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Convergence in fuzzy topological spaces

R. Lowen

Brussels

It is shown that if I is the unit interval and X a set then there
exists a filtertheory in the lattice Ix which deviates in a remar-
kable way from the theory of filters on X, but which nevertheless
makes 1t possible to define a concept of convergence in a fuzzy
topological space similar to convergence of filters in topology.
If a fuzzy topological space is topologically generated {L1] rela-
tions are found between fuzzy convergence and topological comver-
gence.

Using this notion of convergence characterizations are given of
fuzzy compactness [L1] and of fuzzy continuity.

We shall only give a summary of the most important results, an

. extended version with proofs will appear elsewhere.

1. Filtertheory in IX.

The definition of a f§4{L&fen, a f§4iLlenbase or a generating family fon
a §iLtern in the Lattice 1% can be found f.i. in [Bol. Let us recall
that a prime §ilter in 1% is a filter ¥ such that 1f u,v € 1% ang
pvv € Fthen p € For v € F.

For any a € I and A € X the function in 1X which assigns the value
a to x if x € A and 0 1f x & A 1s denoted by axp:

The definition of infimum and supremum of a family of filters in
IX, and the definition of a coarser or a finer filter are straight-
forward generalizations pf those for filters on X and can also be
‘found f.i. in [Bo].

Given a filter % in Ix we shall want to know to what extend & is
"uniformly bounded away from 0”. To make this precise we introducs

the characteristic set of
C¥) = {a €I :yw €Y Ix € X s.t. vix) > a}
and characteristic value QG = sup C(®.
C(¥ can be any of the following ¢, {0}, [0,c][ for some c €I
or [0,c] for some c € I\{1}.

If IF(X) denotes the family of all filters on X and '3K(X) the

family of all filters in % with characteristic set K then we define

the following mappings
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w, : F(X) » EK(X]

1
F o> {p: vk €K, ulk,1] € F}

v U EK,(X) + F(X)
K 'K 4
3 ——— {wlk,1l : Kk €k, v €T}

It is easily verified that \Kfé) is indeed a filter on X and that
wK[F] is indeed a filter in IX with characteristic set K.

These functions establish a natural relationship between ultra-
filters on X and prime filters in IX as is shown in the next

theorenm.

Theorem 1.1.

If U is an ultrafilter on X then wy(U] is a prime filter in Ix and
N
moreover it is maximal in GBK[X), and if U is a prime filter in Ix

then, for all K C C(U), IK}?£] is an ultrafilter on X.

In the same way as for filters on X a filter  in IX is completely
determined by the family P(&) of primefilters in IX which are finer
than ¥, i.e.

= N
UEP (I)

Contrary to the situation for filters on X, P(J) can be reduced to

a smaller subfamily with analogous properties. Indeed the next

theorem can be shown

Proposition 1.2.

The family P(J) is inductive in the sense that each descending

chain in it has a lower ‘bound.

This result enables us to replace P(J3) by
Fm(l’)] = {W: ULE PR, Wninimal}

while maintaining the fact that

= n QU
MEPm(B)

It is the family P_(¥) rather than P(J) which with regard to
plays the role of the family of ultrafilters finer than F with

regard to F.
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This is made precise in the following theorem, but first we need to
introduce another concept.

Let S be a filter in I* and F a filter on X. Then & and F are said
to be compatible iff for all w €3 and F € F u dces not vanish
sverywhere on F.
It is clear that if 3 and F are compatible then

(B,F) = (ue€I1X: AvEI, AEF ulx) 2 vix) yx € A
is a filter in IX.

We now come to the important result.

Theorem 1.3.

Let ¥ be a filter in 1* then W € PN(GJ iff there exists an ultra-

filter U on X, compatible with ¥ such that (J,U) =W, i.e.

Pm(t’a) = {(¥,U) : U ultrafilter compatible with 3}.

2. Convergence in fuzzy topological spaces.

Let us recall that a fuzzy topological space, FTS for short, is a

set X together with a family A of functions from X to I (so called

fuzzy subsets of X) which fulfills properties, similar to those of
the open sets in a topological space.
For a precise definition of a FTS and related notions which are
used in what follows we refer to |L1] and [LZ].
Let now B3 be a filter in IX, which for consistency we shall call a
fuzzy filter then we define the wdnerence 04 S to te the fuzzy seot
adh &% @ X » I
x + inf p(x)
- UE%
where p is the fuzzy closure [L1] of u.

The £indit 04 is the fuzzy set

1im $ @ X » I

x > inf adh W(x)
UeP (I)

Remark that if one had taken F(¥) instead of I'mt'if:] in this defini-

tion the limit of any fuzzy filter in any fuzzy topologicael space
would te zero.

Proposition 2.1.

Let ¥ and & be fuzzy filters then
(1) if IO, adh I < adh &



257

(ii) 1imJ s adh &
(iii) if @ is prime, 1in @ = adh &

ilemark that there need oe no relation between the limits of compa-
rable fuzzy filters. Anticipating on the result of the next theoram
this i< shown by the following counterexample.

fFirst though we recall that given a topology T on X the associated
fuzzy topology on X consists of the family of all lower semiconti-
nuous functions (open fuzzy sets) from (X,T) to the unit interval
cquipped with the usual topology. This associatec fuzzy topology is
denotec w(T). By means of the icentification (X,T) = (X,w(T)) the
cactepory of topoloyical spaces beccmes a full subtcategory of that

ctf fuzzy tcpolopical spaces( L1).

LCeunterexample

Let (X,7) be & non-Hausdorff topological space anc let (X,w(T)) be
the associates FTS

Let F ana G be filters on X such that F ; G and lim F ? lim G # ¢.
Finally let K 9 K' be characteristic sets. 1t is easily seen that
w, (F) is finer than mK,(GJ but it follows from the next thecrem

N

thhat tteir limits are incomparable.

Theoren 2.2.

If (X,7) is a topological space, F a filter on X and K scme charac-
teristic set then in the associated FTS (X,w(T)) we have

(i) adh mK[F] = (sup K) . Xadn F

(ii) 1im w, (F) = (sup K} .

K Xlim F

3. Cheracterization of fuzzy compactness and of fuzzy continuity.

A FTS (X,8) is fuzzy compact LL1l iff for all family of open fuzzy
sets A C A, for all a € I such that sup u 2 &, and for all b < a,

uEA
there exists a finite subfamily AD C A such that sup u 2 b.

uGAD

It was shown in [L1] and I L2] that this definition is & good
gxtension of the notion of compactness. Indeed a topological space
is compact iff the associated FTS is fuzzy compact.
Fuzzy compactness, in & similar but more elabcrate way as compact-
ness can be characterized by means of convergence of fuzzy filters.

The following thearen can te ehown.
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Theorem 3.1.

The fuzzy topological space (X,A8) 1is fuzzy compact iff one of the
following equivalent properties holds
(1) for each fuzzy filter S for which the characteristic value
cGis strictly positive
sup adh ¥ (x) 2 ¢
xEX 3
(i1) for each prime fuzzy filter U for which the characteristic
value CQLiS strictly positive
sup limUlx) 2 c
x€X u

A function f from a FTS1(X,A) to a FTS (Y,R) is fuzzy continuous
[wl 1ff for all uw € @ ¥ (u) € & where f (u) is defined as Mof.

Given a fuzzy filter & on X, its image through f is defined

F(B) = {p: 3vEJs.t. pu 2 flv)}.

The image of a fuzzy set is defined as follows, let v € IX

then
F(v) = min {£ €IY : gof 3 v}

Both image and primage of fuzzy sets are straightforward generali-
zations of the corresponding notions for sets.

The following results are obtained.

Theorem 3.2.
A function f : X,A »+ Y,Q is fuzzy continuous iff one of the follo-
wing equivalent conditions holds
(1) for each fuzzy filter & on X
adh f(3) 2 fladh'F)

(i1) for each prime fuzzy filter W on X
lim £F(®W 2 F(1imW)

It is worthwhile to remark that whereas in topology the result (ii)
is trivial, here it is not and the technique of the proof is entire-
ly different. It rests among other things, on the important result
which says that if 3 is a fuzzy filter then

adh B = sup adh U.
UEP (B
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