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ORDINAL INVARIANTS IN TOPOLOGY - SUMMARY 

V. KANNAN; MADURAI 

[Reported by M. Venkataraman ] 

INTRODUCTION: In this work, we show that all useful ordinal invariants in 

topology, studied hitherto, (such as the derived length of scattered spaces, the 

sequential order of sequential spaces, etc.) are closely inter-related and can be 

brought under the single heading of what we define as the order of a function from a 

topological space onto a set (equivalently, of a partition of a topological space, 

or of a quotient map between topological spaces). Using this, we extend many of 

them for arbitrary topological spaces and view them from different angles. 

We start with an elementary concept that is basic for our discussions. 

0. Order of a closure operation: (E. c E c HI3I) : A closure operation on 

a set X is a map V : P(X) -> P(X) satisfying the following conditions: 

V(cp) • 0 

V(A) => A for every A c X 

V(A U B) = V(A) ij V(B) for every A,B c X . 

If V is a closure operation on X, if a is an ordinal number and if A is a 

subset of X, we define 
r 
A if a = 0 

V^A) = J V(V6(A)) if a = p + 1 

U A A ) if a is a limit ordinal . 
£<a 

This inductively defines a closure operation v on X, for every a. There 

always exists an ordinal number a such that v (A) = v (A) for every A c X. 

The least such ordinal is called the order of the closure operation V. We denote 

it by T](X,V). The closure operations with order < 1, that is the idempotent ones, 

are the topological closure operations. The pair (X,V) is known as a closure 

space. The order of V is also called the order of this closure space. 

1. Order of a function: Let X be a topological space, Y be a set and 

let f : X -> Y be a function. If we let V(A) = f(f=I(A)) for every A c X, 

then V is a closure operation on X. The order of this closure operation is 

called the order of f and is denoted by cr(f). 

2. The E-order: Let E be any family of topological spaces. We denote by 

D(E) the family of all spaces that can be obtained as quotients of sums of members 

of E. In categorical terminology, D(E) is the coreflective hull of E in the 

category TOP of topological spaces. For each X in D(K), we now associate an 
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ordinal number, called the E-order of X. It is defined as cr = glbfcr(f) | f is 

— _ 
a quotient map onto X from a sum of members of E} . 

3. Canonical Maps: We say that E is imagive, if E is stable under the 

formation of continuous images. Let E be an imagive family and let X be any 

topological space. Let Y be the sum of all those subspaces of X that are 

members of E. The map from Y to X, whose restriction on every summand of Y, 

is the inclusion map into X, is called the canonical map of X with respect to E. 

Secondly, let E be any set (necessarily, not imagive) of topological spaces. 

We denote by C(E,X) the family of all continuous maps into X from members of E. 

For each f in C(E,X) we denote the domain of f by D„. We denote by Y, the 

sum of all these D 's. The map from Y onto X, whose restriction to each D„ 

is the same as f, is called the canonical map of X with respect to E. 

Our assertions are the following: Let E be either a set or an imagive family. 

Let X be any topological space. Let cp he the canonical map of X with respect 

to E. Then 

(i) X € D(E) if and only if 9 is a quotient map. 

(ii) The quotient topology of <p is the coreflection of X in D(E). 

(See [9] or [8] for definitions.) 

(iii) Og(X) - cx(cp) . 

We use this theorem later to show that the concept of E-order generalizes and 

unifies several known ordinal invariants in topology. 

k. Alternate characterizations of E-order: (l) We have,just now stated a 

characterization of E-order in terms of canonical maps, under some conditions on E. 

(2) For any family E of topological spaces, let G(E) be the coreflective 

hull of E in the category CL of closure spaces. (The morphisms are the con­

tinuous maps as defined in [3].) Let T : CL -> TOP be the reflector (adjoint of 

•the inclusion functor of TOP in CL) defined by T(X,V) = (X,V^X'Y'). Let X 

be any topological space. Let (X,V) be the coreflection of X in G(E). Then 

X e D(E) if and only if X = T(X,V). Further, the E-order of X is exactly the 

order of the closure space (X,V). 

(3) As soon as a family E of topological spaces is given, we describe a 

well-ordered increasing family E-, c E_ c E_ c • • • c E <- • • • of coreflective 
—JL — _ — j ) —Cc 

subcategories of CL c 
and only if o_(x) < a. 

_ — 

subcategories of CL containing E. We show that a topological space X e E if 

5- E^Fr^chet Spaces: Those spaces X in D(E) for which the E-order is < 1 

are defined as E-Fre'chet spaces. We denote this class by F(E). We prove the 

following: 

(i) The members of F(E) are precisely the pseudo-open continuous images 

of sums of members of E. 

(ii) If every subspace of a space X belongs to D(E), then X e F(E). 
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(iii) F(E) -- G(B) 0 TOP. 

(iv) As a partial converse of (iii) we have: If E is hereditary, then 

every subspace of every E-Frechet space belongs to D(E) (and hence 

is E-Fr^chet). 

(v) The full converse of (iii) is not true. 

6. Equivalent Families: Two families E, and Ep of topological spaces are 

said to be equivalent if 

(a) they generate the same coreflective subcategory, i.e. 

and 

D(^) = D(^) 

(b) <TE (X) = aE (X) for every X in D Q ^ ) . 

The assertion is that E. and E are equivalent if and only if F(E,) = F(EL). 

In a similar fashion, if X and Y are two topological spaces, then F([X}) = 

F((Y}) if and only if a_(x) = CJ (Y) for any family E. This is the extent to 

which the E-orders can distinguish spaces. 

7. Particular Cases : (l) When E is the family of all metrisable spaces, 

then D(E) = [Sequential spaces} . It follows from the results of [6] and [3] 

that the E-order is the sequential order. AEHANGELSKII's characterization of 

Fr^chet spaces [1], FRANKLINS characterization of Fre*chet spaces, [6, 5], etc. 

follow as corollaries. 

(2) When E = [compact spaces}, then D(E) = [k-spaces}, F(E) = [k'-spaces} 

(see [7] for definition), and E-order = k-order. AEHANGELSKII!s characterization 

of k'-spaces [1] is a corollary. 

(3) If E = [orderable spaces}, then D(E) = [chain-net spaces} otherwise 

known as [weakly sequentional spaces} and F(E) = [weakly Fre*chet spaces} . KENT'S 

characterizations of weakly Fre*chet spaces are corollaries . 

(h) Let m be an infinite cardinal number. Let E = [spaces of local 

weight < m}. Then D(E) = [m-Fr^chet spaces} and E-order = m-sequential order. 

MEYER's [13] characterizations of m-Fr^chet spaces, follow as corollaries. 

(5) Let E be any imagive family. Then D(E) = [X | X receives weak 

topology from its subspaces belonging to E} . If we let Z = - [Y c X | Y € E}, 

then £ is a natural cover in the sense of FRANKLIN [7] • Conversely, every natural 

cover arises in this way. Further D(E) = [^-spaces}, F(E) = [S'-spaces} and 

E-order = ̂ -characteristic. All the results of [7] follow as corollaries. 

8. Behavior of E-order: We show that the order of a quotient map has a 

nice behavior with respect to sums, restrictions to open (closed) subspaces and 

composites. Using this we show the following: 

(i) The E-order of a sum of spaces is exactly the supremum of the E-orders 

of the individual spaces. 
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(ii) If f : X - Y is a quotient map, then a._(Y) < cr(f)cr (x). 

(iii) In particular, the E-order is decreased by quotient maps with order < 1 

(these are precisely the pseudo-open continuous maps, or equivalently 

the hereditarily quotient maps), 

(iv) If E is open- (closed-) hereditary, then the E-order is decreased 

by open (closed) subspaces. 

9- Unification: The similarities among the theories of sequential order, 

k-order, and m-sequential orders were noticed and the need for their unified 

treatment was felt long ago. (See the introduction of [7]-) It is in this back­

ground that FRANKLIN [?] studied natural covers and MEYER [9] studied convergence 

bases and subbases. Simultaneously, there were some generalizations and results 

of the same pattern proved in some other cases. But none of the earlier attempts 

was able to unify all these, though each of them unified several things. Our theory 

. of E-order does this job. 

Besides, in each of the above-mentioned cases, an ordinal invariant was defined 

in a particular coreflective subcategory of TOP. It is natural to ask whether 

these can be generalized to arbitrary coreflective subcategories. We have achieved 

this also. 

Moreover, we show that the theories of FRANKLIN [7] and MEYER [10] are nicely 

situated in the theory of E-order. The first is equivalent to the case E is 

imagive; the second is equivalent to the case E is a family of spaces with unique 

accumulation points. 

10. Several E-orders: Let A be any coreflective subcategory of TOP. Then 

there may be several families E such that D(E) = A. Each of these gives rise to 

an E-rrder in A. Some of them'may be equivalent. How many equivalence classes 

are there? 

A coreflective subcategory of CL is said to be topologically generated 

(abbreviation: t.g.c.s.) if it is G(E) for some family E of topological 

spaces. We say that it is lying above A if A = T(G(E)). Our assertion is this: 

If B is any tgcs lying above A, then D(Bn TOP) = A and the B f| TOP-order is 

defined in A. Conversely, if E is any family such that D(E) = A then E is 

equivalent to B 0 TOP for some tgcs B lying above A. Further, if B, and Bp 

are distinct tgcs lying above, then they induce non-equivalent E-orders. Thus, 

we have a 1-1 correspondence between the family of all equivalence classes of El-

orders definable in A and the family of all tgcs lying above A. 

11. Distinguished E-orders: If there could be several E-orders in the same 

coreflective subcategory A of TOP, does there exist a distinguished one among 

them? Equivalently, among the tgcs lying above A, is there a special one? We 

may look for (i) the largest and (ii) the smallest of tgcs above A. The largest 

always exists; the corresponding E-order is always trivial — 0 for diserate 
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spaces and 1 for others . The smallest exists in some cases. We show that if 

A = D(E) for some hereditary family E,, then the E,-order is the best among all 

E-orders in A. Thus the sequential order, m-sequential order, etc. (in general, 

the ordinal invariant arising out of convergence subbases of [9.]) are the "best, in 

their respective coreflective subcategories. If A is hereditary, then every 

E-order in A is trivial. 

12. Analogue of FreVnet spaces: Does every coreflective subcategory A of 

TOP possess a subcategory A which plays the role of fFre*chet spaces") in 

(sequential spaces], of [m-Frechet spaces] in [m-sequential spaces"!, e t c . 

Yes, we have . We have only to define A' = [X € A | o"E(X) < 1 whenever D(E) = A] . 

Equivalently A! = fX e A | °"F(x) < whenever D(E) = A] . Always A1 is closed 

under the formation of sums and pseudo-open continuous images. The best E-order 

in A exists if and only if D(A') = A. 

We show that if A is generated by a family of spaces with unique accumulation 

points, then. Af can be described directly in terms of A as follows: 

A' - (X e A I X € A for each x in X] . 

(Here X is defined as the space gotten from X, by isolating each point other 

than x, and by not altering the neighborhood base at x.) 

13. Ordinal invariants in the whole of TOP: Next, we shall be interested in 

ordinal invariants that are definable on the whole of TOP. Two methods are natural: 

(1) For every topological space X, associate a natural class of closure 

spaces. Take their orders. Take the gib or sup of this set. 

(2) For every topological space, associate a natural class of continuous maps. 

Take their o r d e r s . Take the gib or sup of this s e t . In each of these methods, 

the gib leads to trivial i n v a r i a n t s . Therefore we take only the supremum. 

Given X, the natural classes of closure spaces are: 

(i) All closure spaces lying above X. 

(ii) All closure spaces finer than X. (That is, the identity map onto X 

is continuous .) 

(iii) All closure spaces coarser than X. 

(iv) All closure spaces that are coreflections of X in the tgcs. 

On the other hand, given X, the natural classes of continuous maps are: 

(i) All quotient maps onto X. 

(ii) All continuous maps onto X. 

(iii) All continuous maps from X, or all quotient maps from X. 

(iv) All canonical maps of X with respect to singleton f a m i l i e s . 

We show that the two methods become equivalent, case by case. Thus we have 

four ordinal invariants, defined on TOP. We denote these by p(X), o(x), y(x) 

and cr(x). 
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ih. The invariant p: If X is a topological space, recall the definition: 

p(X) = Sup[<r(f) | f is a quotient map onto X} = Sup{r)(x,V) | T(X,V) = X] . We 

prove the following: 

(a) If X is a Hausdorff sequential space, then p(X) coincides with the 

sequential order of X. Thus p can be viewed as a natural extension of sequential 

order to an arbitrary topological space. 

(b) p assigns the supremum for the sums and is decreased by open subspaces 

and closed subspaces. 

(c) The spaces X for which p(X) < 1 constitute a nice class including all 

metrisable spaces. 

15. The invariant 5: If X is any topological space recall our definition: 

5(X) = Sup[T](X,V) I V(A) C'A for each A c X} . We prove t h e following: 

(a) 5(X) can be equivalently described as t h e supremum of t h e orders of all 

continuous maps into X. 

(b) We already saw t h a t p extends a known ordinal invariant to the whole 

of TOP; we show t h a t 5 also has such a significance: If X is a scattered space, 

then S(X) coincides wi th t h e derived l eng th of X. The derived l e n g t h is a well-

studied invariant. See [10] for a shor t history. 

(c) Not only does 5 allow us to talk of t h e derived l e n g t h of an arbitrary 

space, but it has t h e same behavior wi th respect to standard operations. It is the 

supremum for t h e sums, is decreased by subspaces, and is increased by weaker 

topologies. 

16. The invariant 7• The result 15.(a) suggests t h e notion dual to t h a t of 

derived l e n g t h — t h i s is a bonus, because t h e usual definition of derived l eng th 

does not at all suggest t h i s . This dual invariant is defined by y(X) - Sup{cr(f) | 

f is a continuous map from X] . This is also the dual of p. We show: 

(a) y(X) can be described intrinsically as follows: 

y(X) =Sup{a I 3 a well-ordered chain AQ < A < • • • < A in X] 

where A < B means A -- A c B. 

(b) 7 is decreased by subspaces and quotient images; if y(X) is a non 

limit ordinal, then y(X + Y) > y(X) + 7(Y). Thus 7 differs essentially from p 

and 5 in its behav io r . 

(c) There is another peculiarity of 7 among the invariants that we are 

considering. Even mild topological conditions imply severe restrictions on the 

values of 7. For example, we show: 

If X is any Hausdorff space, then y(X) is e i t h e r finite or uncountable; 

If X is f u r t h e r perfect, then y(X) is e i t h e r a limit ordinal or t h e successor 

of a limit ordinal. 

(d) We also give some c h a r a c t e r i z a t i o n s of: 

(i) {X e TOP I y(x) < 1} 
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and 

(ii) {X e HALTS | /(X) = n} . 

17. The invariant cr: For any topological space X, we define cr(#) ~ 

Sup{T](X,V) I (X,V) • is the coreflection of X in some tgcs} . We prove the 

following: 

(a) cr(x) can alternately be described as any one of the following: 

(i) Sup{cr(f) I f is the canonical map of X with respect to a singleton 

family}. 

(ii) Sup{cr (x) I X € D(E)}. Thus cr is significant, because it is the 

supremum of all the E-orders . 

(b) Just like p, the invariant cr also coincides with the sequential 

order, among Hausdorff sequential spaces. 

(c) For any space X we have the inequalities cr(x) < p(X) < S(x) < the 

initial ordinal of the first infinite cardinal bigger than that of X. 

18. The order at a point: The invariants p, 5, and cr can be defined at 

each point of a topological space. For example, if (X,V) is a closure space and 

x e X, we define T](x,V*x) = glb{a | For every A c X, x e V^(A) for some 

P => x e V°A} and p(X,x) = Sup{n(X,V,x) | T(X,V) = X} . 

We show that P, 5, and cr are of local.character, under a reasonable defini­

tion of this term, but 7 is not so. 

Having defined P, 5 and cr at points of a topological space, we may view 

them as mathematical models of measuring the badness of a person in a society. In 

this light, our results can be interpreted as supporting the following three 

principles: 

(a) The goodness of a society is entirely determined by that of its individual,ft; 

if each individual 4s a-good, then the society is a-?good and conversely. IJiat is, 

p(x) <a<=?>p(X,x) <a\/x € S. 

(b) The character of a person is completely determined in his locality; a 

person is a-good in his neighborhood if and only if he is a-good in the whole 

society. That is p(X,x) = p(V,x) whenever V is a neighborhood of x, with 

relative topology. 

(c) A person, living away from bad persons, i.e. completely surrounded by good 

persons, becomes good at least to a close levels If in a neighborhood of a person, 

everyone is a-good, then this person is OH-1-good. That is: If p(X,t) <cc\/t e 

V\{x} where V is a neighborhood of x, then p(X,x) < a + 1. 

The results of this section are also to be used as tools in the proofs of the 

results of the next section. 

19• What ordinals appear?: Finally, we develop a construction technique of 

topological spaces (which we call the construction of a brush) and use it repeatedly 

to obtain the answers for some natural questions concerning these ordinal invariants. 

For example, consider this question: Given a family E of topological spaces, 
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spaces, what ordinal numbers appear as E-orders of spaces? We have two types of 

answers for this question: (i) For some particular examples of E, we actually 

give the set of ordinals that are E-orders of spaces. (ii) We have some theorems 

of general pattern which relate conditions on E to conditions on the family of 

E-orders of spaces. One such theorem is the following: 

Let E be a Tp-imagive (i.e. imagive among Hausdorff spaces) closed-hereditary 

family of Hausdorff spaces. Then the following are equivalent: 

(1) Given•any ordinal, there is a bigger ordinal, which appears as the E-order 

of some T space in D(E). 

(2) Every ordinal appears as the E-order of some Tp-space in D(E). 

(3) There exists no cardinal m such that E c T . (Here T is the 
— m -m 

coreflective hull of the family of all spaces of cardinality < m.) 

(-1-) D(E) is not contained in any simply generated coreflective subcategory 

of TOP. 

It follows that if E is the family of all well-ordered compact spaces, then 

every ordinal appears as E-order. Another theorem asserts that the same conclusion 

holds, for every bigger imagive family. In particular, every ordinal number is the 

k-order of some k-space. This answers a question posed by ARHANGELSKII and 

FRANKLIN [2]. 

Now let us turn to the invariants p, 5, and cr. We show that in each case, 

every ordinal appears. In fact, we construct for every ordinal number a, a 

Hausdorff k-space X such that p(X,-y) = °"CO= k-order of X - a. This improves 

a result of [10] and [9]. 

20. What sets of ordinals appear: The invariant p (or 6 or cr) can be 

viewed as an ordinal-valued function on each topological space. One natural question 

is: Given a set X, what ordinal valued functions on X appear as the funct ion p 

(or 5 or cr) for a suitable topology on X? Equivalently, what sets of ordinal 

numbers appear as the range of p (or 6 or cr)? 

We give a partial, but elegant answer: The dense subsets of initial segments, 

and only these, appear as the range of p (or 6 or cr) in scattered spaces. 

21. Two open problems: The following are some of the problems considered by 

us, incidentally: -

(a) For which topological spaces do there exist finest closure operations 

above them? 

(b) Which topological spaces have a unique closure operation on them? 

(c) For which coreflective subcategories of TOP is there a unique tgcs 

above them? 

We give a partial answer to (a) by showing that every Hausdorff sequential space 

has this propetty; a partial answer to (c) by showing that every hereditary coreflec­

tive subcategory otf TOP has this property. We give a complete answer for (b). It 

will be interesting to obtain complete answers for (a) and (c). 
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22. One more result on the invariant p: We finish this summary by giving 

the full statement of a theorem: 

Theorem: The following are equivalent for a topological space (X,T): 

(1) p(x) < 1, i.e. every quotient map onto X is hereditarily quotient. 

(2) Every two-to-two quotient map onto X is hereditarily quotient. 

(3) Every locally infective quotient map onto X is hereditarily quotient. 

(h) Every closure operation inducing the topology on X is idempotent; that 

is, there is a unique closure space over X. 

(5) In any pull-back diagram of the following kind, if e is extremal epi 

and m is extremal mono, then e' is extremely epi and mT is 

extremely mono. (For definitions, refer to [8].) _ _ 
—T — i — 2 

(6) Whenever T = T A T and A c X, we have A = A U A . 

(7) T can be uniquely expressed in the form T = A T where (i) each 

T has exactly one non-isolated point and (ii) distinct T 'S have no common 

accumulation point. 

(8) Let for each A c X, T be the smallest topology finer than T such 

that all points outside A are isolated. Then for each A c X , the topology T 

has a unique complement in the lattice [T) of all topologies finer than or equal 

to T. 

(9) For each x in X, the top&Logy T. has a unique complement in [T) . 

(10) For each A c X, T is a maximal complement of T v in [T) . 

(11) For every x in X, T. .. is a maximal complement of T v - - in [T) . 

(12) Let x e A c X. If A is not a neighborhood of x, there exists a 

neighborhood N of x and aset W D A f] N such that W is not a neighborhood 

of x, but W iw a neighborhood of all its other points. 

(13) Whenever A c X and x e A\A , there exists a set W such that 

(i) W is not open in X, but W n A is open in & 

and (ii) W is a neighborhood (in X) of each of its points except x. 

(\k) Whenever A c X and x e A\A, 3 a set F such that 

(i) F = F lj {x} ^ F 

-and (ii) x / F\7. 

(15) Whenever A c X and x e A\A, 3 a closed (in A) subset F of A such that 

(i) x is a limit point of F f| A 

but (ii) x is not a limit point of F\A. 

REMARKS: (a) The problem of characterizing spaces onto which every quotient 

map is hereditarily quotient, was first considered by G.T. Whyburn [15]. He proves 

the equivalence of (l) and (1*0, assuming a mild condition on the space X. We show 

that such a condition is not necessary. 

(b) E.D. Shirley [1-J-] has obtained two intrinsic characterizations of spaces 

with (l); they are too complex to be given here; they can be directly proved to be 

equivalent to conditions (13) and (15). 
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(c) The problem of characterizing spaces with (̂ )-is completely analogous 

to that of DOSS [k] and LINDGREN [11]. 

23« Conclusion; The proofs of these results will appear elsewhere. Some 

more natural open problems have also been given there. 
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