EQUADIFF 11

Jaromír Kuban
Asymptotic equivalence of systems of difference equations

In: Marek Fila and Angela Handlovičová and Karol Mikula and Milan Medved’ and Pavol Quittner and Daniel Ševčovič (eds.): Proceedings of Equadiff 11, International Conference on Differential Equations. Czecho-Slovak series, Bratislava, July 25-29, 2005, [Part 2] Minisymposia and contributed talks. Comenius University Press, Bratislava, 2007. Presented in electronic form on the Internet. pp. 189--196.

Persistent URL: http://dml.cz/dmlcz/700411

Terms of use:

© Comenius University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

ASYMPTOTIC EQUIVALENCE OF SYSTEMS OF DIFFERENCE EQUATIONS

JAROMÍR KUBEN*

Abstract

The relation between sets of solutions of the first order linear system of difference equations and of its perturbation is studied. Asymptotic equivalence is proved using Tychonoff fixed point theorem.

Key words. System of difference equations, asymptotic equivalence, Tychonoff fixed point theorem.

AMS subject classifications. 39A11

Consider the system of difference equations

$$
\begin{equation*}
\Delta x_{n}=A x_{n}+f\left(n, x_{n}\right), \tag{1}
\end{equation*}
$$

where A is a $k \times k$ matrix, $k \in \mathbb{N}, x_{n} \in \mathbb{R}^{k}, n \in \mathbb{N}_{0}$ and $f: \mathbb{N}_{0} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}, f(n, x)$ is continuous in x for any $n \in \mathbb{N}_{0}$ and Δ denotes the forward difference operator, i.e., $\Delta x_{n}=x_{n+1}-x_{n}$. Along with (1) we also consider the corresponding linear system

$$
\begin{equation*}
\Delta y_{n}=A y_{n} . \tag{2}
\end{equation*}
$$

Here $\mathbb{N}=\{1,2,3, \ldots\}$ and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
In the sequel let us denote $\mathbb{N}(a)=\{a, a+1, \ldots\}$ for $a \in \mathbb{N}_{0}$ and $\boldsymbol{x}=\left\{x_{n}\right\}, \boldsymbol{y}=\left\{y_{n}\right\}$, $\boldsymbol{z}=\left\{z_{n}\right\}$. Further, let us denote $|$.$| a norm on \mathbb{R}^{k}$ or $\mathbb{R}^{k \times k}$ such that $|D x| \leq|D| \cdot|x|$ for any matrix D and any colon x.

In this contribution asymptotic relationship between solutions of the systems (1) and (2) will be investigated. The approach is inspired by the result for systems of ordinary differential equations studied in [8]. A similar topic for difference systems can be found in $[4,5,7]$.

Definition 1. The systems (1) and (2) are said to be asymptotically equivalent if to each solution $\boldsymbol{x}, n \in \mathbb{N}(a)$, of (1) there exists a solution $\boldsymbol{y}, n \in \mathbb{N}(b)$, of (2) such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0 \tag{3}
\end{equation*}
$$

and conversely to each solution $\boldsymbol{y}, n \in \mathbb{N}(a)$, of (2) there exists a solution $\boldsymbol{x}, n \in \mathbb{N}(b)$, of (1) such that (3) holds.

If (3) holds only for some subsets of all solutions of (1) and (2), we will speak about asymptotic equivalence between these sets.

First we will examine the special case of (1) - a non-homogeneous linear system

$$
\begin{equation*}
\Delta z_{n}=A z_{n}+b_{n}, \tag{4}
\end{equation*}
$$

where $b_{n} \in \mathbb{R}^{k}, n \in \mathbb{N}_{0}$.

[^0]We will suppose that the matrix $A+I=B$ is nonsingular, i.e., $\operatorname{det} B \neq 0$. This guarantees that each solution of (2) and (4) can be extended on \mathbb{N}_{0}. Denote $Y_{n}, n \in \mathbb{N}_{0}$, $Y_{0}=I$, the fundamental matrix of (2). Thus $\Delta Y_{n}=A Y_{n}$ or equivalently $Y_{n+1}=$ $(A+I) Y_{n}$, from which we get $Y_{n}=(A+I)^{n}=B^{n}, n \in \mathbb{N}_{0}$.

As every solution z_{n} of (4) can be expressed like $z_{n}=y_{n}+\widehat{z}_{n}$, where \widehat{z}_{n} is a fixed partial solution of (4) and y_{n} is an appropriate solution of (2), the proof of the next theorem is evident.

ThEOREM 1. The systems (2) and (4) are asymptotically equivalent if and only if the system (4) possesses a solution z_{n} such that $\lim _{n \rightarrow \infty} z_{n}=0$.

Let us remind the variation of constant formula for (4). We look for a solution of (4) in the form $z_{n}=Y_{n} c_{n}$, where $c_{n} \in \mathbb{R}^{k}$ is an appropriate sequence. After substituting it to (4) we get

$$
\begin{aligned}
\Delta Y_{n} c_{n}+Y_{n+1} \Delta c_{n} & =A Y_{n} c_{n}+b_{n} \\
c_{n+1} & =c_{n}+Y_{n+1}^{-1} b_{n}
\end{aligned}
$$

and therefore

$$
c_{n}=c_{0}+\sum_{i=1}^{n} Y_{i}^{-1} b_{i-1}
$$

Choosing $c_{0}=0$ we obtain that the system (4) has the solution

$$
\begin{equation*}
z_{n}=Y_{n} c_{n}=Y_{n} \sum_{i=1}^{n} Y_{i}^{-1} b_{i-1}=\sum_{i=1}^{n} B^{n-i} b_{i-1} \tag{5}
\end{equation*}
$$

If the series $\sum_{i=1}^{\infty} Y_{i}^{-1} b_{i-1}$ converges, then it is possible to adjust z_{n} :

$$
z_{n}=Y_{n}\left(\sum_{i=1}^{\infty} Y_{i}^{-1} b_{i-1}-\sum_{i=n+1}^{\infty} Y_{i}^{-1} b_{i-1}\right)=Y_{n} \sum_{i=1}^{\infty} Y_{i}^{-1} b_{i-1}-Y_{n} \sum_{i=n+1}^{\infty} Y_{i}^{-1} b_{i-1}
$$

As $Y_{n} \sum_{i=1}^{\infty} Y_{i}^{-1} b_{i-1}$ is a solution of (2), we obtain that (4) has also a solution

$$
z_{n}=-Y_{n} \sum_{i=n+1}^{\infty} Y_{i}^{-1} b_{i-1}=-\sum_{i=n+1}^{\infty} B^{n-i} b_{i-1}
$$

Assumption. Without loss of generality we can suppose that B has the Jordan canonical form.

Denote

$$
(0<) \mu_{1}<\mu_{2}<\cdots<\mu_{s}=\lambda
$$

different absolute values of eigenvalues $\lambda_{i}(B), i=1, \ldots, t$. Let m_{i} be a maximal order of blocks that correspond to the eigenvalues with the absolute value μ_{i}. Let $m=m_{s}$. Further let us put

$$
p=\left\{\begin{array}{cl}
m_{j} & \text { if } \mu_{j}=1 \\
1 & \text { if no } \mu_{j} \text { equals } 1
\end{array}\right.
$$

Assume $B=\operatorname{diag}\left(B_{1}, B_{2}\right)$, where

$$
\begin{aligned}
& \left|\lambda_{j}\left(B_{1}\right)\right| \leq \alpha=\max _{j}\left|\lambda_{j}\left(B_{1}\right)\right|<1, \quad m^{\star}=m_{i} \text { if } \mu_{i}=\alpha \\
& \left|\lambda_{j}\left(B_{2}\right)\right| \geq 1 \quad \text { for any } j
\end{aligned}
$$

Then $Y_{n}=(A+I)^{n}=B^{n}=\operatorname{diag}\left\{B_{1}^{n}, 0\right\}+\operatorname{diag}\left\{0, B_{2}^{n}\right\}$.
For $r \in \mathbb{N}$ consider a Jordan r-dimensional block

$$
J=\left(\begin{array}{ccccc}
\mu & 1 & 0 & \ldots & 0 \\
0 & \mu & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \mu
\end{array}\right)
$$

For a sufficiently smooth function g defined at μ it can be defined (see [1])

$$
g(J)=\left(\begin{array}{ccccc}
g(\mu) & g^{\prime}(\mu) & \frac{g^{\prime \prime}(\mu)}{2!} & \ldots & \frac{g^{(r-1)}(\mu)}{(r-1)!} \\
0 & g(\mu) & g^{\prime}(\mu) & \ldots & \frac{g^{(r-2)}(\mu)}{(r-2)!} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & g(\mu)
\end{array}\right)
$$

Assume now that $\mu \neq 0$. Then especially for $g(\mu)=\mu^{n}, n \in \mathbb{Z}$ we have

$$
J^{n}=\left(\begin{array}{cccc}
\mu^{n} & n \mu^{n-1} & \ldots & n(n-1) \cdots(n-r+2) \frac{\mu^{n-r+1}}{(r-1)!} \tag{6}\\
0 & \mu^{n} & \ldots & n(n-1) \cdots(n-r+1) \frac{\mu^{n-r+2}}{(r-2)!} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \mu^{n}
\end{array}\right)
$$

From this it follows the existence of constants $K>0$ and $L>0$ such that

$$
\begin{array}{ll}
\left|B_{1}^{n}\right| \leq K \cdot n^{m^{\star}-1} \alpha^{n} & \text { for } n \geq 1 \\
\left|B_{2}^{-n}\right| \leq L \cdot(n+p-2)^{p-1} & \text { for } n \geq 1 \tag{8}
\end{array}
$$

Lemma 1. Let $0<q<1$ and $g_{n} \geq 0$ for $n \in \mathbb{N}$. If

$$
\sum_{i=1}^{\infty} g_{i}<\infty
$$

then

$$
\lim _{n \rightarrow \infty} q^{n} \sum_{i=1}^{n} q^{-i} g_{i}=0
$$

Proof. Assume $\sum_{i=1}^{\infty} g_{i}<\infty$. Denote $\lfloor x\rfloor$ an integer part of $x, x \in \mathbb{R}$. For any $\varepsilon>0$ we can find $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$ there is

$$
q^{n-\lfloor n / 2\rfloor} \sum_{i=1}^{\lfloor n / 2\rfloor} g_{i}<\frac{\varepsilon}{2} \quad \text { and } \quad \sum_{\lfloor n / 2\rfloor+1}^{\infty} g_{i}<\frac{\varepsilon}{2} .
$$

Then

$$
q^{n} \sum_{i=1}^{n} q^{-i} g_{i}=q^{n} \sum_{i=1}^{\lfloor n / 2\rfloor} q^{-i} g_{i}+q^{n} \sum_{\lfloor n / 2\rfloor+1}^{n} q^{-i} g_{i} \leq q^{n-\lfloor n / 2\rfloor} \sum_{i=1}^{\lfloor n / 2\rfloor} g_{i}+\sum_{\lfloor n / 2\rfloor+1}^{n} g_{i}<\varepsilon
$$

Theorem 2. Let

$$
\begin{equation*}
\sum_{i=1}^{\infty}(i+p-2)^{p-1}\left|b_{i-1}\right|<\infty \tag{9}
\end{equation*}
$$

Then the equation (4) has a solution z_{n} such that $\lim _{n \rightarrow \infty} z_{n}=0$.
Proof. Denote $\widehat{B}_{1}=\operatorname{diag}\left\{B_{1}, O_{2}\right\}, \widehat{B}_{2}=\operatorname{diag}\left\{O_{1}, B_{2}\right\}, \widehat{B}_{1}^{-1}=\operatorname{diag}\left\{B_{1}^{-1}, O_{2}\right\}$ and $\widehat{B}_{2}^{-1}=$ $\operatorname{diag}\left\{O_{1}, B_{2}^{-1}\right\}$, where O_{i} is a zero matrix of the same dimension as $B_{i}, i=1,2$. Further $Y_{n}=\widehat{B}_{1}^{n}+\widehat{B}_{2}^{n}$ holds.

From (5) we see that any solution z_{n} of (4) can be written in the form

$$
z_{n}=Y_{n} z_{0}+\sum_{i=1}^{n} B^{n-i} b_{i-1}
$$

Therefore

$$
z_{n}=Y_{n} z_{0}+\widehat{B}_{1}^{n} \sum_{i=1}^{n} \widehat{B}_{1}^{-i} b_{i-1}+\widehat{B}_{2}^{n} \sum_{i=1}^{n} \widehat{B}_{2}^{-i} b_{i-1}
$$

The inequalities (8) and (9) imply that the series $\sum_{i=1}^{\infty} \widehat{B}_{2}^{-i} b_{i-1}$ absolutely converges, so we can express z_{n} as follows:

$$
z_{n}=\widehat{B}_{1}^{n} z_{0}+\widehat{B}_{2}^{n}\left[z_{0}+\sum_{i=1}^{\infty} \widehat{B}_{2}^{-i} b_{i-1}\right]+\widehat{B}_{1}^{n} \sum_{i=1}^{n} \widehat{B}_{1}^{-i} b_{i-1}-\widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} b_{i-1}
$$

Choose $z_{0}+\sum_{i=1}^{\infty} \widehat{B}_{2}^{-i} b_{i-1}=0$. Then

$$
\begin{equation*}
z_{n}=\widehat{B}_{1}^{n} z_{0}+\widehat{B}_{1}^{n} \sum_{i=1}^{n} \widehat{B}_{1}^{-i} b_{i-1}-\widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} b_{i-1}=I_{1}+I_{2}+I_{3} \tag{10}
\end{equation*}
$$

We will show that $\lim _{n \rightarrow \infty} I_{i}=0, i=1,2,3$.
From (7) evidently $\lim _{n \rightarrow \infty} I_{1}=0$.
Further we estimate I_{2}. We have

$$
\left|I_{2}\right| \leq\left|\sum_{i=1}^{n-1} \widehat{B}_{1}^{n-i} b_{i-1}\right|+\left|\widehat{B}_{1}^{0} b_{n-1}\right|=\left|I_{2 a}\right|+\left|I_{2 b}\right|
$$

If $1 \leq i \leq n-1$, then $n-i \geq 1$ and from (7) we have

$$
\left|\widehat{B}_{1}^{n-i} b_{i-1}\right| \leq K(n-i)^{m^{\star}-1} \alpha^{n-i}\left|b_{i-1}\right|
$$

As $\lim _{k \rightarrow \infty} k^{m^{\star}-1}(\sqrt{\alpha})^{k}=0$, because $\sqrt{\alpha}<1$, a constant $M>0$ exists such that

$$
0 \leq(n-i)^{m^{\star}-1}(\sqrt{\alpha})^{n-i} \leq M
$$

for $n \geq i$. Therefore

$$
\begin{gathered}
\left|I_{2 a}\right| \leq \sum_{i=1}^{n-1} K(n-i)^{m^{\star}-1} \alpha^{n-i}\left|b_{i-1}\right| \leq K M \sum_{i=1}^{n-1}(\sqrt{\alpha})^{n-i}\left|b_{i-1}\right| \\
=K M(\sqrt{\alpha})^{n} \sum_{i=1}^{n}(\sqrt{\alpha})^{-i}\left|b_{i-1}\right| \rightarrow 0
\end{gathered}
$$

for $n \rightarrow \infty$ by Lemma 1 .
Due to (9) we have $b_{n-1} \rightarrow \infty$ for $n \rightarrow \infty$ and

$$
\left|I_{2 b}\right| \leq\left|\widehat{B}_{1}^{0}\right| \cdot\left|b_{n-1}\right| \rightarrow \infty
$$

for $n \rightarrow \infty$. Thus $\lim _{n \rightarrow \infty} I_{2}=0$.
Now we estimate I_{3}. From (8) we obtain

$$
\begin{aligned}
\left|I_{3}\right| & \leq \sum_{i=n \text { 好 }}^{\infty}\left|\widehat{B}_{2}^{-(i-n)}\right| \cdot\left|b_{i-1}\right| \leq \sum_{i=n+1}^{\infty} L(i-n+p-2)^{p-1}\left|b_{i-1}\right| \\
& \leq L \sum_{i=n+1}(i+p-2)^{p-1}\left|b_{i-1}\right| \rightarrow 0
\end{aligned}
$$

for $n \rightarrow \infty$ by (9). Thus $\lim _{n \rightarrow \infty} I_{3}=0$.
Consider a linear space $\ell\left(n_{1}\right)$ of real sequences $\boldsymbol{x}=\left\{x_{n}\right\}, x_{n} \in \mathbb{R}^{k}, n \geq n_{1}, n_{1} \in \mathbb{N}_{0}$, endowed with the topology τ induced by the set of seminorms $P_{m}(x)=\left|x_{m}\right|, m \geq n_{1}$. Then $\left(\ell\left(n_{1}\right), \tau\right)$ is a Fréchet space - see [6, p. 37]. If $\boldsymbol{x}^{r}=\left\{x_{n}^{r}\right\} \in \ell\left(n_{1}\right), r \in \mathbb{N}_{0}$, then $\boldsymbol{x}^{r} \rightarrow \boldsymbol{x}^{0}$ in $\left(\ell\left(n_{1}\right), \tau\right)$ if and only if $\lim _{r \rightarrow \infty} x_{n}^{r}=x_{n}^{0}$ for each $n \geq n_{1}$.
Lemma 2. A subset $B \subset \ell\left(n_{1}\right)$ is relatively compact in $\left(\ell\left(n_{1}\right), \tau\right)$ if and only if $\sup _{\boldsymbol{x} \in B}\left\{\left|x_{n}\right|\right\}<\infty$ for each $n \geq n_{1}$.

Proof. Sufficiency: Consider a sequence $\left\{\boldsymbol{x}^{r}\right\} \subset B$. It is possible to choose its subsequence $\left\{\boldsymbol{y}^{r}\right\}$ such that $\left\{y_{1}^{r}\right\}$ is Cauchy. Then it is possible to choose a subsequence $\left\{\boldsymbol{z}^{r}\right\}$ of $\left\{\boldsymbol{y}^{r}\right\}$ such that $\left\{z_{2}^{r}\right\}$ is Cauchy etc. The diagonal sequence $\left\{\boldsymbol{y}^{1}, \boldsymbol{z}^{2}, \ldots\right\}$ is chosen from $\left\{\boldsymbol{x}^{r}\right\}$ and is Cauchy in $\left(\ell\left(n_{1}\right), \tau\right)$.

Necessity: If $\sup _{\boldsymbol{x} \in B}\left\{\left|x_{n}\right|\right\}=\infty$ for some $n \geq n_{1}$, it is possible to find a sequence $\left\{\boldsymbol{x}^{r}\right\} \subset B$ such that $\lim _{r \rightarrow \infty}\left|x_{n}^{r}\right|=\infty$. Evidently, for no subsequence $\left\{\boldsymbol{y}^{r}\right\}$ of $\left\{\boldsymbol{x}^{r}\right\}$ the sequence $\left\{\left|y_{n}^{r}\right|\right\}$ is Cauchy.

Theorem 3. Assume

$$
\begin{equation*}
|f(n, x)| \leq F(n,|x|) \tag{11}
\end{equation*}
$$

where $F: \mathbb{N}_{0} \times \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$and $F(n, u)$ is nondecreasing and continuous in u for any $n \in \mathbb{N}_{0}$. Let

$$
\begin{equation*}
\sum_{i=1}^{\infty}(i+p-2)^{p-1} F(i-1, c)<\infty \tag{12}
\end{equation*}
$$

for any $c \in \mathbb{R}_{0}^{+}$.
Then the sets of bounded solutions of (1) and (2) are asymptotically equivalent.

Proof. Let $x_{n}, n \in \mathbb{N}\left(n_{0}\right)$, be a bounded solution of (1). Then there exists $c \geq 0$ such that $\left|x_{n}\right| \leq c$ for $n \in \mathbb{N}\left(n_{0}\right)$. If y_{n} is an arbitrary solution of (2), then $z_{n}=x_{n}-y_{n}$ is a solution of an equation

$$
\begin{equation*}
\Delta z_{n}=A z_{n}+f\left(n, x_{n}\right) \tag{13}
\end{equation*}
$$

Conversely, if z_{n} is an arbitrary solution of (13), then $y_{n}=x_{n}-z_{n}$ is a solution of (2).
According to (11) and (12) we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}(i+p-2)^{p-1}\left|f\left(i-1, x_{i-1}\right)\right| & \leq \sum_{i=1}^{\infty}(i+p-2)^{p-1} F\left(i-1,\left|x_{i-1}\right|\right) \\
& \leq \sum_{i=1}^{\infty}(i+p-2)^{p-1} F(i-1, c)<\infty
\end{aligned}
$$

Then due to Theorem 2 the equation (13) has a solution z_{n} such that $\lim _{n \rightarrow \infty} z_{n}=0$. Thus $y_{n}=x_{n}-z_{n}$ is a solution of (2) for which $\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=\lim _{n \rightarrow \infty}\left|z_{n}\right| \stackrel{n \rightarrow \infty}{=0}$.

Assume now that y_{n} is a bounded solution of (2), $n \in \mathbb{N}_{0}$. Consider an equation

$$
\begin{equation*}
x_{n}=y_{n}+\widehat{B}_{1}^{n} \sum_{i=n_{0}+1}^{n} \widehat{B}_{1}^{-i} f\left(i-1, x_{i-1}\right)-\widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} f\left(i-1, x_{i-1}\right), \tag{14}
\end{equation*}
$$

$n_{0} \in \mathbb{N}_{0}, n \geq n_{0}$. It is easy to verify that any solution of (14) is a solution of (1), too. In fact, if we denote $I=\widehat{I}_{1}+\widehat{I}_{2}=\operatorname{diag}\left\{I_{1}, O_{2}\right\}+\operatorname{diag}\left\{O_{1}, I_{2}\right\}$, where I_{i} is a unit matrix of the same dimension as $B_{i}, i=1,2$, we obtain

$$
\begin{aligned}
& \Delta x_{n}=\Delta y_{n}+\Delta \widehat{B}_{1}^{n} \sum_{i=n_{0}+1}^{n} \widehat{B}_{1}^{-i} f\left(i-1, x_{i-1}\right)+\widehat{B}_{1}^{n+1} \widehat{B}_{1}^{-(n+1)} f\left(n, x_{n}\right) \\
& -\Delta \widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} f\left(i-1, x_{i-1}\right)+\widehat{B}_{2}^{n+1} \widehat{B}_{2}^{-(n+1)} f\left(n, x_{n}\right) \\
& =A y_{n}+A \widehat{B}_{1}^{n} \sum_{i=n_{0}+1}^{n} \widehat{B}_{1}^{-i} f\left(i-1, x_{i-1}\right)+\widehat{I}_{1} f\left(n, x_{n}\right) \\
& -A \widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} f\left(i-1, x_{i-1}\right)+\widehat{I}_{2} f\left(n, x_{n}\right) \\
& =A x_{n}+f\left(n, x_{n}\right) .
\end{aligned}
$$

For $\rho>0$, let us denote $\mathscr{B}_{\rho}=\left\{\boldsymbol{x} \in \ell\left(n_{0}\right):\left|x_{n}\right| \leq \rho, n \in \mathbb{N}\left(n_{0}\right)\right\}$. Evidently \mathscr{B}_{ρ} is a convex closed subset of $\ell\left(n_{0}\right)$, which is compact by LEMMA 2. We will show that (14) has a solution in \mathscr{B}_{ρ}, where ρ and n_{0} will be chosen later.

Define a mapping $T: \mathscr{B}_{\rho} \rightarrow \ell\left(n_{0}\right)$ as follows:

$$
T(\boldsymbol{x})_{n}=y_{n}+\widehat{B}_{1}^{n} \sum_{i=n_{0}+1}^{n} \widehat{B}_{1}^{-i} f\left(i-1, x_{i-1}\right)-\widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} f\left(i-1, x_{i-1}\right)
$$

for $\boldsymbol{x} \in \mathscr{B}_{\rho}$. By (8) and (11) we have

$$
\left|\widehat{B}_{2}^{-i} f\left(i-1, x_{i-1}\right)\right| \leq L(i+p-2)^{p-1} F\left(i-1,\left|x_{i-1}\right|\right) \leq L(i+p-2)^{p-1} F(i-1, \rho)
$$

which shows (using (12)) that $\sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i} f\left(i-1, x_{i-1}\right)$ converges and T is correctly defined.
Let $\left|y_{n}\right| \leq c_{1}, n \in \mathbb{N}_{0}$, and choose $\rho \geq 2 c_{1}$. Then

$$
\left|T(\boldsymbol{x})_{n}\right| \leq\left|y_{n}\right|+\sum_{i=n_{0}+1}^{n}\left|\widehat{B}_{1}^{n-i}\right| F(i-1, \rho)+\sum_{i=n+1}^{\infty}\left|\widehat{B}_{2}^{-(i-n)}\right| F(i-1, \rho)
$$

With respect to (7) there exists a constant $M>0$ such that $\left|\widehat{B}_{1}^{n-i}\right| \leq M$ for $n_{0}+1 \leq i \leq n$. Using (12) we get that $\sum_{i=1}^{\infty} F(i-1, \rho)<\infty$, which implies that

$$
\begin{aligned}
\left|T(\boldsymbol{x})_{n}\right| & \leq c_{1}+M \sum_{i=n_{0}+1}^{n} F(i-1, \rho)+L \sum_{i=n+1}^{\infty}(i-n+p-2)^{p-1} F(i-1, \rho) \\
& \leq c_{1}+M \sum_{i=n_{0}+1}^{\infty} F(i-1, \rho)+L \sum_{i=n+1}^{\infty}(i+p-2)^{p-1} F(i-1, \rho)
\end{aligned}
$$

Therefore, it is possible to find n_{0} large enough such that

$$
M \sum_{i=n_{0}+1}^{\infty} F(i-1, \rho)+L \sum_{i=n+1}^{\infty}(i+p-2)^{p-1} F(i-1, \rho)<c_{1}
$$

Then $\left|T(\boldsymbol{x})_{n}\right| \leq 2 c_{1} \leq \rho$. i.e. $T: \mathscr{B}_{\rho} \rightarrow \mathscr{B}_{\rho}$.
Further we will verify that T is a continuous operator. Let $\boldsymbol{x}^{k} \rightarrow \boldsymbol{x}$ for $k \rightarrow \infty$ in $\ell\left(n_{0}\right)$, which means that $\lim _{k \rightarrow \infty} x_{n}^{k}=x_{n}, n \in \mathbb{N}\left(n_{0}\right)$. Choose a fixed $n \geq n_{0}$ and $n_{1}>n$. Then

$$
\begin{aligned}
\left|T\left(\boldsymbol{x}^{k}\right)_{n}-T(\boldsymbol{x})_{n}\right|= & \mid \widehat{B}_{1}^{n} \sum_{i=n_{0}+1}^{n} \widehat{B}_{1}^{-i}\left[f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right] \\
& -\widehat{B}_{2}^{n} \sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-i}\left[f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right] \mid \\
\leq & \sum_{i=n_{0}+1}^{n}\left|\widehat{B}_{1}^{n-i}\right| \cdot\left|f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right| \\
& +\sum_{i=n+1}^{n_{1}}\left|\widehat{B}_{2}^{-(i-n)}\right| \cdot\left|f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right| \\
& +2 \sum_{i=n_{1}+1}^{\infty}\left|\widehat{B}_{2}^{-(i-n)}\right| F(i-1, \rho) \\
\leq & M \sum_{i=n_{0}+1}^{n_{1}}\left|f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right| \\
& +L \sum_{i=n+1}^{n_{1}}(i-n+p-2)^{p-1}\left|f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right| \\
& +2 \sum_{i=n_{1}+1}^{\infty}(i-n+p-2)^{p-1} F(i-1, \rho)
\end{aligned}
$$

$$
\begin{aligned}
\leq M & \sum_{i=n_{0}+1}^{n_{1}}\left|f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right| \\
& +L\left(n_{1}+p-2\right)^{p-1} \sum_{i=n_{0}+1}^{n_{1}}\left|f\left(i-1, x_{i-1}^{k}\right)-f\left(i-1, x_{i-1}\right)\right| \\
& +2 \sum_{i=n_{1}+1}^{\infty}(i+p-2)^{p-1} F(i-1, \rho)
\end{aligned}
$$

Let $\varepsilon>0$ be an arbitrary number. From (12) there exists n_{1} such that

$$
\sum_{i=n_{1}+1}^{\infty}(i+p-2)^{p-1} F(i-1, \rho)<\frac{\varepsilon}{4}
$$

Further, as $\boldsymbol{x}^{k} \rightarrow \boldsymbol{x}$ in $\ell\left(n_{0}\right)$ and f is continuous at its second argument we can find $k_{0} \in \mathbb{N}$ such that for $k \geq k_{0}$ and $n_{0} \leq i \leq n_{1}-1$ the inequality

$$
\left|f\left(i, x_{i}^{k}\right)-f\left(i, x_{i}\right)\right|<\frac{\varepsilon}{2\left(n_{1}-n_{0}\right)\left(M+L\left(n_{1}+p-2\right)^{p-1}\right)}
$$

holds. Thus $\left|T\left(\boldsymbol{x}^{k}\right)_{n}-T(\boldsymbol{x})_{n}\right|<\varepsilon$ for $k \geq k_{0}$, i.e. $\lim _{k \rightarrow \infty} T\left(\boldsymbol{x}^{k}\right)_{n}=T(\boldsymbol{x})_{n}$. But this means that $T\left(\boldsymbol{x}^{k}\right) \rightarrow T(\boldsymbol{x})$ as $k \rightarrow \infty$ in $\ell\left(n_{0}\right)$.

From Tychonoff fixed point theorem - see [2, p. 405] or [3, p. 45] - we conclude that T has a fixed point in \mathscr{B}_{ρ}. Thus (14) and also (1) has a bounded solution.

We will show that $\lim _{n \rightarrow \infty}\left|x_{n}-y_{n}\right|=0$. Analogously as in the proof of Theorem 2 for I_{2} and I_{3} (see (10)) it can be proved that

$$
\sum_{i=n_{0}+1}^{n} \widehat{B}_{1}^{n-i} f\left(i-1, x_{i-1}\right)-\sum_{i=n+1}^{\infty} \widehat{B}_{2}^{-(i-n)} f\left(i-1, x_{i-1}\right) \rightarrow 0
$$

as $n \rightarrow \infty\left(b_{i-1}\right.$ is to be replaced by $\left.F(i-1, \rho)\right)$. This proves the theorem.

REFERENCES

[1] Gantmacher, F. R. Teorija matric. Izdanije pervoje. Moskva: Gosudarstvennoje izdatelstvo techni-ko-teoretičeskoj literatury, 1953. 492 p. (in Russian).
[2] Hartman, P. Ordinary Differential Equations. New York, London and Sydney: John Wiley \& Sons, Inc., 1964. $7+612$ p.
[3] Lakshmikantham, V., Leela, S. Differential and Integral Inequalities. Volume I. New York and London: Academic Press, 1969. 390 p.
[4] Medina, R. and Pinto, M. Asymptotic equivalence of difference systems. Libertas Math. 13 (1993), 121-130.
[5] Medina, R. and Pinto, M. Asymptotic equivalence and asymptotic behavior of difference systems. Commun. Appl. Anal. 1(4), (1997), 511-523.
[6] Rudin, W. Functional Analysis. Moskva: MIR, 1975. 443 p. (in Russian).
[7] Sung Kyu Choi, Nam Jip Koo and Hyun Sook Ryu. Asymptotic Equivalence Between Two Difference Systems. Computers and Mathematics with Applications, 45 (2003), 1327-1337.
[8] Švec, M. Asymptotic Relationship between Solutions of Two Systems of Differential Equations. Czech. Math. Journal, 24 (99) (1974), 44-58.

[^0]: *Department of mathematics, University of Defence, Kounicova 65, 61200 Brno, Czech Rep. (jaromir.kuben@unob.cz).

