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SUBCATEGORIES WITH CARTESIAN CLOSED COREFLECTIVE HULL 

L . D . NEL 

Ottawa 

It has long been known that by forming all q u o t i e n t s of direct sums of compact 

Hausdorff spaces i n the category of topological spaces, one o b t a i n sa c a r t e s i a n closed 

topological category. Recent ly G. Tashj ian revealed that precompact seperated spaces 

likewise have a coreflective hull i n the category of seperated uniform spaces which 

is c a r t e s i a n closed. The q u e s t i o n arises: what c o n d i t i o n s must a subcategory satisfy 

in order to have a c a r t e s i a n closed coreflective hull? We give an answer to this 

which u n i f i e s known special cases and provides a tool for f inding new ones. 

We use "topological category" i n the sense of H. Herrlich: a concrete category 

with i n i t i a l structures, small fibres and precisely one structure on a s i n g l e p o i n t 

set. Typical examples from a vast c o l l e c t i o n are the usual categories of topological 

spaces, uniform spaces, regular topological spaces, competely regular topological 

spaces, nearness spaces, semi-nearness spaces ( s e p e r a t i o n axioms are never implied i n 

this paper u n l e s s stated). A topological category C is c a r t e s i a n closed iff each hom-

set C(X,Y) can be structured to become a funct ion space C[X,Y] so that the exponen-

tial law C[X><Y,Z] = C[.X,C[Y,Z]] holds; the natural isomorphism carries f to f* where 

f*(x)(y) = f(x,y). 

C a r t e s i a n closed topological categories are remarkably powerful and e legan t i n 

theories where funct ion spaces play a crucial role e.g. i n c e r t a i n areas of funct ion-

al a n a l y s i s . The talks by E. Binz and H.E. Porst given at this symposium provide ex-

c e l l e n t i l l u s t r a t i o n s . The topological categories mentioned above are each of cons i-

derable i n t e r e s t , but none are c a r t e s i a n closed. This quickens i n t e r e ś t i n the for-

mation of subcategories of them which do have this desirable property and are at the 

same time topological categories. Subcategories are full and isomorphism-closed. 

Let us henceforth suppose that X is a given topological category and K a sub-

category closed under f i n i t e products. Our main result can be stated as follows. 

THEOREM: The oorefleetive hull of K in X is a eartesian olosed topological category 

provided ťhat for any objeets KSL in K and Y in X ťhere exist a funotion spaoe objeot 

KíK^Yl in X suoh that the assignment f~+f* is a bijeotion of X(K*L,Y) to X(L,XІK,Y']) 

Usually X[KjY] does not itself belong to the coreflective hull of K: it serves 

only as a p r e l i m i n a r y funct ion space from which the real t h i n g is derived by coreflec 

- t i o n . Let us mention a few s i t u a t i o n s where this theorem is applicable. In each 

case we can o b t a i n further examples by t a k i n g a f i n i t e l y productive subcategory of 

the given K. 

EXAMPLES: (a) In the category of topological spaces we take the subcategory of all 
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spaces with neighbourhood filters having a base of compact subsets. The required 

function spaces are formed with the compact open topology, also in the next two exam

ples. 

(b) In the category of regular topological spaces take the subcategory of compact 

spaces. 

(c) In the category of completely regular spaces take the subcategory of compact 

Hausdorff spaces. 

(d) In the category of topological spaces take the subcategory of continuous lat

tices in the sense of D.S. Scott i.e. T0-spaces injective with respect to embeddings. 

Here the function spaces are formed with the topology of pointwise convergence. 

(e) In the category of semi-nearness spaces take the subcategory of contigual spaces 

(they are generalizations of precompact spaces). The function spaces here do not ad

mit brief description, but we note that for uniform spaces their structure reduces to 

the uniformity of uniform convergence. Thus we obtain the last example as a special 

case. 

(f) In the category of uniform spaces take the subcategory of precompact spaces. 

It turns out that the smallest (in a suitable sense) cartesian closed topologi

cal category containing all compact Hausdorff spaces is the one obtained by applying 

our theorem to example (c). Corresponding facts for continuous lattices and precom

pact spaces result from examples (d) and (f) respectively. 

Details and references will appear elsewhere in final form. 
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