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SET TRANSFORMATЮNS WITH CENTRALIZERS FORMED BY CLOSED 

DEFORMATЮNS OF QUASI-DISCRETE TOPOLOGICAL SPACES 

J.CHVAL1NA 

Brno 

1. In paper [7] the authors solved the problem of realizibility of a transformation 

monoid, on a set X , which is a centralizeг (in thе full transformation monoid (Xx, . )) 

of a sеlfmap of X by mеans of еndomorphisms of unary algеbras (with morе unary opегa-

tions). Hеrе an analogous problеm is trеatеd for continuous closеd sеlfmaps of quasi-discrеtе 

topological spacеs. Thе mеntionеd problеm can bе considеrеd as a spеcial casе of thе problеm 

of rеprеsеntability of sеmigroups (еspеcially groups) by various kinds of morphisms of aigеbraic 

or topological structurеs. Problеms of this typе wеrе solvеd by many authors (a list 

of rеsults and othеr dеtails can bе found in [14]). Thе problеm studiеd hеrе is thе following: 

To find nеcеssary and sufficiеnt conditions on a transformation / of a sеt A foг thе еxistence 

of a quasi-discrete topology r on the set A such that tlie centralizer of / in the full trans-

formation monoid of A coincides with the monoid of all continuous closed selfmaps of the 

space (A,r) . 

For the description of a set transformation (i.e. a mapping of a set into itself) we use 

terms and notation from papers [7] , [8] , [9] , [11] , [12] . Thus by a unary algebra we 

mean a unary algebra with one unary operation (i.e. a paiг (A,f) , where A + ф and / Є 

Є Aл ) . Let n be a natuгal number. The n-th iteration of the mapping / is denoted by 

/" . А unary algebra (B,g) is a subalgebra of (A,f) if B Ç A , f(B) Ç B and g = f/в . 

The algebra (A,f) is said to be connected if to every pair of elements a,b Є A there 

exists a pair of non-negative integers m,n such tliat fm (a) = fn(b) ; (A,/) is called dis-

connected in the opposite case. А maximal connected subalgebra of (A,f) is called a 

component of (A,f) and (A,f) = 2 (At,/t) means that í(At./t) * t Є J } is the system of 
lЄJ 

all components of the algebra (A,f) . The finite cardinal number card П { B Ç A : / t(B) Ç B} = 

= R (At,/t) is called the rank of the component (At,/t) , the set П { B ç A : / t(B) ç B} 

is called a cycle of the component (At,/t) and it is denoted by Af

г . Hence R (A tf t) = 

= cardA~2 . Furthеr, for a unary algebra (A,f) we put A°f = {a Є A : fl(a) = ф} and 
by A°ľl (or briefly A°°ł) we denote a set of elements of the component (A tf t) 

Һ i 

with this property: a Є A~ł if theгe exists a sequence {x. } 0<i<u>9 » x t Є А S U C П 

that a = x0 , f(x.+í) = x. and x. + ЈC/+1 for all i. The set A~ł U A~* is also called 
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the kernel of(Atft) (cf. [7]) . We denote the centralizer of the set transformation f e AA 

by C(f) , i.e. C(f) is the monoid of all endomorphisms of the algebra (A J) . If (A,/) = 

= 2 (A , / ) is a unary algebra with R (A , /) < 1 for all i e J , we define a binary rela­
te/ L L L L 

tion < r on A putting a < b for a,b e A if there exists a non-negative integer n 

such that fn(a) - b . Evidently, (A ,<p is a partially ordered set. 

By a topological space (Aj) we mean a topological space in the sense of [3] , i.e. 

r is a closure operation on A satisfying four usual axioms (cl 1 — cl 3 , p.237 and 

cl 4 , p. 250 in [3]) . A continuous selfmap of a space (Aj) is called briefly a deforma­

tion of (Aj) ; the monoid of all closed deformations of (Aj) (i.e. the monoid of all 

closed continuous mappings of the space (Aj) into itself) is denoted by S(Aj) .A topo­

logical space (Aj) is said to be quasi-discrete if r coincides with its quasi-discrete 

modification, i.e. rX = U r { x } for every non-empty set X C A . More results 
xGX 

concerning quasi-discrete spaces (called also saturated) can be found in [3] chap. V and [10] . 

2. Let A be a set , / a transformation of A . There are many quasi-discrete 

topologies on the set A which can be simply defined by means of the mapping / . A certain 

naturaly induced quasi-discrete topology is given by the closure system of subalgebras of 

(A,f) and another is the dual topology to the former one.These toplogies (called upper 

and lower respectively) are introduced and studied for the so called Pawlak's machines 

(partial unary algebras with one unary operation) in paper [2] , where there are described 

some of their properties with respect to special properties of Pawlak's machines. In case 

when (A,f) - 2 (At,/t) with R (At,/t) < 1 for each i e J , the above mentioned topologies 

coincide respectively with the left and right topologies on the ordered set ( A , ^ ) , cf. [ 13]. 

It is easy to see that for every non-constant connected transformation / of the set A 

with R (A,f) < 1 it holds C(f) * S (Aj) if r is the upper or the lower topology on 

(A,<P • 
Define for our purposes some othertopologies on (A,/). Let (A J) be an arbitrary 

unary algebra. Let n be a non-negative integer. Denote by r<n) a topology on A such 

that the least neighbourhood of a point a e A is the set {x e A : fk (x) = a , where 

k = n+l,n + 2, • • } , i.e. if r (n) means a closure operation on A (in the sense of [3]) 

we have for each subset X of A 

T^X^XU U fk(x). 
J n+l<fc<u>0 
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Clearly, r<0) is the uppeг topology on (A,f) . For the sake of brevity we write т in-

stead of т*1* . 

2.1. Proposition. Let (A,f) = 2 (A ,f) be a unar); algebra, n a non-negative 
tЄJ l l 

integer. (A,т^n)) is a ąuasi-discrete topological space which is a T0-space (i.'. a dis-

crete space of Alexandroff) iff R (At,/t) < 1 for each i Є J . The space (A,тin)) is 

connected iff the algebra (A,f) is connected and it is compact iff J is a finite set 

and each component of (A,f) has a non-empty cycle. Fincйìy, (A,Лn)) is separable 

iff (AJ) is countably generated. 

Now wе dеscribе unary algеbгas of a cеrtain spеcial form. Thе following dеfinition 

is a modification of dеfinition 2.4. in [8] , whеrе thеrе arе considеrеd algеbras with 

A;> * Ф • 

2.2. Dеfirtition. Lеt (A,f) bе a connеctеd unary algеbra with thе propеrty 

R (A,f) = 1 ,lеt (B,g) bе a connеctеd unary algеbra such that A П B = ф< . Lеt c Є B° . 

Thеn (A,f)Фc(B,g) dеnotеs thе unary algеbгa (C,h) dеfinеd as follows: 

C = B U (A - AЈ-) and for еaсһ x Є C it is 

!

f(x) for x Є A - (A;> U Г Ч A 7 2 ) ) 

c foГ x Є f Ҷ Л ^ ) - A Ј -

g(x) for X Є B 

2.3. Dеfinition. А сonnесtеd unary algеbra (A,f) is said to bе rеduсеd if it has 

onе of thе following forms: 

(i) R(A,/)= 1 and f2 = f. 

(ii) Eithеr A = Aľł oг A = Aľ1 U A° , whеrе (AJl , < Ј is a сhain of thе typе 

сoj ® сo0 and A° + ф . 

(iii) (A,f) = (A ! f i ) ® (A2J2) > whеrе fx is a сonstant mapping and ( A 2 , < ř ) 

is a сhain of thе typе сo0 with thе first еlеmеnt c . 

Rеmark. It is еasy to sее that (A,<p is a сhain of thе typе сo* ® сo0 if and 

only if / is д сonnесtеd pеrmutation of a сountaЫе sеt. Suсh an algеbra (A,f) is 

also сallеd a two-way infinitе сhain (sее [16]) . Thе algеbra (A,f) , whеrе (A,<Ј is 

a сhain of thе typе сo0 with thе first еlеmеnt c is сallеd aссording to [16] a onе-

way infinitе сhain with thе gеnеrator c . 
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3. Analyzing various types of connected unary algebras we obtain the 

following results. 

3.1. Proposition. Let (A,f) be a connected unary algebra having the rank 

R(A,f) > 3 . Then C(f) 4 S(A,T) for every quasi-discrete topology r On the set A . 

3.2. Theorem. Let (A,f) be a connected unary algebra. The following conditions are 

equivalent: 

1) (A,f) is either reduced or A is a cycle of the rank 2. 

2) C(f)=S(A,Tf) . 

3) There exists a quasi-discrete topology T on A such that C(J)=S(A,T). 

If we demand the quasi-discrete space (A,7) to be also a T0-space (i.e. a discrete 

space of Alexandroff), then we get the following theorem similar to 3.2. 

3.3. Theorem. Let (A,f) be a connected unary algebra. The following conditions 

are equivalent. 

1) (A,f) is reduced. 

2) C(f)=S(A,Tf) . 

3) There exists a discrete topology of Alexandroff T on the set A such that 

C(f)=S(A,T) . 

The answer to the question about unicity follows from the following proposition, 

but there seems to be open the problem of the description of all quasi-discrete topolo­

gies T on A such that S (A,T) = C(f) holds for a suitable f. 

3.4. Proposition. Let (A,f) be a connected reduced unary algebra. Then C (f) = 

= S (A,T(n)) for all positive integers. 

4. Now consider set transformations, disconnected in general, centralizers 

of which are formed by closed deformations of quasi-discrete topological spaces. Using 

Theorems 3.2 and 3.3 we get the following results. For the sake of brevity we 

write A°°» , A°°- , A0 instead of A~l , A~2 , A? respectively. 
1 <• l h h h 

4.1. Theorem. Let (A,/) = 2 (A ,f) be a unary algebra, J0 = { i € J : card A > 
t€=J L L L 

> 1 } . There exists a quasi-discrete topology T on the set A with the property C(f) = 

= S(A,T) iff exactly one of the following conditions is satisfied: 
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1) i G / implies that either A is a two-element cycle or (A , / ) is idempotent. 

2) t G J0 implies A^A™1 . 

3) t £ / 0 implies that either (A ,/t) is a two-way infinite chain or A( = A~"> U 

U A° , where (A00 ' , /) is a tvî oway infinite chain and A0 + 0 . 

4) t G j 0 implies that either (A ,/.) is a twO-way infinite chain or (At./t) = 

= (B ,g) © (C,h ) , where (B ,g) is an idempotent connected unary algebra with 

cardB > 2 and (Ct,ht) w a one-way infinite chain with the generator c . 

Remark. If we require in theorem 4.1. the topology r to be also a T0-topology, 

we get a similar theorem with the difference only that two-element cycles are not admis­

sible. 

Theorem 4.1 implies 

4.2. Proposition. Let (A,f) = 2 (Af) be a unary algebra The following conditions 

are equivalent: 

1) There exists a quasi-discrete topological space (A,T) with the fixed point 

property for continuous closed mappings such that C(f) = S(A,T) . 

2) There exists a connected compact discrete topology of Alexandroff T on the 

set A with C(f) = S(A,T) . 

3) card[ { t G J : / t
2 = / t , cardAt > 2) U {t G J : cardAt = 1 } ] = 1 . Such 

a space (A,T) is unique and the system of all non-void closed sets in that space is 

formed by the principal filter generated by the fixed point of the mapping f. 

4.3. Proposition. Let / be a transformation of a set A . There exists a com­

pact discrete topology of Alexandroff T on the set A with C(/)=S(A,r) iff the 

mapping f is idempotent with a finite set of fixed points. Such a space (A,r) is unique 

and TX = X U f(X) for each X C A . 

If we restrict our considerations to unary algebras with finite carrier sets, we get the 

corresponding results for autonomous automata. An autonomous automaton is a map­

ping / of a finite set D(f) into itself (see [15]). More detail about realizations 

of autonomous automata in this sense by closure operations can be found in [4]. An 

autonomous automaton / is called a permutation if fk is the identity map, for a 

positive integer k ; the smallest positive k with this property is called the period 

of / , / i s called a tree if fk is a constant map for a non-negative integer k . 
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The smallest k witћ this propеrty is callеd thе hеight of / . Dеnoting by Eif) thе 

еndomorphism monoid of thе autonomous automaton / (using thе tеrminology of 

papеr [15]) , wе gеt frorn thеorеm 4.1 : 

4.4. Proposition. Let / be an autonomous automaton. There exists a topology т 

on the set D (f) such ìhat E (f) = S(D (f),т) iff the automaton f is the sum of trees 

of the height 1 and of permutations having periods at most 2 . 

Proofs and othеr dеtails will bе publishеd in [4] , [5] and [6] . 
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