## Toposym 4-A

## Bern Carl; Albrecht Pietsch

Entropy numbers of operators in Banach spaces

In: (ed.): General topology and its relations to modern analysis and algebra IV, Proceedings of the fourth Prague topological symposium, 1976, Part A: Invited papers. Springer, Berlin, 1977. Lecture Notes in Mathematics, 609. pp. [21]--33.

Persistent URL: http://dml.cz/dmlcz/700999

## Terms of use:

© Springer, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# ENTROPY NUMBERS OF OPERATORS IN BANACH SPACES 

B. Carl and A. Pietsch

Jena

In the following for every operator $T$ between Banach spaces we define a sequence of so-called outer entropy numbers $e_{n}(T)$ with $n=1,2, \ldots$. Roughly speaking the asymptotic behaviour of $e_{n}(T)$ characterizes the "compactness" of $T$. In particular, $T$ is compact if and only if $\lim _{n} e_{n}(T)=0$.

The main purpose of this paper is to investigate the ideal $\mathscr{E}_{p}$ of all operators $T$ such that

$$
\sum_{1}^{\infty} e_{n}(T)^{p}<\infty
$$

For practical reason it is useful to introduce also inner entropy numbers $f_{n}(T)$ which, however, generate the same ideals.

The concept of entropy numbers is related to that of $\varepsilon$-entropy first studied by L. S. Pontrjagin and L. G. Schnirelman [13] in 1932. Further contributions are mainly due to Soviet mathematicians [1], [2]. For more information the reader is referred to the monograph of $G$. G. Lorentz [5], see also [4].

The significance of entropy numbers for the theory of operator ideals was discovered by the second named author. A full account will be given in [12].

In the following $E, F$ and $G$ are real Banach spaces. The closed unit ball of $E$ is denoted by $U_{E}$. Furthermore, $\mathscr{L}(E, F)$ denotes the Banach space of all (bounded and linear) operators from $E$ into $F$. The symbols $I_{p}^{n}$ and $I_{p}$ stand for the classical Banach spaces of vectors and sequences, respectively.

All logarithms are to the base 2 .

## 1. Elementary properties of entropy numbers

For every operator $T \in \mathscr{L}(E, F)$ the $n$-th outer entropy number $e_{n}(T)$ is defined to be the infimum of all $\sigma \geqq 0$ such that there are $y_{1}, \ldots, y_{q} \in F$ with $q \leqq 2^{n-1}$ and
$T\left(U_{E}\right) \subseteq \bigcup_{I}^{q}\left\{y_{i}+\sigma U_{F}\right\}$.
For every operator $T \in \mathscr{L}(E, F)$ the $n$-th inner entropy number $f_{n}(T)$ is defined to be the supremum of all $\rho \geqq 0$ such that
there are $x_{1}, \ldots, x_{p} \in U_{E}$ with $p>2^{n-1}$ and

$$
\left\|T x_{i}-T x_{k}\right\|>2 \rho \quad \text { for } i \neq k
$$

First we state an elementary property of entropy numbers.

## Proposition 1.

$$
\begin{gathered}
\text { If } T \in \mathscr{L}(E, F), \text { then } \\
\|T\|=e_{1}(T) \geqq e_{2}(T) \geqq \ldots \geqq 0 \text { and }\|T\|=f_{1}(T) \geqq f_{2}(T) \geqq \ldots \geqq 0 .
\end{gathered}
$$

Next we check the so-called additivity of entropy numbers.

## Proposition 2.

and

$$
\text { If } T_{1}, T_{2} \in \mathscr{L}(E, F) \text {, then }
$$

$$
e_{n_{1}}+n_{2}-1\left(T_{1}+T_{2}\right) \leqq e_{n_{1}}\left(T_{1}\right)+e_{n_{2}}\left(T_{2}\right)
$$

$$
f_{n_{1}}+n_{2^{-1}}\left(T_{1}+T_{2}\right) \leqq f_{n_{1}}\left(T_{1}\right)+f_{n_{2}}\left(T_{2}\right)
$$

Proof.
Let $T_{1}, T_{2} \in \mathscr{L}(E, F)$. If $\sigma_{k}>e_{n_{k}}\left(T_{k}\right)$, then there are $y_{1}^{(k)}, \ldots, y_{q_{k}}^{(k)} \in F$ such that

$$
T_{k}\left(U_{E}\right) \subseteq \bigcup_{i=1}^{q_{k}}\left\{y_{i}^{(k)}+\sigma_{k} U_{F}\right\} \text { and } q_{k} \leqq 2^{n_{k}-1} \text { for } k=1,2
$$

Hence, given $x \in U_{E}$, we can find $i_{k}$ and $y_{k} \in U_{F}$ with

$$
T_{k} x=y_{i_{k}}^{(k)}+\sigma_{\mathbf{k}} y_{k} \quad \text { for } k=1,2
$$

It follows from

$$
\left(T_{1}+T_{2}\right) x \in y_{i_{1}}^{(1)}+y_{i_{2}}^{(2)}+\left(\sigma_{1}+\sigma_{2}\right) U_{F}
$$

that
$\left(T_{1}+T_{2}\right)\left(U_{E}\right) \subseteq \bigcup_{i_{1}=1}^{q_{1}} \bigcup_{i_{2}=1}^{q_{2}}\left\{y_{i_{1}}^{(1)}+y_{i_{2}}^{(2)}+\left(\sigma_{1}+\sigma_{2}\right) U_{F}\right\}$.
Since $q_{1} q_{2} \leqq 2^{\left(n_{1}+n_{2}-1\right)-1}$, we get $e_{n_{1}+n_{2}-1}\left(T_{1}+T_{2}\right) \leqq \sigma_{1}+\sigma_{2}$.
This shows the desired inequality for outer entropy numbers. The remanning part of the proof is left to the reader.

The multiplicativity of entropy numbers can be proved with the same method.

## Proposition 3.

If $T \in \mathscr{L}(E, F)$ and $S \in \mathscr{L}(F, G)$, then

$$
e_{m+n-1}(S T) \leqq e_{m}(S) e_{n}(T)
$$

and

$$
f_{m+n-1}(S T) \leqq f_{m}(S) f_{n}(T)
$$

Finally, the relationship between outer and inner entropy numbbers is investigated.

## Proposition 4.

$$
\begin{aligned}
& \text { If } T \in \mathscr{L}(E, F) \text {, then } \\
& \qquad f_{n}(T) \leqq e_{n}(T) \leqq 2 f_{n}(T) .
\end{aligned}
$$

Proof.
Suppose that $\sigma>e_{n}(T)$ and $\rho<f_{n}(T)$. Then we can find $x_{1}, \ldots, x_{p} \in U_{E}$ and $y_{1}, \ldots, y_{q} \in F$ with $\left\|T x_{i}-T x_{j}\right\|>2 \rho$ for $i \neq j$ and $T\left(U_{E}\right) \subset \bigcup_{k=1}^{q}\left\{y_{k}+\sigma U_{F}\right\}$, where $p>2^{n-1} \geqq q$. So there must exist different elements $\mathrm{Tx}_{i}$ and $\mathrm{Tx}_{j}$ which belong to the same set $\mathrm{y}_{\mathbf{k}}+\sigma \mathrm{U}_{\mathrm{F}_{<}}$. Consequently $2 \rho<\left\|T x_{i}-T x_{j}\right\| \leqq 2 \sigma$. This proves that $f_{n}(T) \leqq e_{n}(T)$. Given $\rho>f_{n}(T)$, we choose a maximal family of elements $x_{1}, \ldots, x_{p} \in U_{E}$ such that $\left\|T x_{i}-T x_{k}\right\|>2 \rho$ for $i \neq K$. Clearly $p \leqq 2^{n-1}$. Moreover, for $x \in U_{E}$ we can find some $i$ with $\left\|T x-T x_{i}\right\| \leqq 2 \rho_{p}$. This means that

$$
T\left(U_{E}\right) \subseteq \bigcup_{I}^{\mathrm{p}}\left\{T x_{i}+2 \rho U_{F}\right\}
$$

So $e_{n}(T) \leqq 2 \rho$ and therefore $e_{n}(T) \leqq 2 f_{n}(T)$.

## 2. Quasi-normed operator ideals related to entropy numbers

In the following let $\mathscr{L}$ denote the class of all operators between Banach spaces while $\mathcal{H}$ denotes the closed ideal of compact operators. Then we have

$$
\mathscr{H}=\left\{T \in \mathscr{L}:\left(e_{n}(T)\right) \in c_{0}\right\}
$$

Therefore it seems very natural to introduce the following class of operators. Given $0<p<\infty$, we define

$$
\mathscr{E}_{\mathrm{p}}:=\left\{T \in \mathscr{L}:\left(e_{\mathrm{n}}(\mathrm{~T})\right) \in \mathrm{I}_{\mathrm{p}}\right\}
$$

Moreover, for $T \in \mathscr{E}_{p}$ we put

$$
E_{p}(T):=\left(\sum_{1}^{\infty} e_{n}(T)^{p}\right)^{1 / p}
$$

We now show that $\mathscr{C}_{\mathrm{p}}$ is a so-called operator ideal for which every component $\mathscr{E}_{\mathrm{p}}(\mathrm{E}, \mathrm{F})$ becomes a complete metric linear space with respert to the quasi-norm $E_{p}$.

## Theorem 1.

$$
\begin{gathered}
\text { If } T_{1}, T_{2} \in \mathscr{C}_{p}(E, F) \text {, then } T_{1}+T_{2} \in \mathscr{C}_{p}(E, F) \text { and } \\
E_{p}\left(T_{1}+T_{2}\right) \leqq c\left[E_{p}\left(T_{1}\right)+E_{p}\left(T_{2}\right)\right]
\end{gathered}
$$

where

$$
c:=2^{1 / p} \max \left(2^{1 / p-1}, 1\right)
$$

## Proof.

By Proposition 1 and 2 we get

$$
\begin{aligned}
E_{p}\left(T_{1}+T_{2}\right) & =\left\{\sum_{1}^{\infty} e_{n}\left(T_{1}+T_{2}\right)^{p}\right\}^{1 / p} \\
& \leqq\left\{2 \sum_{1}^{\infty} e_{2 n-1}\left(T_{1}+T_{2}\right)^{p}\right\}^{1 / p} \\
& \leqq 2^{1 / p}\left\{\sum_{1}^{\infty}\left[e_{n}\left(T_{1}\right)+e_{n}\left(T_{2}\right)\right]^{p}\right\}^{1 / p} \\
& \leqq c\left[E_{p}\left(T_{1}\right)+E_{p}\left(T_{2}\right)\right]
\end{aligned}
$$

Remark.

It follows from Proposition 4 that

$$
\mathscr{C}_{\mathrm{p}}=\left\{T \in \mathscr{L}:\left(f_{\mathrm{n}}(\underline{T})\right) \in I_{p}\right\}
$$

Moreover, by setting

$$
F_{p}(T):=\left(\sum_{l}^{\infty} f_{n}(T)^{p}\right)^{1 / p}
$$

we define a quasi-norm $F_{p}$ equivalent to $E_{p}$.
Without proof we state

## Theorem 2.

If $X \in \mathscr{L}\left(E_{0}, E\right), T \in \mathscr{E}_{p}(E, F)$ and $Y \in \mathscr{L}\left(F, F_{0}\right)$, then
$Y T X \in \mathscr{C}_{p}\left(E_{0}, F_{o}\right)$ and $\quad E_{p}(Y T X) \leqq\|Y\| E_{p}(T)\|X\|$.
The following statement is also evident.

## Proposition 5.

If $0<\mathrm{p}_{1}<\mathrm{p}_{2}<\infty$, then $\mathscr{E}_{\mathrm{p}_{1}} \subset \mathscr{C}_{\mathrm{p}_{2}}$ and the embedding map is continuous.

## Theorem 3.

If $0<\mathrm{p}, \mathrm{q}<\infty$ and $\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}$, then $\mathrm{T} \in \mathscr{C}_{\mathrm{q}}(\mathrm{E}, \mathrm{F})$ and $S \in \mathscr{C}_{p}(F, G)$ imply that $S T \in \mathscr{C}_{r}^{p}(E, G)$ and $E_{r}(S T)^{q} \leqq$ $\leqq 2^{1 / r} E_{p}(S) E_{q}(T)$.

## Proof.

By Proposition 1 and 3 we get

$$
\begin{aligned}
E_{r}(S T) & =\left\{\sum_{1}^{\infty} e_{n}(S T)^{r}\right\}^{l / r} \\
& \leqq\left\{2 \sum_{l}^{\infty} e_{2 n-1}(S T)^{r}\right\}^{1 / r} \\
& \leqq 2^{1 / r}\left\{\sum_{l}^{\infty}\left[e_{n}(S) e_{n}(T)\right]^{r}\right\}^{1 / r} \\
& \leqq 2^{1 / r} E_{p}(S) E_{q}(T)
\end{aligned}
$$

This proves the assertion.

## 3. Quasi-normed operator ideals related to approximation numbers

For every operator $T \in \mathscr{L}(E, F)$ the $n$-th approximation mumber is defined by

$$
a_{n}(T):=\inf \{\|T-L\|: L \in \mathscr{L}(E, F) \text { and } \operatorname{rank}(L)<n\}
$$

As shown in [9] or [10] the class

$$
\gamma_{\mathrm{p}}:=\left\{\mathrm{T} \in \mathscr{L}: \sum_{I}^{\infty} a_{\mathrm{n}}(\mathrm{~T})^{\mathrm{p}}<\infty\right\}, 0<\mathrm{p}<\infty,
$$

is an operator ideal for which every component $\gamma_{p}^{(E, F)}$ becomes a
complete metric linear space with respect to the quasi-norm

$$
S_{p}(T):=\left(\sum_{1}^{\infty} a_{n}(T)^{p}\right)^{1 / p}
$$

Only a little is known about the relationship between $\mathscr{E}_{\mathrm{p}}$ and $\boldsymbol{\gamma}_{\mathrm{p}}$. Conjecture 1.

If $0<p<\infty$, then $\gamma_{p} \subseteq \mathscr{E}_{p}$.

## Conjecture 2.

If $0<p<2$ and $\frac{1}{q}=\frac{1}{p}-\frac{1}{2}$, then $\mathscr{E}_{\mathrm{p}} \subseteq \gamma_{\mathrm{q}}$.
The inclusions stated above are the best possible which can be expected. Some weaker results are proved in [12].

## 4. Entropy numbers of operators in Hilbert spaces

It seems to be very complicated to compute or estimate the entroy numbers of a given operator. However, we know some results concerning the related quasi-norms.

Theorem 4.
Let $S \in \mathscr{L}\left(1_{2}, 1_{2}\right)$ such that $s\left(\xi_{n}\right)=\left(\sigma_{n} \xi_{n}\right)$ and $\left(\sigma_{n}\right) \in$ $\epsilon c_{0}$. If $\sigma_{1} \geqq \sigma_{2} \geqq \ldots \ldots 0$, then

$$
\sigma_{n} \leqq 2 e_{n}(S)
$$

Proof.
If $\sigma_{n}=0$, then the assertion is trivial. So we assume that
$\sigma_{1} \geqq \sigma_{2} \geqq \ldots \geqq \sigma_{n}>0$. Put $J_{n}\left(\xi_{1}, \ldots, \xi_{n}\right):=\left(\xi_{1}, \ldots, \xi_{n}, 0, \ldots\right)$
and

$$
Q_{n}\left(\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}, \ldots\right):=\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

Then $S_{n}=Q_{n} S J_{n}$ is invertible. If $I_{n}$ denotes the identity map of $I_{2}^{n}$, it follows from $e_{n}\left(I_{n}\right) \geqq 1 / 2$ and Proposition 2 that

$$
1 / 2 \leqq e_{n}\left(I_{n}\right) \leqq e_{n}\left(S_{n}\right)\left\|S_{n}^{-1}\right\| \leqq\left\|Q_{n}\right\| \quad e_{n}(S)\left\|J_{n}\right\| \sigma_{n}^{-1}
$$

$$
\leqq e_{n}(S) \sigma_{n}^{-1}
$$

This completes the proof.

## Theorem 5.

Let $S \in \mathscr{L}\left(I_{2}, I_{2}\right)$ such that $S\left(\xi_{n}\right)=\left(\sigma_{n} \xi_{n}\right)$ and $\left(\sigma_{n}\right) \in$ $\epsilon c_{0}$. Then

$$
\left(\sum_{1}^{\infty} e_{n}(s)^{p}\right)^{1 / p} \leqq c_{p}\left(\sum_{1}^{\infty}\left|\sigma_{n}\right|^{p}\right)^{1 / p} \quad \text { for } \quad 0<p<\infty,
$$

where $c_{p}$ is some positive constant.

## Proof.

Without loss of generality we may suppose that $\sigma_{1} \geqq \sigma_{2} \geqq \ldots$ $\ldots \geqq 0$. Let

$$
E(\varepsilon):=\max \left\{n: e_{n}(S)>\varepsilon\right\} \quad \text { for } 0<\varepsilon<\sigma_{1} \text {. }
$$

We now show that
(*)

$$
E(2 \varepsilon) \leqq 1+\sum_{\sigma_{k}>\varepsilon} \log \left(8 \sigma_{k} / \varepsilon\right)
$$

Put $m:=\max \left(k: \sigma_{k}>\varepsilon\right)$ and $S_{m}:=Q_{m} S J_{m}$. Let $U_{2}^{m}$ and $U_{\infty}^{m}$ denote the closed unit ball of $I_{2}^{m}$ and $I_{\infty}^{m}$, respectively. If $y \in S_{m}\left(U_{2}^{m}\right)$, then there exists $g=\left(\gamma_{1}, \ldots, \delta_{m}\right)$ such that

$$
y \in \varepsilon m^{-1 / 2}\left\{2 g+U_{\infty}^{m}\right\} \subseteq 2 \varepsilon m^{-1 / 2} g+\varepsilon U_{2}^{m}
$$

where $\delta_{1}, \ldots, \gamma_{m}$ are integers. Since $\sigma_{1} \geqq \ldots \geqq \sigma_{m}>\varepsilon$, we have

$$
\varepsilon m^{-1 / 2}\left\{2 g+U_{\infty}^{m}\right\} \subseteq S_{m}\left(U_{2}^{m}\right)+2 \varepsilon m^{-1 / 2} U_{\infty}^{m} \subseteq 3 S_{m}\left(U_{2}^{m}\right)
$$

Let $g_{1}, \ldots, g_{q}$ be the collection of all $g_{i}=\left(\gamma_{i 1}, \ldots, \gamma_{i m}\right)$ with

$$
\varepsilon m^{-1 / 2}\left\{2 g_{i}+U_{\infty}^{m}\right\} \leq 3 S_{m}\left(U_{2}^{m}\right)
$$

Clearly

$$
S_{m}\left(U_{2}^{m}\right) \subseteq U_{1}^{q}\left\{2 \varepsilon m^{-l / 2} g_{i}+\varepsilon U_{2}^{m}\right\}
$$

and therefore

$$
S\left(U_{2}\right) \subseteq J_{m} S_{m}\left(U_{2}^{m}\right)+\sigma_{m+1} U_{2} \subseteq \bigcup_{1}^{q}\left\{2 \varepsilon m^{-1 / 2} J_{m} g_{i}+2 \varepsilon U_{2}\right\}
$$

where $U_{2}$ denotes the closed unit ball of $l_{2}$. On the other hand,

$$
q\left[\varepsilon m^{-1 / 2}\right]^{m} \lambda\left(U_{\infty}^{m}\right)=\sum_{l}^{q} \lambda\left[\varepsilon m^{-1 / 2}\left\{2 g_{i}+U_{\infty}^{m}\right\}\right] \subseteq 3^{m} \prod_{1}^{m} \sigma_{k} \lambda\left(U_{2}^{m}\right)
$$

where $\lambda$ is the Lebesgue measure. Using Stirling's formula we get

$$
e^{t} \Gamma(t+1) \geqq \sqrt{2 \pi} t^{t+\frac{1}{2}} \quad \text { for } \quad 0<t<\infty
$$

Hence

$$
\lambda\left(U_{2}^{m}\right)=\frac{\pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}+1\right)} \leqq \frac{(2 \pi e)^{\frac{m}{2}}}{m} \leqq \frac{5^{m}}{m^{m / 2}}
$$

This implies that

$$
q \varepsilon^{m} \leqq 8^{m} \prod_{1}^{m} \sigma_{k} \cdot
$$

Choose $n$ such that

$$
\mathrm{n}-1 \leqq 1+\sum_{1}^{m} \log \left(8 \sigma_{k} / \varepsilon\right) \leqq n
$$

Then $q \leqq 2^{n-1}$ and therefore $e_{n}(S) \leqq 2 \varepsilon$. So $E(2 \varepsilon) \leqq n-1$. This proves (长).

Finally, we have

$$
\begin{aligned}
2^{-p} \sum_{1}^{\infty} e_{n}(S)^{p} & =2^{-p} \sum_{l}^{\infty} n\left[e_{n}(s)^{p}-e_{n+1}(S)^{p}\right] \\
& =2^{-p} \int_{0}^{\sigma_{1}} E(\varepsilon) d \varepsilon^{p} \\
& \leqq \sigma_{1}^{p}+\int_{0}^{\sigma_{1}} \sum_{\sigma_{k}>\varepsilon} \log \left(8 \sigma_{k} / \varepsilon\right) d \varepsilon^{p} \\
& =\sigma_{1}^{p}+\sum_{i=1}^{\infty} \int_{\sigma_{i}}^{\sigma_{i+1}} \sum_{\sigma_{1}{ }^{\prime} \varepsilon} \log \left(8 \sigma_{k} / \varepsilon\right) d \varepsilon^{p} \\
& =\sigma_{1}^{p}+\sum_{i=1}^{\infty} \sum_{k=1}^{i} \int_{\sigma_{i+1}}^{p} \log \left(8 \sigma_{k} / \varepsilon\right) d \varepsilon^{p} \\
& =\sigma_{1}^{p}+\sum_{k=1}^{\infty} \sum_{i=k}^{\infty} \int_{\sigma_{i+1}}^{\sigma_{i}} \log \left(8 \sigma_{k} / \varepsilon\right) d \varepsilon^{p} \\
& =\sigma_{1}^{p}+\sum_{k=1}^{\infty} \int_{0}^{\sigma_{k}} \log \left(8 \sigma_{k} / \varepsilon\right) d \varepsilon^{p} \\
& =\sigma_{1}^{p}+\frac{\delta^{p}}{p} \int_{0}^{8^{-p}} \log (1 / t) d t \sum_{I}^{\infty} \sigma_{k}^{p}
\end{aligned}
$$

This completes the proof.
The above theorems show that for any Hilbert space $H$ the operator ideal $\mathscr{C}_{\mathrm{p}}(\mathrm{H}, \mathrm{H})$ coincides with the operator ideal $\mathcal{\gamma}_{\mathrm{p}}(\mathrm{H}, \mathrm{H})$. In particular, $\mathscr{E}_{2}(\mathrm{H}, \mathrm{H})$ is the ideal of so-called Hilbert-Schmidt Operators.
5. Entropy quasi-norms of the identity map $I_{n}$ from $I_{u}^{n}$ to $I_{v}^{n}$

## Lemma 1.

If $m=1, \ldots, n$, then

$$
e_{m}\left(I_{n}: I_{\infty}^{n} \rightarrow I_{l}^{n}\right) \geqq \frac{1}{2 e} n
$$

Proof.
Let $U_{\infty}^{n}$ and $U_{1}^{n}$ denote the closed unit ball of $I_{\infty}^{n}$ and $I_{1}^{n}$, respectively. Suppose that

Then

$$
U_{\infty}^{n} \subseteq \bigcup_{1}^{q}\left\{y_{i}+\sigma U_{1}^{n}\right\} \text { and } q \leqq 2^{n-1} .
$$

$$
\lambda\left(U_{\infty}^{n}\right) \leqq \sum_{1}^{q} \lambda\left(y_{i}+\sigma U_{1}^{n}\right)=q \sigma^{n} \lambda\left(U_{1}^{n}\right)
$$

where $\lambda$ is the Lebesgue measure on $R^{n}$. Now $\lambda\left(U_{\infty}^{n}\right)=2^{n}$ and $\lambda\left(U_{1}^{n}\right)=2^{n} / n!$ imply that $\sigma^{n} \geqq n!/ 2^{n-1}$. Using $e^{n} n!>n^{n}$ we get $\sigma>n / 2 e$. Therefore

$$
e_{n}\left(I_{n}: I_{\infty}^{n} \rightarrow I_{1}^{n}\right) \geqq n / 2 e
$$

In order to prove the following lemma we use a decompositiontrick taken from M. S. Airman and M. Z. Solomjak [1].

Lemma 2.

If $m=1, \ldots, n$, then

$$
e_{m}\left(I_{n}: I_{l}^{n} \rightarrow I_{\infty}^{n}\right) \leqq c \frac{\log (n+1)}{m},
$$

where $c$ is a positive constant.

Proof.
Let $U_{1}^{n}$ and $U_{\infty}^{n}$ be as before. If $m \geqq 4$, then

$$
\sigma:=4 \frac{\log (n+1)}{m} \geqq 2 \frac{\log (n+1)}{m-2}>\frac{1}{n}
$$

Put

$$
K(x):=\left\{k:\left|\xi_{k}\right|>\sigma\right\} \text { for } x=\left(\xi_{k}\right) \in U_{1}^{n} \text {. }
$$

We have

$$
\operatorname{card}(K(x))<\sum_{K(x)} \frac{\left|\xi_{k}\right|}{\sigma} \leqq 1 / \sigma<n .
$$

Let $\mathbb{K}$ denote the collection of all sets $K \subseteq\{1, \ldots, n\}$ with card ( $K$ ) $<1 / \sigma$ and put

$$
U_{k}:=\left\{x \in U_{\infty}^{n}: \xi_{k}=0 \text { if } k \notin K\right\}
$$

Then

$$
x \in U_{K(x)}+\sigma U_{\infty}^{n} \text { for all } x \in U_{1}^{n}
$$

Hence

$$
U_{1}^{n} \subseteq \bigcup_{\mathbb{K}}\left\{U_{K}+\sigma U_{\infty}^{n}\right\} .
$$

Clearly, we can find $y_{i}^{(K)} \in 1_{\infty}^{n}$ such that

$$
\mathrm{U}_{\mathrm{K}} \subseteq \bigcup_{1}^{\mathrm{q}_{\mathrm{K}}}\left\{\mathrm{y}_{\mathrm{i}}^{(\mathrm{K})}+\sigma \mathrm{U}_{\infty}^{\mathrm{n}}\right\} \text { and } \mathrm{q}_{\mathrm{K}} \leqq(1 / \sigma+1)^{\operatorname{card}(K)} .
$$

Consequently, there are $y_{i} \in 1_{\infty}^{n}$ with

$$
u_{1}^{n} \subseteq \bigcup_{1}^{q}\left\{y_{i}+2 \sigma U_{\infty}^{n}\right\}
$$

'and

$$
q \leqq \sum_{\mathbb{K}}(1 / \sigma+1)^{\operatorname{card}(K)} \leqq \sum_{1}^{1 / \sigma}\left(\frac{n}{h}\right)(1 / \sigma+1)^{h} \leqq 2(n+1)^{2 / \sigma} \leqq 2^{m-1} .
$$

So we get

$$
e_{m}\left(I_{n}: I_{1}^{n} \rightarrow i_{\infty}^{n} \leqq 2 \sigma \leqq 8 \frac{\log (n+1)}{m} .\right.
$$

Obviously this estimate is also true for $m=1,2,3$.

## Proposition 6.

If $0<p<\infty$, then

$$
E_{p}\left(I_{n}: I_{\infty}^{n} \rightarrow I_{1}^{n}\right) \geqq a_{p} n^{1 / p+1} \text { for } n=1,2, \ldots
$$

where $a_{p}$ is some positive constant.
Proof.
By Lemma 1 we have

Therefore

$$
e_{m}\left(I_{n}: I_{\infty}^{n} \rightarrow 1_{1}^{n}\right) \geqq \frac{1}{2 e} n \text { for } m=1, \ldots, n
$$

$$
E_{p}\left(I_{n}: 1_{\infty}^{n} \rightarrow 1_{1}^{n}\right) \geqq \frac{1}{2 e} n^{1 / p+1}
$$

Proposition 7.

$$
\text { If } 0<p<1 \text {, then }
$$

$$
E_{p}\left(I_{n}: I_{l}^{n} \rightarrow I_{\infty}^{n}\right) \leqq b_{p} n^{1 / p-1} \log (n+1) \text { for } n=1,2, \ldots
$$

where $b_{p}$ is some positive constant.

## Proof.

Using Proposition 3 we have

$$
\begin{aligned}
E_{p}\left(I_{n}: I_{l}^{n} \rightarrow I_{\infty}^{n}\right) & \leqq\left(\sum_{k=0}^{\infty} \sum_{m=1}^{n} e_{k n+m}\left(I_{n}: I_{l}^{n} \rightarrow 1_{\infty}^{n}\right)^{p}\right)^{1 / p} \\
& \leqq\left(\sum_{m=1}^{n} e_{m}\left(I_{n}: I_{1}^{n} \rightarrow I_{\infty}^{n}\right)^{p}\right)^{l / p}\left(\sum_{k=0}^{\infty} e_{n+1}\left(I_{n}: I_{\infty}^{n} \rightarrow I_{\infty}^{n}\right)^{k p}\right)^{l / p}
\end{aligned}
$$

From $e_{n+1}\left(I_{n}: I_{\infty}^{n} \rightarrow I_{\infty}^{n}\right)=1 / 2$ we get

$$
\left(\sum_{k=0}^{\infty} e_{n+1}\left(I_{n}: l_{\infty}^{n} \rightarrow I_{\infty}^{n}\right)^{k p}\right)^{1 / p} \leqq c_{p}
$$

By Lemma 2 it follows that

$$
\left(\sum_{m=1}^{n} e_{m}\left(I_{n}: l_{l}^{n} \rightarrow I_{\infty}^{n} p\right)^{l / p} \leqq d_{p} n^{1 / p-1} \log (n+1)\right.
$$

Since the constants $c_{p}$ and $d_{p}$ do not depend on $n$, the assertion is proved.

## Theorem 6.

If $0<p<1$ and $1 \leqq u, v \leqq \infty$, then
$a_{p} n^{1 / p+1 / v-1 / u} \leqq E_{p}\left(I_{n}: I_{u}^{n} \rightarrow I_{v}^{n}\right) \leqq b_{p} n^{1 / p+1 / v-1 / u} \log (n+1)$

$$
\text { for } n=1,2, \ldots
$$

where $a_{p}$ and $b_{p}$ are positive constants.

## Proof.

By Theorem 2 and Proposition 6 we get

$$
\begin{aligned}
a_{p} n^{1 / p+1} \leqq E_{p}\left(I_{n}: I_{\infty}^{n} \rightarrow I_{1}^{n}\right) & \leqq\left\|I_{n}: I_{\infty}^{n} \rightarrow I_{u}^{n}\right\| E_{p}\left(I_{n}: I_{u}^{n} \rightarrow I_{v}^{n}\right)\left\|I_{n}: I_{v}^{n} \rightarrow I_{1}^{n}\right\| \\
& \leqq n^{1 / u} E_{p}\left(I_{n}: I_{u}^{n} \rightarrow I_{v}^{n}\right) n^{1-1 / v}
\end{aligned}
$$

and therefore

$$
a_{p} n^{1 / p+1 / v-1 / u} \leqq E_{p}\left(I_{n}: I_{u}^{n} \rightarrow I_{v}^{n}\right)
$$

Analogously, by Theorem 2 and Proposition 7 we have $E_{p}\left(I_{n}: I_{u}^{n} \rightarrow I_{v}^{n}\right) \leqq\left\|I_{n}: I_{u}^{n} \rightarrow I_{1}^{n}\right\| \quad E_{p}\left(I_{n}: I_{l}^{n} \rightarrow I_{\infty}^{n}\right)\left\|I_{n}: I_{\infty}^{n} \rightarrow I_{v}^{n}\right\|$

$$
\begin{aligned}
& \leqq n^{1-1 / u} b_{p} n^{1 / p-1} \log (n+1) n^{1 / v}= \\
& =b_{p} n^{1 / p+1 / v-1 / u} \log (n+1)
\end{aligned}
$$

The limit order $\boldsymbol{\lambda}\left(\mathscr{E}_{p}, u, v\right)$ is defined to be the infimum of all $\lambda \geqq 0$ such that

$$
E_{p}\left(I_{n}: I_{u}^{n} \rightarrow I_{v}^{n}\right) \leqq c n^{\lambda} \quad \text { for } n=1,2, \ldots,
$$

where $c$ is some constant. Using this concept we can restate the above result as follows.

## Theorem 7.

If $0<p<1$ and $1 \leqq u, v \leqq \infty$, then

$$
\lambda\left(E_{p}, u, v\right)=1 / p+1 / v-1 / u
$$

The remaining case is treated in the next theorem. For the proof the reader is referred to [12].

## Theorem 8.

$$
\text { If } \begin{aligned}
& 1 \leqq p<\infty \text { and } 1 \leqq u, v \leqq \infty, \text { then } \\
& \lambda\left(E_{p}, u, v\right)=\max (1 / p+1 / v-1 / u, 0) .
\end{aligned}
$$

The limit order is very useful for formulating conditions for a given diagonal operator $S\left(\xi_{n}\right)=\left(\sigma_{n} \xi_{n}\right)$ to belong to $\mathscr{E}_{p}\left(l_{u}, I_{v}\right)$. According to a deep theorem of H . König (3) our results can also be carried across to embedding maps of Sobolev spaces and to weakly singular integral operators from $L_{u}$ into $L_{v}$.

## References

[1] M. S. Birman and M. Z. Solomjak: Piecewise polynomial approximations of functions of classes $W_{p}$. (Russian) Mat. Sb. 73 (115) (1967), 331-355.
[2] A. N. Kolmogorov and W. M. Tichomirow: $\varepsilon$-entropy and $\varepsilon$-capacity of sets in function spaces. (Russian) Uspehi Mat. Nauk 14 (86) (1959), 3-86. German translation in Arbeiten zur Informationstheorie III, Berlin 1960.
[3] H. König: Grenzordnungen von Operatorenidealen I, II. Math. Ann. 212 (1974), 51-77.
[4] G. G. Lorentz: Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966), 903-937.
[5] G. G. Lorentz: Approximation of functions. New York, 1966.
[6] B. S. Mitjagin: Approximative dimension and bases in nuclear spaces. (Russian) Uspehi Mat. Nauk 16 (4) (1961), 63-132.
[7] B. S. Mitjagin and A. PeZczyński: Nuclear operators and approximative dimension. Proc. of ICM, Moscow 1966, 366-372.
[8] R. Oloff: Entropieeigenschaften von Diagonaloperatoren. (To appear.)
[9] A. Pietsch: Einige neue Klassen von kompakten linearen Abbildungen. Rev. Roumaine Math. Pures Appl. 8 (1963), 427-447.
[10] A. Pietsch: Nuclear locally convex spaces. Berlin-Heidelberg-New York, 1972.
[11] A. Pietsch: s-numbers of operators in Banach spaces. Studia Math. 51 (1974), 201-223.
[12] A. Pietsch: Operator ideals. Berlin, 1978.
[13] L. S. Pontrjagin and L. G. Schnirelman: Sur une propriété métrique de la dimension. Ann. of Math. 33 (1932), 156-162.

