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THE HELMHOLTZ DECOMPOSITION IN ARBITRARY UNBOUNDED
DOMAINS – A THEORY BEYOND L2

REINHARD FARWIG∗, HIDEO KOZONO† , AND HERMANN SOHR‡

Abstract. It is well known that the usual Lq-theory of the Stokes operator valid for bounded or
exterior domains cannot be extended to arbitrary unbounded domains Ω ⊂ Rn when q 6= 2. One reason
is given by the Helmholtz projection which fails to exist for certain unbounded smooth planar domains
unless q = 2. However, as recently shown [6], the Helmholtz projection does exist for general unbounded
domains in R3 if we replace the space Lq , 1 < q <∞, by L2 ∩Lq for q > 2 and by Lq + L2 for 1 < q < 2.
In this paper, we generalize this new approach from the three-dimensional case to the n-dimensional case,
n ≥ 2.
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of uniform C1-type, intersection spaces, sum spaces
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1. Introduction. Let Ω ⊂ Rn, n ≥ 2, be a domain and let 1 < q < ∞. Then the
classical Helmholtz projection Pq on Lq(Ω)n defines a topological and algebraic decom-
position of Lq(Ω)n into the direct sum of the solenoidal subspace

Lq
σ(Ω) = C∞0,σ(Ω)

‖·‖q = R(Pq),

where C∞0,σ(Ω) = {u ∈ C∞0 (Ω)n : div u = 0}, and the space of gradients

Gq(Ω) = {∇p ∈ Lq(Ω)n : p ∈ Lq
loc(Ω)} = Ker(Pq).

Hence every vector field u ∈ Lq (here Lq stands for Lq(Ω)n) has a unique decomposition
u = u0 +∇p where u0 = Pqu ∈ Lq

σ and

‖u0‖q + ‖∇p‖q ≤ c‖u‖q (1.1)

with a constant c = c(q,Ω) > 0. The existence of Pq is well known for several classes of
domains with boundary of class C1, namely for bounded domains, for exterior domains,
aperture domains, layers, tubes, half spaces and perturbations of them, see e.g. [3], [4],
[5], [7], [8], [10]. However, the decomposition

Lq(Ω)n = Lq
σ(Ω)⊕Gq(Ω), 1 < q <∞, (1.2)

no longer holds for infinite cones in R2 with “smoothed vertex” at the origin and of
opening angle larger than π when q 6= 2, see [2], [9].

On the other hand, an L2-theory works for every bounded and unbounded domain
without any assumptions on the boundary. Actually, the decomposition u = u0 +∇p can
be found by solving the weak Neumann problem

∆p = div u in Ω,
∂p

∂N
= u ·N on ∂Ω,
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where N denotes the exterior normal unit vector on ∂Ω; i.e., ∇p is determined in G2(Ω)
via the variational problem

(∇p,∇ψ) = (u,∇ψ) for all ∇ψ ∈ G2(Ω)

using the Lemma of Lax-Milgram. Obviously, ‖∇p‖2 ≤ ‖u‖2 and u0 := u − ∇p⊥∇p
leading to the a priori estimate

‖u0‖2 + ‖∇p‖2 ≤ 2‖u‖2. (1.3)

Note that the constant C = 2 in (1.3) is independent of the domain.
In a recent paper, the authors proved the existence of the Helmholtz projection for

general unbounded domains Ω ⊂ R3 of uniform C2-class (cf. Definition 1.1 below) by
replacing the space Lq by

L̃q(Ω) =

{
Lq(Ω) ∩ L2(Ω), 2 ≤ q <∞
Lq(Ω) + L2(Ω), 1 < q < 2

.

We may extend this definition to general unbounded domains Ω ⊂ Rn, n ≥ 2, and equip
L̃q(Ω) with the norm ‖u‖L̃q(Ω) = max(‖u‖q, ‖u‖2) if q ≥ 2, and

‖u‖L̃q(Ω) = inf {‖u1‖q + ‖u2‖2 : u = u1 + u2, u1 ∈ Lq, u2 ∈ L2}

= sup
{ |〈u1 + u2, f〉|

‖f‖Lq′∩L2

: 0 6= f ∈ Lq′ ∩ L2
}

if 1 < q < 2 and where q′ = q/(q − 1). Note that(
L̃q(Ω)

)′ ∼= L̃q′(Ω),

see [1]. By analogy, we define the spaces

L̃q
σ(Ω) =

{
Lq

σ(Ω) ∩ L2
σ(Ω), 2 ≤ q <∞

Lq
σ(Ω) + L2

σ(Ω), 1 < q < 2
, G̃q(Ω) =

{
Gq(Ω) ∩G2(Ω), 2 ≤ q <∞
Gq(Ω) +G2(Ω), 1 < q < 2

.

For more properties of the intersection and sum of such compatible pairs of Banach spaces
we refer to [6].

Definition 1.1. A domain Ω ⊂ Rn, n ≥ 2, is called a uniform C1-domain of type
(α, β,K) (where α > 0, β > 0, K > 0) if for each x0 ∈ ∂Ω we can choose a Cartesian
coordinate system with origin at x0 and coordinates y = (y′, yn), y′ = (y1, . . . , yn−1), and
a C1-function h(y′), |y′| ≤ α, with C1-norm ‖h‖C1 ≤ K such that the neighborhood

Uα,β,h(x0) := {(y′, yn) ∈ Rn : h(y′)− β < yn < h(y′) + β, |y′| < α}

of x0 satisfies

U−
α,β,h(x0) := {(y′, yn) : h(y′)− β < yn < h(y′), |y′| < α} = Ω ∩ Uα,β,h(x0),

and

∂Ω ∩ Uα,β,h(x0) = {(y′, h(y′)) : |y′| < α} .
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Then our main theorem reads as follows:

Theorem 1.2. Let Ω ⊂ Rn, n ≥ 2, be a uniform C1−domain of type (α, β,K) and let
q ∈ (1,∞). Then each u ∈ L̃q(Ω) has a unique decomposition

u = u0 +∇p, u0 ∈ L̃q
σ(Ω), ∇p ∈ G̃q(Ω),

satisfying the estimate

‖u0‖L̃q + ‖∇p‖L̃q ≤ c‖u‖L̃q , c = c(α, β,K, q) > 0. (1.4)

In particular, the Helmholtz projection P̃q defined by P̃qu = u0 is a bounded linear pro-
jection on L̃q(Ω) with range L̃q

σ(Ω) and kernel G̃q(Ω) and satisfies
(
P̃q

)′ = P̃q′ .

Corollary 1.3. Let 1 < q < ∞ and let Ω ⊂ Rn, n ≥ 2, be a uniform C1−domain of
type (α, β,K).

1. L̃q
σ(Ω) = C∞0,σ(Ω)

‖·‖L̃q

.

2. The following isomorphisms hold:(
L̃q

σ(Ω)
)′ ∼= L̃q′

σ(Ω),
(
G̃q(Ω)

)′ ∼= G̃q′(Ω).

3. The annihilator identities(
L̃q

σ(Ω)
)⊥ = G̃q′(Ω),

(
G̃q(Ω)

)⊥ = L̃q′

σ(Ω)

hold.

Besides the spaces L̃q
σ and G̃q we consider the spaces

L̃q
σ(Ω) =

{
u ∈ L̃q(Ω)n : div u = 0 in Ω, u ·N = 0 on ∂Ω

}
and

G̃q(Ω) = ∇C∞0 (Ω)
‖·‖L̃q

,

the closure in G̃q(Ω) of its subspace ∇C∞0 (Ω); here L̃q
σ(Ω) is defined in the sense of

distributions, i.e., 〈u,∇ϕ〉 = 0 for all ϕ ∈ C∞0 (Ω). Hence by definition

L̃q
σ(Ω) = G̃q′(Ω)⊥

and, due to reflexivity, G̃q(Ω)⊥ = L̃q′

σ(Ω).
As is well known, for bounded or exterior domains, see [10], L̃q

σ = L̃q
σ and G̃q =

G̃q. However, for an aperture domain, see [3], [5], [8], L̃q
σ is a closed subspace of L̃q

σ of
codimension 1 if and only if q > n′, and G̃q is a closed subspace of G̃q of codimension 1 if
and only if 1 < q < n. In an arbitrary unbounded domain of uniform C1-type the same
phenomena may occur; moreover, the codimensions could equal an arbitrary positive
integer or even infinity.

Corollary 1.4. Let 1 < q <∞ and let Ω ⊂ Rn, n ≥ 2, be a uniform C1-domain of type
(α, β,K).

1. The following isomorphisms hold:(
L̃q

σ(Ω)/L̃q
σ(Ω)

)′ ∼= G̃q′(Ω)/G̃q′(Ω),
(
G̃q(Ω)/G̃q(Ω)

)′ ∼= L̃q′

σ(Ω)/L̃q′

σ(Ω).
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2. The space L̃q
σ(Ω) admits the following direct algebraic and topological decompo-

sition:

L̃q
σ(Ω) = L̃q

σ(Ω)⊕
(
L̃q

σ(Ω) ∩ G̃q(Ω)
)
.

By Corollary 1.4 (1) L̃q
σ has a finite codimension in L̃q

σ if and only if G̃q′ has a finite
codimension in G̃q′ ; in this case the codimensions coincide.

2. Proofs.

2.1. Preliminaries. Concerning Definition 1.1 we introduce further notation and
discuss some properties. Obviously, the axes ei, i = 1, . . . , n, of the new coordinate system
(y′, yn) may be chosen in such a way that e1, . . . , en−1 are tangential to ∂Ω at x0. Hence
at y′ = 0 we have h(y′) = 0 and ∇′h(y′) = 0. Since h ∈ C1, for any given constant
M0 > 0, we may choose α > 0 sufficiently small such that ‖h‖C1 ≤M0 is satisfied.

It is easily shown that there exists a covering of Ω by open balls Bj = Br(xj) of
fixed radius r > 0 with centers xj ∈ Ω, such that with suitable functions hj ∈ C1 of type
(α, β,K)

Bj ⊂ Uα,β,hj
(xj) if xj ∈ ∂Ω, Bj ⊂ Ω if xj ∈ Ω. (2.1)

Here j runs from 1 to a finite number N = N(Ω) ∈ N if Ω is bounded, and j ∈ N if
Ω is unbounded. The covering {Bj} of Ω may be constructed in such a way that not
more than a fixed number N0 = N0(α, β,K) ∈ N of these balls can have a nonempty
intersection. Moreover, there exists a partition of unity {ϕj}, ϕj ∈ C∞0 (Rn), such that

0 ≤ ϕj ≤ 1, suppϕj ⊂ Bj , and
N∑

j=1

ϕj = 1 or
∞∑

j=1

ϕj = 1 on Ω. (2.2)

The functions ϕj may be chosen so that |∇ϕj(x)| ≤ C uniformly in j and x ∈ Ω with
C = C(α, β,K).

If Ω is unbounded, then Ω can be represented as the union of an increasing sequence
of bounded domains Ωk ⊂ Ω, k ∈ N,

. . . ⊂ Ωk ⊂ Ωk+1 ⊂ . . . , Ω =
∞⋃

k=1

Ωk, (2.3)

each Ωk is of the same type (α′, β′,K ′). Without loss of generality we assume that
α = α′, β = β′, K = K ′.

Using the partition of unity {ϕj} the construction of the Helmholtz decomposition
will be based on well known results for certain bounded and unbounded domains. For
this reason, we introduce for h ∈ C1

0 (Rn−1) satisfying h(0) = 0, ∇′h(0) = 0 and supph ⊂
B′

r(0) ⊂ Rn−1, 0 < r = r(α, β,K) < α, the bounded domain

H = Hα,β,h;r = {y ∈ Rn : h(y′)− β < yn < h(y′), |y′| < α} ∩Br(0) ;

here we assume that Br(0) ⊂ {y : |yn − h(y′)| < β, |y′| < α}.
On H we consider the classical Sobolev spaces W 1,q(H) and W 1,q

0 (H), the dual space
W−1,q(H) =

(
W 1,q′

0 (H)
)′ and the space

Lq
0(H) =

{
u ∈ Lq(H) :

∫
H

u dx = 0
}

of Lq-functions with vanishing mean on H.



Equadiff-11. The Helmholtz Decomposition 81

Lemma 2.1. Let 1 < q <∞ and H = Hα,β,h;r.
1. Assume that ‖∇′h‖∞ ≤M0 for a sufficiently small constant M0 = M0(q, n) > 0,

and let u ∈ Lq(H)n admit the Helmholtz decomposition u = u0+∇p with u0 ∈ Lq
σ(H), p ∈

W 1,q(H) and suppu0, supp p ⊂ Br(0). Then there exists a constant C = C(α, β,K, q) > 0
such that

‖u0‖q + ‖∇p‖q ≤ C‖u‖q. (2.4)

2. There exists a bounded linear operator

R : Lq
0(H) →W 1,q

0 (H)n

such that div ◦R = id on Lq
0(H) and a constant C = C(α, β,K, q) > 0 such that

‖Rf‖W 1,q ≤ C‖f‖q for all f ∈ Lq
0(H). (2.5)

3. There exists C = C(α, β,K, q) > 0 such that for every p ∈ Lq
0(H)

‖p‖q ≤ C‖∇p‖W−1,q = C sup
{ |〈p,div v〉|

‖∇v‖q′
: 0 6= v ∈W 1,q′

0 (H)
}
. (2.6)

Proof.
1. Since suppu0, supp p ⊂ Br(0) and since h has compact support, the decompo-

sition u = u0 + ∇p on H may be considered as a Helmholtz decomposition in the bent
half space

Hh =
{
y ∈ Rn : yn < h(y′), y′ ∈ Rn−1

}
.

Then [10, Lemma 3.8 a)] yields (2.4) provided that ‖∇′h‖∞ ≤M0 is sufficiently small.
2. It is well known that there exists a bounded linear operator R : Lq

0(H) →
W 1,q

0 (H)n such that u = Rf solves the divergence problem div u = f. Moreover, the
estimate (2.5) holds with C = C(α, β,K, q) > 0, see [8, III, Theorem 3.1].

3. The dual map R′ : W−1,q(H)n → Lq
0(H) of the map R in 2., replacing q by

q′, is continuous with bound C = C(α, β,K, q) > 0. Given p ∈ Lq
0(H), we get that

∇p ∈W−1,q(H)n using the definition 〈∇p, v〉 = −(p,div ) for v ∈W 1,q′

0 (H). Then for all
f ∈ Lq′

0 (H),

(f,R′(∇p)) = 〈Rf,∇p〉 = −(divRf, p) = −(f, p).

Hence R′(∇p) = −p, yielding (2.6).

2.2. The case Ω bounded, q ≥ 2. Assume that Ω ⊂ Rn is a bounded uniform
C1-domain of type (α, β,K). Then each u ∈ Lq(Ω)n, 2 ≤ q <∞, has a unique decomposi-
tion u = u0 +∇p, u0 ∈ Lq

σ(Ω), ∇p ∈ Gq(Ω), satisfying (1.1) with constant c = c(q,Ω) > 0
depending somehow on Ω, see [7], [10].

Given the partition of unity {ϕj}N
j=1, the ballsBj and the sets Uα,β,hj (xj), U−

α,β,hj
(xj),

see Definition 1.1 and Subsection 2.1, we define the sets

Uj = U−
α,β,hj

(xj) ∩Bj if xj ∈ ∂Ω and Uj = Bj if xj ∈ Ω,

1 ≤ j ≤ N. We may assume that in both cases Lemma 2.1 applies to the domain H = Uj

(in Lemma 2.1 1. the smallness assumption is satisfied if xj ∈ ∂Ω, whereas the case
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xj ∈ Ω is related to the Helmholtz decomposition in the whole space). Moreover, at
most N0 = N0(α, β,K) ∈ N of these sets will have a nonempty intersection. Multiplying
u = u0 +∇p with ϕj we get that

ϕju = ϕju0 +∇
(
ϕj(p−Mj)

)
− (∇ϕj)(p−Mj)

where Mj = 1
|Uj |

∫
Uj
pdx yielding p−Mj ∈ Lq

0(Uj). Moreover, using the operator R = Rj

in Uj , see Lemma 2.1 (2), we find wj = Rj(u0 · ∇ϕj) ∈ W 1,q
0 (Uj) such that divwj =

u0 · ∇ϕj in Uj and ϕju0 − wj ∈ Lq
σ(Uj). Then

ϕju+ (∇ϕj)(p−Mj)− wj = (ϕju0 − wj) +∇
(
ϕj(p−Mj)

)
(2.7)

is the Helmholtz decomposition of the left-hand side ϕju + (∇ϕj)(p −Mj) − wj in Uj .
To estimate ϕju and ϕj∇p let s := max

(
nq

n+q , 2
)
∈ [2, q), s′ = s/(s − 1). Then the

Sobolev embeddings W 1,s
0 (Uj) ↪→ Lq(Uj) and W 1,q′

0 (Uj) ↪→ Ls′(Uj) hold with embedding
constants depending on α, β,K and q, s only. Hence, by Lemma 2.1 2. (with q replaced
by s)

‖wj‖Lq(Uj) ≤ c‖wj‖W 1,s(Uj) ≤ C‖u0‖Ls(Uj), (2.8)

and by Lemma 2.1 3.

‖u0‖W−1,q(Uj) = sup
{ |(u0, v)|
‖∇v‖Lq′ (Uj)

: 0 6= v ∈W 1,q′

0 (Uj)
}
≤ C‖u0‖Ls(Uj), (2.9)

where c = c(α, β,K) > 0 and C = C(α, β,K) > 0. By (2.9) we conclude that

‖p−Mj‖Lq(Uj) ≤ c‖∇p‖W−1,q(Uj) ≤ c
(
‖u‖W−1,q(Uj) + ‖u0‖W−1,q(Uj)

)
≤ C

(
‖u‖Lq(Uj) + ‖u0‖Ls(Uj)

)
(2.10)

with constants c, C > 0 depending only on α, β, K.
Now Lemma 2.1 1. and (2.7) imply the estimate

‖ϕju0 − wj‖Lq(Uj) + ‖∇
(
ϕj(p−Mj)

)
‖Lq(Uj) ≤ c‖ϕju+ (∇ϕj)(p−Mj)‖Lq(Uj),

which may be simplified by virtue of (2.8), (2.10) to the inequality

‖ϕju0‖Lq(Uj) + ‖ϕj∇p‖Lq(Uj) ≤ C
(
‖u‖Lq(Uj) + ‖u0‖Ls(Uj)

)
(2.11)

with constants c, C > 0 depending only on α, β, K. Taking the qth power in (2.11),
summing over j = 1, . . . , N and exploiting the crucial property of the number N0 we are
led to the estimate

‖u0‖q
Lq(Ω) + ‖∇p‖q

Lq(Ω) ≤
∫

Ω

(( ∑
j

ϕj |u0|
)q

+
( ∑

j

ϕj |∇p|
)q)

dx

≤
∫

Ω

N
q
q′

0

( ∑
j

|ϕju0|q +
∑

j

|ϕj∇p|q
)

dx

≤ CN
q
q′

0

( ∑
j

‖u‖q
Lq(Uj)

+
∑

j

‖u0‖q
Ls(Uj)

)
.

(2.12)
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The last sum on the right-hand side may be estimated by the reverse Hölder inequality∑
j |aj |q ≤

( ∑
j |aj |s

)q/s. Using again the property of the number N0 and taking the
qth root, (2.12) may be simplified to the estimate

‖u0‖Lq(Ω) + ‖∇p‖Lq(Ω) ≤ C
(
‖u‖Lq(Ω) + ‖u0‖Ls(Ω)

)
(2.13)

where C = C(α, β,K) > 0. To get rid of the term ‖u0‖Ls(Ω) in the case when s > 2 we
use the elementary interpolation inequality

‖u0‖Ls(Ω) ≤ α

(
1
ε

)1/α

‖u0‖L2(Ω) + (1− α)ε1/(1−α)‖u0‖Lq(Ω), ε > 0,

where α ∈ (0, 1) is defined by 1
s = α

2 + 1−α
q . Choosing ε > 0 sufficiently small, the new

term ‖u0‖Lq(Ω) on the right-hand side of (2.13) may be absorbed by the same term on
the left-hand side so that (2.13) leads to the inequality

‖u0‖Lq(Ω) + ‖∇p‖Lq(Ω) ≤ C
(
‖u‖Lq(Ω) + ‖u0‖L2(Ω)

)
(2.14)

with C = C(α, β,K) > 0. Finally we use the L2-estimate (1.3) for the term ‖u0‖L2(Ω)

and add (1.3) to (2.14). This proves the estimate

‖u0‖Lq∩L2 + ‖∇p‖Lq∩L2 ≤ C‖u‖Lq∩L2 (2.15)

for every q ≥ 2.

2.3. The case Ω bounded, 1 < q < 2. For u ∈ Lq+L2 there exist u1 ∈ Lq, u2 ∈ L2

satisfying u = u1 + u2 and ‖u‖Lq+L2 = ‖u1‖Lq + ‖u2‖L2 . Define u0 and ∇p by

u0 = Pqu1 + P2u2 ∈ Lq
σ + L2

σ, ∇p = (I − Pq)u1 + (I − P2)u2 ∈ Gq +G2

yielding u = u0 +∇p. Then, using duality arguments and (2.15) for q′ > 2,

‖u0‖Lq+L2 = sup
{ |〈Pqu1 + P2u2, v〉|

‖v‖Lq′∩L2

: 0 6= v ∈ Lq′ ∩ L2
}

= sup
{‖〈u1 + u2, Pq′v〉|

‖v‖Lq′∩L2

: 0 6= v ∈ Lq′ ∩ L2
}

≤ sup
{ (‖u1‖q + ‖u2‖2)max

(
‖Pq′v‖q′ , ‖P2v‖2

)
‖v‖Lq′∩L2

: 0 6= v ∈ Lq′ ∩ L2
}

≤ C‖u‖Lq+L2

with the same constant C = C(α, β,K) as in (2.15) (with q′ instead of q). It follows that
‖u0‖Lq+L2 + ‖∇p‖Lq+L2 ≤ C‖u‖Lq+L2 , i.e., (1.4) for q ∈ (1, 2).

Summarizing both cases we proved the existence of a bounded linear projection P̃q on
L̃q for a bounded domain Ω ⊂ Rn of uniform C1-type (α, β,K) such that P̃qu = Pqu for all
u ∈ L̃q = Lq. Moreover, ∇p = (I − P̃q)u = (I −Pq)u ∈ G̃q = Gq. The crucial property of
P̃q is the fact that its operator norm on L̃q is bounded by a constant C = C(α, β,K) > 0.
Finally, the assertion

(
P̃q

)′ = P̃q′ follows from standard duality arguments.
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2.4. The case Ω unbounded. Let Ω ⊂ Rn be an unbounded domain of uniform
C1-type (α, β,K). Given u ∈ L̃q(Ω)n, 1 < q <∞, define uk = u|Ωk

, k ∈ N, where Ωk ⊂ Ω
is the bounded domain introduced in §2.1; note that Ωk ⊂ Ω again is of uniform C1-type
(α, β,K). Since obviously uk ∈ L̃q(Ωk)n, there exists a unique Helmholtz decomposition
uk = uk,0 +∇pk with uk,0 ∈ L̃q

σ(Ωk), ∇pk ∈ G̃q(Ωk), satisfying the estimate

‖uk,0‖L̃q(Ωk) + ‖∇pk‖L̃q(Ωk) ≤ C‖uk‖L̃q(Ωk) ≤ C‖u‖L̃q(Ω) (2.16)

with a constant C = C(α, β,K) independent of k ∈ N. Extending uk,0 and ∇pk by 0
from Ωk to Ω we get bounded sequences in L̃q(Ω)n. Since L̃q(Ω) is reflexive, there exist
– suppressing the notation of subsequences – weak limits

u0 = (w−) lim
k→∞

uk,0 ∈ L̃q(Ω)n, Q = (w−) lim
k→∞

∇pk ∈ L̃q(Ω)n, (2.17)

satisfying u = u0 +Q and the estimate ‖u0‖L̃q(Ω) + ‖Q‖L̃q(Ω) ≤ C‖u‖L̃q(Ω). Since uk,0 ∈
L̃q

σ(Ωk) ⊂ L̃q
σ(Ω) and since L̃q

σ(Ω) is closed with respect to weak convergence, u0 ∈ L̃q
σ(Ω).

Moreover, de Rham’s argument, see [11], [12], implies that there exists p ∈ L1
loc(Ω) such

that Q = ∇p ∈ G̃q(Ω). Hence the pair (u0,∇p) determines a Helmholtz decomposition
of u in L̃q(Ω)n. The uniqueness of the Helmholtz decomposition is proved by a classical
duality argument and the weak convergence properties (2.17). Now the existence of
the Helmholtz projection P̃q on L̃q(Ω)n with range L̃q

σ(Ω) and kernel G̃q(Ω) is proved.
Moreover, the assertion

(
P̃q

)′ = P̃q′ follows from standard duality arguments.

Proof of Corollary 1.3.
1. Note that obviously C∞0,σ(Ω)

‖·‖L̃q ⊂ L̃q
σ(Ω), 1 < q <∞. Now let u = u0 ∈ L̃q

σ(Ω).
By the proof above, cf. (2.17), the sequence (uk,0) converges weakly in L̃q(Ω)n towards
P̃qu = u. By Mazur’s theorem there exists a sequence of convex combinations of the
elements (uk,0), say (vm), converging strongly in L̃q

σ(Ω) to u. Each element vm has its
support in some bounded domain Ωk(m) yielding vm ∈ Lq

σ(Ωk(m)). Since C∞0,σ(Ωk(m)) is
dense in Lq

σ(Ωk(m)) and since for a bounded domain the norms in Lq and L̃q are equivalent,

we conclude that (vm) converges to u in L̃q
σ(Ω) as m→∞; hence u ∈ C∞0,σ(Ω)

‖·‖L̃q

.

The assertions
(
L̃q(Ω)

)′ = L̃q′(Ω) and
(
P̃q

)′ = P̃q′ follow from standard duality argu-
ments.

2., 3. All claims are easily proved by duality arguments. 2

Proof of Corollary 1.4.
1. By Corollary 1.3 2., 3. both assertions are special cases of the following general

result and of the reflexivity of the space L̃q, 1 < q <∞:
Let X0 be a Banach space with dual space Y0 = (X0)′ and let X1, X2 and Y1, Y2 be closed
subspaces of X0 and Y0, respectively, such that

X2 ⊂ X1 ⊂ X0, Y2 ⊂ Y1 ⊂ Y0, X⊥
2 = Y1, X⊥

1 = Y2.

Then (
X1/X2

)′ ∼= Y1/Y2.

For the proof of this abstract result first consider arbitrary equivalence classes y1 =
y1 + Y2 ∈ Y1/Y2 and x1 = x1 + X2 ∈ X1/X2. Then 〈〈y1, x1〉〉 := 〈y1, x1〉 is well-
defined and defines an injective map J from Y1/Y2 into

(
X1/X2

)′. Next, given any
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f ∈
(
X1/X2

)′
, define f1 ∈ X ′

1 by 〈f1, x1〉 := 〈〈f, x1〉〉 and use Hahn-Banach’s theorem to
extend f1 ∈ X ′

1 to an element f0 ∈ X ′
0. Note that f0 ∈ Y1, but that the map f 7→ f0

is not necessarily linear. Then define f := f0 + Y2 ∈ Y1/Y2. We note that the map(
X1/X2

)′ → Y1/Y2, f 7→ f, is linear (!) and bounded. Since it is easily seen that this
map is the inverse of the map J constructed in the first part of the proof, the isomorphism
is found.

2. By Theorem 1.2 L̃q
σ∩

(
L̃q

σ∩G̃q
)

= {0}. Each u ∈ L̃q
σ has a unique decomposition

u = u0 + ∇p, u0 ∈ L̃q
σ, ∇p ∈ G̃q. Then ∇p = u − u0 ∈ L̃q

σ proving the algebraic
decomposition of L̃q

σ as stated. Moreover, by Theorem 1.2, this decomposition is also a
topological one. 2
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