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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

AN APPLICATION OF GREEN’S FUNCTION
IN THE DIFFERENTIAL EQUATIONS

V. 8EDA, Bratislava

In solving of various types of problems in the theory of ordinary and partial
differential equations, difference equations, there occurs a notion of Green’s
function. With help of it many problems of various character from the theory
of ordinary and partial differential equations, especially from nonlinear
equations, can be reduced to an integral equation of Hammerstein's type
and thus can be studied from a uniform standpoint. This enables us to carry
over the methods and the results from a one group of the problems to another
group and, of course, to use the results of the theory of integral equations
and in the main, of functional analysis.

The aim of this lecture is to show some methods for obtaining the sufficient
conditions for the existence and partly for the uniqueness of the solution of
a nonlinear boundary value problem, using the fixed point thecorems. The
methods may be used in solving of related problems too.

Notations and Assumptions.

Let R® mean the n-dimensional real Euclidean space and if x, y € R?, let
|z, y| be their distance. |z, S| will mean the distance between the point x and
the set S < R, If xeR®, 6§ >0, then B(x,0) = {y:yelr, |z,y| < 0}
j € Rm denotes the vector with all its components equal to 1.

Let D < R» be a region, D the closure of D, & # S < D a set. These sets
will satisfy S

Assumption 1. Let D u 8 be compact.
From this assumption it follows that Dy S = D and hence D is bounded
and S contains the boundary of D.
Denote £ = (Du S) X Bm, E® =D x Rm and if b = 0, let
Ey,=(DuS8) X {=bb x ... X {(~b,b).

m-times

t
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Further, let U be partially ordered Banach space of all real m x 1 vector
functions w(x) = (u,(2), - .., um(x)), (@) e Co(D U 8), x = (¥, ..., xy), with

the norm |ju|| = max max |ug(x)]. If u, ve U, then v < v if and only
k=1,...,m xteDuS

if for every k=1, ..., m, e DU S, ug(r) £ vr(x) holds. Similarly the
sharp inequality is valid and also the inequality in R™. Denote |u(x)] =
= (|uey(x)), ..., |um(x)]) and analogically, if u € R™, then |u| = (Juy|, ..., [un]).
As usual, if v; £ v,, then (v, v ={u:ueclU,v, < u =< v,}. <o, 0, is
a closed, convex and bounded set in U. Ky 4 = {(x, u) : (x, u) € B, vp(r) £
S up S vlx), k=1, ..., m}, where v,(x) = (v11(2), - .., Vim(®)) S Vy(2) =
= (Vgy(®), .o, Vom(@)) €U, = (Ug, ..., Um). Up={u:uelU, |u| £0b}.

Similarly as for the vector functions, the matrix function |G(z, t)| is defined
by |G(x, t)] = (|Gulx, t)]) if Gz, t) = (Gr(x, 1), k, 1=1, ..., m. For H(x) =
= Hu@)eCy(Du S),k,l=1,...,mitis|[H(x)|| = max max |Hy(x)|.

ol=1,...,m xeDUS

Gz, t) < H(x,t) if and only if Gu(x,t) < Hy(x, t) for every (x,t) of their
common domain and all k, I = 1, ..., m. J (eJ) is the m X m matrix whose
all elements are equal to 1 (are equal to ¢). J, is the unit m X m matrix.

In what follows, the matrices and the vectors will be supposed to be of the
type m X m and m X 1, respectively.

Consider the (boundary-value) problem

(1) L) = flx,w), weD,
() M(u) = g(x), zes,
where f(x, u) = (fi(x, #), ..., fm(®, #)) is a real vector function of the variables

= (¥ -, &n), U == (U, ..., up) defined in E, g(x) is a real vector function
defined in S, L is a linear differential operator, and I is a linear operator.
These functions and operators will be supposed to satisfy an assumption.
By a solution of the problem (1), (2) will be meant every u € U satisfying
the equations (1), (2) and possessing as many continuous derivatives as one
usually requires from the solution of the problem (1), (2).

Assumption 2. Let the problem
3) L(v) = 0j, xeD
4) M(v) = 0j, xel
have only the trivial solution, let there exist a solution v(x) of the problem
L(v) = 0j, xeD
M) = g(x), xelS

and the matriz function G(x, t), so called Green’s function of the problem (3), (4),
with the following properties:

1. [|G(, t)| At exists for each € D U 8.
D
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2. Given any & > 0, there exists a 6 > 0 such that [ |G(x,t) — Gy, t)| dt <
D
< &J whenever |x,y| < d, x,ye DU S.
3. The alternative holds: Either for every r(x) € U the function

(3) w(x) = v(x) —I—J Gz, t) r(t) dt, zxeDuUS
is @ solution of the problem

(6) L(w) = r(z), xeD

(7) Mw) = gx), wxe8

or for every r(x) € U the function (5) satisfies a Holder’s condition and for cvery
r(x) e U satisfying o Holder’s condition the function (5) is a solution of the
problem (6), (7).

Remark 1. By the assumption on the problem (3), (4), the solutions
v(x), w(x), as well as G(x, t), are uniquely determined (G(x, t) cxcept on a set
of Lebesguemeasure zero).

Lemma 1. Let Assumption 1 be fulfilled and let the matriz function G(w,t)
possess the following properties: :

1. Q(z,t) is defined and continuous for every xe DU S, te D, t + .

2. For x st the function G(a,t) is almost uniformly bounded in the sense
that, for any 6 > 0, there exists an N = N(8) > 0 such that |Q(x,t)] < NJ
forallxeDu S, teD, |x,t] = 6.

3. [|G(x, t)| At is uniformly convergent for every xeD U S, that is, given
D

any ¢ > 0, there exists a 6 > 0 such that ) |G(z, )| dt < eJ for all
. DAB(x,8)
zeDuyS. _
Then the function G(x, t) possesses the properties 1 and 2 from Assumption 2.
Proof. Obviously G(z,t) has the property 1 from Assumption 2. The
property 2 can be shown in this way. By the property 3, there exists 6 > 0

such that I G, b)) dt < L. Suppose y e B(x, —6—) N(DuAl).
DnB(z,0) 3 4

Then [ |G &) —G@tdts [ |G dldt+ [ |G d<

DnNB(x,8) DnB(a‘. ﬁ) Do (‘t' '5)

2

)
< % J. With respect to the property 1 of G(x,?)lim |G(x,t) — G(y, t)| =
y->x

= 0J for all te D — B(x, %) (tha’o is, for all t e D such that [, x| > —g—) .

Further the function |G(z,t)| + N (%) J is an integrable majorant for
|G(x, t) — G(y,t)]. By the Lebesgue theorem there exists 0 << §; = d,(z, &) <
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< % such that | |Gz, ) — Gy, t)] dt < —;—J for |x,y| < o6, and
])—I)'(.l‘, —;’)

hence, [ |G(z, ) — G(y,t)| dt < &J. Finally Assumption 1 implies that 9§,
D

does not depend on =z.

Remark 2. If Assumptions 1 and 2 hold, then the function H(x) =
[ |G(z, t)| dt is continuous on D U § and C = ||H(z)|| < .

b
Assumption 3. Let f(x, u) € Cy(E) and if in Assumption 2 the second part of
the alternative is true, let f(x, w) satisfy on every bounded subset Z < E a Holder’s

condition with constants which may depend on Z.

Study of the problem (1), (2).

First, the equivalence of this problem to an integral equation will be shown.

Lemma 2. Let Assumptions 1, 2 and 3 be satisfied. Then, if the first part of
olternative in Assumption 2 holds, the boundary-value problem (1), (2) is
equivalent to the integral equation

(8) u(x) = v(z) +DI Gz, t) f(t, u(t)) dt, axeDuUS.

If the second part of alternative is valid, every solution of (8) is a solution of the

problem (1), (2) satisfying a Hdilder’s condition and conversely, every solution

of the problem (1), (2) which satisfies a Hdolder’s condition is a solution of the

equation (8), too. Here the only request on the solution of (8) is to be of U.
The equation (8) is a functional equation of the type

9) u = Tu.

The properties of the operator 7' defined for every v e U by
(10) Tu = v + [ Q(x, t) f(¢, u(t)) dt
will now be considered. ?

Lemma 3. If Assumptions 1, 2 and 3 hod, the operator T given by (10) is
conlinuous, compact and TU < U.
Proof. Let ¢ > 0 and b > 0 be arbitrary numbers. From the inequality

[Tuy; — Tuy| < [ |G, t)] |f(E, uy(t) — f(¢, uy(t))] dt and from the uniform con-
D _

tinuity of f(x, u) on E, follows the existence of such a 6 = (b, ¢) that ||Tu; —
— Tu,|| < emC for u,, uy€ Up, ||u; — u,|| < 8. Thus 7T is continuous on

Uy. Denote Kp = max max |fi(x, w)|. If we U, then [Tu(x)—
k=1,...,m (ru)eEy
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— Tuw(y)| £ |v(x) — v(y)| + Kbi)[ |G(x, t) — G(y, t)|jdt. Hence for a suf-

ficiently small 6 > 0, on the basis of Assumption 2, |Tu(x) — Tu(y) <
< &(1 + mKyp)j follows from |z,y| <6, x,ye D u S. Finally, |Tu(x) <
2 (|lvl] + KyCm)j. By the Ascoli theorem one gets that 7'U, is relatively
compact. At the same time 77U < U was proved. -

Consider the interval {v — bj,v 4+ bj>, b > 0. Let K, ), = max |fx(x, u)]
for k=1, ..., m, (x,u) € Ey-pjvsp;. For ue (v — bj, v + bj> the inequality
|Tu — v| £ mC. K,ypjis valid. From it, using Lemmas 2, 3 and Schauder’s
fixed point theorem ([1], p. 355) one obtains

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied. Let b > 0 exist, for

which

mCKyp < D.
Then there exists at weast one solution of the problem (1), (2) contained in the
interval (v — bj, v + bj> (which satisfies @ Holder’s condition if in Assumption
2 the second part of the alternative holds).

With help of the Schauder theorem a generalization of the first Fredholm
theorem was proved by another Polish mathematician A. Lasora. This
affirms that a nonlinear equation has at least one solution if a certain system
of homogeneous linear equations possesses only the trivial solution.

Let R be a Banach space. Let Lg(R, R) be the space of all linear (additive
and homogeneous) operators on R into R. In the space Ls(R, R) the simple
convergence is defined as follows: The sequence {4,} = Ls(R, R) converges
simply to 4 € Lg(R, R) (An 5 A) if for each ze R Apz - Az.

Lasota’s Theorem ([2], p. 89—91). Let @ < Ly(R, R) be a set satisfying the
Jollowing conditions:
1. Each sequence {An} < Q contains a subsequence Any - Ae@.

2. The set U 4 zis relatively compact in R.
4€Q,]lz;l =1

Suppose that for each A € Q the equation
z2=A 2

has only the trivial solution.
~ Further let A = A(z) be the operator on R into @ such that

3. zp >z implies A(zn) — A(z).
Finally, let b(z) be the operator which maps R into R and satisfies the conditions:
4. b(z) 1s compact.

5. Jim (Il 6@ = o.

15 Equadift II.
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Under these assumptions there exists at least one solution of the equation
z = A(z) z 4+ b(z).
From this theorem, by method used in the paper [3], one gets
Theorem 2. Let Assumptions 1, 2 and 3 be fulfilled. Let f(x, u) satisfy the
tnequality

m

(1) fw,wl = (W + 2 Liul) j
on E, where N 20, L; 2 0, 1=1, ..., m, are arbitrary constants. Let the
equation

uw(x) = 1{ G(z, t) F(t) u(t) dt

have only the trivial solution for every matriz function F(z) = (Fr(x)), where
Fr(x) = ax), k, 1 =1, ..., m, ai(x) are measurable on D and satisfy the
inequality

la@) £ Ly, 1=1,...,m.

Then the problem (1), (2) has at least one solution.
Proof. Defining the vector functions

m

Pr(x, u) = f@, v) (N + IZI Lijw|) " Lgn(ug), k=1,...,m,

4, w) = flw, u) — 2 pile, ) w,

\\11619 the scalar function 5(u) = w for |u| < 1, n(u) = sgn u, |u| > 1, (here
w is scalar variable) the equatlon (8) can be rewritten in the form

(12) u(x) = Dj Gz, 1;)[2l Pult, u(t)) wit)] dt +
+13|' Gz, t) q(¢, u(t)) dt + o(x).
The functions py(x, u), q(z, ©) € Cy(E) and, by (11), they satisfy
(13) lpe(x, w)| < Lij, g, w)| = (N +§1 Li)j
Denote the set of all matrix functions F satisfying the assumption of Theorem

2, by Mr. Let @ be the set of all operators 4 from U into U defined by the
relation

(14) w= Au =13|' G(x, t) F(t) u(t) dt, F(z) € Mp.
By the assumption the equation u = Awu has for each 4 €@ only the trivial

226



solution. Further for |ju|| =1, ueU and Ly= L, + ... + Lpn [du(x) —
— Au(y)| £ me Lyj for |x,y] < 6 by Assumption 2. Moreover [du(z)| =

s mCLyj, x€e DU 8, and thus by Ascoli’s Theorem the set IHI Au
AeQ, |lull=1

is relatively compact.

m

Denote Apu = Df G(z, t) Fa(t) w(t) dt = [ Gz, t) D ayn(t) w(t)jdt. In view
D 1=1

of |ayu(x)| £ Ly, for each I =1, ..., m the set {a;a(z)} is weakly compact
in L,(D) and therefore there exists a;(x) € L,(D) and a subsequence {a,4,(x)}
such that for every g(x) e L,(D)

lim [ g(0) arny(t) ¢ = J g(t) eut) ¢

k- D

holds. Obviously |a;(z)| < L; and besides, we can reach that {n;} is the same
foralll =1, ..., m. Thus for each x € D U S and u € U there exists

(15) lim | G, t) D ar,a(t) w(t)jdt =
k—oco D 1=1 .

= | Q,t) 2 ayt) w(t) j de.
D 1=1

The functions (14) being equicontinuous on D U 8, the convergence (15) is
uniform.
For each u € U define the operator A(u) € @ by the relation

w=dA@)y = | Gt 2 plt, ult) yi(t) &.

If uy — u, then A(uy) - A(u). In fact, denoting wy, = A(un) y, w = A(u) y,
the inequality

m

[wn — w| < [lyll [ 1G@, 1) 2, [|pilt, wa(t)) — pult, u(®))]| j At <
D =1

< ||yl m? max [lpa(t, ua(t)) — mult, w(®))l| Cj

holds, which implies ||w, — w|| - 0 from |lu, — u|| - 0.
Consider now the operator

w = bu = [ Gz, t) q(t, u(t)) dt + v(=).
D
From (13) follows ||bu|| £ (N 4 L,) mC + ||v||, so that the operator b is
bounded. Obviously it is also continuous. Finally, from the inequality

[bu(z) — bu(y)| < (N + Ly, + 1)mej for |z, y| < d, 6 is sufficiently small,
follows the relative compactness of U in U.
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Thus, all assumptions of Lasota’s Theorem being satisfied, the equation
(12) has at least one soluticn in U.

In the following, some theorems will be proved, where the properties of
the partially ordered space U will be used. The first cnes will be the theorems
of a comparison character. Examples of such theorems can be found in the
paper [4]. Here the following definition will be of use.

The function h(x, w) defined cn E,,, will be said to be nondecreasing
(nonincreasing) in u on Ey,q, if for each x € D U S h(x, u,) £ h(z, u,) (h(z, u, =
= h(z, u,) whenever v,(x) £ u; < u, < v,(2).

Theorem 3. Let Assumptions 1, 2 and 3 hold. Let the Green’s function
G(z, t) = 0J (< 0J) for all points of its domain. Let there exist the vector functions
hy(z, t), j = 1, 2, with the following properties:

a. hy(z, t) satisfy Assumption 3.
b. The problem L(u) = h(x, u), zeD
M(u) = g(x), zel

has a solution vij(x) and v, < v, If the second part of the alternative in
Assumption 2 is valid, then vy(x) satisfy a Hélder’s condition.

c. If Gz, t) = 0J (= 0J). the functions hy(x, u) are mondecreasing (non-
increasing ) in u on By, ., and satisfy the inequalities

hl(xy u) =<= f(x’ ’M) é kz(x, u)
(hy(x, u) = f(2, u) = hy(x, u))

there. Then the problem (1), (2) has at least one solution in {vy, vy).

Proof. With respect to Lemma 3 it suffices to prove that T'{v,, v,> <
< (vy,vy). Assume GQ(a,t) = 0J. If we vy, vy, then G(z,t) hy(t, vy(t)) <
< Qz, t) hy(t, u(t)) = Gz, t) ft. u(t)) = Gz, t) hy(t, u(t)) < G(x, t) hy(t, vo(?)).
From these inequalities the assertion of the theorem follows. The case
G(x, t) < 0J is proved analogically.

Theorem 4. Let Assumptions 1, 2 and 3 hold. Let in Assumplion 2 mentioned
Green’s function G(x,t) = 0J (= 0J) and the solution v(x) = 0j (£ 0) for all-
points of their domain. Let there exist e vector function h(x, u) with the properties

a. h(x,t) = 0j.

b. h(x, t) satisfies Assumption 3.

c. The problem L(u) = h(x, u), zeD
M(u) = g(x), zel

has a solution vy(x) (satisfying a Holder’s condition if the second part of the
alternative in Assumption 2 holds).

d. If Q(z,t) 2 0J (= 0J), then h(x, u) 18 nondecreasing (nonincreasing) in
u on E_y, vy (Evo,—v,) and the inequality
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If(x, w), £ h(x, wy
holds there.

Then the problem (1), (2) has at least one solution contained in the interval
(=29, vy (¥, —p))-

Proof. Let G(z.t) = 0J, v(x) = 0j. Then for —vy £ u = v, the inequalities
—G(x, t) b, vy(t)) £ —G(x, t) B(t, u(t)) = G(x, t) f(£, u(t)) S G(x, t) h(t, u(t)) =
=< G(z, t) b(2, vy(t)) hold, whence it follows that —uv, + 2v < Tu < v,.

The case G(x,t) £ 0J, v(xr) £ 0j is proved analogically.

A further result can be obtained by using the method developed in [1],
p. 277—280. This m=thod is based on the assumption that the operator T'
given by (10) is decomposable into a sum of an isotone operator 7', and an
antitone operator T,, T\U < U, T,U < U.

If two elements v, w, € U are chosen, by the relations

Vnt+y = T10y + Towy
'LUn+1=T1wn+T2vn, n=0, 1, s o0y

the sequences {v,}, {w,} are d=fincd. If

Vg = Wy, vy S ?y, w; £ W,

hold, then foralln =0, 1, 2, ...,

(16) Up S Wy, Un = Un+g, Wpty S Wp

and T<vu, W) S {Vp+y, Wn+yy. Assuming T is continuous and compact there
exists lim v, = ¢, lim w, =, v £ w. The operator 7' has at least one

n —>co n —>oco
fixed point in the interval (, ). Each fixed point of 7', belonging to {v,, w,),
is contained in <{», w). Moreover, if T is isotone, then both points », w are
its fixed points. '
With help of this consideration the following theorem will be proved.

For the sake of simplicity denote G *(z, t) = —;— (G(z, t) + |Q(x, t)]), G (x, t) =

Il

lulr—l

— (G(x,t) — |G(x,t)]). Then G(z,t) = GH(x, t) + G(x, t).

Theorem b. Let Assumption 1 hold. Let there exist a matrix function
P (x) (Py(2)) defined on D U S with the properties:

a. The operator Ly(u) = L(u) — Py(x) v (Ly(u) = L(u) — Py(z) u), as well
as M(u), satisfies Assumption 2 with the Green’s function Gy(z,t) (Gy(z, t)).

b. The function fi(x, w) = f(x, u) — Py(x) u (fo(z, u) = f(x, u) — Py(x) )
satisfies Assumption 3.

c. The function f,(x, u) (fy(z, u)) ts nondecreasing in w on E (nonincreasing
in uwon E).
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d. There cxists a pair of functions vy, wy € U, vy £ wy, such that for n = 0
the functions vn+1, Wn+y defined by the relations :

(A7) van(@) = (@) + [ G, ) filt, oa(®) At + [ G3(@, 1) folt, walt))
Wany(@) = o@) + [ G1(x, &) fult wa(®) At + [ G3(x, ) fu(t, va(t) At
A7) van(@) = o@) + [ G5, ) folts va(t) At + [ G3(x, 0 folt, walt)) &
Wan(®@) = 0@) + [ G3(, 1) folt, wa®) At + [ G3(w, ) falt, vn(t))

satisfy the inequality (16).
Then the following assertions are true:

1. The functions va(x), wu(x) given by the recirsive relations (17) ((17')) felfil
the inequalities (16) for every m = 0 and there exists lim wvy(x) = v(2)

n—>o0

lim wy(x) = w(x), v(x) = w(x).

n->co

2. The problem (1), (2) has at least one solution in the interval {z,w).

3. Each solution of the problem (1), (2) belonging to {v,, wyy is contained
in (v, w).

4. If Gy(z, t) = 0J (Gy(x, t) < 0J), then both functions v(x), w(x) are solutions
of (1), (2).

Proof. In the scnse of Lemma 2 the problem (1), (2) is equivalent to the
equation

u(z) = (v(x) —}-—ﬁf Gi(x, t) filt, u(t)) dt) -{—J Gi(x, t) fi(t, u(t))dt = Tyu + Tyu,

where 7', is an isotone and 7', an antitone operator. Analogous result is ob-
tained in the second case.

Remark 3. Theorem 5 represents a generalization of Theorem 1 in the
paper [5].

Remark 4. More general results could be obtained using a Schroder’s
theorem ([1], p. 293).

The theory of pseudometric spaces yields great consequences for the theo-
rems on existence and uniqueness of fixed points of functional operators.
The basic facts of that theory are mentioned in [1], p. 40—44. A very general
theorem on existence and uniqueness of the solutions of operator equations
in pseudometric space was proved by a German mathematician J. SCHRODER
([1], p. 164—269). This theorem comprises Banach’s Theorem and, slightly
modified, the Kantorovid¢ fixed point theorem ([6], p. 358). For the sake of
simplicity, it will be mentioned here in a weaker form (the operator P will
be supposed to be linear).
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Schrider’s fixed point theorem in a weaker form. Let equation (9) be given
and assume the following conditions hold:

1. The domain X of the operator T is contained in a complete pseudometric
space R with the associated partially ordered linear space H. TX < R.

2. The operator T is bounded, that is, there exists a linear, continuous, and
positive operator P defined on H, PH < H, with the property
(18) o(Tu, Tw) £ Po(u,w)  for each pair u, we X.

3. If uy € X is given, then the sequence oy defined by

on = Pon— + o(uy, Tu,), g, =10
converges. Its limit will be denoted by .

4. The sphere y of elements w € R satisfying the inequality
(19) o(w, Tuy) < o — o(uy, T,)

18 contained in X, or

4." X is complete and all uy given recursively by
(20) uy = Tup—y, n=12, ...,
are contained in X.

Then there exists at least one solution of the equation (9) and the sequence uy,
given by (20), converges to such a solution. All u, and u are contained in y and
the following estimate

o(u,up) < 6 — oy
holds.
Remark 5. The conditions 3 any 4 can be replaced by stronger conditions

3’ 2 p'f exists for each fe H. (P°= I means the identity operator.)
j=0

(It suffices to consider only f = 0.)
4.” The sphere y of elements w € R satisfying the inequality
e(w, Tug) £ (I — P)~o(ug, Tug) — 0(2g, T'tty)
as well as u,, are contained in X.

Theorem on uniqueness. Under the assumptions 1 through 4 of the last theorem
the sphere y given by (19) contains at most one solution of the equation (9).

Lemma 4. If the assumptions 1, 2 and 3' of the weakened Schrider’s fixed
point theorem hold, whereby R need not be complete and P continuous, then there
exists at most one solution of (9) in X.

Proof. Obviously P is isotone. Assume w, = Tw,, w, = Tw,. By (18),
then it is g(wy, w,) = f < Pf and further, f < Pf < P} < .... Hence (0 £)

n n
fs n——i—l- jZO Pif. Since lim 7—@—%—1- Z Pif = 0, it follows that f = 0.

n->o00
i=0
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As an application of the Schrider’s theorem the following theorem will be
mentioned here (compare with an analogous Schréder’s theorem in [1], p. 202).

Theorem 6. Let Assumptions 1, 2 and 3 hold. Let there exist a matrix function
N(z), bounded and measurable on D such that for every (x, u,) and (x, u,) in E°

f(@, w;) — fl@, up)] £ N (@) [uy — upl.
Let the greatest positive eigenvalue A (provided positive eigenvalues exist) of the
operator P defined by
Pu =1! |G, t)] N(t) u(t) dt

.

satisfy the inequality A < 1.
Then the following is true:

1. There exists at most one solution of the problem (1), (2).
2. If wy € U is chosen, the sequence uy defined for n =1, 2, ..., by
L(un) = f(x, wn—(2)), zxeD
M(uy) = g(x), zelS
converges to the solution w of the problem (1), (2), whereby all u, and v are
contained in the sphere v of the elements w satisfying the inequality

lw(z) — w,(@)] = (@) — |up(@) — wy(@)l, 2eDuUS
“where o(x) is a solution of the equation -
o(x) = |ug(x) — wy(x)| + Po(x).

Here the solution of the problem (1), (2) satisfying a Hélder’s condition is dealt
with if in Asswmption 2 the second part of the alternative holds. '

Proof. Consider the pseudometric space V of all vector functions
feCy(D u 8S) with the pseudometric o(f, g) = |f(x) — g(z)|. By the conver-
gence in this space is understood the uniform convergence on Dyu S. V, as
well as each interval contained in it, are complete. The operator P is lincar,
positive and compact. From the inequality 4 < 1, by the Theorem on alter-
native ([1], p. 244), it follows that for every f = 0j, f € V, there exists a unique
solution uy = 0j of v = Pu + f. Define the sequence o, by ¢, = Poy—, + f,

n—1

g, = 0. Then o, = jzo Pif and o,y £ on, on < uy for every n 2 1. At the

same time g, form an equicontinuous set of functions. By Ascoli’s Theorem
there exists their uniform limit ¢. From Schroder’s theorem and Lemma 4
the assertion of the theorem follows.

As an illustration of possibilities of this theory the Rozenblatt—Nagumo
theorem will be generalized. By the PERrON method ([7], p. 216—217) the
following theorem can be proved.

Theorem 7. Let Assumptions 1, 2 and 3 be satisfied, whereby let S be the



boundary of p guq G(x, t) need not have the property 2 from Assumption 2.
Further @ssype that:

@. There exists a constant N > 0 such that

N
@, w) — fla, up)| = IEXC [y — w,

Jor every (x,, w)), (x, u,) € E°.
b. N [|G(x, t)|jdt < |z, S| .
D

c. For any two solutions wy, u, of the problem (1), (2) there exists

i 1a®) = w0 _ o

for each x € 8.
y-r iy, S|

Then there exists at most one solution of the problem (1), (2) (satisfying a Hél-
der’s condition if the second part of alternative in Assumption 2 is valid).

Proof. For any two solutions u,, u, of the problem (1), (2) (satisfying
a Holder’s condition if need be) the inequality

Jug(8) — uyft)
e A

[y (@) — upx)] = NV ].)f |Gz, t)

-holds. The function p(z) = W——l(-xl)x—_gzli&)l ,xeD, plx) =0, xeS, is con-
|%

tinuous on D U 8. If p(x) = 0j, then ||p(x)|| = p > 0. Moreover,
N [ 16 0] p) dt < Np [ [G(, 0)]j dt < p |2, S| j.

Combining the last inequality with the foregoing one, there results finally
p(x) < pj for each x € D but this leads to a contradiction.

Remark 6. The assertion of the theorem remains valid if the points b.
and c. are replaced by the points:

b’ NDf |Gz, t)] j dt < |z, 8] 5.

¢.! For any two solutions u,, u, of the problem (1), (2) there exists a finite

. Iul(y) ":“2(?/)
e
yEThe de‘,eloped theory will be illustrated on the following example.

Let f(x o) = (il @), - ., fm(@, ) G.Co(<0, 1> X Rm) be a vector function
of the va r’iables z, U = (g - oy un.z), l.et it be periodic in z of period 1, f(x, u) =
= f(z + 1, w). Consider the periodic boundary-value problem

for each z € S, which is continuous on 8.
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(21 u' = f(x, u)
(22) w(0) — u(1) = 0.
By [8], p. 718, the problem is equivalent to the integral equation

1
u(x) = Of G(x, t) [f(¢, u(t)) — w(t)] at

where the matrix function G(z, ¢) is of the form

1
—e

1

er=tJ,, 0Lt

IA
IIA

Gz, t) = .

l1—e

er—t.J,, 0<s<xz<t=1l

It is easy to see that Assumptions 1, 2 and 3, as well as the assumptions of Lem-
1

ma 1, are satisfied. Further G(z, ) < 0J. The function H(z) = [ |G(x, ¢)|dt =

0,
=J,. Hence C = |[H(z)|| =1. Let K= max max |fi(z, u) — ux|
k=1,...,m (iuglg%’_l

Consider the operator Py, j = 1, 2, given by the relation

1

1
Pu= Of Gz, t) F(t) w(t) dt, Pyu = of |Gz, t)| N(¢) u(t) dt,

where F(z) is a matrix function satisfying the conditions mentioned in Theorem
2 on <0,1> and N(z) € Cy(<0, 1>) is a matrix function, u(zx) € Cy(<0, 1)) is
any vector function. Then ||Py|| £ (L; + ... + Lu), ||Ps]] £ ||N|| m.

From Theorems 1, 2 and 6 these sufficient conditions for the existence of
the solution of the problem (21), (22) follow.

Theorem 8. The following statements hold:

1. If there exists a b > 0, for which m Ky < b (especially, if f(x, u) — u is
bounded on {0, 1> X R™), then there exists at least one solution of the problem
(21), (22) in the interval {—bj, bj>. ’

m)

2. If |fulw, w) —ux] < (N + ,Z + Lijwl), k=1, ..., m, xe<0,1),
=1
weRm N 20, L;20,1l=1, ..., m are constants and
m
> Li<1,
=1

then there exists at least one solution of the problem (21), (22).
3. If |f(x, uy) — uy — flx, uy) + uy| < N(x) |uy — uy|, where for the matrix
Junction N(x) € Cy(<0, 1)) the inequality ||N(z)|| < ;}; holds, then there exists

a unique solution of (21), (22).
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