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JOINT-CONVERGENCE IN FUNCTION SPACES. ORDER OF “W’-CLOSURES.
K.WICHTERLE
PRAHA

It is well-known (cf. [4]) that if ¢X,ud is a (secuential) con-
vergence spéce, tien u4 is a topology for X and there are examples
such that uf fails to be a topology for each ordinel §< 5, . In the
first part of the present paper we generalize these results to “W-con-
vergence spaces (ef.[5]). In the second part we introduce joint-con-
vergences ¢Y and ‘Gk on the set of all mappings on a set into a clo-
sure space, study their properties and their relations to pointwise,
continuous and uniform convergences. Further, a characterization of
sequentially compact uniformi zable spaces is given.

I

First we recall some definitions. Let ‘K’ be a class of directed
sets and <X,u) a closure space. A "K-net is a net with domain in |’
and u is a f‘l_?_—_g}_gﬂg if it is determined by the convergence of ¥-nets
ranging in X (ef.[ 5]). For each ordinal §¥ we define a closure uf€ as
follows: u®A = A, uf A = u(®™1a) if & is isolated and ufA = U{u;
@<t} if § is a limit ordinsl. The order of u is the least ordinal §
such that for each ACX we have u¥ = u¥a.

Let D end E be directed sets. We say (cf.((31) t:.at D is a quo-
tient of E, in symbols D<XE , if there is a convergecnt mepping on E
into D, If D<XE and E<D , then we ssy that D and E have the same
cofinal type cfD = cfE . If D<E, then we write cfD 2 cfE . Denote by
QW] the class of all rezular cardinals which are quotients of ele-
ments of .

Theorem 1. Let Careg be the class of all regulaer cardinzls.Thens

(a) Let QU] = Careg. Then for every ordinsl § there exists a
M-closure w with order § .

(b) Let QUWI# Careg and P= Min (Careg - Q[“ﬂ’]). Then u” is
the topological modification of u for every ‘K-closure u . Further,
there exist a “-closure v end a set ¥ such trat vEy $ v for each

€e<p. ‘
Proof. (a) Let et= M:i:n(Q['"lP]), P=ox Ui}, and
x= {x= Liqlm<g} e PF 58 < P<s (= 3x5 =)} . For each

x€X define the bese Bx of w-neighborhoods of x as follows:
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Put P, =§ if x ={o I7<¢} and = Min({"z<§ ; xﬂ%x}) other-
wise. If ¥, =%+ L,then B = {{y€X; 7,>8 ana (q# RDY, =xq)};
&(O‘"}. If 'fx is not isolated,then EX={{.Y€ LK(m> Iy or 1< §)=>
S Vg T Xy i Q< Y} -

For each x€X ,the space CCI, ={X,w) has a monotone local baseat x
with the cofinal type oc or cf ¥ . Thus w is a "-closure, because o<
end all cf ¥ ere elements of Q["P] = Careg . For the set Y =

={yeX;M<¥ =~;y,,l<oc} we have uSy = {yex;qz&gyﬂl‘:cﬂ} .

(b) Let be xeu(uPz). Then some “-net {xa( a€ D} renging in

Pz converges to X . For each a¢ D denote ¥ a = uin({M<f; X, € u2zy)

Because D¢ "Wand F"¢Q["l(’] ,the mapping ¢ from D into p is not conver-

gent. Hence for some ordinel § < f>the set E = {aeD; ?a<§}' ig cofi-~

nal in D. Then xae uEZ for each a¢€ E and xéu(ukz) c ufz .
Further,we define {P,v> as the sum of closur: spaces { X le< p}

from (a). Then v is a H*>closure, because for each x¢ P we have

ef Yy < Yy < F < P, and hence cfy, € QUW]-

Remark. The closures v and u are functionally separated, chain-
net-closures, and for their cardinalities and local characters¥t(cf.C1]
p.260) we have: X:(w) = XL(}I(,_) =w,.card§ , card )(‘= =w°.2'F R

Kv) < &*.p , card P = oc.2@ (card P =os. (5, if GCH holds) .

Remerk. Let W= {wo} . Then H-nets are sequences, W~closures

are (sequentiel) convergence closures (cf£.[4]), QU] = {(.)o} ,

Min (Careg - QLWI) = “)1 3 therefore the order of every Y-closure is
at most (4)1 . Consequently, Theorem 1 generalizes the results mentioned
in the introduction.

I

In this section we shall define and study Jjoint-convergences ¢J ('3:,1)
and ‘ek(&T) on the set XT of all meppings on a set T into a closure
space ¥ = {X,u) . First we introduce two suxiliary convergences.

Definition 1. Let £¢x’ and let N ={fa] ac D} be a net renging

in XT, We say that N 1-converges to f if the following implication
holds true:

If teT and {tbl beB} is a net ranging in T such that for each a¢D
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the net{_:t.tbl beB} converges to f_t, then the double net
{fatb | {(a,b>€ Dx B} converges to £t (in X).

We say that N 2-converges to £ if the following implication holds true:
JIf {zal a¢D} is a net ranging in X which converges to a point z
in X and {tb| beB} is a net renging in T such that for each a¢D

the net {fathl be B} converges to Zgs then the double net

{£4t, | {a,b>€D =B} converges to z .

Remark. The definition of a 1l-convergence coincides with the
definition of a continuous econvergence given by Z.Frolfk in 2] .
Notice that 1l-convergence and 2-convergence need not determine a clo-
sure for XT (see Example 1) . To avoid this, we shall introduce joint-
convergences ¢J ana ‘ﬁk . However, if we restrict ourselves to de-
creasing sequences converging to constent mappings (cf. [2]), then

1-convergence and $¥J coincide end determine a closure.

Definition_2. Let f: XT and let N be a net ranging in xI.

We say that N ~Q-convergeq to £ if every subnet of N 1l-converges

to f . We say that N ‘{’,k-converges to £ if every subnet of N
2-converges to £ or N is eventually equal to f .

Notation. Denote by Y = ¢I(ET), resp. ¢k = ¢X(T) | the

class of all pairs (N,f) such that N @J-conver‘ges, reap. f,k-con-
verges, to £ . Denote by ?p the pointwise convergence on XT.

Remark: . If X is topological or separzted, then the condition
"N is eventually equal to f" implies that all subnets of N 2-converge
and therefore can be omitted. .

IfcardX=1, then %Y end ¥ are trivial. If card X>1 ,

then there are examples such that (e,j and ‘ek are non-trivial

Proposition. { N,£)€{J iff every generalized subnet of N 1l-con-
verges to f . :
Remark. There exist a space X and {N,f)e¢ £¥ (xT) such that

not every generalized subnet of N 2-converges.
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Proposition. ‘(}J and X are convergence structures and fulfil
the Urysohn’s axiom.

Remark. It is an open problem, whether or not ¥Y and ¢X are

convergence classes (c¢f.[1]).

Notation. From the above Proposition it follows (cf. [ 1])that

‘{,‘] and ‘ek determine closures. Denote them uJ. , resp. u

k
Proposition. Let i€ { 1,2} . Then the following are equivalent:

(2) ¥ is a T,-space.

. T .
(») & ,uJ-} is a T;-space.
(e) <XT,uk> is a T,-space.

Proposition. let N ={fa\ae A} be a net ranging in XxT and let

MNE>e ¥ (xT). Let v be a closure for T such that {a;f, is continuous}
is a residual subset of A . Then N converges continuously to f .

The following example shows that the converse implication is false.

Example 1. Let T =w v {r,s} , let a closure space X contains

at least three closed points x, y, and z . Define a net {fn|n € Wk

(fenging in xT)and £€X© as follows: fk = fk=x forn>k ; fik=y
b

for n<k, n is odd; f k = z for n<k, n is even; tr= fr = y;

fy8 = fs =z . Let G ={f |nis odd} end H={f |n is even} . Let u,

(i€ {1,2}) be a mepping on the power set of X. defined by

uiA = {gt-: XT; there is a net ranging in A which i-converges to g}.
Then N i-converges to £ , f€ ui(GUH)—(uiGuuiH), (N,f>¢qe,)) end
uy is not a closure for XT. If v is a closure for T such that
the set {n; £, is continuous} is residual in W,, then r and s are

isolated in (T,v) and N converges continuously to f .

Proposition. Let X be a partially ordered sequentially compact
topological T,-space such that each point in X has a base of interval-
like neighborhoods. Let N be a decreasing net which 2-converges to f .
Then (N,£) ¢ €5(xT).

Remark. A counterexample shows that in the above Propositioen
the 2-convergence and ‘t?.k cannot be replaced by the l-convergence
end QY even if ¥ is a bounded interval.
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Definition 3. Let lPbe a class of directed seta. We define classes

‘6:3‘,=‘€,'3(IZET), resp. “6,1; =\’,g_l;( ?{,T), in the some way as classes tY, resp.

t{,k, provided that in Definition 1 we assume that the nets {tblbé B} are

» “P= (o J = @8 k . 5
-nets. Further, for 1°= {u} we put e{w;,} = % QC{“%S =¢®.

Propogition. Let ' and ' be classes of directed sets, Ep the

pointwise convergence on X', end i ¢ {j,k} . Then:
~p! . . i i Lol
(a) “J’C’W’ implies € < W, C ¥t C f,p .
(b)  @p# R, if and only if Min(QL¥]) < card T .

Notation. Denote by P _ the class of all directed sets &, <7
with card E € X .

Proposition. Let "W be a class of directed sets, i€ {j,k} end
card T = oc . Then the conditions (a), (b), end (c) below are equivalent

and for all spaces ¥ (c) implies (d):
(a) There exists an W, -space which is not a “-space.
(b)  There exists a normal W -space which is not a M -space.

(e) The class cf CW] is not cofinal in {cfLW v W J,3).
(@  enxD # ¢hxh.
The following example shows that the four conditions in the above

Proposition are not equivalent.
Example 2. Let p be an ultrafilter on W,, T = w,u{s} , let
x and y be two closed points in X and i ¢ {j,k} . Define a net N
N = {fa\ae pY} ranging in '{x,y}T as follows: p is directed by the inver-
se inclusion >, f,n =y iff n€a ,(f,n = x if n ¢ @), end f,8 = £3 = y.
, e oi ol _ i e op
Then \N,?) € Qmwo %{p} c {,mwo ¥%*. (For the proof o
N,f 1 choose t, €b for eachb € p .)
< ’ >¢‘€{p} tb S Y

Theorem 2. Let be a first-countable topologicel space, let

N = {fd1d €Al be a net containing a subsequence, and let w, € QUM
Then the following are equivalent:

(a) 2y egdxh).
() ) e ¢2(xT.

(c) {N,f)>€ ¥p anad the condition (b)holds in the following mo-
dified form: in Defimition 2 subnets are replaced by subsequences and
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in the Definition 1 (&= u_)o) the double seguence is replaced by the
diegonal secuence.

(@) (N,FY € ‘g’f’(xT).

K .S
Remark. The analogous Theorem is true for ¢~ and t .

If ¥ is discrete, then (c)can be siuplyfied.

Now we shall consider the relations between 'tk and the uniform
converzence ‘Cu on the function space XT.

in T, and {zai ae A} a net converging in X to z such that the net

Proof. Let {fa | a¢ DY be a subnet of N, {tb] be B} a net ranging

{fatbl be B} converges to z, for each a€D. Let W be a neighborhood

of z . Choose Ue Land VelW such that U[2z] ¢ W and VeV VVCU .
Choose d¢ D such that (zg4,z) eV and (fat,ft) €V for each te¢T and

a> d . Choose ceB such that (f 24> ¢ V for eachb>»>c . If

a'p’
a*>d and b»c , then (fatb,ftb)ev and <ftb,fdtb> eV, and

hence {f t ,2) € VeVeVeV c U and ft ¢ W .

Theorem 4. Let X be a secuentially compact topologicul space,

contains a subsequence. If {N,f£) € ¥°&T), then N U-uniformly conver-
ges to f .

Proof. Let {(N,f) ¢ ‘{‘f- ¥4, - Then we can find Uell , Vel

with VeV € U, a sequence {til ie ‘”o} ranging in T, and a subsecuence
@il iéwo} of N such that (for each i,j satisfying j<i<(°o)
(giti,fti> ¢ U and (gitj,ftj) eV . Put D) =, end choose (inducti-
vely) ike Dk and Dk+1C Dk such that sequences {giktj [jeDkH} con-

verge in X . Denote their limits by z, , choose a convergent subsequen-

ce {z, | ke¢E} end an open neighborhood G of its limit z . Then

{8&; t; | Jew,} converges to z, for each k¢ E . Beceuse {N,f) ¢ ¢S )
lk l,j (o] k
the double net {giktij l (kyid e E’“‘""o} convergzes to z ; thus for lar-

ge ke, {giktik ’gik+1tik\/ ¢ GXG CV and <giktik,ftik> e VeV =U .
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Theorem 5. Let U be a fine uniformity for X . If X is not se-

quentially compact, trien there exists a sequence N and a mapping f
such that <N,f}e 6X(XT) and N does not converge (l-uniformly to f .

points and U€ W such that n # m=> <yn,ym>;€ U . We choose a bijective
sequence {sn}ne wpyonto SC T and define N = ’fn'ne\;%} and £& X7

such that fnsm = Yo for m >n , fnsm = Vel form<=n, f§, = Yo+l

Proof. We can find a sequence {ynlne W.} without accumulation

and anT-Sj = £{T-S] = {yl} . Evidently, N does not converge U,~-uni-
formly. {N,f)e ‘ek(‘}:T), for if all nets {fntb[be B} converge, then
{tb‘b € B} must be eventually either in T-S or in some {sm} .

Corollary 1. Let X be sequentially compact, U a uniformity indu-

cing ¥ ,and N a sequence ranging in XT. Then the following are equivalent:
(a) (vL,E) e R,
()  <v,e>e ¢ (xD.
te) N converges “U-uniformly to f .

Corollary 2. Let ‘UL be the fine uniformity of & topological space

- s = e U O

¥ . Then the following are equivalent:

(1) X is sequentially compact.

(2) For each fe XT

{N,£>€ Ek(&:T), N converges 7 -uniformly to f .
T

and for every sequence N such that

(3) For each f € X~ eand for every sequence N such that

-
N, t>e @ (% T), N converges U-uniformly to f .
Proofs. (b)=(c) and (1)=(3) follow from Theorem 4, (c)=¥(a) from
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