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PROJECTIVE COVERS IN CATEGORIES OF 
TOPOLOGICAL SPACES AND TOPOLOGICAL ALGEBRAS 

B. BANASCHEWSKF) 

Hamilton 

Introduction. In certain categories, one has the following situation with respect 
to injectivity: 

1. The following are equivalent for an object X: 

(i) X is injective. 

(ii) Every monomorphism X -> Y has a left inverse. 

(iii) Every essential monomorphism X -> yis an isomorphism, where a mono
morphism / is essential iff g is a monomorphism whenever gf is one. 

2. The following are equivalent for a morphism / : X -» Y: 

(i) / is an essential monomorphism and Y is injective. 

(ii) / is an essential monomorphism, and, for any g, if gf is an essential mono
morphism then g is an isomorphism. 

(iii) / i s a monomorphism and yis injective, and if/ = gh with monomorphisms 
g and h where g has injective domain then g is an isomorphism. 

3. Every object X has an injective hull, i.e. there exists an essential mono
morphism X -> y with injective Y. 

Among the categories in which these conditions hold are the category of all 
(left) modules over a ring and module homomorphism [7], the category of all Boolean 
lattices and Boolean homomorphisms [11, 2], the category of all distributive lattices 
and lattice homomorphisms [3], and, with a certain restriction on the type of mono
morphism considered, the category of partially ordered sets and order preserving 
mappings [2]. Because of the first of these, or else, simply for aesthetic reasons, 
it seems natural to regard this type of situation as the ideal for injectivity; on the 
other hand, it is interesting to see that this ideal is in fact attained in categories which 
are otherwise rather unlike categories of modules. 

As to the dual of this situation, some aspects of it, especially the question of 

*) Financial assistence from McMaster University, making attendance at this conference 
possible, is gratefully acknowledged. 
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projective covers, the duals of injective hulls, have also been considered in categories 
of modules [4, 22], but it appears that the most natural setting for projectivity, 
or certain forms of relative projectivity, to have these ideal features are categories 
connected with topology. In general topology, the first explicit result in this direction 
dealt with compact, and locally compact Hausdorff spaces and their continuous, 
resp. perfect mappings [9]. This was followed by work which established analoguous 
results for other, particular categories of topological spaces [8, 23]; provided better 
insight into the formal structure of the existing results [20, 12, 16]; dealt specifically 
with properties of projective covers [13, 19]; or, finally, presented an axiomatic 
discussion of categories of topological spaces which obtained the desired properties 
of projectivity for a large number of categories, including, all those previously 
considered [1]. 

The object of the present paper is twofold: On the one hand, it is to provide 
a detailed presentation of the results summarized in [1], and, on the other, to exhibit 
the same ideal features of projectivity (with respect to certain mappings) in suitable 
categories of topological algebras. Regarding the latter, the situation is that one 
has the one classical case, provided by the category of compact abelian groups and 
their continuous homomorphisms via Pontryagin Duality and the properties of 
injectivity in the category of abelian groups and group homomorphisms, but it is 
shown here that this is merely one instance of a widely applicable principle. 

In detail, the paper is arranged as follows: The first section deals with the 
generalities, formulated in categorical terms, which provide the theory for the later 
applications. Then, the conditions stated in the first section which ensure the desired 
properties of projectivity (always: with respect to perfect onto mappings) are shown 
to hold in certain types of categories of topological spaces and, on the basis of this, 
verified for a number of individual categories. Next, the representation of the pro
jective covers in question as spaces of maximal open filters, in the manner of [13], 
is discussed in detail. Finally, categories of topological algebras are considered, 
first at a very general level, and then restricted to the case of topological groups, 
especially profinite and pro-p groups. The paper ends with some assorted further 
remarks, mostly about certain duality considerations. 

1. Categorical Considerations. Let K be a category and P a class of morphisms 
of K. We shall be concerned with the following five conditions on P and K: 

(Pi) P is closed under composition. 

(P2) If fe P is a right inverse of a g e P then / is an isomorphism; conversely, 
any isomorphism of K belongs to P. 

(P3) For any / e P there exists a g e K such that fg e P and, for all h e K, 
fghe¥ implies h e P. 
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(P4) K has pullbacks, and these preserve P in the sense that, for any pullback 
diagram 

veP whenever /eP . 

(P5) Any well-ordered inverse system in P has a lower bound in P, i.e. if I 
is a well-ordered set and (Xa, faP) an inverse system indexed by I all whose morphisms 
belong to P then there exists an X e K and morphisms ha : X -> Xa for all a e I 
such that faphfi = ha for all a ^ /?, and all ha e P . 

In the following, P* will be the class of those / e P for which fh e P implies 
heP (any h eK); the fe P* are called the essential f e P . The isomorphism of K 
belong to P* in view of (P2), and (P3) states that for any / e P there exists a g e K 
such that fg e P*. Simple calculation shows that the following holds for P* under 
the hypothesis (Pi): 

Lemma 1. (i) P* is closed under composition, (ii) If f, g e P and fg e P* then 
g e P*. (iii) Iff, fg e P* then g e P*. 

An object X of K is called P-projective iff the usual projectivity condition holds 
for X with P in place of the class of epimorphisms. If / : Y -> X belongs to P* and Y 
is P-projective then / (o r , sometimes, Y) is called a P-projective cover of X. 

Concerning P-projectivity, one now has: 

Proposition 1. J / (Pl ) — (P4) hold then the following conditions are equivalent 
for XeK: 

(i) X is P-projective. 

(ii) Any f : Y-> X in P has a right inverse. 

(hi) Any f : Y~> X in P* is an isomorphism. 

Proof, (i) => (ii) holds by the usual argument, involving idx, the identity on X, 
which belongs to P by (P2). 

(ii) => (hi). For / : 7-> X in P*, one has fg = idx with suitable g; then fg e P, 
hence g e P, and therefore g is an isomorphism by (P2). It follows that / is also an 
isomorphism. 
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(iii) => (i) Given / : Z -~> Yin P and any g : X -> Y, one can embed the diagram 
cruical for the P-projeetivity of X into the following diagram: 

where the bottom square is a pullback diagram, u is taken such that pu e P*, which 
can be done by (P3) since p e P by (P4), and w = (pu)~x, which exists by hypothesis. 
It is clear that h = quw: X -> Z has the required property. 

Remark. If (PI) and (P2) holds for P then one still has (i) => (ii) => (iii), as the 
above proof shows. If, further, (P3) holds one also has (iii) => (ii). There do, however, 
exist K and P satisfying (Pl) — (P3) for which (iii) => (i) does not hold. 

Corollary 1. / / (Pl) and (P2) hold then, for any f: A -> X and g: B -> X in P* 
with P-projective A and B, there exists an isomorphism h: A —> B such that f = gh* 

Proof. There exists an h of the stated kind merely by the P-projectivity of A. 
Now7, g and gh belong to P*, hence h e P* by Lemma 1, and thus h is an isomorphism 
since (i) => (iii) only requires (Pl) and (P2). 

Remark. The essential uniqueness of P-projective covers, which this corollary 
asserts, could also be proved for any class P of epimorphisms containing the identities 
[14]. I do not know what the relation between a class P satisfying all the conditions 
stated above and the epimorphisms is; in all applications discussed below, the P 
are particular classes of epimorphisms, but whether this is so accidentally or necessarily 
is left open. 

Corollary 2. / / ( P l ) — (P4) hold then, for the following conditions on f: X -> Y 
m P : 

(i) / is P-projective cover of Y; 

(ii) fe P*, and if fg e P* then g is an isomorphism; 

(iii) X is P-projective, and if f = gh, g and h in P and g with P-projective 
domain, then h is an isomorphism; one has (i) <=> (ii) => (iii), and (iii) => (i) if, 
further, Y has a P-projective cover. 
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Proof. (i)<^>(ii) By definition, fe P*; moreover, i f / g e P * then also geP* 
by Lemma 1, and hence g is an isomorphism by the proposition. Conversely, if/: 
X -> Y is in P*, then for any g: Z -> X in P*, fg e P* by Lemma 1, and hence g 
is an isomorphism by hypothesis, which shows that X is P-projective. 

(ii) => (iii). That X is P-projective when (ii) holds was just proved. Now, let 
/ = gh as stated; then, by Lemma 1, h e P*, and since the domain of g is P-projective, 
h is an isomorphism. 

(iii) => (i). Let g: Z -> Ybe a P-projective cover and h: X -> Z such t h a t / = gh, 
by P-projectivity of X. From g e P* and gheF one then has h e P, and by (iii) h is 
an isomorphism, hence also fe P*. 

Let K now be a subcategory of a category L, Q a class of morphisms of L, and P 
a class of morphism of K such that 

(El) If/, fg e K then g e K for any / , g e L. 

(E2) K is Q*-left fitting in the sense that / : Y -> X in Q* and X e K implies 
YeK. 

(E3) P = K n Q, and for any X, Ye K, if/: X -> Yis in Q then a l s o / e P. 

Under these hypotheses one has: 

Proposition 2. If (Pi) — (P4) hold for Q and L then the previous proposition 
and its corollaries still hold for P and K; moreover, the F-projectives in K are 
exactly the X e K Q-projective in L, and for any X e K, / : Y -> X is a F-projective 
cover in K iff it is a Q-projective cover in L. 

Proof. To begin with, one readily obtains that P satisfies the conditions (Pi) — 
— (P3) in K, and that Q* n K _= P*: (Pi) is obvious, and (P2) results immediately 
from the fact that any isomorphism X -» Y in L where X, Ye K belongs to Q and 
hence, by (E3), to P; next, Q * n K c P* is a direct consequence of P = K n Q, 
and from this and (E3), (E2) one obtains (P3). 

Now, the first part of the proposition is easily verified, on the basis of these 
comments, by checking each step in the proofs, the most crucial points being that 
certain morphisms or objects do, in fact, belong to K rather than to L. 

For the second part, let XeK be P-projective in K. Then, for any/: Y-* X in Q*: 
Ye K by (E2), hence / e P by (E3), thus / e Q* n K, and so fe P*, and therefore / 
is an isomorphism, first in K but then also in L. By Proposition 1, this shows X 
is Q-projective in L. Conversely, let X e K be Q-projective in L. Then, in the diagram 

y\ z~ry 
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where f e P, g e K are given, and h e L with g = fh exists by Q-projectivity, one has 
actually h e K, by (El), since f, fh e K; hence X is P-projective. 

Finally, let f: Y -> X belong to P*, with y P-projective. Then y is also Q-
projective andfe Q, and it has to be shown thatfe Q*. Consider, then, any g e L 
such thatfg G Q; now, by the properties of Q, there exists an h e L such thatfgft e Q* 
where 

h g f 

and by (E3) one has Te K since I e K , thus also fg ft e K, again from (E3). It follows 
that gft G K since f, f(gft) G K, and thus by Lemma 1 gh e P* since f, f(gft) G P*. 
This shows that gft is an isomorphism by P-projectivity, therefore (gft) -1 e Q* 
and hence fe Q*; consequently, one has g e Q, i.e. fg e Q implies g G Q for any 
g G L, thusfG Q*. Conversely, iff: y-> X, for X e K, belongs to Q*, with Y Q-pro-
jective, then, clearly, YeKand hencef eK, which shows thatf: y~> X is a projective 
cover in K. 

Concerning the existence of P-projective covers in K, P and K as before, one has: 

Proposition 3. If (Pi) — (P5) ftoZd then a P-projective cover exists for any 
X e K such that (i) the class of all y~> X in P* is small, and (ii) for each y-> X 
in P* there exists a set of epimorphisms u: Y -> Y' such that for any f: Y -> Z in P* 
fftere exisls an isomorphism g: Y' -> Z with f = gu. 

Proof. Let X eK be an element with the stated properties. For each y of 
a representative set of the class of all Y -> X in P*, let f Y be the cardinal number 
of the set of epimorphisms described in (ii), and take any cardinal number I larger 
than the supremum of all I r . Now consider any inverse system (Xa,faP) whose indexing 
set is a segment [0, A[ of ordinals, whose morphisms fap are non-trivial members 
of P* for a < j8, and whose first term is X. Then, the cardinal number of X is less 
than i: By (P5), there exists a B e K and morphisms fta: B -> Xa in P such that faphp = 
= fta for all a S Pi then, let g: C -> B be such that ft0g G P * , and, consequently, 
by Lemma 1, ga = hag e P* for all a since f0(X(hag) = ft0g. Suppose now that the 
cardinal number of X is greater than I; then there exist a, /? < X such that a < /?, 
and the morphisms ga: C -» Xa, g^: C -> Z^ factor through the same epimorphism u: 
C -> C , i.e. ga = vu and g^ = wu with isomorphisms t;: C -> Xa and w: C -> Xfi. 
It follows thatfe ww =fapgp = ga = vu, hence f^w = w, and thus fap = vw~l — 
contradicting the fact thatfe is nontrivial. 

Let S be a fixed set off: y-> X in P* such that for any g: Z -> X in P* there 
exists an isomorphism ft: y ~> Z wi th/ = gft, and call an inverse system (Xa,fa^)ap<k 

of the type considered above special iff, in addition, allf0a: X^ -> X0 = X belong 
to S. Evidently, the special inverse systems form a set I. I is partially ordered in an 
obvious way: (XaJap)atP<x precedes (Xa,fap)a)P<x, iff X = X\ Xa = Xa for all a < X, 
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and fap = fap for all a = p < X\ moreover, this partial order is clearly inductive. 
Let, then, (Xa,faP)a^<A be a maximal member of Z. Again, by (P5) and the earlier 
part of this proof, there exists a C e K and ga: C -» Xa in P*, for each a, such that 
fapdfi — 9a f ° r a-- a = P- Suppose now that C is not P-projective. Then there exists 
a non-trivial h: D -» C in P*. Let v: E -» X belong to S such that v = g0llu with 
suitable isomorphism u: E -> D; then, for each a, gahu belongs to P* and is non-
trivial, i.e. not an isomorphism, for otherwise h would be an isomorphism, by (Pi) 
and (P2), which was specifically exluded. It follows that by putting Xx = E, fak = 
= gahu for a < X, and fu = id£, the given inverse system is extended to a strictly 
larger member of Z — contradicting its maximality. Thus, one obtains that C is 
projective and g0: C -> X0 is a projective cover of X0 = X. 

In the following, for any category K and specified class P of morphism of K, 
P-projectivity in K will be said to behave properly iff one has Proposition 1 and 
Corollary 1, the equivalence of the conditions of Corollary 2, and the existence 
of projective covers for every X e K, i.e. iff P-projectivity satisfies the duals of the 
conditions listed for injectivity in the Introduction. 

2. Categories of Topological Spaces. This section deals with categories whose 
objects are topological spaces and whose morphisms are (some or all) continuous 
mappings from one space to another. All spaces will be Hausdorff, and the classes 
of mapping to play the role of the above P will always consist of onto mappings which 
are perfect, i.e. continuous, closed, and such that the inverse images of points are 
compact; these will be called the p.o. mappings. 

The basic category in this context is the category H of all Hausdorff spaces and 
continuous mappings. Concerning perfect mappings one has the following useful 
criterion :f: X -» Yin H is perfect iff every ultrafilter U on X for which f(U) converges 
is itself convergent. 

Lemma 2. In H, the p.o. mappings satisfy (Pi) — (P5). 

Proof. (Pi) is clear since the composition of perfect mappings produces perfect 
mappings, and of onto mappings produces onto mappings. (P2) follows directly 
from the fact that a p.o. mapping which is one-to-one is a homeomorphism. 

For (P3) one first has to identify set theoretically the essential p.o. mappings. 
An onto mapping/: X -> Yin H is called minimal iff, for any closed A .= X,f(A) = 
= Yimplies A = X. Now, the essential p.o. mappings in H are exactly the minimal 
ones: Letf: X -> Ybe minimal p.o. and g: Z -» X such thatfg is p.o. To show that g 
is perfect, let U be any ultrafilter on Z such that g(U) converges. Thenf(g(U)) conver
ges, and since fg is perfect, It converges; hence g is perfect. Further, one hasf(g(Z)) = 
= Y, and since g(Z) is closed and f minimal, it follows that g(Z) = X. In all, then, 
g is p.o., and thereforefis essential p.o. Conversely, letf: X -* Ybe such a mapping, 
and consider any closed A ^ X such that f(A) = Y. Here one has, for the natural 
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embedding g: A -+ X, that fg is onto and perfect, the latter since/ is perfect and A 
closed, and hence g is by essentialness; it follows that A = X. From the character
ization of essential p.o. mappings thus obtained one readily derives (P3): Given 
a p.o. / : X -» Y, the compactness of the sets f~l{y} shows there exist closed Z .= X 
minimal with respect to the property that f(Z) = Y(i.e. Z nf1{y} ^ 0 for each 
y e Y), and for the natural injection g: Z -» X for any such Z, fg is minimal, and 
thus essential, p.o. 

To check (P4) one has to look at the explicit description of pullbacks in H: 
If, in the diagram 

f 

where E = {(x, z) | f(x) = g(z)} c X x Z, and u and v are the restrictions of the 
projections X x Z -* X, X x Z —> Z respectively, / is onto then v is clearly onto; 
moreover, if/ is perfect, and II an ultrafilter on E such that v(U) converges then u(U) 
converges since f(u(U)) = g(v(U)) does, hence It converges in X x Z and therefore 
in E since this is a closed subspace of the product. Thus, the pullbacks in H preserve 
p.o. mappings. 

Finally, for (P5) the explicit description of projective limits in H has to be 
considered. Let, then (Xa,faP) be an inverse system, indexed, say, by a segment 
[0, A[ of ordinals, where all fafi are p.o. mappings, and let L £ Yl^* be the closed 
subspace which provides the projective limit, ha:L-*Xa the restrictions of the natural 
projections. First, we show that h0 is onto. Given any a e Z 0 , let K = n / o V { a } -
Now, if for any finite F £ [0, A[, LF is the subspace of those u e Y\Xa with fafi(up) = ua 

for all a, jS e F such that a _ /?, then each LF is closed, {LF} is a filter basis, and 
L = fl^F- Also, K n LF # 0 for each F, for if /? is the largest element of F and 
a^e/J^^a}, then any u = (wa) in K with uy ==/y/?(a^), yeF, belongs to this intersection. 
If follows, by compactness, that K n L # 0, and since h0(u) = a for any u e K n L, 
/i0(L) = Ko- Next, h0 is perfect: If U is an ultrafilter on L such that h0(U) converges, 
then by f0a(ha(U)) = h0(U) one sees that all ha(U) converge, thus U converges in Y[Xa, 
and hence in L since L is closed. It follows that h0 is a p.o. mapping, and the same 
argument evidently also applies to any ha, a > 0. This shows that L, with the p.o. 
mappings ha: L-+ Xa> provides a lower bound for the given inverse system, i.e. one 
has (P5). 

2card* Lemma 3. / / / : X -> Yis an essential p.o. mapping in H then card X <; 2 

Proof. Since / is minimal X has a dense subspace Z of the same cardinality as Y 
and every point of X is the limit of some ultrafilter on Z in such a way that no two 
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distinct points are limits of the same filter; thus, X has at most as many points as Z, 
or Y, has ultrafilters, and this proves the assertion. 

These two lemmas, together with the additional observation that, for any 
X G H, the class of all p.o. / : X -> Yis small, ensure that the results of Section 1 apply 
to H, with the p.o. mappings constituting the class P. More generally, one has: 

Proposition 3. In a subcategory K O/H, p.o. projectivity is properly behaved if 

(i) K is closed-hereditary1), closed with respect to pullbacks in H, and projective 
limits in H of well-ordered inverse systems with p.o. mappings; or 

(ii) K is a full subcategory o /H which is left-fitting with respect to essential p.o. 
mappings; or 

(iii) K consists of all objects and all perfect mappings from a category L which 
satisfies one of these conditions. 

Proof. Regarding (i), it is clear that the stated conditions imply (PI) — (P5) 
for the class of p.o. mappings in K, and this together with the above remark gives 
the result. Proposition 2 covers (ii) and the part of (iii) where L satisfies (i), the latter 
because for any/ : X -> Yand g: Z -> X in H, iffg is perfect then g is, for if U is any 
ultrafilter on Z for which g(U) converges then (fg) (U) also converges, and for 
perfect fg this implies that U converges. The remaining case is a corollary to the 
middle part of the proof of Proposition 2. 

Under suitable conditions, the p.o. — projectives in a subcategory K of H are 
exactly the extremally disconnected2) members of K. The key to this are the following 
two lemmas, essentially due to Gleason [9]: 

Lemma 4. In H, any minimal continuous closed mapping onto an extremally 
disconnected space is a homeomorphism. 

Lemma 5. If the natural mapping rU ® CU -> X, U open in X, and rU, 
CU its closure and complement respectively, has a right inverse then rU is open. 

The proofs for these assertions are readily obtained by minor modifications 
of the relevant proofs in [9]. 

Proposition 4. Let K be any subcategory of H which is closed with respect 
to pullbacks in H and contains, for any I e K and closed subspaces A, B c X 

*) For every I e K and closed subspace Y <= X, Y and the natural embedding X-> Y 
belong to K. 

2) Extremaly disconnected here means merely that every open set has open closure. Such 
spaces need not be regular, a point which is, in fact, of principal importance in the present 
setting. 
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the coproduct A®B and its natural injection A © B -» X. Then, the p.o. — projec-
tives in K are exactly the extremally disconnected spaces belonging to K. 

Proof. The conditions on K imply (Pi) — (P4) for the p.o. mappings in K, 
(P3) because, as a special case of the second condition, K is closed-hereditary; it 
follows, then, that Proposition 1 applies. If X e K is extremally disconnected then, 
by Lemma 4, any essential p.o. mapping f: Y-» X is a homeomorphism, and thus X 
is p.o. — projective. Conversely, if X e K is p.o.-projective then Lemma 5 and the 
second condition on K show that X is extremally disconnected. 

Under the same hypotheses for K, one evidently has the following further con
sequences: 

Corollary 1. The p.o.-projectives in K are exactly the same as the XeK, 
p.o.-projective in H. 

Corollary 2. As far as they exist in K, p.o.-projective covers in K are the same 
as in H. 

Another result, for a different kind of K, is: 

Corollary 3. In any full subcategory K of H which is left-fitting with respect 
to essential p.o. mappings the p.o.-projectives are exactly the extremally discon
nected spaces belonging to K, and the same holds for the subcategory of K with 
the same objects, but only the perfect mappings from K. 

Some subcategories of H to which all the considerations of the present section 
apply are given by the following classes of spaces together with either all their 
continuous mappings, or all their perfect mappings: 

(1) compact spaces 

(2) locally compact spaces 

(3) paracompact spaces 

(4) cr-compact spaces 

(5) Lindelof spaces 

(6) regular spaces 

(7) completely regular spaces 

(8) zero-dimensional spaces 

(9) real-compact spaces 

(10) I-compact spaces3) 

3) A space is hcompact iff it is completely regular Hausdorff and every maximal Z-filter 
in which any fewer than t sets have non-void intersection is fixed. For I = X0 this means just 
compactness, for t — K l s real-compactness. 
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Here, the first half are types of spaces which determine subcategories of H that 
are left-fitting with respect to essential p.o. mappings, whereas the second half are 
classes of spaces which are closed-hereditary and closed under products in H. 

In some of the categories just described, the p.o. mappings are exactly the epimor-
phisms so that p.o.-projectivity then amounts to ordinary projectivity. Evidently, 
this is the case for compact Hausdorff spaces and continuous mappings; further 
instances are the categories given by the perfect mappings and the following classes 
of Hausdorff spaces: all Hausdorff spaces, regular spaces, zero-dimensional spaces, 
locally compact spaces, and presumably there are several others. 

An example of a category in which p.o.-projectivity is rather differently behaved 
by comparison with the categories listed above is given by the full subcategory M of H 
determined by the metrizable spaces: In M, (Pi) — (P4) do hold with respect to the 
p.o. mappings, and hence Proposition 1 applies; moreover, Proposition 4 also 
applies, and thus the p.o.-projectives of M are exactly the extremally disconnected 
l e M ; these, however, are discrete by a result of Gleason's [9] so that the p.o.-
projectives of M are exactly the discrete l e M . This implies that no non-discrete 
l e M can have a p.o.-projective cover in M for if/: Y-* Z is such a cover in M 
then Yis discrete, and since/is closed and onto this implies that X is discrete. 

We conclude this section with the discussion of a number of particular aspects 
of p.o.-projectivity. The first concerns the relationship between p.o.-projectivity and 
certain kinds of reflections.4) To begin with, one has: 

Lemma 6. Let C be any epireflective subcategory of a category K with reflection 
cx: X -> yX for each I e K , and P a class of morphisms of K. Then, for any P-
projective X e K, yX is P n C-projective in C. 

Proof. For the usual diagram 

yX 

g 

f 

in C w h e r e / e P n C , one has the following enlarged diagram 

X ^ — arX 

"c! y 
Z ^ - Y 

4) The terminology used here is dual to that in [17]. Epireflective means all reflections are 
epimorphisms. 
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where fh0 = gcx, h0 obtained from the P-projectivity of X, and h0 = hc0 from the 
property of reflections. One thus has fhcx = gcx, and hence fh = g since cx is an 
epimorphism. 

Lemma 7. Let f: X -> Y belong to H and A ^ X, B ^ Y be dense subspaces 
such that f (A) s= B and the mapping g: A -> B determined by f is perfect. Then 
f(x - i ) c y - B. 

Proof. Take any ceX — A, and let U be an ultrafilter on A converging in X 
to c. Then g(U) = f(U) converges in Y to /(c); now, if/(c) e B then g(U) converges 
already in B, and by the properness of g U must converge in A, hence c = lim U e A, 
a contradiction. 

Let K now be a subcategory of H and E an extensive subcategory of K, by which 
is meant a reflective subcategory such that the reflections ex: X --> sX with respect 
to E are dense embeddings for each X e K. Given any/ : X -> Yin K, there is a unique 
fE:sX-> aYsuch that fEex = eYf, by reflectiveness. E will be said to preserve a given 
property of mappings if for each fe K with the property in question / £ also has it. 
With these concepts, one now has: 

Proposition 5. If E preserves perfect mappings then, for any X e K, X is p.o.-
projective in K iff its ^-reflection sX is p.o.-projective in E; moreover, if K is also 
closed-hereditary then, for any p.o.-projective cover f: X -> Y in K, / £ : sX -> sY 
is a p.o.-projective cover in E. 

Proof. One part of the first assertion follows directly from Lemma 6, E being 
epireflective since the ex: X -> sX are dense embeddings. For the converse, the 
typical diagram 

X 

g 

-> Y 

in K where / is perfect and onto, is embedded into the diagram 
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Here,/£ is perfect by hypothesis; we show it is also onto: For any a G eY, let It be an 
ultrafilter on Ysuch that eY(U) converges to a, 2B an ultrafilter on Z such that/(sIB) = 
= It, which exists since/is onto, and then consider ez(W). This is mapped to eY(U) 
by f\ and thus converges by the perfectness of fE; for b = lim ez(W) one then has 
fE(b) = a. Now there exists, by the given p.o.-projectivity of ^X, an h0: ^X -» ^Z 
such that / £ h 0 = g£. To follow the effect of h0, take any a e l ; if b = h0 ex(a) e 
e^Z — ez(Z) then fE(b)e^Y- eY(Y) by Lemma 7, whereas fE(b) = gE ex(a) = 
= ev{9(a)) e e

Y(Y); it follows from this that h0(ex(X)) c ez(Z), and since all reflection 
mappings are embeddings here this means there exists an h: X -> Z such that ezh = 
= h0ex. From this one obtains fEexh = fEh0ex = gEex = eYg, and since / £eY = eYf 
it follows, finally, that//z = g, eY being a monomorphism. 

For the second assertion of the proposition, it suffices to show that / £ is an 
essential p.o. mapping whenever / e K is. Let / : X -> Y, and consider any closed 
A^^X such that fE(A) = ^Y. Then, by Lemma 7, fE(A n ez(X)) = eY(Y), hence 
er f( ex 1(^)) = CY(Y) a n ( i ^ u s /(e^^Af)) = Y, i.e. /# is again a p.o. mapping for 
the natural embedding g: ex

1(A) -> X which belongs to K by closed-heredetariness. 
It follows that ex

1(A) = X, and hence A = ^X since A is closed and ex has dense 
image in ^X. This shows that / £ is minimal, hence also essential. 

Subcategories K of H with an extensive subcategory E which satisfy all hypotheses 
stated above are given by the completely regular spaces together with the compact 
spaces, and the zero-dimensional spaces together with the compact zero-dimensional 
spaces, the reflection being X -> fiX in the first case, and X -> £X, the universal 
zero-dimensional compactification, in the second. Preservation of perfectness is 
simply a consequence of the fact that all spaces f$X, £X are actually compact. Another 
possible example might be provided by the completely regular spaces with the real-
compact spaces, or, more generally, I-compact spaces for arbitrary fixed I, but we 
do not know whether perfectness is preserved in this case. 

Next, we deal with the question of rigidity of p.o.-projective covers. In any 
category K, a P-projective cover / : X -> Y, P a given class of morphisms of K, is 
called rigid iff the only isomorphism g: X -> X such that/g = / i s the identity of X. 
For the dual concept, rigidity of injective hulls with respect to certain morphisms, 
there are examples which show this may, but need not occur [3, 14]. Here, the 
situation is as follows: 

Proposition 6. In any closed-hereditary subcategory K o/H, all p.o.-projective 
covers are rigid. 

Proof. We show that any minimal p.o. mapping/: X -> Yin H is rigid; the 
fact that K is closed-hereditary then gives the result since it implies that the essential 
p.o. mappings are minimal. 

Let g: X -± X be any homeomorphism such that fg = / , and suppose there 
exists an a eX such that g(a) ^ a. Then, for disjoint neighbourhoods U and Vof a 
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and g(a) respectively, let W be an open neighbourhood of a such that g(W) .= V, 
W s U. It follows that/(IV) =fg(W) s /(V) c / (X - If), and hence/(X - W) = 
= y which contradicts the minimality of/; thus, g(x) = x for all x e l . 

Finally, we consider the use of free objects for obtaining p.o.-projective covers. 
In any subcategory K of H, an X e K is called free on a subset S iff any mapping f0: 
S -> y, y e K , has a unique extension to a n / : X -> y in K. In the full subcategory 
of H given by all compact l e H , for example, the free objects are the Stone-Cech 
compactifications of discrete spaces. In general, it is clear that any free X e K is 
p.o.-projective, in fact, projective with respect to arbitrary onto mappings in K; 
hence, if K is closed-hereditary, and for each X eK there exists a p.o. mapping/: 
y-> X in K with Yfree in K, then each Z e K has a p.o.-projective cover in K, and, 
further, the p.o.-projectives in K are exactly the retracts of the free Ye K. This is the 
Rainwater method [20] to obtain projective covers for compact Hausdorff spaces, 
and there are other situations where this can be employed, e.g. for zero-dimensional 
compact spaces. In general, however, this approach fails In view of the following 
observation: 

Proposition 7. If a replete subcategory K of H is hereditary and contains 
discrete spaces of arbitrary cardinality then the retracts of the free X eK are 
discrete and provide only trivial o.p.-projective covers. 

Proof. If X e K is free on its subset S, letf0: S -> ybe a one-one onto mapping 
for a discrete Ye K, and / : X -> yits extension in K. It follows that S, as a subspace 
of X, is discrete, and the mapping g: Y -> S -> X, isomorphism followed by natural 
embedding, belongs to K. Now, gf extends the identity mapping on S to X, and 
hence gf = idx; thus / is one-one, and X is discrete. Any retract Y of such X is, 
of course, again discrete, and for any essential p.o. mapping / : Y -> Z, Z is then 
discrete and / one-one. 

Remark. The parts of this section which deal with material presented in [1] 
are actually slightly more general than what appears there. Placing the perfect (onto) 
mappings only in the bottom arrow of the projectivity diagram, as it were, seems 
to give them their right place — there is no need to restrict the entire category to 
perfect mappings. Incidentally, the greater flexibility gained this way also gets closer 
to the point of view taken in [13, 16, 19]. 

3. Projective Covers as Filter Spaces. In [9] and [8], the existence of p.o.-projec
tive covers in the categories considered there is obtained by explicit descriptions 
of suitable spaces and mappings which are proved to provide the desired covers. 
In either case, the spaces consist of filters in certain lattices, i.e. the maximal filters 
in the Boolean lattices of all regular closed or all regular open subsets of the initial 
space. In analogy with this, we shall now give a similar description of p.o.-projective 
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covers, applicable to any subcategory of H which satisfies appropriate conditions. 
However, we shall follow the approach of [13], rather than that of [9] or [8], and 
use the lattice of all open sets; this appears to have a number of advantages.5) 

To begin with, we summarize some familiar facts. Let X be any space, O = D(X) 
its topology, i.e. the collection of its open sets, and Q = Q(X) the set of all maximal 
filters M s £>. Then, for any Ve £>, put Qv = {9Jt | Ve 9Jt e Q}; it is immediately 
obvious that Qv n Qv = QUnV, and the sets Qv form the basis of a topology, the 
usual topology of the maximal filter space of a distributive lattice with zero. The 
space thus given, again denoted by Q, is Hausdorff since U n V = 0 implies that 
Qv n Qv = 0, and from the fact that CQV = QiCV one readily deduces that it is 
compact. Moreover, if I = U.OF(Ve 91) is any open subset of Q then its closure 
is Qfru, where U = \JV(Ve%l), and thus Q is extremally disconnected. Finally, 
the closed subsets of Q are exactly the sets Q% = (501 \^ ^ Me Q}, gf any filter 
in D generated by regular open sets. 

Now, let A = A(X) be the subspace of Q given by all convergent SOI e Q, i.e. 
all MeQ such that M =. O(a) for some aeX where O(a) = {V| a e Ve £)}. 
Since every O(x), x e l , is contained in some 9Jt e Q by Zorn's Lemma one sees 
that yl is dense in Q; thus A. is also extremally disconnected. 

An obvious mapping from A to X is 501 ^> lim 9JI, which will be denoted by lim, 
or limx if reference to the space is required. It follows from what was just said that 
lim is an onto mapping; further properties are given in: 

Lemma 8. The mapping lim: A(X) -> X is compact, closed, and minimal onto; 
moreover, for any Ve O, the image of Av = A n Qv is TV; finally, lim is continuous 
iffX is regular. 

The proof of this is essentially contained in [8] and in [13]; see also [23]. 

Remark. As a consequence of this lemma one obtains the well-known theorem 
of Urysohn's that an H-closed regular Hausdorff space is compact: For such spaces, 
A = Q, and lim is continuous. 

In the following, the effect of certain mappings on the spaces A is considered. 

Lemma 9. For any minimal p.o. mapping f: X -> Y in H, the mapping f* 
which assigns to each $ReA(Y) the filter generated by the sets f~x(U), U e 9JI, 
in the topology of X is a homeomorphism from A(Y) to A(X). 

Proof. For any Wl e Q(Y), let V <= X be an open set such that Vnf~l(U) ^ 0 
for all UeWd. Then, f(V) n 17 ^ 0 and therefore (FCf(CV)) nU ^ 0 for all 
U eWd since f(V) _= FCf(CV)), the latter being a property of continuous minimal 
onto mappings [9]. It follows that Cf(CV) also meets all U e 9JI, and thus Cf(CV), 

5) The same method is used in [23]. 
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being open, belongs to 9ft;from this one finally obtains Ve/*(9ft) since/ 1(C/(CC/)) £ 
c= U. This shows that /*(9ft) e Q(X). Now, take 9fte/l(Y); then, since SOI is the 
image of/*(9ft) u n d e r / a n d / i s proper,/*(9ft) has a cluster point, and thus converges 
in view of its maximality; this shows tha t / * maps A(Y) into A(X). To see this map
ping is onto, take any 9ft e A(X) and consider the filter basis 23 = {C/(CV) | Ve Wd} 
of open subsets of Y. Now, 23 has /(lim 9ft) as a cluster point, and thus there exists 
an 91 G /1(Y) such that 9t 2 23; it follows that /*(3l) = 9ft. 

That / * is one-to-one is obvious, and it remains to be shown that it is open 
and continuous. Openness results from the fact that Ve 9ft holds iff f~\V) e/*(9ft) 
for any 9ft e/l(Y), i.e. f*(Av(Y)) = Af-i(V)(X). To show continuity we prove that 
Ve/*(9ft), Vopen in X, holds iff C/(CV) e 9M, for any 9ft e A(Y). Ve/*(9ft) implies 
that V =2 fx(W) for some We 9ft; from this one obtains that first CV c C / " 1 ^ ) , 
then /(CV) c CJV, hence C/(CV) 2 PV, and finally C/(CV)e9ft. The converse 
follows from the fact tha t / _ 1 (C / (CV ) ) <= V. 

Let X be any Hausdorff space and O its topology. Then, the regular Ve O, 
i.e. those for which V = IFV, I denoting interior, generate a topology £># for which 
the space composed of the set underlying X and O* is a semi-regular Hausdorff 
space X*. The closure operator F* of this new space has the property that r*U = FC7 
for any UeD [15]. 

Lemma 10. If X is an extremally disconnected Hausdorff space and © its 
topology then every topology D' on the set underlying X for which © 2 ©' 2 O* 
determines again an extremally disconnected Hausdorff space X'. 

Proof. Clearly, any such space is Hausdorff since X* is. Now, for any Ve D' 
the closure F'Vin E' satisfies the condition FV c F'V c F^V, hence one has T'V = 
= FV; since X is extremally disconnected FV is open and therefore regular open 
in X, i.e. F'Ve O*, and thus F'Ve £>'. 

Lemma 11. If X is an extremally disconnected Hausdorff space then the map
ping A(X) -> X* given by lim is a homeomorphism. 

Proof. That this mapping is compact, minimal, and onto follows immediately 
from the properties of lim. We show that it is also continuous and closed; since this 
will establish that it is essential p.o. it will then follow that it is a homeomorphism 
by the p.o.-projectivity of X* in the category H. 

X*, being semi-regular and extremally disconnected, is regular. Let a = lim 9ft 
for some 9ft e A(E) and U any neighbourhood of a in X*; then there exists a neigh
bourhood V of a in X* such that F*V <= U. Now, lim (AV(X)) = FVby Lemma 8, 
and from F^V = FVit follows that the neighbourhood ylr(X) of 9ft is mapped into U. 
Similarly, the image of any closed subset of A(X) is of the form adh 5 = OF V(Ve $)9 

5 a suitable filter in O, and since the FVare closed in X*, any such set is closed in X*. 
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Combining the three preceding lemmas one obtains the following result for 
Hausdorff spaces X and Y: 

Corollary. If f: X -» Y is a minimal p.o. mapping and X is extremally discon
nected then the mapping A(Y) -> X* by 9Jt ~-* lim/*(90t) is a homeomorphism. 

To return to p.o.-projective covers, let K now be a replete subcategory of H 
which is closed with respect to pullbacks and projective limits of well-ordered inverse 
systems with p.o. mappings, taken in H, and which contains, for each l e K and 
any closed subspaces A, B ^ X the coproduct A © B in H and the natural mapping 
A © B -> X. The desired description of the p.o.-projective covers in K is as follows: 

Proposition 8. If all spaces belonging to K are semi-regular then, for any 
X e K, A(X) and limx belong to K and limx: A(X) -> X is a p.o.-projective cover 
of X in K. In general, a projective cover of X is given by the mapping determined 
by limx on the space A'(X) whose underlying set is the same as that of A(X) and 
whose topology is generated by that of A(X) together with lim^1 (D(Z)). 

Proof. Le t / : Y-+X be a p.o.-projective cover. Since Yis extremally discon
nected, the mapping l im y /* : A(X) -> Y* is a homeomorphism. Now, for semi-regular 
Y one has Y= Y*, hence A(X) and l imy /* belong to K; moreover, / l i m y / * = 
= limx, and thus limx: A(X) -> X is a p.o.-projective cover. 

If Y is not semi-regular, let O = O(Y) be its topology, £>* as before, and O' 
the topology generated by £)* and the sets / - 1 ( U ) , U open in X. By Lemma 10, 
the space Y' with the topology O' and the same points as Y is again extremally 
disconnected. Moreover, the mapping/ ' : Y' -> X determined by / is again minimal 
p.o.: Its continuity is evident from the definition of Y'; the compactness of the 
inverse images of points follows from the fact that these are compact with respect 
to O 2 O'; a closed i c F is also closed in Y and thus f'(Ai) = f(A) is closed, 
and that / ' is minimal onto follows the same way. This shows that / ' : Y' -> X is 
a p.o.-projective cover of X in H, and Corollary 2 of Proposition 4 implies t h a t / ' : 
: Y' -> X belongs to K and is a p.o.-projective cover there. Finally, the composite 
of the homeomorphism l im y /* with the mapping Y* —> X given by / is just limz, 
and hence the description of Y' just corresponds to the description of A'(X), which 
proves the second part of the proposition. 

As a by-product of the above considerations one has the following remark 
concerning the spaces A(X): If A is any class of semi-regular spaces which is closed 
with respect to the three types of operations referred to above then A(X) e A for 
every X e A. Thus, for instance, A(X) is real-compact (or, more generally, I-compact 
for arbitrary I) if X is. 

Proposition 6 is, primarily, a description of the p.o.-projective covers in H, 
the category K just being such that p.o.-projective covers in K always exist and 
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coincide with the p.o.-projective covers of the X e K in H, and for any other type 
of category satisfying this latter condition the same proposition evidently holds. 
In particular, this covers all the full subcategories of H, or for that matter, of any K 
considered above, which are left-fitting with respect to essential p.o. mappings, 
as well as the categories one obtains from these by allowing perfect mappings only. 

On the other hand, one has the following observation concerning full subcate
gories of H: 

Proposition 9. If a full subcategory S ofH has the property that A'(X) belongs 
to S for each X e S then the extremally disconnected X e S are exactly the p.o.-
projectives, and the mapping A'(X) -> X given by limx is a p.o.-projective cover 
in S for each X eS. 

Proof. By the fullness of S, the extremally disconnected Z e S are clearly 
p.o.-projective in S. Conversely, for any p.o.-projective X in S the mapping A'(X) -» 
-» X, which by hypothesis belongs to S, has a right inverse f: X -> A'(X) which 
must be one-to-one, perfect, and onto since A'(X) -» X is minimal, hence a homeo-
morphism, and therefore X is extremally disconnected. The second part follows 
immediately from this. 

A category to which this applies is given by the class of all rim-compact Haus-
dorff spaces: For any such space X, one has A'(X) = A(X) by its regularity, and 
A(X) is evidently rim-compact since it is zero-dimensional. By contrast, a category 
which does not have this property, and which therefore does not satisfy any of the 
conditions considered above which would imply this property, is given by the semi-
regular Hausdorjf spaces: If A'(X) is semi-regular then, by the proof of Proposition 6, 
A'(X) = A(X), hence lim: A(X) -» X is continuous, and therefore X is regular. 
Since there exist non-regular semi-regular spaces, this proves the assertion. 

We conclude this section with a discussion of p.o.-projective covers of extension 
spaces. The category to be considered is H, although, clearly, all that is going to be 
said applies to any subcategory of H in which p.o.-projectivity and p.o.-projective 
covers are the same as in H. 

If E is an extension space of X, i.e. X is a dense subspace of £, it makes sense 
to ask how their p.o.-projective covers are related to each other. This question will 
be considered with the aid of suitable filter spaces. 

Let A(E J X) be the subspace of Q(X) consisting of all those filters which converge 
in E; this is then an extension of A(X). Also, let QX be the mapping 90? ~~> 90? | X = 
= {Vn X | Ve m] for 9K e Q(E). 

Lemma 12. Q(E) is mapped homeomorphically to Q(X) by QX, and A(E) cor-
responds to A(E | X) under QX. 

Proof. It is clear from maximality that QX maps Q(E) one-to-one into Q(X); 
ontoness follows from the fact that for 50? e Q(X), 501° = {17 | U n X e 9)1, U e ©(£)} 
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belongs to Q(E), and $R° | X = 901. Concerning its continuity properties, one has 
QX(QV(E)) = QVnX(X) for any open V .= £, which shows QX is a homeomorphism. 
Finally, for any 9M e A(E) the trace 9011 X converges in E and thus belongs to A(E | X), 
and if the latter holds for any SM e Q(E) then 9Ji has a cluster point in £ and, conse
quently, converges, i.e. 901 e A(E). 

Let yl/(£ | X) now be the space obtained from A(E | X) by modifying the topology 
with respect to the limit mapping in the same way A'(X) was derived earlier from 
A(X). Since lim 901 = lim (9W | X) in E for any 90? e /1(F) one then obtains from 
Lemma 12 and Proposition 6: 

Proposition 10. The mapping A'(E | X) -> £ by taking limits is a p.o.-projective 
cover of E in H. 

The way in which A'(E j X) and /V(X) are related to each other carries over 
to arbitrary p.o.-projective covers as follows: 

Corollary 1. If f: F -> E is a p.o.-projective cover of E in H then g: Y-> X, 
Y = f~i(X) and g = / 1 Y, is a p.o.-projective cover of X in H.6) 

In the special case of completely regular Hausdorff spaces and their compactific-
ations one has: 

Corollary 2. For any compactification E of a completely regular Hausdorff 
space X, the mapping Q(X) -> E by taking limits is a p.o.-projective cover of E in H. 

Using the fact that, for an extremally disconnected semi-regular Hausdorff 
space X, Y\mx: A(X) -> X is a homeomorphism and that an extremally disconnected 
compact Hausdorff space is the Stone-Cech compactification of any of its dense 
subspaces, one obtaines as a further specialization: 

Corollary 3. For any compactification E of an extremally disconnected semi-
regular Hausdorff space X, the continuous mapping fiX -> E which extends the 
natural injection X -> E is a p.o.-projective cover of E in H. 

4. Categories of Topological Algebras. The categories considered here have as 
their objects topological algebras of a certain type, i.e. pairs A = (X,f) where X 
is a topological space and / = (fa)aeI a family of continuous mappings fa: Xta -> X, 
the family T = (Ia)aej of cardinal numbers being the type, and as their morphisms 
continuous homomorphisms, given by continuous mappings of the underlying 
spaces which are homomorphisms for the underlying algebras, i.e. h(fa(x)) = ga(h o x), 
for all x e Xtoc and a e J, for h: A -> B where A = (X,f) and B = (Y, g). 

6) For E= PX, this was shown in [16]. 
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The p.o. homomorphisms of such a category K, i.e. those which are given by 
perfect onto mappings, clearly satisfy the conditions (Pi) — (P3) of Section 1 whe
never K is closed-hereditary, i.e. with any A e K, any closed subalgebra of A and 
its natural embedding into A again belongs to K, essentialness being the same minim
ality as previously. Also, in any such a category K whose underlying spaces are 
Hausdorff there is an upper bound on the cardinality of the algebras A for which 
there is a p.o. homomorphism / : A -» B9 depending only on B9 since any such A 
has a dense subalgebra generated by card B elements, and its cardinality is bounded 
by a cardinal number which is determined by card B and the type T in question. 
Finally, for any topological algebra A, the class of all p.o. homomorphisms/: A -> B 
is clearly small since the analogous condition holds for topological spaces. 

The conditions (P4) and (P5) are most readily obtained by imposing natural 
restrictions on each, the underlying algebras and the underlying spaces of the objects 
of the category. In this vein, let A be an equational class of algebras of a certain 
type, T a class of Hausdorff spaces, and C(A, T) the category of all those topological 
algebras whose underlying algebra belongs to A and whose underlying space to T, 
with all their continuous homomorphisms. The properties of equational classes, 
i.e. Birkhoff's theorem, then ensure that the conditions one wants C(A, T) to satisfy 
in this context merely depend on T, and so one has, on the basis of Section 2 and 
Proposition 2: 

Proposition 11. IfT is closed-hereditary, and closed with respect to pullbacks 
and projective limits of well-ordered inverse systems with p.o. mappings, taken in H, 
then p.o.-projectivity is properly behaved in C(A, T), and the same holds for any 
subcategory of C(A, I) which is leftfitting in C(A, T) with respect to essential 
p.o. homomorphisms. 

Corollary. If T is closed-hereditary and closed with respect to products in H 
then p.o.-projectivity is properly behaved in any subcategory of C(A, T) which 
is closed-hereditary and closed with respect to products in C(A, T). 

We now turn to categories of compact algebras in order to exhibit a certain 
similarity between them and compact Hausdorff spaces [20]. Let C be the class 
of all compact Hausdorff spaces and A(T) the class of all algebras of type T. Given 
any completely regular Hausdorff space X, there exist algebras A e C(A(T), C) 
containing X as subspace, e.g. A = (fiX9f) where / = (/a)aeJ consists of arbitrarily 
chosen projections/,: (pX){* -» pX. One obtains from this, for instance by considering 
a suitable closed subalgebra of a product, that there exists an algebra FX(X) in 
C(A(T), C) which is, in a way, the topological counterpart to the absolutely free 
algebra of type T: FX(X) is free in C(A(T), C) on the generating space X in that X 
is a generating subspace, and any continuous mapping h0: X -> A9 for any Ae 
e C(A(T), C) has a (unique) extension to a continuous homomorphism h: FX(X) -• A. 
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Now, let A be any equational subclass of A(T). It is then clear that C(A, C) is an 
epireflective subcategory of C(A(T), C), and thus, as far as p.o.-projectives go, 
Lemma 6 applies. With these concepts, one has: 

Proposition 12. For any extremally disconnected regular Hausdorff space X9 

FX(X) is p.o.-projective in C(A(T), C), and the p.o.-projectives in C(A, C) are exactly 
the retracts of the reflections of such FX(X) with compact X. 

Proof. Given a p.o.-homomorphism f: A -> B and any g: FX(X) -> B in 
C(A(T), C), consider the diagram 

f-Mg(X)) >g(X) 
u 

induced by this. Here u is continuous and points have compact inverse images 
under u; also if Y c f~\g(X)) is closed then Y = Z nf~x(g(X)) with closed Z c A, 
and g(Y) = f(Z) n g(X), which is closed in g(X). It follows that u is perfect onto, 
and hence there exists a continuous mapping w: X ->f~l(g(X)) such that uw = v. 
For the extension h: FZ(X) -> A by freeness one then has fh \X = fw = uw = 
= v = g | X, and this implies fh = g. 

It follows now immediately, by what has already been pointed out, that the 
retracts of the reflections of these FX(X) are p.o.-projective in C(A, C) since retraction 
always preserves any kind of projectivity. That the FX(X) with compact X already 
give all results from the fact that the A e C(A, C) are compact. 

Remark. If A is the reflection of some FX(X) in C(A, C) then one has a continu
ous mapping u: X -> A which is universal for all continuous mappings v: X -> B9 

B e C(A, C), in that, for any such v, v = hu with a uniquely determined continuous 
homomorphism h: A —> B. Whether u is an embedding is a matter which depends 
on the class A. 

The remainder of this section will be concerned with rather more special situ
ations, namely, with different categories of topological groups. To begin with, one 
has the following categories of this type to which Proposition 11 or its corollary 
apply: First, there is the category of all Hausdorff topological groups and their 
continuous, or their perfect, homomorphisms, and then there are, among others, 
the subcategories given by the following classes of groups: 

compact groups 
locally compact groups 
a-compact groups 
zero-dimensional groups 
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profinite groups 
prop-p groups 
prodiscrete groups 

and in each case the full subcategory given by the abelian groups in question.7) 

For some categories of compact groups the onto ( = p.o.) homomorphisms 
are actually the epimorphisms and hence, in these cases we are dealing with ordinary 
projectivity. This is evidently so for the compact, profinite, and pro-p abelian 
groups; the resulting proper behaviour of projectivity in these categories is, of course, 
a well-known fact in virtue of Pontryagin Duality, but it may be worth noting that 
the present setting provides a proof for this independent from the machinery of 
representation theory. Non-abelian cases are given by: 

Lemma 13. For profinite and pro-p groups the epimorphisms are exactly 
the onto homomorphisms. 

Proof. A construction due to Eilenberg and Moore [17] shows that in the 
category of all finite groups and their homomorphisms, subgroups are equalizers. 
If G is now any profinite group and H <= G a closed proper subgroup then, for each 
sufficiently small open normal subgroup jV of G, HN cz G and there exist homo
morphisms fN, gN: G/N -» GN, GN finite, which coincide exactly on HNjN; the 
embedding G -» flG/JV then provides continuous homomorphisms f, g: G -> Y\GN 

such that H = f)HN is the subgroup on which f and g coincide, which proves the 
assertion for profinite groups. 

For pro-p groups one has the rather different circumstance that any closed 
proper subgroup H of such a group G is actually contained in a closed proper normal 
subgroup of G: One has HN cz G for some open normal subgroup jV of G, and hence 
NH is contained in some maximal open subgroup U of G; U9 however, is actually 
normal since a maximal subgroup of a p-group is normal, and U/N is a maximal 
subgroup of the p-group G/N. 

In some of the categories mentioned above, particular p.o.-projectives are 
provided by suitable types of free objects. For instance, in the category HG of all 
Hausdorff topological groups and all their continuous homomorphisms there exists, 
for any completely regular Hausdorff space X, a group F(X), the free topological 
group on X which has X as a generating subspace in such a way that any continuous 
mapping from X into a G e HG has an extension to a continuous homomorphism 
F(X) -* G [10]. By an argument analogous to the first part of the proof of Propo
sition 12 one readily sees that F(X) is p.o.-projective in HG for extremally discon-

7) Profinite means compact Hausdorff zero-dimensional or, equivalently, projective limit 
of finite groups. Prop-p groups and pro-discrete groups are projective limits of p-groups and 
discrete groups respectively. 
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nected X. However, none of these F(X) can be non-trivial p.o.-projective covers 
in HG: The underlying group of such an F(X) is a free group, hence the underlying 
group of any normal subgroup of F(X) is again free, and free groups are known 
not to possess any compact Hausdorif topology (the trivial case, empty set of gener
ators, of course excluded). 

For the category C(G, C), G the class of all groups, Proposition 12 is applicable; 
more specifically, the image of X in the reflection in C(G, C) of the absolutely free 
compact algebra of corresponding type with free generating space X is homeomorphie 
to X, and the dense subgroup which it generates is a free group — facts which are 
not obvious from its definition as reflection but, rather, require a good deal of ad
ditional argument. 

In the case of profinite and pro-p groups one has: 

Lemma 14. For any zero-dimensional Hausdorff space X there exists a free 
profinite and a free pro-p group on X, and these are projective in their respective 
categories. 

Proof. To construct these groups, let F be the free group generated by the 
points of the given space X, and let 91 be the collection of all normal subgroups 
J V g f such that 

(1) F/N is finite (is a p-group), and 

(2) (sN) n X is open-closed in X for each s e F. 

91 is evidently non-void (F e 91), and one readily sees that it is a filter basis. Now, 
let s = x\\ ..., x^ where xteX and £; = ± 1, be any non-unit element of F, and let 
X = Ut u ... u Uk be an open decomposition of X separating the different xf. 
Then there exists a homomorphism ft: F -> G, G a finite group (p-group), constant 
on the Uh and such that h(s) 4= e, by the fact that in a free group the intersection 
of all normal subgroups with finite (p-power) index is trivial. It follows that Ker (h) e 
e9 i and s $ Ker (h), hence f]N(N e 91) = {e}. Finally, any open-closed U £ X 
is an (sN) n X for some N e 91; take N = Ker (h) for any homomorphism ft: F -> G, 
G appropriate, which is constant on U and on X — U, with different values. The 
group topology with 91 as neighbourhood basis for the unit is Hausdorff and totally 
bounded, and its restriction to X gives the topology of X; the resulting topological 
group contains X as a subspace, and its compact completion F* is a free profinite 
(pro-p) group on X: For any continuous mapping f0: X -> G, G the kind of group 
in question, the extending group homomorphism/ t : F *-> G is continuous with 
respect to 91 and hence extends continuously to a homomorphism / : F* -> G. 

Now let / : G -> H be an epimorphism, and g: F*—> H any homomorphism. 
Then there exists [21] a continuous section u: H -> G of/, and the continuous 
mapping ft0 = u(g | X) extends to a homomorphism ft: F*—> G for which /ft = g. 
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Corollary 1. The free profinite (pro-p) group on a one-element space is iso
morphic to the additive group of Z-adic (p-adic) integers. 

Remark. It follows from this that the projective cover of a cyclic group of order 
p in the category of pro-p groups is given by Zp9 the group of p-adic integers; now, 
Zp clearly has automorphisms / distinct from the identity for which gf = g9 g: Zp -> 
-> ZplpZp the natural homomorphism (Einseinheiten) — hence projective covers 
are not rigid here. 

Corollary 2. In the category of profinite groups, the projectives are exactly 
the retracts of the profinite groups which are free on some subspace. 

For pro-p groups one can actually say a lot more, as will be shown shortly. 
First, let G be any profinite group and 3>(G) the intersection of its maximal (proper) 
open subgroups. $(G) is clearly closed and invariant with respect to all (continuous) 
automorphisms of G. Furthermore: 

Lemma 15. For any closed normal subgroup N of G, the natural homomorphism 
G -> G/IV is essential iff IV s <f>(G). 

Proof. Let G -» G/IV be essential and H £ G any maximal open subgroup. 
Then NH c G by essentialness, hence IVH = H and thus IV £ H; in all this shows 
IV c <P(G). Conversely, let IV £ $(G) and S c G a proper closed subgroup; then 
there exists an open normal subgroup U of G such that SU a G, and hence a maximal 
open subgroup H 2 SU. From this one has S, IV c H and therefore SN #= G; 
this expresses the fact that G -• G/IV is essential. 

Corollary 1. For profinite groups, any essential epimorphism f: G -> H induces 
an isomorphism g: Gj$(G) -> Hj^(H). 

Proof. For any epimorphism f:G-+H one has the commutative diagram 
of epimorphisms 

G/Ф(G) *Hjф(H) 

where u and v are natural, and g is determined by the fact that ker (vf) = / " X(<P(H)) 2 
3 &(G). NOW, if/ is essential one readily sees that g is also essential (by checking 
minimality), and since 4>(G/#(G)) is trivial this shows that g is an isomorphism. 

Corollary 2. For projective profinite groups, G £ H iff GI$(G) s H/$(H). 
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Proof. In one direction the implication is obvious. For the other, projectivity 
of G, H implies that G -* G/$(G) and H -> H/<P(H) are projective covers, and the 
essential uniqueness of these then proves the assertion. 

Corollary 3. For a profinite group G, any projective cover f: H -+ G/<P(G) 
determines a projective cover g: H -+ G. 

Proof. The projectivity of H provides a homomorphism h: H -> G such that 
/ = gh, and since g and / are essential epimorphisms, h is one, too. 

For a pro-p group G, the maximal open subgroups are normal, as was noted 
above, and hence have index p. It follows from this that G/$(G) = (Z/pZ)! where f 
is the common cardinal number of the sets 901 of maximal open normal subgroups 
N of G which are maximal with respect to the condition that G = N0 . f)N(N0 # 
# N e WH) for each N0 e Wt; I will be called the colength of G, denoted by col (G). 
It is then clear that: 

Corollary 4. For projective pro-p groups, G = H iff col (G) = col (H). 

Thus, the projective pro-p groups are distinguished by a single cardinal invariant. 
In particular, then, it should be possible to determine this invariant for those pro-p 
groups which are free on a given space. In the following, let F p be the field of p 
elements, C(X, Fp) the Fp-module of all continuous Fp-valued functions on the 
space X, and let Horn (...) stand for continuous homomorphisms. 

Lemma 16. If the pro-p group G is free on the space X then col (G) is the Fp-
dimension of C(X, Fp). 

Proof. Hom(G, Fp) is isomorphic to Horn (G/<P(G), Fp) (as Fp-module), and 
since GI<P(G) s Fp as groups, where I = col (G), Horn (G/$(G), Fp) is isomorphic 
to the Fp-module C0(/, Fp) of all Fp-valued functions of finite support on a set J with 
card 1 = 1. On the other hand, by the freeness of G, Horn (G, Fp) ^ C(X, Fp) and 
thus C(X, Fp) ^ C0(I, Fp). Since col (G) = card J is clearly the Fp-dimension of the 
module on the right, this proves the assertion. 

Proposition 13. The projective pro-p groups are exactly the pro-p groups which 
are free on the one-point compactification of a discrete space. 

Proof. In view of the preceding results it suffices to show that the particular 
projective groups mentioned take on all possible colengths. However, this is clear 
since dim C(X, Fp) = card X for the one-point compactification I of a discrete 
space (which includes the case of finite X, incidentally: being already compact these 
are equal to their one-point compactifications). 

Remark 1. It follows from this proposition, by arguments analogous to some 
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used by Graev [10], that the projective pro-p groups are exactly those which are 
called free in [21]: Graev considers (in some other categories) what might be called 
free topological groups on pointed spaces, the point, of course, corresponding to the 
unit of the group, and the "free" pro-p groups of [21] can analogously be described 
as those which are free on pointed spaces (K, e) where X is the one-point compactific-
ation of its discrete subspace X — {e}. Now, because the space X is not connected 
such a free group on (X, e) is also free, in the sense used here, on a subspace ho-
meomorphic to X, which one can show by using the proof for the analogous statement 
in [10]. A different argument for the coincidence of projectivity with "freeness", 
and hence with freeness, is contained in [21], based on a certain cohomological 
dimension, where projectivity is equivalent to the dimension being at most 1. 

Remark 2. For vastly different spaces can the free pro-p group on them still 
be the same: For discrete X, the dimension of C(X, Fp) is 2ca rdx , and hence a countable 
discrete space and the one-point compactification of a discrete space of 2Ko points 
have isomorphic free pro-p groups. 

Remark 3. A projective profinite group need not be free on any subspace. 
First we show that any projective pro-p group is also projective profinite, by proving 
that the pro-p groups are left-fitting, with respect to essential epimorphisms, among 
the profinite groups: Le t / : G -> H be an essential epimorphism, G profinite and H 
pro-p, and let K = Ker (/). Then, for any p-Sylow subgroup P of G [21] and any 
open normal subgroup IV of G, one has that the index (G: KIV) is a p-power since 
GjKN is a finite quotient of G/K, which is isomorphic to H, and (G: PIV) is prime to p. 
It follows that G = KNPN = KPIV, and by taking the intersection over all IV one 
obtains G = KP. Since / is essential this implies G = P. Now, a pro-p group has 
no non-trivial homomorphism into a pro-g group for q # p, and thus any projective 
pro-p group, although it is projective profinite, fails to be free profinite. 

Remark 4. By Duality, one has that an abelian profinite group is projective 
(in its category) iff it is torsion free, which is a completely internal characterization. 
This raises the question whether projectivity for arbitrary profinite, or pro-p groups 
can be characterized by internal conditions. 

Remark 5. The projective profinite abelian groups are, again by Duality, 
described by a family of cardinal invariants, the collengths of their p-Sylow subgroups 
for the different primes p; one wonders whether the same holds for the projective 
pro-finite groups. 

Concluding Remarks. In this final section we collect a number of comments 
which deal with some further aspects of the preceding work. 

(1) As is noted in [9], the dual equivalence between the category of compact 
zero-dimensional Hausdorff, i.e. compact Boolean, spaces and their continuous 



B. BANASCHEWSKI 89 

mappings and the category of Boolean lattices (with unit) and Boolean homomor
phisms establishes the duals of the results on the former for the latter; in the present 
setting, going somewhat farther than [9], this means that injectivity is properly 
behaved, and that the injective Boolean lattices are exactly the complete ones. Now, 
on the basis of a result in [6] this can be extended to the category BS of all Boolean, 
i.e. locally compact zero-dimensional Hausdorff spaces and their perfect mappings. 
The category of lattices which is dual to this is the category BL of all Boolean lattices, 
in the wider sense of the term, i.e. distributive, relatively complemented lattices 
with zero, and the zero-preserving lattice homomorphismsf: A -> B with the property 
that for each b e B there exists a eA such thatf(a) ^ b [6]. The category of Boolean 
lattices with unit and Boolean homomorphisms is a full subcategory of this for iff: 
A -> B belongs to BL and A and B have units then f clearly is unitary, and conversely. 
It follows now that injectivity is properly behaved in BL; moreover, some additional 
arguments show that the injective objects in BL are exactly the conditionally complete 
ones. 

(2) The category RC of all real-compact Hausdorff spaces and their continuous 
mappings is dually equivalent to a category CF of certain algebras over, say, the real 
number field R, via the correspondances X ~~> C(X), A ~-> Horn (A, R) (Stone-Zariski 
topology) for their objects and the usual associated correspondances for their mor-
phisms. Consequently one obtains, from the results on p.o.-projectivity in RC, 
statements about injectivity in CF with respect to certain types of embeddings, 
and the A e CF which are injective in the given sense are known to be exactly those 
which are conditionally complete in their usual partial ordering. There is some 
reason to expect that the associated essential extensions, especially the maximal ones, 
may be of independent interest: In [18] it is shown that, for any commutative 
semi-simple ring A with unit and Hausdorff maximal ideal space Q(A) (Stone-
Zariski topology) the Utumi maximal ring of quotients of A [24] has the projective 
cover of Q(A) as its maximal ideal space. Now, if f: X -> Yis a projective cover 
in RC then one has for the corresponding injective hullf*: C(Y) -> C(X) that Q(C(X)) 
is the projective cover of i2(C(Y)) since these spaces are homeomorphic to PX and jSY 
respectively. In this situation it may be that the largest Utumi ring of quotients 
of f*(C(Y)) in C(X) (which need not be all of C(X)) has X as its real-maximal ideal 
space and is somehow a "best" ring of quotients of C(Y) with respect to not loosing 
any real maximal ideals of C(Y); moreover, this may only be a special case of a much 
more general situation involving algebras over arbitrary fields. 

(3) In order to obtain an application, and illustration, of Proposition 11 involving 
algebras other than groups one might think of compact (Hausdorff) Boolean rings 
with unit and continuous unitary ring homomorphisms as a simple and manageable 
case to look at, but unfortunately this happens to be too simple a case to be of any 
illustration value: Any Boolean ring with unit is semi-simple, and hence any compact 
ring i? of this type is a product of finite simple rings, by a general structure theorem 
of Kaplansky's; moreover, the factors must again be Boolean, and hence they are 
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all isomorphic to the field F 2 . Thus, JR is essentially the ring of all F2-valued functions 

on some set X9 where cardX is the number of its open maximal ideals. From this 

and a few additional elementary considerations one obtains that the category of all 

compact Boolean rings with unit and continuous unitary ring homomorphisms 

is dually equivalent to the category of sets and hence consists entirely of projec-

tives.8) The same holds if one takes the commutative rings in which xp = x holds 

for some fixed prime p other than 2 in place of the Boolean ones: Such a ring R has 

zero prime-radical, and since xp = x also holds in any homomorphic image of i? 

the prime ideals P of JR are all maximal and R/P s F p . In particular, JR is semi-simple, 

and from here on the argument continues as above, with F p in place of F 2 . 

(4) The duals of the results of Section 1 can be used to show that injectivity 

with respect to (norm-preserving) embeddings is properly behaved in the category 

of all Banach spaces9) and norm-decreasing linear mappings. This provides an 

alternative proof to [5] for the existence of injective hulls in this category, and other

wise complements the results of [5]. 
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