sh : 

Lemma 3. l: For any fixed T > o and i = I,II, we have: a) e.j(T) = 0(h1/2); b) e.j(T) = 

0(h) if Property G is satisfied; c) E^(T) = 0(h3/2) if Ak is symmetric for a l l Pk 6 ft 

and if Property G is s a t i s f i e d . 

From Lemma 3 , l fo l lows immediately. 

Proposition 3. l: Let T > o and E, € ( o , l ) be fixed numbers. For each t r i a n g u l a r i z a t i o n 

0 n , T is chosen in such a way that o < T < £/||D~
1/2 BD""1/2||. Then for i = I, II: 

a) R.j(T) = 0(h 1 / 2); b) R^T) = 0(h) if Property G is satisfied; c) R^T) = 0(h3/2) if 

Ak is symmetric for a l l Pk 6 ft and if Property G is satisfied. 

Remark 3.l: Suppose, that, instead of (2.2), we set fk = ?(Pk) (exact tangent v e c t o r ) . 

Then: a) We loss the exact mass conservation property for both Methods I and II /see 

Remark 2.2); b) Proposition 3 . l remains v a l i d for Method I; Proposition 3. la remains 

v a l i d for Method II. 

We now turn to an error ana lys is under weaker r e g u l a r i t y assumptions. We sha l l sup

pose that the components of the s o l u t i o n of Problem ( l . l ) - ( l . 4 ) be long to C°([o,T]; 

H2(ft)). For s i m p l i c i t y , we sha l l furthermore assume that ft is convex so that ftpc ft. 

The d i f f i c u l t y here comes from the fact that the time derivative of the s o l u t i o n is 

not a continuous function of the space v a r i a b l e . Let Ukn = (Ukr)1 , U k n 2 ) , H k n be the 

approximate s o l u t i o n obtained by Method I or II corresponding to the exact s o l u t i o n 

3(P k,t n), H(P k,t n); here we set flkn = U T k nT k if Pk 6 9ft. Let Vh be the space of con

tinuous piecewise linear functions on fth corresponding to^L. We define the function 

l}n(x,t) = (Uhl(x,t),Un2(x,t)), Hh(x,t), for x 6 fth and t = tn, in the f o l l o w i n g way: 

Uhp(-,tn) € Vh, p = 1,2, Hh(.,tn) 6 Vh; flh(Pk,tn) = Ukn, Hh(Pk,tn) = H k n for a l l 

Pk 6 ft. 

The main trick w i l l consist in introducing functions Yh(x,t) = (Ynl(x,t),Yn2(x,t)), 

Zh(x,t) be longing to Vh for fixed t and which are, for fixed t, C lement's approxima

tions of the exact s o l u t i o n ' s components; for the notion of C lement 's approximation, 

see [7]. Corresponding to the exact equation ( l . 2 ) , we have for a l l Pk 6 ft the f o l l o 

wing identity: 
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^kZh(Pk(tn+i) " v W V V i ) + T • £ ^ j ^ n V ^ j k ) ( 3 J ' 

= { - k - h ^ k - V i ' • W V V i > " - \ f H(x,tn)} (3.2) 
Ak 

+ T { j e \ t ( P 3 ' t n ) - ( R ^ k ) - 2
A ( *-<I<x.t„». (3-3) 

The "time" error term (3.2) can be easily estimated by using the fact that the opera

tions of time derivative and Clement's approximation commute. The "space" error term 

(3.3) can be handled by remarking the fo llowing identity which is a direct consequen

ce of (2.4): 

S ^(Pi,tn).(R^ik) - 2 \ V- f(x,tn) = o. 
j6Zk J n JK A k 

Simi la r ly to ( 3 . l ) - ( 3 . 3 ) , we can write an equation corresponding to ( l . l ) ; it is 

s l ight ly more complicated to handle because of the boundary condition (1 .3) and of 

the presence of the function b (x) . With Proposition 2 .2 , this allows to get error es

timates between Clement's approximation and the solution of Method I or I I . The final 

result is contained in the following proposition: 

Proposition 3.2: Let T > o and E, € (o,l) be fixed numbers. We suppose: a) each compo

nent of the exact solution belong to C°([o,T]; H2(fi)); b) Property G is satisfied; 

c) for each triangularization, x is chosen such that o < x < s/||D"1/2 BD~1/2||. Then for 

both Methods I and II we have: 

o<tn<T
{nn

 (b(7) |0(X'tn) • 3h<x-tn)|
2 + |H(x,tn) - Hh(x,tn) | V

/ 2 = 0(h). 

Remark 3.2: In [4], we give some numerical results. 

Remark 3 .3: In order to compute the spectrum of the operator L defined in Section 1, 

one could think of using the same space discretization as in Method I or II; however 

this generates spurious eigenvalues. For a proper treatment of this problem, see [5], 

[6V 
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