
Toposym 4-B

Beloslav Riečan
Extension of measures and integrals by the help of a pseudometric

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV,
Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society
of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. [390]--392.

Persistent URL: http://dml.cz/dmlcz/700670

Terms of use:
© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700670
http://project.dml.cz


EXTENSION OF MEASURES AND INTEGRALS BY THE HELP OF A PSEUDOMETRIC 

B. R-LEfiAN 

Bratislava 

0. Introduction. There are two main concepts in the measure theo

ry. The measure can be regarded as a set function defined on a set of 

subsets of a given set. On the other hand measure can be regarded as a 

functional defined on a set of real-valued functions. In both concepts 

an extension process is necessary. 

In this communication we present a common generalization of both 

concepts. We study a real-valued function J defined on a sublattice 

A of a given lattice H with some properties. If we define a suitable 

pseudometric, then J becomes a uniformly continuous function, it can 

be extended to the closure A" of A and this is the requested exten

sion. 

If H is a suitable lattice of sets, then the measure extension 

theorem is obtained. If H is a suitable lattice of real-valued func

tions, then the extension theorem for Daniell integrals (or Radon mea

sures) is obtained. 

Our extension process consists of the following three steps. 

1. To a given sublattice A of H and a mapping J : A-^R 

we construct a mapping J : H — * R extending J • 

In this step H is assumed to satisfy the following conditions: 

H is boundedly G -complete, 6"-continuous lattice and to every x<^H 

there are a € A such that x t V a . The initial mapping J is in

creasing, J is a valuation (i.e. J (a) + J (b) * J (avb) + J (aAb)) 
° ' o o o o o 

and J^ i s upper continuous ( i . e . x £ A , x e A , x „ ^ x -^ J (x )~^J (x)) , 
o + n ' . ' n . o n o 
Put A a [ b € H ; 3 a n e A , a^ b } , J : A -^ I? , J (b) -

= lim J 0 ( a
n ) » (Under previous assumptions t h i s l imi t does not depend on 

the choice of a n . ) Finally J*(x) = inf { J*(b) ; b ^ x , b e . A + j . 

J* has also some nice p rope r t i e s , e .g . J x i s upper continuous 

on H • 

2. In the second s tep we assume that there are given three b ina

ry operat ions & , + , \ : HxH~^H sa t i s fy ing some condi t ions . In 

the se t l a t t i c e case, A ̂  B i s the symmetric di f ference, A ^ B i s the 

difference and A + B i s the union of the se t s A , B . In the function 

l a t t i c e case , f ^ g(x) * / f(x) - g(x)f , f \ g (x ) * f(x) - min(f(x) , 

g ( x ) ) , f + g(x) * f(x) + g(x) . 

We use the following proper t ies of the a lgebraic s t r u c t u r e : H 

has the l e a s t element 0 contained in A , A i s closed under A , \ , 

+ ; a A a a O , e A O - » a , a A b = 5 b ^ a , a + b = - b + a , a A b ^ . 
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4 ( a Z s c ) + (b A c) , (a v b) A (c v /d) ^ (a A c) + (b A d ) , (a /\b) A 

A ( c / \ d ) t ( a A c ) + ( b ^ d ) , (a + b) A (c + d) ^ (a A C) + (b A d) , 

(a \ b) A (c \ d) ^ (a A c) + (b A d ) , a ^ (a A b) + b fo r every a, b , c , 

d czr H ; i f a <i b , then a + c ^ b + c , a A b * b \ a , a * b \ (b \ a ) ; 

i f a^ si a , b , -^ b , c >* c , then a . + b ^ a + b , a \ b ^ a \ b , 
n ' n ' n ' n n ' n f 

b \ c ^ b \ c . J i s assumed moreover t o s a t i s f y the fo l lowing p r o p e r 

t i e s : J (0) -= 0 , J (a + b) ^ J (a) + J (b) , J (b) =- J (a A b) + 
O 7 O 0 0 ' O 0 

+ J (b\ a) . 
o * » 

If we now put d(x,y) = J (x A y) and H1 » [x ; J (x) < <>oJf 
then (H-,,d) is a pseudometric space containing A . 

3. Finally we put S = A"" (the closure of A with respect to d) 
and J -* J* I A"" . 

4. Theorem. S is a sublattice of H closed under + and J 
is an extension of J satisfying the following conditions: 

1. If x i y , x, y e S, then J(x) ̂  J(y) . 
2. J(x) + J(y) -* J(x v y) + J(x A y) for every x, y C S . 
3. If xR£ S (n=*l,2,...), x£H, x ^ x (xR\x) and (J(xn^n--i 

is bounded, then x £ S and J(x )-^J(x) . 

The classical measure extension theorem and Radon measure exten
sion theorem follow immediately from Theorem 4. Of course, these two 
examples are not the only ones. 

5- Theorem. Let G be an Abelian lattice ordered group, which is 
<o -complete (i.e. every non-empty countable bounded subset of G has 
the supremum and the infimum). Let F be a subgroup of G closed under 
the lattice operations. Let there to every x e G exist a n C F (n * 
* 1,2,...) such that x ̂  V an . Finally let I : F ~^R be a linear 
positive operator such that x S* x, xn £ F (n = 1,2,...), x e F , 
implies I 0U n) ̂  IQ(x) . 

Then there are a subgroup T of G containing F and closed 
under the lattice operations and a linesr positive operator I : T -* R 
extending IA and continuous in the following sense: If x Sx (x ^ x ) , 

o ,30° n n ' 

xn £ T (n = 1,2,...), x £ G , and (^^^nr-i is D0Unded, then x e T 
and T(x) = lim I(xn> . 

Similar results using different constructions have been studied 

in L'lJ - L*4J . A detailed elucidation of our results including proofs 

will appear in the journal Mathematica Slovaca. 
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