EQUADIFF 6

Vladimír Janovský; Ivo Marek; Jiří Neuberg
 Bifurcation analysis of stimulated Brillouin scattering

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia, Aug. 26-30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986. pp. [309]--314.

Persistent URL: http://dml.cz/dmlcz/700191

Terms of use:

© Masaryk University, 1986
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

BIFURCATION ANALYSIS OF STIMULATED BRILLOUIN SCATTERING

V. JANOVSKÝ, I. MAREK, J. NEUBERG
Faculty of Mathematics and Physics, Charles University Malostranské nám. 25, 110 OO Prague, Czechoslovakia

1. Introduction

Our problem is motivated by the following physical effect (Stimulated Brillouin Scattering) : A laser beam of a given frequency is targeted on a material sample. If the laser intensity is small then the beam penetrates without being affected. If the intensity is above a threshold then the sample acts like a mirror and reflects some energy back (Stokes' wave). This is due to stimulated pressure (acoustic) wave in the sample. The frequences of all three waves (i.e. laser and Stokes and pressure) are coupled.

Let us accept that Stimulated Brillouin Scattering can be modelled by the following initial value problem: Find complex-valued functions $\mathrm{E}_{\mathrm{L}}, \mathrm{E}_{\mathrm{S}}, \mathrm{p}$ (the slowly varying amplitudes of laser and Stokes and pressure waves) of time $t \geqq 0$ and one spatial variable $0 \leqq x \leqq \ell$ such that

$$
\begin{equation*}
\dot{E}_{L}=E_{L}^{\prime}-i E_{S} p, \quad \dot{E}_{S}=-E_{S}^{\prime}-i E_{L} \bar{p}, \quad c \dot{p}=p^{\prime}-p-i E_{L} \bar{E}_{S} \tag{1.1}
\end{equation*}
$$

(Notation: $\dot{E}=\frac{\partial}{\partial t} E, E^{\prime}=\frac{\partial}{\partial x} E, \bar{E}$ is complex conjugate, $i=$ $(-1)^{1 / 2}$, c is a positive constant) with boundary condition

$$
\begin{equation*}
p(\ell, t)=E_{S}(0, t)=0, \quad E_{L}(\ell, t)=a e^{i \psi} \tag{1.2}
\end{equation*}
$$

for $t \geqslant 0 ; a$ and ψ are real parameters. At $t=0$, an initial condition (compatible with (1.2)) is prescribed.
1.3 REMARK. The sample occupies the interval $0 \leqq x \leqq \ell$. Laser light of intensity a^{2} is focused at the point $x=\ell$ and propagates in negative direction of the x-axis. Note that functions $E_{L} \equiv a e^{i \psi}, E_{S} \equiv$ $p \equiv 0$ are a steady state solution to (1.1), (1.2). This trivial solution corresponds to the situation when no stimulation of pressure waves occurs which is expected if a^{2} is less then the threshold. Physical
significance of the model (1.1), (1.2) is discussed e.g. in [1].
1.4 OBSERVATION. If E_{L}, E_{S}, p solve (1.1) then, for each real constant γ, the functions $E_{L} e^{i \gamma}$, E_{S}, $p e^{i \gamma}$ solve (1.1), too. It implies that we can asoumc $\psi=0$ and $a \geq 0$ without loss of generality.

Our aim is bifurcation analysis of trivial solution to steady state problem (1.1), (1.2) with respect to variations of parameter a . We mention dynamical stability of bifurcated solutions, too.
2. Covariance of the equations governing the steady state

Let us introduce the operator F of the steady state: Homogenising the boundary condition (1.2) by substitution $E_{L}:=E_{L}+a$, we define $F=F(U, a)$ at $U=\left(E_{L}, E_{S}, p\right)$ and at $a \in \mathbb{R}_{1}$ as follows:

$$
F(U, a)=\left(E_{L}^{\prime}-i E_{S} p,-E_{S}^{\prime}-i E_{L} \bar{p}-i a \bar{p}, p^{\prime}-p-i a \bar{E}_{S}-i E_{L} \bar{E}_{S}\right)
$$

Then F acts (e.g.) on the real linear space $X=\left\{U=\left(E_{L}, E_{S}, p\right): E_{L}\right.$, E_{S}, p are complex-valued functions of x, continuously differentiable on $0 \leqq x \leqq \ell$, satisfying boundary condition $\left.E_{L}(\ell)=E_{S}(0)=p(\ell)=0\right\}$. The range of $F(., a)$ is in the real linear space $Y=\left\{U=\left(E_{L}, E_{S}, p\right)\right.$: $E_{L_{L}}, E_{S}, p$ are complex-valued, continuous functions of $\left.x, 0 \leqq x \leqq \ell\right\}$. In the usual topology, there is compact imbedding of X into Y.

Let us define suitable linear transformations on Y : If $U=$ $\left(E_{L}, E_{S}, p\right) \in Y$ then

$$
\begin{aligned}
& M_{\beta} u=\left(E_{L}, e^{i \beta_{E_{S}}}, e^{-i \beta} p\right) \text { for each } \beta \in \mathbb{R}_{1}, \\
& T_{j} u=\left(\bar{E}_{L}, \quad(-1)^{j} \bar{E}_{S}, \quad(-1)^{j+1} \bar{p}\right) \text { for } j=1,2 .
\end{aligned}
$$

Let $\left\{M_{\beta}, T_{1}, T_{2}\right\}$ denote the group generated by $M_{\beta}, T_{1}, T_{2} \quad\left(\beta \in \mathbb{R}_{1}\right)$. The covariance property of the steady state operator follows from
2.1 LEMMA. If $U \in X$ then $M_{\beta} F(U, a)=F\left(M_{\beta} U, a\right)$ and $T_{j} F(U, a)=$ $F\left(T_{j} u, a\right)$ for each $\beta \in \mathbb{R}_{1}$ and $j=1,2$.

Proof. This can be done by a straightforward calculation.
As a direct consequence, we obtain
2.2 PROPOSITION. If $\Gamma \in\left\{M_{\beta}, T_{1}, T_{2}\right\}$ then $\Gamma F(U, a)=F(\Gamma U, a)$ for each $u \in X$.

3. Bifurcation analysis

We resume the steady state problom: Given a valut of a 0 , find $u \in X$ such that $F(U, a)=0$. Obviously, $u^{0} \quad 0 \quad$ is $\quad \therefore \quad \therefore \quad . \quad \therefore \quad \therefore$. for each value of a.

Let $L(a): X \rightarrow Y$ be Fréchet derivative of tho operator $f^{\prime}(., a)$: $X \rightarrow Y$ at u^{0}. If there is a bifurcation from $u^{()}$at a $\in \mathbb{R}_{1}$ thon the kernel Kor $L(a)$ is nontrivial. Direct calculations yicld
 $a \in K$, where $K=\left\{a \geq 0: 4 a^{2}-1 \geq 0, \operatorname{tg} \frac{\omega l}{2}=-\omega, \omega=\left(4 a^{2}-1\right)^{\frac{1}{2}}\right\}$. The set K can be arrangeit as an increusin. irimerio $\left\{\mathrm{a}_{\mathrm{j}}\right\}_{j=1}^{\infty}$, $0<a_{1}<a_{j}<a_{j+1}, \lim _{j \rightarrow+\infty} a_{j}=+\infty$.
3.2 LEMMA. If $\mathrm{a}_{j} \in \mathrm{~K}$ then Ker $\mathrm{L}\left(\mathrm{a}_{j}\right)$ is apanhed by voctore $\varepsilon_{1}=$ $\left(0, \mathrm{v}_{0},-\mathrm{i} \mathrm{w}_{0}\right), \xi_{2}=\left(0,-\mathrm{i} \mathrm{v}_{0}, \mathrm{w}_{0}\right)$ from X , where v_{0} and w_{0} are the following real functions of $x: v_{0}=e^{x / 2} \sin \frac{\omega x}{2}, \quad \omega_{0}=$ $(-1)^{j+1} e^{x / 2} \sin \frac{\omega(\ell-x)}{2} ; \omega=\left(4 a_{j}^{2}-1\right)^{1 / 2}$.

Let us make some remarks on bifurcation equation: By virtue of Fredholm alternative, space Y can be decomposed as a direct sum of kernel and range of the operator $L\left(a_{j}\right): X \rightarrow Y$. Thus each solution u to $F(U, a)$ can be written as $U=\sum y_{i} \xi_{i}+U^{\perp}$ where y_{i} s are real coordinates, $\xi_{i}^{\prime} s$ span the kernel and $u \perp$ belongs to the range. According to Liapunov-Schmidt reduction (see e.g. [3]), if U and a are sufficiently close to u^{0} and a_{j} respectively then u can be idontified with coordinates Y_{1}, Y_{2} of the projection into Ker $L\left(a_{j}\right)$. The coordinates satisfy bifurcation equation $H\left(y_{1}, Y_{2}, a-a_{j}\right)=0$, where H is germ of a mapping $H: \mathbb{R}_{2} \times \mathbb{R}_{1} \rightarrow \mathbb{R}_{2}$.

Following standard routines, Taylor expansion of H can be found. In our particular case, we have calculated that

$$
\begin{align*}
& H\left(y_{1}, y_{2}, a-a_{j}\right)=p_{j}\left(a-a_{j}\right)\binom{y_{1}}{y_{2}}-q_{j}\left(y_{1}^{2}+y_{2}^{2}\right)\binom{y_{1}}{y_{2}}+ \tag{3.3}\\
& s_{j}\left(a-a_{j}\right)^{2}\binom{y_{1}}{y_{2}}+\text { terms of the } 4 \text { th order }
\end{align*}
$$

where p_{j}, q_{j}, s_{j} are real constants, namely $p_{j}=\ell+2 \cos ^{2} \frac{\omega \ell}{2}$, $q_{j}=(-1)^{j} \cos \frac{\omega \ell}{2} \int_{0}^{\ell}\left(v_{0}^{2}(\ell)-v_{0}^{2}\right)\left(v_{0}^{2}+w_{0}^{2}\right) d x$; for ω, v_{0}, w_{0} see 3.2 . Both p_{j} and q_{j} are positive.
3.4 OBSERVATION. Group $\left\{M_{p}, T_{1}, T_{2}\right\}$ leaves the kernel $K \in r \quad L\left(a_{j}\right)$ invariant. The matrix representation of $\left\{M_{B}, T_{1}, T_{2}\right\}$ on $\quad x_{u}, L\left(a_{j}\right)$ is O(2) group of 2×2 orthogonal matrices. Following Sattinger [2], the bifurcation equation is covariant under $O(2)$ symmetry group.
3.5 THEOREM. The bifurcation equation $\mathrm{H}\left(\mathrm{y}_{1}, \mathrm{Y}_{2}, \mathrm{a}-\mathrm{a}_{\mathrm{k}}\right)=0$ is O(2)-uquibalant to

$$
\left[a-a_{k}-\left(y_{1}^{2}+y_{2}^{2}\right)\right]\binom{y_{1}}{y_{2}}=0
$$

(for the nution of $O(2)$-equivalence, see [4]).
froof. We just quote [4], Lemma 5.18 (our points 3.3 and 3.4 verify the assumptions).

We conclude that each $a_{j} \in K$ is a point of supercritical bifurcation. Bifurcation diagrams are $2-\mathrm{D}$ manifolds (symmetric, in a sense, about a-axis).

4. Stability

Let us resume the initial value problem (1.1), (1.2) where we substitute $E_{L}:=E_{L}+a: G i v e n ~ a \geqq 0$ and $u^{\text {in }} \in X$, find $u=\left(E_{L}, E_{S}, p\right)$ such that $\dot{U}=F(U, a)$ for $t>0$ and $U=u^{\text {in }}$ at $t=0$. Asymptotic stability (as $t \rightarrow+\infty$) of the above problem is under question, assuming that $u^{i n}$ is a steady state solution being subjected to a small perturbation. In [5] we have tackled this question by making use of Principle of Linearised Stability.

We just quote our results (which are not surprising anyway) : Trivial solution u^{0} is stable as $0 \leqq a<a_{1}$ (i.e. up to the first bifurcation point). Beyond this point, it looses stability. Nontrivial steady state solutions which emanate from bifurcation points a_{2}, a_{3}, \ldots are unstable. On the other hand, the branch emanating from a_{1} is stable.

The above facts are illustrated by the following numerical experiments.

EXAMPLE 1. Data: $\ell=c=1$, $a=1$ (i.e. $a<a_{1}$); $u^{\text {in }}$ is just the trivial solution u^{0} being perturbed by Gaussian "noise" (δ-correlated, dispersion $=1$, mean value $=0$). Time interval: $0 \leqq t \leqq 0.3$.

Results are presented in Figure 1 : At each time, the (numerical) solution U is projected onto $\operatorname{Ker} L\left(a_{1}\right)$ and then on y_{1}, y_{2}-plane.

Point S is projection of $u^{i n}$. It is apparent that solution creeps towards the origin, i.e. u^{0}. The second graph indicates velocity of the motion in time.

Figure 1

EXAMPLE 2. Data: $\ell=c=1$, $a=5$ (i.e. $a_{2}<a<a_{3}$); $u^{\text {in }}$ is a (numerical) steady state solution on the $2^{\text {nd }}$ branch which is randomly perturbed as above. Time interval: $0 \leqq t \leqq 10$.

Legend to Figure 2 : U is projected onto Ker $L\left(a_{1}\right)$ again. S is the position of projected $u^{i n}$. Note that projection of all steady solutions on the first branch at $a=5$ would be a circle centred at origin O and passing through C. We observe U oscillating around a point on this circle for large t.

Figure 2
$R e f e r e n c e s$
[1] STARUNOV, V. S. and FABELINSKIJ, I. L.: Uspekhi fiz. nauk. 98, No 3 (1969) .
[2] SATTINGER, D. H.: Group representation theory and branch points of nonlinear functional equations. SIAM J. Math. Anal., 8, (1977), 2, pp. 179-201.
[3] CHOW Shui-Nee and HALE, J. K.: Methods of Bifurcation Theory. Springer, N. Y., 1982.
[4] GOLUBITSKY, M. and SCHAEFFER, D.: Imperfect bifurcation in the presence of symmetry. Commun. Math. Phys., 67 (1979), pp. 205-232.
[5] HÁJEK, M. and JANOVSKÝ, V. and NEUBERG, J.: On stability of Stimulated Brizlouin Scattering. Technical Report KNM MFF No 076/85, Charles University of Prague, 1985.

