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JOINT-CONVERGENCE IN FUNCTION SPACES* ORDER OF ^-CLOSURES. 

K.WICHTSRLE 

PRAHA 

It is well-known (cf. C O ) that if \X,u> is a (sec?uential) con

vergence space, txien u ^ is a topology for X and there are examples 

such that u^ fails to be a topology for each ordinal £ < C->. . In the 

first part of -the present paper we generalize these results to ̂ -con

vergence spaces (cf.C5])» In the second part we introduce joint-con

vergences %^ and <£* on the set of all mappings on a set into a clo

sure space, study their properties and their relations to pointwise, 

continuous and, uniform convergences. Further, a characterization of 

sequentially compact uniformizable spaces is given. 

I 

First we recall some definitions. Let 'V be a class of directed 

sets and 0-,u} a closure space. A 'If-net is a net with domain in *U* 
and u is a ^-closure if it is determined by tne convergence of ̂ tf-nets 

ranging in X (cf.C5j)» For each ordinal £ we define a closure u^ as 

follows: u°A = A, u^ A = u(u*~ A ) if £ is isolated and u^A = U { u 'A; 

*£<£} if £ is a limit ordinal. The order of u is the least ordinal £ 

such that for each A C X we have u^ A = u*A. 

Let D and E be directed sets. We say (cf.C3l} t. .at D is a quo

tient of_E, in symbols D-<E , if there is a convergent mapping on E 

into D. If D-<E and E < D , then we say that D and E have the same 

cofinal type cfD = cfE .If D-<E, then we write cfD <-§ cfE . Denote by 

QCTT] the class of all re^ailar cardinals which are quotients of ele

ments of If. 

TheoremJL. Let Careg be the class of all regular cardinals.Then: 

(a) Let QtlP] = Careg. Then for every ordinal £ there exists a 

Tf-closure w with order f- . 

(b) Let QC'Tf] £ Careg and £= Min (Careg - QCTfO). Then u^ is 

the topological modification of u for every ̂ -closure u . Further, 

there exist a ^-closuie v and a set Y such that v*i f v*\ for each 

Proof, (a) Let <x = Min(QDf]), P = <x v^cc} f and 

X = {x = {X^|<Y} < £ } £ P^ ; ̂  < ̂  < ^ =-Xxn = oc = ^ x^ =oc)} . For each 

x € X define the base B of w-neighborhoods of x as. follows: 
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Put tfx =£ i f x =-toc U < ^ > and ? x = Min<{^ < | . x ^ o c » o ther

wise . If 3TX = * + l . t hen Bx = {{yfcX; y ^ x S and (.T .= *> =» 3%, =x^)> ; 

&<c*r}. I f 2TX i s not i so la ted , then B x ={{y€X; ( " ^ tf x or "I < &) *-* 

=* ŷ  = ̂ > , & < y x } . 
For each x€X , the space X* =^X,w"> has a monotone local base ai Jt 

with the cofinal type oc or cf y . Thus w i s a "If-closure, because oc 
and a l l cf V are elements of QC'^ )]= Careg . For the se t X = 

= { . y € X ; ^ < ^ ^ y ^ - c o c } we have u ^ I = £ y £ X; <*l>& =* y ^ < < ^ } • 

(b) Let be x e u ( u ^ z ) . Then some 1f-net -\x [ a£.D} ranging in, 

u ^ Z converges to x . For each a£D denote <f a = L!in(-CT*P; x €U™2LJ> 

Because D€TPand P>^QfV] , the mapping (f from D into ft i s not conver
gent . Hence for some ordinal ^ < P the se t E = ^ a £ D ; <pa<f}" i s co f i 
nal in D. Then xfi€ u^Z for each a £ E and x£u(u^Z) C u<*Z . 

Further,we define <P,v> as the sum of closure spaces -CX^(^< p>j 

from ( a ) . Then v i s a TP-closure, because for each x € P we have 

cf 2fx £ yx < ? < ft t a n d h e n c e c f Vx 6 QDtf] • 

Bgmark. The closures v and u are functionally separated, chain-
ne t - c losu res , and for t he i r c a rd ina l i t i e s and loca l characters £L(cf.Cl] 
p .260) we have: * L lw) = X L ( X ^ =coQ .card^ , card Xj s<-00.2* > 

* K V ) < c^"*"*^ , card P = oc.2& (card P =o<T. £ , i f GCH ho lds ) . 

Remark. Let '^=-Ceo } . Then TT-nets are sequences, 1^-closures 

are (sequent ia l ) convergence closures (cf. C 4 l ) , QC^] = {UQls > 
Min (Careg - QL1M) = to, ; therefore the order of every I f -c losure i s 
a t most GJ. . Consequently, Theorem 1 generalizes the r e s u l t s mentioned 
in the in t roduct ion . 

I I 

In this section we shall define and study joint-convergences ̂ ( X • 

and *£ (X ) on the set X of all mappings on a set T into a closure 

space X = ̂ X,u> . First we introduce two auxiliary convergences. 

Definitional. Let f €XT and let N = -Cf | a€D} be a net ranging 

T in X , We say that N 1-converges to f if the following implication 

holds true: 

I f t €T and {t^ | b € B } i s a net ranging in T such tha t for each a € D 
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the net{f t- | beBJ- converged to ffit, then the double net 

{f -L | <a,b>€ Dx Bj- converges to ft (in X ) . 

We aay that N 2-converges to f if the following implication holds true: 

%If -[z | a £ D y is a net ranging in X which converges to a point z 
a ^ 

in X and \t, | b fc Bj- is a net ranging in T such that for each a ( D 

the net {'a*^ I fr€Bj converges to za, then the double net 

{f t, | ̂ a,b>€.D*Bj- converges to z . 

Remark. The definition of a 1-convergence coincides with the 

definition of a continuous convergence given by Z.Frolik in C2J . 

Notice that 1-convergence and 2-convergence need not determine a clo

sure for X (see .Example l) . To avoid this, we shall introduce joint-
convergences ty and <& . However, if we restrict ourselves to de

creasing sequences converging to constant mappings (cf. C 23)i then 

1-convergence and ^ coincide and determine a closure. 

T T 
Definition^. Let f *X and let N be a net ranging in X • 

We say that N ^-converges to f if every subnet of N 1-converges 
_. 

to f . We say that N **l -converges to f if every subnet of N 

2-converges to f or N is eventually equal to f . 
.Notation. Denote by %? = tfJ"('ET) ,. *esp. t k = tkC_£T) , the 

class of all pairs <[N,f > such that N (^-converges, resp. % -con
verges, to f . Denote by % the pointwise convergence on X . 

Remark^. If 3? is topological or separated, then the condition 

"N is eventually equal to f" implies that all subnets of N 2-converge 

and therefore can be omitted. 

It card X = 1 , then & and <&k are trivial. If card X > 1 , 

then there are examples such that ^ j ^ ^k m non_trivial# 

Progosition. We have ^ k c ^ C ^ • ̂  T i f l -finite, then 

<£k = t j - fcn • 
'P 

Progosition. <N,f>€*^ iff every generalized subnet of N 1-con

verges to f . 

E§1§E3^ There exist a space X and <^N,f>£ £ (X ) such that 

not every generalized subnet of N 2-converges. 



ErSCSsitigo. Let N = i.faia£A} be a net ranging in X and le t 
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Proposition* %** and '"€ are convergence structures and fulfil 

the Urysohn's axiom. 

Remark. It is an open problem, whether or not H5 and % are 

convergence classes (cf.[[ll). 

Notation. From the above Proposition it follows (cf. ClDthat 

U$ and ^ determine closures. Denote them u. , resp. u, . 

Proposition. Let iE {1,2} . Then the following are equivalent: 

(a) 3£ is a T.-space. 

(b) <X ,uA is a T.-space. 

(c) <(X ,u,> is a T--space. 

ij 

^NJf>€
v€^(3G )• Let v be a closure for T such that {&ifQ is continuous^-

is a residual subset of A . Then N converges continuously to f . 

The following example shows that the converse implication is false. 

SxamjDleJL. Let T » coo o {r,s;y , let a closure space X contains 

at least three closed points x, y, and z . Define a net -{jf \n e to0]r 

T T 
(ranging in X )and f € X as follows: f k == f k = x for n > k ; f k = y 

for n<k, n is odd; f k = z for n<k, n is even; f r = fr = y; 

f s = fs = z . Let G = {f \n is odd} and H = £fJ n is even} . Let u. 

lie {l,2}) be a mapping on the power set of X defined by 

u.A = £g€X ; there is a net ranging in A which i-converges to g}# 

Then N i-converges to f , fU.(GUH)-(u.Guu.H), <N,f>^£J d 

T 
u. is not a closure for X . If v is a closure for T such that 

the set -£n; fn is continuous> is residual in <*>0 , then r and s are 

isolated in ^T,v^ and N converges continuously to f . 

Proposition. Let X be a partially ordered sequentially compact 

topological Tp-space such that each point in X has a base of interval-

like neighborhoods. Let N be a decreasing net which 2-converges to t . 

Then <N,f> € ^(3b T). 

Remark. A counterexample shows that in the above Proposition 

the 2-convergence and *6 cannot be replaced by the 1-convergence 

and 45J even if 3£ is a bounded interval. 
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3 .tefinition_3.i Let IP be a class of directed sets. We define classes 

^ = ^ $ < E T ) , resp. ̂ 4 = ^ ( X T ) , in the some way as classes tiJ, resp. 
r-

^ , provided that in Definition 1 we assume that the nets Cthjbfc.B}- are 

V-nets. Further, for T ^ - U ^ w e put t(^ys *fcS, %^ ^ = ̂  • 

Pro£Osition., Let If and 'tf be classes of directed sets, t»n the 

pointwise convergence on X , and i ̂  -Lj,kj . Then: 

(a) f ' c V implies %i c ^ c ^ C t . 

(b) <&jp * ^>p if and only if M i n ( Q C V 3 ) ^ card T . 

Notation. Denote by $51^ the class of all directed sets (&,*<*} 
with card E < oc . 

Proposition. Let Tf be a class of directed sets, ±e "Oik.} and 

card T = oc . Then the conditions (a), (b), and (c) below are equivalent 

and for all spaces QC (c) implies (d)j 

(a) There exists an TRTC^-space which is not a V-space. 

(b) There exists a normal WC^-space which is not a "T-f-space. 

(c) "She class cf C V 1 is not cofinal in <cf C T u Iftl^l *-£>. 

<*> ^ X T ) * ^ ( X T ) . 

The following example shows that the four conditions in the above 

Proposition are not equivalent. 

Examgle_2. Let p be an ultrafilter on co0, T = <^0 u is} , let 
x and y be two closed points in X and i £ ij,k} • Define a net N 
N = -{j-Llaep}- ranging in '-jx,y}- as follows: p is directed by the inver
se inclusion D , f n = y iff n € a ,(fon = x i f n i a ) , and f s = fs = y. 

a a • a 

Then <N,f> € ^ZK>^ - ^ ? } C %^ - *€*. (For the proof of 

<N,f>4 %^-L choose t ^ b for each b € p .) 

Thgorem_2. Let be a first-c^ijuatable topological space, let. 
NT = "C^l^^A^ be a net containing a subsequence, and let u)Q € Q E ^ X 
Then the following are equivalent: 

(a) <N,f> £ <f3J(XT). 

(b) <N,f> 6 V,a{%%). 

(c) ^N,f)€ ^p and the condition (b)holds in the following mo

dified torm: in Definition 2 subnets are replaced by subsequences and 
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in the Definition 1 (B=uJ ) the double sequence is replaced by the 

diagonal sequence. 

(d) <,N,f> e ^(S?). 

Remark. The analogous Theorem is true for %iV and t . 

If X is discrete, then (c)can be sinplyfied. 

Now we shall consider the relations between X and the uniform 
T convergence X on the function space X . 

Theorem^i Let U be a uniformity inducing X . If a net N ranging 

in X T converges U-uniformly to f£X T, then <N,f >fe £ k ( X T ) . 

E£22lN L e t {.? i a*.D}be a subnet of N, -(t, J bcB} a net ranging 
in T, and ^z \ a^A} a net converging in 3£ to z such that the net 

|f t,| b£B]- converges to z for each atD. Let W be a neighborhood 

of z . Choose Ut'Uand V<£U such that U Q z] C W and VcVcVcVCU . 
Choose d£D such that {z d,z^£V and <̂ f t,ft>€ V for each tcT and 

a V d . Choose c <c B such that ^ f
d
t
bi

z
d> £

 v for each b > c . If 

a V d and b > c , then < f
a
t
b>

f t
b> ̂ V and ^ f t ^ f ^ } £ V, and 

hence <fatb,z> e VoV-VcV c U and fQtb a W . 

Theorem 4* Let 36 be a secuentially compact topological space, 

IX& continuous uniformity for X . Let N be a net ranging in X which 

contains a subsequence. If <N,f> e ̂ (X ), then N U-uniformly conver

ges to f . 

Proof. Let <N,f> <L ̂ r- Xu • Then we can find U<.U , V t U 

with V<̂ V c U, a sequence {_* t. i i€u> } ranging in T, and a subsequence 

{k±\ i€i<o0}
 of N sucn that ^for each i,j satisfying J<i<Cu0) 

/git.,fti) £ u and <(g.t.,ft.) £ V . Put DQ = w Q and choose (inducti

vely) i ktD k and %+-, C D, such that sequences -{g^ t. | J ̂'-\-+1\ con-

verge in X . Denote their limits by zv , choose a convergent subsequen-
ce ^z, j k^E} and an open neighborhood G of its limit z . Then 

~Cgi ti 1 ̂ H > 1 c o n v e r £ e s t0 \ for eacn k^E . Because ^N,f} t "t , 

the double net /g. t. I <̂ k, jN £ Exu,_"V converges to z ; thus for lar-
--- J 

ge ksca / g . t . ,g. t \ t GxG CV and/g. t . , f t . S t H - U . 
x k x k k+1 ^ x xk xk 1 k / 
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!£.5£2r2SJ..§^ L e t ^ be a f i n e uniformity for X . If Jz is not se
quentially compact, tnen there exists a sequence N and a mapping f 

..,. ]̂- r rp 

such that <N,f/£ % (X ) and N does not converge U-uniformly to f . 

Proof^ We can find a sequence -Tyn|*-t tocj- without accumulation 

points and U6 H such that n £ ni z^/y,y \ £ U . We choose a bijective 
\ n UK > m 

sequence { s j n t ( ^ } o n t o S C T and define N = \f | n ^ OJ \ and f € X 
such tha t f s = y m x 0 for m > n , f s = v _ - for m <: n , f sm = v - , n m ^m+2 ' n m m+1 *— 'n "m+1 ' 

and f n [T-Sj = f [ T - S J = "{y-iY • Evidently, N does not converge ^ - u n i 

formly. < N , f > € ^ * ( X T ) , for i f a l l ne t s { ^ t j b e . B } converge, then 

v t b | b ^ B } must be eventual ly e i t h e r in T-S or in some / s X, • 

Q2£2li§££-1* ^e t & b e sequent ia l ly compact, ^L a uniformity indu
cing X ,and N a sequence ranging in X • Then the following are equivalent ; 

" (a) <N , f> € ^ k ( £ T ) . 

(b) <N,f> e <<fuT). 

ic) N converges ^-uniformly to f • 

Corollar^^ Let 'U> be the fine uniformity of a topological space 

X . Then the following are equivalent: 

(l) X is sequentially compact. 

(.2) For each f € X and for every sequence N such that 

<N,f> € <6 kOb T), N converges XL-uniformly to f . 

(3) For each f 6 X and for every sequence N such that 

<N,f>€ % (3tT), N converges V>-uniformly to f . 

E£22£-!« (b)^(c) and (1)^(3) follow from Theorem 4, (c)^(a) from 
Theorem 3, (2)^(l) from Theorem 5, and the remaining from % C <ff . 
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