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ENTROPY NUMBERS OF OPERATORS IN BANACH SPACES

B. Carl and A, Pietsch

Jena

In the following for every operator T between Banach spaces
we define a sequence of so-called outer entropy numbers en(T) with
n=1, 2, ... « Roughly speaking the asymptotic behaviour of en(T)
characterizes the "compactnesa" of T . In particular, T is compact
if and only if 11m e (T) .

The main purpose of this paper is to investigate the ideal é?

of all operators T such that

o0

z en(MP < oo .
For practical reason it is useful to introduce also inner entropy
numbers fn(T) which, however, generate the same ideals.

The concept of entropy numbers is related to that of & -entropy
first studied by L. S. Pontrjagin and L. G. Schnirelman [13] in 1932.
Further contributions are mainly due to Soviet mathematicians [1],[2].
For more information the reader is referred to the monograph of G. G.
Lorentz [5], see also [4].

The significance of entropy numbers for the theory of operator
ideals was discovered by the second named author. A full account will
be given in [12].

In the following E , F and G are real Banach spaces. The
closed unit ball of E is denoted by UE . Furthermore, &£ (E, F)
denotes the Banach space of ‘all (bounded and linear) operators from
E into F . The symbols lg and 1p stand for the classical Banach
spaces of vectors and sequences, respectively.

All logarithms are to the base 2 .

l. Elementary properties of entropy numbers

For every operator T € &£(E, F) the n-th guter entropy num-
ber e (T) is defined to be the infimum of all 62 0 such that

there are Yy eees Yy € F wlth q 221 gng

T(Up) < U {5y + oup} .
For every operator T € ée(E F) the n-th inner entropy num-
ber f (T) is defined to be the supremum of all ¢ 2 0 such that
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there are Xys eeey xp € Uﬁ with p > 2“'1 and

lrx; - Tx I > 2¢ for i £k .

First we state an elementary property of entropy numbers.

Proposition 1.

If T € & (E, F), then
Tl = eg(m) 2 ey(m) 2 ... 20 ana Il = £(1) 2 £(m) 2 ... 20,
Next we check the so-called additivity of entropy numbers.

. Proposition 2.

If Ty, T, € & (E, F), then

<
and <
f (T, + T,) =f_ (T,) + £ (T,) .
n1+n2-1 1 2 ny 1 n, 2
Proof.

Let T,, T, € L(E, F). If 6& > e, (T,), then there are

"
Y&k), ceey ygk)e F such that

an-l

uA

Qe
T (Up) < iL;-jl {yg‘) + skUF} and q, for k= 1,2,

Hence, given x & UE’ we can find ik and Y € UF with

T X = y(i) G'kyk for k=1, 2.

It follows from

(1) , (2)
(T1+T2)x € ¥; i i, + (6, + 6,)U

that

VRS
Uy & U R U L AR A
11- i —1
(n,+n —1)-1
. 1 72 £
Since q.q 3P we get e _q(T.+T,) 2 6, + 6
192 = ' ny+n,=1""1""2 1 2

This shows’the desired inequality for outer entropy numbers. The re-
maining part of the proof is left to the reader.

The multiplicativity of entropy numbers can be proved with the

same method.
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Proposition 3.

If Te (E, F) and S € &£ (F, G) , then
1(ST) = ey (S) e (T)

[T\

®n+n-
and

na

£enon(ST) £ £2(S) £.(T).

Finally, the relationship between outer and inner entropy num-
bers is investigated.

Proposition 4,
If T € £(E, F) , then
< <
fn(T) = en(T) = 2 fn(T) .

Proof.

Suppose that 6 > e of{T) and ¢ < £ (T) . Then we can find
Xps eees X €Uy and y;, «eo, g € F w1th “Tx - Tx | > 2¢ for

-1 2
i#J and T(UE) c U {yk + G'UF} where p > 2n

must exist dlfferent elements Tx and Tx. which belong to the
same set y, + G'UF . Consequently 2¢ < [[Tx; - T=x; ] £ 26 . This
proves that f (T) £ en(T) . Given ¢ > £ (T) , we choose a maximal
family of elements Xqs ) x € Up such that |[Tx; - Txk“ > 2¢
for i #K . Clearly p s 1. Moreover, for x € UE we can find

some i with [|Tx - Tx;| € 2¢ . This means that
P

= q « So there

(V) S U {Tx- + 20U}

So en (T) ? and therefore e (T) 2 f (T) .

2. Quasi-normed operator ideals related to entropy numbers

In the following let & denote the class of all operators be-
tween Banach spaces while J denotes the closed ideal of compact
operators. Then we have

JC='{T e £ : (e (M) € co}.
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Therefore it seems very natural to introduce the following class of
operators. Given 0 < p < oo , we define

{reg: (e (T)) & lp} .

Moreover, for T € Q% we put
E(T) = (X e (TP)/P,
1

We now show that &  is a so-called operator ideal for which every
component & (E, F) becomes a complete metric linear space with res-

pect to the quasi-norm Ep

Theorem 1.

If Ty, T, € <€p(E, F), then T, + T, € @p(E, F) and

<
EL(T; +Ty) S [Ep(Tl) + Ep(TZ)J
where
¢ := 2V/P pax (21/p-1’ 1)

Proof, '
By Proposition 1 and 2 we get

E,(Ty +T)-—{Z en(Ty +T)p}l/p

§{2Ze2nl(fr +T)}
$ /P {:E: [e (Ty) + e (T ﬂ p}. P
<

c [Ep(Tl) + B (T,)]
Remark,

It follows from Proposition 4 that
{reg:mer}.
Moreover, by setting

.= = Py1l/p
Fp(T) := ( % £,(T)%)

we define a quasi-norm F_ equivalent to Ep .
Without proof we state
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Theorem 2.
If X € £(E_, E), T € @(E, F) and Y € £(F, F ), then

YTX e ﬂfp(Eo, F)) and B (YTX) = < x| B (T) x| -

The following statement is also evident.

Proposition 5.

If 0<py<p,< o=, then -‘gp c € and the embedding

1
map is continuous.
Theorem 3.
If 0<p, g <oo and %=%+%, then T € € (E, F) and
S e iép(F, G) imply that ST € €,(E, G) and E_(ST) S
< /r
= sS) E (T) .
2 Ep( ) q( )
Proof.
By Proposition 1 and 3 we get
E_(ST) ={Z e (ST)r}
<
< {2 Z € o 1(ST)}
S QT {Z [e,(5) e ()] }

nA

/T
2 Ep(S) Eq(T) .

This proves the assertion.

3. Quasi-normed operator ideals related to approximation numbers

For every operator T € &£ (E, F) the n-th agpproximation num-
ber is defined by

an(T) := inf {“T - L" : L € £(E, F) and rank (L) < n} .
As shown in [9] or [;Q] the class
oo
%:={T e & :Zl an(T)p<°°},O<p<oo ,

is an operator ideal for which every component '?;(E, F) becomes a
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complete metric linear space with respect to the quasi-norm
o
s (1) := (X a (TP)/P,
P 1 n

Only a little is known about the relationship between @; and

o

Conjecture 1.

If 0 <p < e , then 9; < gp‘

Conjecture 2,

1_-1_1 c
If 0 <p< 2 and Pl 5 9 then if; < 9: .

The inclusions stated above are the best possible which can
be expected. Some weaker results are proved in [12].

4, Entropy numbers of operators in Hilbert spaces

It seems to be very complicated to compute or estimate the en-
tropy numbers of a given operator. However, we know some results con-
cerning the related quasi-norms.

Theorem 4.

Let S e>§€(12, 1,) such that S(fn) = (6, §,) eand (6)e
€c,.If 6,2 6,2...20, then

2
<
Gn = 2e (s) .

Proof.
If 6h = 0 , then the assertion is trivial. So we assume that
2 2 2
6,2 6,...2 6 >0 . Put
T §1s eens 50 2= Cfpo vons §oo 05 o)
and

QC Fys eees Fon Fragr eee) 2= CFp el B

Then S =QSJ  is invertible. If I denotes the identity map of

12 , it follows from en(In) 2 1/2 and Proposition 2 that
<

1722 ey (1)) $e (s |22 S el e () |9, 652
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< -1
= en(S) 6n .

This completes the proof.

Theorem 5. -

Let S e 55(12, 12) such that S¢( fn) = (6'n fn) and (6’n) €
€ c, . Then

(= =] oo
(> en(S)p)l/pé c (> |6 ‘p)l/p for 0 < p<oo,
1 pT R
where o is some positive constant.
Proof,
Wlthout loss of generality we may suppose that 6

LN ] o ® Let
E(S)::max{n:en(s)>£} for 0 <€ <6,.

[[\V4
)
ny

We now show that
(%) B(2e) $1+ = log (86/€) .
6' >€

Put m :=mex (k : 6, >€) and S := QSJ, . Let u"é and UR

denote the closed unlt ball of 1 and 1'50, respectively. If
y € s, (U, M) , then there exists g = (gqs +e+» ) such that
ye £m"1/2{2g+U$no}§. 2¢ m1/2 g+ sUm

where &1y ceer & 2TE intégers. Since 51 S Lee 2 6' > £ , we have

enl/2 {25 + B} < s,(U3) + 2¢ /2 8 ¢ Sp(U3) .

Let 81y s &

a be the collection of all g; = (f"575 eees §ip)
with

/2 {og; + vk} €3 5,(0D) .
Clearly
Sm(U U {2€m g + £Um}
and therefore
S(Uy) € Jy 5, (UD) + 6 ..U, S U foen™/2 gg, + 2€U,},
where U2 denotes the closed unit ball of 1, . On the other hand,

q [E m'l/2]m AL = Z;l: A[Em’l/2{2gi+ U‘E‘c}] E3mf:|' 6y A(UI;)’

where A is the Lebesgue measure. Using Stirling’s formula we get



etM(t+v1) 2 \2x t

Hence
% % m
T
A(UR) = < (2xe) < _3 .

m
This implies that m

Choose n such that

nA

n
n-1 1 +% log(8 6'k/£ ) =n.

A

Then q S 2n—1 and therefore en(S) 2€ . So E(2&£) € n-1 . This

proves ().
Finally, we have

[~ =]
2P 2> e (5)P

2P > n [en(S)p - en+1(S)p]
1

1l
61
= 2P E(e) a€P
61
< 6% + f > 1og(8 6, /g )aeP
0 6k>£
oo 63
= 6‘?- + Z Zlog(s 6'k/£: yaeP
i=1 6 6k>£
oo i i+1 6
= 6'11’+ > / log(8 6,/ & )4 eP
i=1 k=1 5
i+l
O o0 61
=604+ > > f log(s 6,/ € )a €P
k=1 i=k 6
i+l
oo [6)
= 61{ + > log(86,/ & )4 eP
k=1 :
0

"
(o))
e

p gp =
+ %— J log(1/t)at % 62 .

This completes the proof. :
The above theorems show that for any Hilbert space H the
operator ideal & (H, H) coincides with the operator ideal ?';)(H.H)-

In particular, @2 H, H) is the ideal of so-called Hilbert-Schmidt
Operators.
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5. Entropy quasi-norms of the identity map I, from 13 to 12
Lemma 1,

If m=1, «ee, n , then

Proof.

Let Uﬁo and U? denote the closed unit ball of 12, and 1?,

respectively. Suppose that

q
UL € U{Y- + 6U§1} and q S 2°°1 |
7 Ui
Then a
MY £ >0 Ay + 60D = q 7 AW

where A is the Lebesgue measure on R® . Now A(UD) = 2" and

AIU?) = 2%/n! imply that 6" 2 n!/,n-1 . Using e’nt > n" we get

6 > n/2e . Therefore
. 12 ny, 2
en(In F 11) = n/2e .
In order to prove the following lemma we use a decomposition-
trick taken from M. 5. Birman and M. Z. Solomjak [1].

Lemma 2.

If m=1, «¢oy, n , then

< +
em(In:lil—élEo)-:clggéB—-l-l,

where c¢ 1is a positive constant.

Proof,

Let Ug and UL, be as before. If m 2 4 , then

.- 2 log(n+l) > , log(ntl) 1
6 =4 m =2 m- 2 7 n
Put

K(x) := {k: || >6} for x=(f)e].

We have

card (K(x)) < > 15, f 1/6 < n.
K(x) S
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Let K denote the collection of all sets K <€ {1, ..., n} with
card (X) < 1/6 and put

U = fxetl : f =0 if k¢K].
Then

x €Ug(yy * 6 U2,  for all er‘l‘.
Hence

vt e Uu, + 6 Uk},
Clearly, we can find y§K) € 120 such that
%
UK.C_' L1J {ng) + 6 UE::} and qK § (1/6‘ + 1)card(K) .
Consequently, there are y; € 129 with
q

n < n

v} < Ll) {y; + 2 6 UL}
‘and

1/6
a ¥ Se +1oerd® < 21 (M6 + 1P S o) £ 2L,
K

So we get

UA

log(n+l
8 m

S ¢ iRy £
. em(In 3 11—91.9 =226
Obviously this estimate is also true for m =1, 2, 3 .

Proposition 6.

If 0L p <=0, then

. . n, > 1/p+l
Ep(In ¢ looell) - ap n for n = 1,2,,..,

where ap is some positive constant.

Proof.
By Lemma 1 we have

_ e (I : 12, —» 1?) 2 -%; n for m =1, ceoy N o
Therefore

. 10 ny 2 _1_ . 1/p+l
Ep(In 1o — 11) € -3 n .

Proposition 7.

If 0<p<1l, then
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E (I, : 1§ »1%) So nl/P-1 10g(n+l) for n =1, 2, ...,

where bp is some positive constant.

Proof,
Using Proposition 3 we have

. 9 n, <
Ep(In : 11 —>1,) = (Z_(_-) n?-:]'_ n+m(In. 11_>1n )P)l/P
< . pyl/p ==
= (E%: eg(I, ¢ 1 -+ 197) (:E:en+1(1n:1£;>12)kp)}/p
From en+1 1&—91 = 1/2 we get
(Z e (Ine lfo-elfgkp)l/p < cp

k=0
By Lemma 2 it follows that
(g e (I, : 10 —=1H)P)L/P £ 4, n2/P1 10g (n+1) .
Since the constants cp and dp do not depend on n , the assertion
is proved.

Theorem 6.

If 0<p<1 and 1 éu, v-<-°O, then
1/p+1/v-1/u < . Jn n, < 1/p+1l/v=1/u
a,n = ]E.p(In : lu—>1v) = bpn log (n+l)
for n=1, 2, ...,

where ap and bp are positive constants.

Proof.
By Theorem 2 and Proposition 6 we get

n n
o o/ € g (1: AR >1D) € |1, ¢ 15> 10lE (10 (11000

nA

1/u . 1D n =1/v
n Ep ( In : 1u - lv) n
and therefore

1/p+l/v-1/u < . 10 n
= Ep(In : lu——>1v) .

a_ n
)Y
Analogously, by Theorem 2 and Proposition 7 we have
. qn n, < n n . n
E (I : 10->1]) = ||I : 10 ->17 E (I 1] 1) l1,: 1217
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A

nl-l/u bpnl/p-l 108(11"'1) nl/v =

bp nl/P+1l/v-1/u log(n+l) .

The limit order A( (f s U, v) is defined to be the infimum of
all A2 0 such that

Ep(In: 13»13) € c na' for n =1, 2, «co

’

where c¢ is some constant. Using this concept we can restate the
above result as follows.

Theorem 7.

If 0<Kp<1 and lgu,vgw,then

A(Ep, u, v) = 1/p+l/v-1/u .

The remaining case is treated in the next theorem. For the
proof the reader is referred to [12].

Theorem 8.

If l§p<°° and léu,véoo s then

A(Ep, u, v) = max (1/p+1/v-1/u, O).

The limit order is very useful for formulating conditions for
a given diagonal operator S( f ) = (6’ fn to belong to ?(1‘1,1 )e
According to a deep theorem of H. Konlg (3) our results can also be
carried across to embedding maps of Sobolev spaces and to weakly sin-
gular integral operators from Lu into Lv
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