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Abstract. We consider the problem of existence of standing wave solu-
tions of the Davey-Stewartson (DS) system in the hyperbolic-hyperbolic
case. We extend the result of non existence of standing wave solutions
for the elliptic-hyperbolic case of the (DS) system ([8]). We show that
there are no solutions of the form eiwtv(x, y) with v ∈ H1(R2) and ho-
mogeneous boundary conditions on ϕ if b �= 0. We finish with a result
about non-existence of standing wave solutions which are smooth but with
non-homogeneous boundary conditions on the velocity potential for both
elliptic-hyperbolic and hyperbolic-hyperbolic cases.
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1 Introduction

The Davey–Stewartson (DS) system models the evolution of water waves in a three
dimensional flow that travels predominantly in one direction. The system can be
written in the form:

iut + δuxx + uyy = λ|u|2u+ buϕx, (x, y) ∈ R, t ∈ R, (1)

ϕxx +mϕyy = (|u|2)x, (2)

for the (complex) wave amplitude u(x, y, t) and the (real) mean velocity potential
ϕ. The coefficients (δ, λ,m, b) depend on the fluid depth, surface tension and grav-
ity and can take both signs [1,4,5]. The parameters λ and δ are normalized such
that, |λ| = |δ| = 1.

This is the final form of the paper.
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The character of the solution depends strongly on the signs of the above co-
efficients. It is useful to classify the system as elliptic-elliptic, elliptic-hyperbolic,
hyperbolic-elliptic and hyperbolic-hyperbolic according to the respective sign of
(δ,m): (+,+), (+,−), (−,+) and (−,−) ([6]). It has been known since the work
of Ghidaglia and Saut ([6]) that the initial value problem of (DS) systems in the
elliptic-elliptic and hyperbolic-elliptic cases has a unique solution in the spaces
L2(R2), H1(R2) and H2(R2).

The Cauchy problem for the DS system in the elliptic-hyperbolic and the
hyperbolic-hyperbolic cases has been studied by Hayashi and Saut [9]. The bound-
ary conditions that have been imposed are, for the wave amplitude u:

u(x, y, t), Dαu→ 0 as x2 + y2 →∞, (3)

and for the mean velocity ϕ are of radiation type:

lim
ξ→−∞

ϕ(ξ, η, t) = 0, lim
η→−∞

ϕ(ξ, η, t) = 0 (4)

where (ξ, η) are the characteristic coordinates:

ξ =
1
2
(x+

√
−my), η(x, y) =

1
2
(x −

√
−my). (5)

More general boundary conditions for ϕ may be the following:

lim
ξ→−∞

ϕ(ξ, η, t) = f(η), lim
η→−∞

ϕ(ξ, η, t) = g(ξ) (6)

with
lim

ξ→−∞
f(ξ) = lim

ξ→−∞
g(ξ) = 0, (7)

and f, g ∈ L∞(R). Standing wave solutions for the DS system have been stud-
ied in the elliptic-elliptic and hyperbolic-elliptic cases. By extending the analysis
developed for standing wave solutions of the Nonlinear Schrödinger equation

iut + uxx + uyy = λ|u|2u. (8)

Cipolatti [2] proved existence, regularity and behavior at infinity of standing wave
solutions in the elliptic-elliptic case, (δ = 1,m > 0). Moreover, he showed the
existence and uniqueness of ground states (positive solutions). In [3], Cipolatti
proved that the ground states are unstable. Ghidaglia and Saut ([7]) gave nec-
essarily conditions for existence of standing waves in the hyperbolic–elliptic case
(δ = −1,m > 0). They showed that solutions of the form eiωtv(x, y) exists only if
λ = −1 and b > 1.

Recently, Guzmán-Gómez ([8]) showed that for elliptic-hyperbolic Davey–Ste-
wartson system (δ = 1,m < 0), and boundary conditions as in (4) there are
not standing wave solutions. This study was rather different from Cipollati [2]
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due to the lack of regularizing effect for the velocity potential ϕ which satisfies a
hyperbolic equation if m < 0. In [8], the author proved that if

u(x, y, t) = eiωtv(x, y) (9)

ϕ(x, y, t) = φ(x, y), (10)

ω ∈ R, v ∈ H1 and ϕ(x, y) ∈ L∞(R2) (11)

is a solution of the system (1)-(2), m < 0, v satisfies weakly the elliptic equation

(1− 1
m
)(vxx + vyy) + 2(1 +

1
m
)vxy − ωv = F. (12)

Due to the ellipticity of (12), if F ∈ L2(R2), then v ∈ H2(R2). Once v is regular
enough and decays at infinity it can be concluded that v must be zero.

The aim of this paper is to show first that the hyperbolic-hyperbolic case of the
(DS) system has no solutions of the form (9)-(11). Also, we approach the problem
for non-homogeneous boundary conditions on ϕ (6) and obtain conditions on f
and g for which standing wave classical solutions does not exist. This latter result
is valid for both: elliptic-hyperbolic and hyperbolic-hyperbolic cases.

In this work, we notice that if there is a solution of the system (1)-(2), in the
form (9) − (10), with v ∈ C∞0 (R2) then v is necessarily zero. We then extend the
result to H1(R2) by density. This technique is more general that the one used in
[8]; we do not need the regularity effect of the correspondent equation (12) and
the density argument is valid for both: δ = 1 and δ = −1.

The non existence of standing wave classical solutions follow from the proof
of Theorem 6 where homogeneous boundary conditions on ϕ are considered; we
approach the problem of existence of standing wave solutions in the classical sense
but with non-homogeneous boundary conditions and provide conditions on f and
g that no standing wave solutions may exist. Here Hk(R2) denotes the Sobolev
space of square integrable functions with square integrable derivatives up to order
k and

‖u‖2 = ‖u‖L2(R2), ‖u‖2Hk = ‖u‖22 +
∑
|α|≤k

‖Dαu‖22, and 〈f, g〉 =
∫

R2
fg

The paper is organized as follows: In section 2 we solve the wave equation
(2) for the velocity potential ϕ in terms of u and substitute it in equation (1) to
obtain a single equation of Schrödinger type with a nonlocal term (eq. 16). We also
provide the main estimates for the nonlocal term that will be used in section 3. In
section 3 we show that if u(x, y, t) = eiωtv(x, y), v ∈ H1(R2) is a weak solution
of the (DS) system then v satisfies weakly (22); we obtain some estimates for the
linear and nonlinear part of equation (22) to conclude that if

{vn} ⊂ C∞0 (R2), {vn} → v in H1(R2)

then

lim
n→+∞

∫ +∞

−∞

(∫ +∞

−∞
(v2n)x(x, y)dy

)2

dx = 0. (13)
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We then prove the main Theorem (6), that is, we show that v(x, y) = 0 a.e. In
section 4 we prove Theorem 7. We show that under certain conditions on the
boundary conditions for ϕ if there is a classical solution of the form eiωtv(x, y)
then v(x, y) = 0∀(x, y) ∈ R2.

2 Velocity Potential

We begin transforming the coupled system (1)-(2) into a single equation with a
nonlocal term by solving equation (2) and substituting it in equation (1). In terms
of the characteristic variables (ξ, η) , (5), we can rewrite the equation for the mean
velocity as

ϕξη =
1
4
(
(|u|2)ξ + (|u|2)η

)
. (14)

We will consider boundary conditions of radiation type (4) for ϕ. A similar problem
can be stated with the boundary conditions defined at +∞ instead of at −∞,
leading to the same results.

Integrating equation (14), we obtain

ϕ(ξ, η) =
1
4

∫ ξ

−∞

∫ η

−∞

(
(|u|2)ξ′ + (|u|2)η′

)
(ξ′, η′)dξ′dη′

=
1
4

(∫ η

−∞
|u(ξ, η′)|2dη′ +

∫ ξ

−∞
|u(ξ′, η)|2dξ′

)
.

Rewriting equation (1) in terms of the ξ-η variables and using the above expression
for ϕ we obtain

iut +
(
δ − 1

m

)
(uξξ + uηη) + 2

(
δ +

1
m

)
uξη

=
(
λ+

b

2
√
−m

)
|u|2u+ b

4
√
−m

u

(∫ η

−∞
|u|2ξdη′ +

∫ ξ

−∞
|u|2ηdξ′

)
. (15)

By renaming the variables ξ, η by x, y, and defining the new parameters α =(
δ − 1

m

)
, β = 2

(
δ + 1

m

)
, γ = λ+ b

2
√
−m , ε = b

4
√
−m we rewrite equation (15) as

iut + α(uxx + uyy) + βuxy = γ|u|2u+ εu

(∫ y

−∞
(|u|2)x(x, y′)dy′

+
∫ x

−∞
(|u|2)y(x′, y)dx′

)
. (16)

In the next lemma we state the main estimate we will use for the second term of
the right hand side of (16).
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Lemma 1. Let f, g ∈ H1(R2) and h ∈ L2(R2). Then

a)
∥∥∥∥f ∫ y

−∞
gh(x, y′)dy′

∥∥∥∥
2

≤ ‖f‖H1‖g‖H1‖h‖2. (17)

b)
∥∥∥∥f ∫ x

−∞
gh(x′, y)dx′

∥∥∥∥
2

≤ ‖f‖H1‖g‖H1‖h‖2. (18)

Proof. We only prove a). We notice that∥∥∥∥f ∫ y

−∞
(gh)(x, y′)dy′

∥∥∥∥2
2

≤ ‖f‖2L2
yL

∞
x

∥∥∥∥∫ y

−∞
(gh)(x, y′)dy′

∥∥∥∥2
L2
xL

∞
y

(19)

where

‖f‖2L2
yL

∞
x

=
∫ ∞

−∞
(essupx|f(x, y)|)2 dy.

Thanks to the Sobolev inequality ‖u‖L∞(R) ≤ ‖u‖H1(R),

‖f‖2L2
yL

∞
x

=
∫ ∞

−∞
‖f(x, y)‖2L∞

x
dy

≤
∫ ∞

−∞

(∫ ∞

−∞
|f(x, y)|2dx+

∫ ∞

−∞

∣∣∣∣∂f∂x (x, y)
∣∣∣∣2 dx

)
dy

≤ ‖f‖2H1(R2). (20)

Also,∥∥∥∥∫ y

−∞
(gh)(x, y′)dy′

∥∥∥∥2
L2
xL

∞
y

=
∫ +∞

−∞

(
essupy

∣∣∣∣∫ y

−∞
(gh)(x, y′)dy′

∣∣∣∣)2

dx

≤
∫ +∞

−∞

(∫ +∞

−∞
|gh(x, y)|dy

)2

dx

≤
∫ ∞

−∞

(∫ ∞

−∞
|g(x, y)|2dy

∫ ∞

−∞
|h(x, y)|2dy

)
dx

≤ ‖g‖2L2
yL

∞
x
‖h‖22. (21)

Using (19), (20), and (21), (17) is obtained. @A

3 Standing Wave Solutions

We look for time-periodic solutions of equation (16) in the form u(x, y, t) =
eiωtv(x, y) where v is real valued and belongs to H1(R2). Therefore, the function
v must solve the following equality

α(vxx + vyy) + βvxy = ωv + γv3 + εv

(∫ y

−∞
(v2)xdy′ +

∫ x

−∞
v2ydx

′
)
, (22)



196 M. Guzmán-Gómez

where α = −
(
1 + 1

m

)
, β = 2(−1+ 1

m ), m < 0. In this paper we only consider weak
solutions of equation (22), that is, v ∈ H1(R2) that satisfies equation

− α
∫

R2
vxfx − α

∫
R2
vyfx − β

∫
vyfx = ω

∫
R2
vf + γ

∫
R2
v3f

+ ε

∫
R2
v

(∫ y

−∞
(v2)x(x, y′)dy′ +

∫ x

−∞
(v2)y(x′, y)dx′

)
f, ∀f ∈ H1(R2). (23)

In [8], thanks to the regularity effect of the elliptic equation (12),(m < 0), the
authors proved that any weak solution of (16), belongs to H2(R2) and they can
conclude that v = 0. In the hyperbolic-hyperbolic (DS) system we cannot use that
v ∈ H2(R2). Instead, we use that C∞0 (R2) is dense in H1(R2), {vn} ⊂ C∞0 (R2),
{vn} → v in H1(R2) and with the help of standard Sobolev estimates and lemma
1 we obtain that

lim
n→+∞

∫ +∞

−∞

(∫ +∞

−∞
(vn)2x

)2

= 0.

We then prove the main theorem.
We define by L and N to be the corresponding linear and nonlinear part of

equation (23), that is,

L(u) = α(uxx + uyy) + βuxy − ωu, m < 0,

N (u) = λu3 + ε

(∫ y

−∞
(u2)xdy′ +

∫ x

−∞
(u2)ydx′

)
.

We may conclude that v ∈ H1(R2) is a weak solution of (22) if and only if

〈L(v), f〉 = 〈N (v), f〉 ∀f ∈ L2(R2). (24)

We will use that whenever {vn} ⊂ C∞0 (R2), vn → v in H1(R2)

lim
n→+∞

〈(L+N )(vn), vnx〉 = 〈(L+N )(v), vx〉 (25)

If v is a weak solution of equation (22), the right hand side of equality (25) is zero.
Also, 〈L(vn), (vn)x〉 = 0 ∀n > 0; on the other hand, after several integration by
parts, we can prove that limn→+∞〈N (vn), vnx〉 = 0 only if vn → 0, that is v = 0
a.e. . Equality (25) is a consequence of the following limits:

lim
n→+∞

‖L(vn)− L(v)‖2 = 0,

lim
n→+∞

‖N (vn)−N (v)‖2 = 0.

To prove the two limits above is the purpose of the following two propositions.

Proposition 2. Let v ∈ H1(R2) be a weak solution of equation (22),and {vn} ⊂
C∞0 (R2) such that ‖vn − v‖H1 → 0, then

a) L(v) ∈ L2(R2),
b) lim

n→+∞
‖L(vn)− L(v)‖2 = 0.
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Proof. Let v ∈ H1(R2) be a weak solution of equation 22. Thank’s to the Sobolev
embedding H1(R2) ⊂ L6(R2), v3 ∈ L2(R2) and from Lemma 1

ε

(
v

∫ y

−∞
v2x(x, y)dy + v

∫ x

−∞
v2y(x, y)dx

)
∈ L2(R2),

therefore N (v) ∈ L2(R2). From (24)

|〈L(v), f〉| ≤ ‖N (v)‖2‖f‖2, ∀f ∈ L2(R2),

hence
L(v) ∈ L2(R2) and ‖L(v)‖2 ≤ ‖N (v)‖2,

a) follows.
Now we prove b): Let {vn} ⊂ C∞0 (R2) with limn→+∞ ‖vn − v‖H1 = 0. For any
f ∈ H1(R2)

〈L(vn), f〉 = −α
∫

R2
vnxfx − α

∫
R2
vnyfy − β

∫
R2
vnyfx − ω

∫
R2
vnf

therefore,

lim
n→+∞

〈L(vn), f〉 = −α
∫

R2
vxfx − α

∫
R2
vyfy − β

∫
R2
vyfx − ω

∫
R2
vf

= 〈L(v), f〉.

Because H1(R2) is dense en L2(R2),

lim
n→+∞

〈L(vn), f〉 = 〈L(v), f〉 for any f ∈ L2(R2). (26)

Equation (26) together with a) implies that

lim
n→+∞

‖L(vn)− L(v)‖2 = 0.@A

Proposition 3. Let v ∈ H1(R2) be a weak solution of equation (22), and {vn} ⊂
H1(R2) such that limn→+∞ ‖vn − v‖H1 = 0 then

lim
n→+∞

‖N (vn)−N (v)‖2 = 0. (27)

Proof. To prove (27) is enough to show the following three limits:

a) lim
n→+∞

‖(vn)3 − v3‖2 = 0,

b) lim
n→+∞

∥∥∥∥vn ∫ x

−∞
(v2n)ydx

′ − v
∫ x

−∞
(v2)ydx′

∥∥∥∥
2

= 0,

c) lim
n→+∞

∥∥∥∥vn ∫ y

−∞
(v2n)ydy

′ − v
∫ y

−∞
(v2)xdy′

∥∥∥∥
2

= 0.
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The first limit follows from Cauchy-Schwartz inequality and the Sobolev embed-
ding H1(R2) ⊂ Lp(R2), ∀p > 2.

‖(vn)3 − (v)3‖2 = ‖(v2n − vnv + v2)(vn − v)‖2
≤ ‖(vn)2 − vnv + v2‖4‖vn − v‖4
≤ 2

(
‖vn‖28 + ‖v‖28

)
‖vn − v‖H1 .

To prove limit b) we use Lemma 1:∥∥∥∥vn ∫ y

−∞
(v2n)x − v

∫ y

−∞
(v2)x

∥∥∥∥
2

≤
∥∥∥∥vn ∫ y

−∞
(v2n − v2)x

∥∥∥∥
2

+
∥∥∥∥(vn − v)∫ y

−∞
(v2)x

∥∥∥∥
2

≤ ‖vn‖1H‖vn + v‖1H‖vn − v‖H1 + ‖vn − v‖1H‖v‖2H1

≤ C
(
‖vn‖2H1 + ‖v‖2H1

)
‖vn − v‖H1 .

Limit c) follows similarly. @A

Lemma 4. There exists a positive constant C such that∫ +∞

−∞

(∫ +∞

−∞
(f2)x(x, y)dy

)2

dx ≤ C‖f‖4H1 (28)

for any f ∈ H1(R2).

Proof. We observe that by Cauchy-Schwartz inequality∫ +∞

−∞

(∫ +∞

−∞
(f2)x

)2

dxdy ≤ 4
∫ +∞

−∞

(∫ +∞

−∞
f2dy

∫ +∞

−∞
(fx)2dy

)
dx

≤ 4 sup
x∈R

∫ +∞

−∞
f2(x, y)dy

∫ +∞

−∞

∫ +∞

−∞
(fx)2(x, y)dxdy.(29)

We use the inequality

‖g‖L∞(R) ≤ C‖g‖H1(R),

(see (20)) to estimate the right hand side of (29) and obtain (28). @A

Lemma 5. Let f be in H1(R2) and {fn} ⊂ C∞0 (R2) such that

lim
n→+∞

‖fn − f‖H1 = 0,

therefore

lim
n→+∞

∫ +∞

−∞

(∫ +∞

−∞
(fn)2x(x, y)dy

)2

dx =
∫ +∞

−∞

(∫ +∞

−∞
(f)2x(x, y)dy

)2

dx. (30)
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Proof. Let

Fn(x) =
∫ +∞

−∞
(f2n)x(x, y)dy and F (x) =

∫ +∞

−∞
(f)2(x, y)dy

∫ +∞

−∞

(
F 2
n(x) − F 2(x)

)
dx =

∫ +∞

−∞
(Fn(x) + F (x))(Fn(x) − F (x))dx

≤
(
‖Fn‖L2(R) + ‖F‖L2(R)

)
‖Fn − F‖L2(R).

From Lemma 4, ‖Fn‖2L2(R) ≤ C‖fn‖4H1 and ‖F‖2L2(R) ≤ C‖f‖4H1 , therefore∫ +∞

−∞

(
F 2
n(x) − F 2(x)

)
dx ≤ C

(
‖fn‖2H1 + ‖f‖2H1

)
‖Fn − F‖L2(R). (31)

Now we estimate ‖Fn − F‖L2(R):

‖Fn − F‖2L2(R) ≤
∫ +∞

−∞

(∫ +∞

−∞
(f2n)x(x, y)dy −

∫ +∞

−∞
(f2)x(x, y)dy

)
dx

=
∫ +∞

−∞

∣∣∣∣2 ∫ +∞

−∞
(fnfnx − ffx)(x, y)dy

∣∣∣∣2 dx
≤ 4

∫ +∞

−∞

[∫ +∞

−∞
fn(fnx − fx)(x, y)dy

+
∫ +∞

−∞
fx(fn − f)(x, y)dy

]2
dx

≤ 8
(
‖fn‖22 + ‖fx‖22

)
‖fn − f‖2H1 . (32)

Combining (31) and (32) and using that ‖fn − f‖H1 → 0, limit (30) follows. @A

Now we prove the main theorem.

Theorem 6. Let v ∈ H1(R2) be a weak solution of equation (22) with b �= 0, then
v(x, y) = 0 almost every where.

Proof. Let {vn} ⊂ C∞0 (R2) such that {vn} → v in H1(R2), then v satisfies Eq.(24)
and

〈L(v)− L(vn), f〉+ 〈L(vn), f〉 = 〈N (v) −N (vn), f〉+ 〈N (vn), f〉

∀f ∈ L2(R2).
Therefore,

〈L(v) − L(vn), vnx〉+ 〈L(vn), vnx〉 = 〈N (v) −N (vn), vnx〉+ 〈N (vn), vnx〉.

Thanks to {vn} ⊂ C∞0 (R2), 〈L(vn), vnx〉 = 0 and

|〈N (vn), vnx〉| ≤ ‖L(v)− L(vn)‖2‖vnx‖2 + ‖N (v)−N (vn)‖2‖vnx‖2. (33)
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Because v ∈ H1(R2) and {vn} → v in H1(R2), there exists a positive constantM ,
independent of n, such that

‖vn‖H1 ≤M. (34)

Combining (33), (34) with Propositions 2 and 3, we obtain

lim
n→+∞

〈N (vn), vnx〉 = 0. (35)

On the other hand,

〈N (vn), vnx〉 = γ

∫
R2
vnx(vn)3+ε

∫
R2
vnxvn

∫ x

−∞
(v2n)y+ε

∫
R2
vnxvn

∫ y

−∞
(v2n)x. (36)

We observe that {vn} ⊂ C∞0 (R2) implies that the first integral in the right hand
side of (36) is zero. Integrating by parts the second term in the right hand side of
(36) we obtain

ε

∫
R2
vnxvn(x, y

∫ x

−∞
(v2n)y(x

′, y)dx′ =
ε

2

∫
R2

(
v2n(x, y)

)
x

∫ x

−∞
(v2n)y(x

′, y)dx′dy

=
ε

2

∫ ∞

−∞
lim

x→+∞

(
v2n(x, y)

∫ x

−∞
(v2n)y(x

′, y)dx′
)
dy

− ε
2

∫
R2
(vn)2(v2n)y. (37)

Because vn ∈ C∞0 (R2) and for any y ∈ R,∣∣∣∣∫ x

−∞
(v2n)y(x

′, y)dx′
∣∣∣∣ ≤ 2

(∫ ∞

−∞
|vn(x, y)|2dx

) 1
2
(∫ ∞

−∞
|vny(x, y)|2dx

) 1
2

,

the right hand side of equation (37) is zero and equality (36) becomes

〈N (vn), vnx〉 = ε

∫
R2
vnxvn(x, y)

∫ y

−∞
(v2n)x(x, y

′)dy′.

=
ε

2

∫
R2

∫ y

−∞
(v2n)xy(x, y

′)dy′
∫ y

−∞
(v2n)x(x, y

′)dy′

=
ε

4

∫
R2

∂

∂y

(∫ y

−∞
(v2n)x(x, y

′)dy′
)2

dy

=
ε

4

∫ +∞

−∞

(∫ +∞

−∞
(v2n)x(x, y)dy

)2

dx. (38)

Equation (38) together with equation (35) implies that

lim
n→+∞

∫ +∞

−∞

(∫ +∞

−∞
(v2n)xdy

)2

dx = 0. (39)
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and together with Lemma 5,∫ +∞

−∞

(∫ +∞

−∞
(v2)xdy

)2

dx = 0. (40)

Hence,∫ +∞

−∞
(v2)x(x, y)dy = 0 almost everywhere and

∫ +∞

−∞
v2(x, y)dy = constant.

Because v ∈ L2(R2) the constant is necessarily zero and Theorem 6 follows. @A

4 Standing Wave Solutions. Non-homogeneous boundary
conditions.

In this section we prove the non-existence of standing wave solutions of elliptic-
hyperbolic and hyperbolic-hyperbolic cases of the Davey-Stewartson system for
classical solutions with some non-homogeneous boundary conditions of the mean
velocity potential.

The Davey-Stewartson system with non-homogeneous boundary conditions (6)
can be written in the form:

iut + α(uxx + uyy) + βuxy = γ|u|2u+ εu

(∫ y

−∞
(|u|2)x(x, y′)dy′

+
∫ x

−∞
(|u|2)y(x′, y)dx′

)
+ buf ′(y) + bug′(x).(41)

A standing wave solution for the equation (41) is a function v ∈ C2(R2) that
satisfies

α(vxx + vyy) + βvxy = ωv + γv3 + εv

(∫ y

−∞
(v2)xdy′ +

∫ x

−∞
v2ydx

′
)

+ bv(f ′(y) + g′(x)), (42)

where α =
(
δ − 1

m

)
, β = 2(δ + 1

m ), m < 0.

Theorem 7. Let f and g be bounded functions in C2(R) such that f ′(x) and g′(x)
are also bounded . If

f ′′(x) ≤ 0 ∀x ∈ R or g′′(x) ≤ 0∀x ∈ R. (43)

lim
x→−∞

f(x) = lim
x→−∞

g(x) = 0 (44)

If v ∈ H2(R2) is a classical solution of equation (42) with b �= 0, then v(x, y) = 0
∀(x, y) ∈ R2.
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Proof. We consider that g′′(x) ≤ 0 ∀x ∈ R. The proof follows the ideas of the proof
of Theorem 6. We use that v is a solution in the classical sense with v ∈ H2(R2).
We take the L2 inner product of vx with each term of equation (42), integrate by
parts and, similarly as in the proof of Theorem 6 we obtain that

0 =
∫ +∞

−∞

(∫ +∞

−∞
(v2)xdy

)2

dx − b

2

∫
v2(g′′(x)) (45)

Therefore, using the assumption on f , we conclude that∫ +∞

−∞

(∫ +∞

−∞
(v2)xdy

)2

dx = 0 (46)

therefore we conclude similarly as in the proof of Thereom 6 that v(x, y) = 0 a.e.,
because v is continuous, v(x, y) = 0 ∀(x, y) ∈ R2. @A
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