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ENTROPY NUMBERS OF OPERATORS IN BANACH SPACES 

B* Carl and A# Pietsch 

Jena 

In the following for every operator T between Banach spaces 

we define a sequence of so-called outer entropy numbers en(T) with 

n = 1, 2, ••• • Roughly speaking the asymptotic behaviour of en(T) 

characterizes the "compactness" of T . In particular, T is compact 

if and only if lim e(T) = 0 . 
n if 

The main purpose of this paper is to investigate the ideal C 
of all operators T such that 

Z en(T)P < oo . 

For practical reason it is useful to introduce also inner entropy 

numbers fn(T) which, however, generate the same ideals. 

The concept of entropy numbers is related to that of £-entropy 

first studied by L. S* Pontrjagin and L. G. Schnirelman [13] in 1932. 

Further contributions are mainly due to Soviet mathematicians [1],[2]. 

For more information the reader is referred to the monograph of G. G. 

Lorentz [5], see also [4]« 

The significance of entropy numbers for the theory of operator 

ideals was discovered by the second named author. A full account will 

be given in [12] • 

In the following E , F and 6 are real Banach spaces. The 

closed unit ball of E is denoted by UE . Furthermore, iK (E, F) 

denotes the Banach space of all (bounded and linear) operators from 

E into F . The symbols l£ and 1 stand for the classical Banach 

spaces of vectors and sequences, respectively. 

All logarithms are to the base 2 • 

1. Elementary properties of entropy numbers 

For every operator T ^ iS(E, F) the n-th outer entropy num­
ber e (T) is defined to be the infimum of all & = 0 such that 
mmmmmmm n ^ -| 
there are ylf •••, y ^ F with q = 2 and 

T(UE)C U{y. + eruF} . 
For every operator T e £3 (E, F) the n-th inner entropy num­

ber -fn(
T) is defined to be the supremum of all p = 0 such that 
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there are x-̂ , •••, x € UE with p > 2n'"1 and 

\\Tx± - Txk|| > 2f for i / k . 

First we state an elementary property of entropy numbers. 

Proposition 1. 

If T e & (E, F), then 

||T|| = e]L(T) £ e2(T) ̂  ... ̂  0 and IITII = f^T) ^ f2(T) 2 . . . % 0 . 

Next we check the so-called additivity of entropy numbers. 

Proposition 2. 

If Tx, T2 € <£(E, F), then 

Vn2"l
(Tl + V - S(Tl) * V*2' 

and 
fn1+n2-l<Tl + T2> " V T 1 > + fn2^2> • 

Proof. 

Let !-_, T2 e «S2(E, F). If 6"k > en (Tk), then there are 

yik)» •••» y q
k )€ *" such that 

XL 

q, -
^(Ujj) £ LJ £ y [ k ) + 6TkUF| and qk = 2°* for k= 1,2. 

Hence, given x e U-,, we can find i, and y, e U-, with 

Tkx - y [ k )
 + б ^ for k = 1, 2 . 

xw 

It follows from 

that 
q l 

2)ÜF 
T 1 + T 2 ) x e y ^ > +yj2> + ( ^ + <-, 

(T1+T2)(UE) £ .U^ ^ ( y U ) + y<« + ( ^ + ^ j Up} . 

. (n ,+n , , - l )- l . 
Since q;Lq2 = 2 -1 , we get en + n . i ^ V V ^ 6± + 6>2 . 

This shows the desired inequality for outer entropy numbers. The re­

maining part of the proof is left to the reader* 

The multiplicativity of entropy numbers can be proved with the 

same method. 
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Proposition 3. 

If T e #(E, F) and S e i£(F, G) , then 

< W l ( S T > " em(S> en(T> 
and 

fm+n-l
(ST> = fm(S> fn(T>' 

Finally, the relationship between outer and inner entropy num­

bers is investigated. 

Proposition 4. 

It T ^ SB (E, F) , then 

f (T) = e (T) = 2 f (T) . 

Proof. 

Suppose that 6 > en(T) and £ < fn(T) . Then we can find 

x-p ••., x e. UE and ylf ..., y <= F with \\fI!xi - Tx. || > 2f for 

i ;£ j and T(UE) c U {yk
 + ^ UF} ' w h e r e P > 2n~1 = Q • S o there 

must exist different elements Tx. and Tx. which belong to the 

same set yk + 6U F . Consequently 2f < ||Txi - Tx-U = 2 ff . This 

proves that fR(T) = e (T) • Given f > fn(T) , we choose a maximal 

family of elements x1, ..., x e UE such that llTx̂  - TxkH > 2? 

for i ;- K . Clearly p = 2n . Moreover, for x e UE we can find 

some i with ||Tx - Txi|| = 2 q • This means that 
P 

*< v - y ^TXi + 2 ? Up^# 
So en(T) = 2 0 and therefore eR(T) = 2 fn(T) . 

2. Quasi-normed operator ideals related to entropy numbers 

In the following let 46 denote the class of all operators be­

tween Banach spaces while 3C denotes the closed ideal of compact 

operators. Then we have 

X= {T € S2 : (en(T)) e c0} 
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Therefore it seems very natural to introduce the following class of 

operators. Given 0 < p < <->o , we define 

Є
p
 := {T e£ : (.n(T»«l } . 

Moreover, for T € *€ we put 

E_(T) := (2 en(T)P)
1/p . 

P 1 

We now show that *e is a so-called operator ideal for which every 

component €L(E, F) becomes a complete metric linear space with res­

pect to the quasi-norm E . 

Theorem 1. 

I f T l f T2 £ <ifp(E, F) , then Tj + Tg e # (Ef F) and 

V ~ l ~2 ' ~ L-p^-1' ~p 
where 

(T± + T2> ^ c [EpC^) + E p (T 2 ) ] , 

c := 2 1 / p max ( a 1 7 ^ 1 , 1) . 

Proof. 
By Proposi t ion 1 and 2 we get 

E p ( T l + T2> - i ^ «n
(Tl * V"} 

= ̂ { Z [ . n ( T l , . e n ( T 2 , ] P } 1 / P 

S c [Epdj, * Ep(T2>] . 

Remark. 

It follows from Proposition 4 that 

S?p = {T C £ : (fn(T» « lp} . 

Moreover, by setting 

F(T) := ( 2 fn(T)P)
1/P 

p 2 n 

we define a quasi-norm F equivalent to E . 

Without proof we state 
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Theorem 2. 

I f X e <^(EQ , E ) , T € ^ (E, F) and Y e . £ ( F , F Q ) , then 

YTX e ^ p ( E 0 , FQ) and Ep(YTX) = | |Y| | E (T) [|X|| • 

The fo l lowing s ta tement i s a l s o e v i d e n t . 

P r o p o s i t i o n 5 . 

I f 0 < p n < p o < O O 3 then £f C ^ and the embedding 
± Z P-L p 2 

map is continuous• 

Theorem 3* 

If 0 < p, q < <=><=> and - = | + ̂  , then T £ ^,(E, F) and 

S e C(F, G) imply that ST G. ^(E, G) and Er(ST) = 

= 2 1 / r Ep(S) E (T) • 

Proof, 

By Proposition 1 and 3 we get 
r OO -> 1/Г 

E
Г
(ST) = [ 2 : e

n
(ST)

г
j 

i ć* {Ц [e
n
(S, .„«,] •} 

1/г 

i 2
1 / r

 E (S) E (T) . 

This proves the assertion. 

3« Quasi-normed operator ideals related to approximation numbers 

For every operator T £ i£(E, F) the n-th approximation num­

ber is defined by 

an(T) := inf U\T - L|| : L 6 5£(E, F) and rank (L) < nj . 

As shown in [9] or QLO] the class 

^ := { T e X : X an(T)
p < « > ] , 0 < p < o o , 

is an operator ideal for which every component tfl(E, F) becomes a 
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complete metric linear space with respect to the quasi-norm 

Sn(T) := ( 2 an(T)
p)1/p . 

P 1 

Only a l i t t l e i s known about the relationship between $f and T 

Conjecture 1. 

I f 0 < p < o o , then T ^ & . 

Conjecture 2. 

If 0 < p < 2 and 1 = 1 - 1 , then & £ T . 
q p 2 ' P q 

The inclusions stated above are the best possible which can 
be expected. Some weaker results are proved in fl2]. 

4# Entropy numbers of operators in Hilbert spaces 

It seems to be very complicated to compute or estimate the en­

tropy numbers of a given operator. However, we know some results con­

cerning the related quasi-norms. 

Theorem 4» 

Let S £ 5f(l2, 12) such that S(^n) = ( 6n | n) and ( 6^) € 
€ cQ . If 61 £ 62 £ ... ̂ O , then 

6 = 2en(S) . n n 

Proof. 
If 6>n = 0 , then the assertion is trivial. So we assume that 

tf. £ 6 0 £ . . . £ or > o . Put 
1 2 n 

and 

J n ( *1> • • • » ín* := ( í ľ •••» fn' °» # # # ) 

Qn ( J ľ •••» Jn> Jn +i» •••) : = ( )i» •••f Jn) • 

Then S n = Qj-S^ i s invertible. If I denotes the identity map of 
1^ , i t follows from e (I ) = 1/2 and Proposition 2 that 

1/2 i e n ( I n ) i e n ( S n ) | | s ; 1 ! ! i | Q J . n ( S ) | j j ^ 
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- *n<
S
>

 бn • 

This completes the proof. 

Theorem 5. 

Let S € £?(12, 12) such that S( fn) = ( 6 n fn) and ( Q ) e 
e. c . Then o 

( 2 в n (S)- , ) 1 / P І c p ( . S | f f n | p ) 1 / p foг 0 < p < o o , 
P 

where c is some positive constant. 

Proof. 

Without loss of generality we may suppose that (T, = 6^ = ... 
... = 0 • Let 

E( £ ) := max {n : en(S) > E ] for 0 < £ < 6^ 

We now show that 

( * ) E ( 2 e ) = l + 2 1 log (8 6 , / e ) . 
erk>£ * 

Put m := max (k : 6^ > £ ) and Sm := 0 - ^ ^ . Let uj and uS> 
denote the closed unit ball of 1? and l1^, respectively. If 
y G. Sm(U2) - then there exists g = ( y ^ f • ••» ^m) such that 

y 4 S m - 1 / 2 {2g + US,) c 2 £ m-1/2g + gu£ , 

where f1$ • • • , f are integers. Since 6^ = # # # = 6 > S , we have 

£ n T 1 / 2 {2g + u£>} £ SjU*) + 2 £ n T 1 / 2 U*> £ 3Sm(U*) . 

Let g l f . . . , g be the collection of a l l g i = (fn> •••> jTiix) 
with 

€ n f 1 / 2 {2g. + u2o} S 3 sm(u^) . 
Clearly 

Sm(uJ) C 6{2£m-1 / 2g. + £U^] 
and therefore q 

s(u2) s Jm smCD-> + erm+1u2 s y { 2 e m - 1 / 2 j f f i g . + 2 £ u 2 ] , 
where Up denotes the closed unit ball of lp . On the other hand, 

q[£m-V2Jm A ( T J S J ) = -|;A[£m-1/2{2g i+ !&}] £ 3mf[ 6rk A(U?), 

where A i s the Lebesgue measure. Using St ir l ing's formula we get 
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t+ì 
etP(t+l) = tfix" t 2 for 0 < t < o o . 

Hence 
m m 

•\tt]»-, - X ^ *• ( 2 3 T e ) 2 < 5m 

A ( U 2 ) ' r ( | + D -jfc ~^2' 
This implies that m 

q£ffi = 8 m T T 6 ' k • 
1 K 

Choose n such that 
m 

n-1 = 1 + X log(8 e^/E ) = n . 

Then q = 211-1 and therefore en(S) = 2 £ . So E(2£ ) = n-1 . Thi 

proves (£f). 

Finally, we have 

2"p 2 en(S)p = 2-p 2 n [en(S)p - en+1(S)p] 

= 2"P I * E( £ ) d £ p Г. 
t 6 l 

= flГÇ + X log(8 6 . / £ )d£ ] 

64 
= 6* + X f Z l o g ( 8 ff / £ )d£ ] 

1 i= l KJ 6^>e K 67 . бЃx 

i + l /.б". <*= i 1 T - Г>i = б-ş + x x: / юg(8 v s >d £ 
1 І = I k=i x * 

° i+l 

= 5 ? + 2 2 I Юg(8 6-^ £ )d £P 

1 k=i i=k L. * 
° i+ l 

o o rб^ 
= 6ГŞ + X / Юg(8бГk/£)d £P 

1 k=l 1 X 

8p 

"0 
'8"p 

- ØP + §£ I юg(l/t)dt Ç f f p . 

This completes the proof. 

The above theorems show tjhat for any Hilbert space H the 

operator ideal ^D(H, H) coincides with the operator ideal 9^(H,H), 

In particular, ^(H, H) is the ideal of so-called Hilbert-Schmidt 

Operators. 
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5. Entropy cmasi-norms of the identity map I from 1 to l
y 

Lemma !• 

If m = 1, •••, n , then 

П
Ч
 > 1 „ 

n . 

Proof. 
Let uSo and U? denote the closed unit ball of 1̂ > and 1

1 > 

respectively• Suppose that 

uSo € U { y . + 6-Un} and q * 2Ii-1 . 
Then -1 

A(U^ = 51 A( y i + 6U
n) = q <5n A(Un) , 

where A is the Lebesgue measure on Rn • Now A(U^) = 2 and 

A(Un) = 2n/n! imply that <3n = nl/2n-l • Using enn! > nn we get 

6 > n/2e . Therefore 

en(In : lL -> lj) = n/2e • 

In order to prove the following lemma we use a decomposition-

trick taken from M. 5. Birman and M» Z. Solomjak [l\ • 

Lemma 2. 

If m = 1, ..., n , then 

e (I : ln -> ln ) = c l 0S ( n^) enr n # xl x * ° ' c m > 

where c is a positive constant. 

Proof. 
Let U? and uS> be as before. If m = 4 , then 

6- •= 4 log(n+l) £ 2 ^°S
(n+1) > I . # ^ m m-2 n 

Put 

K(x) := (k : |fk| > 6-} for x = (fk) ̂  Un . 

We have \£ j 
card (K(x)) < ->- — ^ ~ = 1/6" < n . 

K(x) 6» 
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Let IK denote the collection of all sets K Q {l, •.., n} with 

card (K) < 1/6 and put 

\ := fx el^, : fk = 0 if k^Kj, 
Then 

x <= UK ( x ) + 6 u£> for a l l x e UJ . 
Hence 

U? £ ^ { U K + * * } • 

Clearly, we can find y£ ' € l^o such that 

U K c IJK { - « ) + 6 U n ] and qK - (1/ff + l) c a r d<K> . 

Consequently, there are y^ £ 1^, with 

Uj S (J { y i + 2 « T & } 

and 
1/6 

q ^ £ ( 1 / 6 + i)Card(K) < ^ ( n ) ( 1 / e + x)h * 2 ( n + 1 ) -V* < - f 1 . 
IK 1 n 

So we get 

em(In •: 1? -» i2) -̂  2 er 1% 8 l oflln + 1> . m n 1 ~ m 

Obviously this estimate is also true for m = 1, 2, 3 • 

Proposition 6. 

If 0 < p < <=>o , then 

E (I : l£,-*l?> ^ an n
1 ^ 1 _ n . 3 2 p n °° 1 p for n = l,<£,•••, 

where a^ is some positive constant. 
P 

Proof. 

By Lemma 1 we have 

em(Ins iSo "* lj> * -fe * for m = 1, ..., n • 
Therefore 

•p (T . in . ,riv > 1 JL/p+1 E p ( I n : X ~ "^ V = ~2S n • 

Proposition 7» 

I f 0 < p < 1 , then 
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Ep(In : ij^1-) = bp ^1/P'1 log(n+l) for n = 1, 2, .•., 

where b is some positive constant. 
P 

Proof. 
Using Proposition 3 we háve 

V 1- • 1J-J5.) * <2 ± etn+B(In! i»^l» ,P>VP 

From en+1(In : l£,-^ l£>) = 1/2 *e get 

( T e (I • ln-*líbkp)1/p = c . 

By Lemma 2 i t follows that 

( Ž effl(In : l j - * l ^ p ) 1 / p * d n1^'1 log (n+l) . 
m=l ť 

Since the constants c and d do not depend on n , the assertion 
is proved. 

Theorem 6. 

If 0 < p < 1 and 1 = u, v = *o, then 
^1/p+l/v-l/u < ̂ ( I n . o j ^ ^ , * ̂ 1/p+l/v-l/u lQg (n+1) 

for n = 1, 2, ..., 
where a^ and b_ are positive constants. P P 
Proof* 

By Theorem 2 and Proposition 6 we get 

and therefore 
nl/p+l/v-l/u ^ (J . ij^in, . p p n u v 

Analogously, by Theorem 2 and Proposition 7 we háve 
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i n 1 " 1 ^ bpii^P-1 log(n+l) n 1 / v = 

= bp n V P + V v - l / u l o g ( n + 1 ) . 

The l imit order A( £f , u, v) i s defined to be the infimum of 
a l l A -? 0 such that 

E p ( I n : 1S^> 1?> " c n * for n = 1, 2, . . . , 

where c is some constant. Using this concept we can restate the 

above result as follows. 

Theorem 7. 

If 0 < p < 1 and 1 = u, v = oo , then 

A(E , u, v) = 1/p+l/v-l/u • 
Mr 

The remaining case is treated in the next theorem. For the 

proof the reader is referred to [12] • 

Theorem 8. 

If 1 = p < oo and 1 = u , v = oo , then 

A(E , u, v) = max (1/p+l/v-l/u, 0). 

The limit order is very useful for formulating conditions for 

a given diagonal operator S( f ) = ( 6 fn) to belong to KS^^Ji^ 
According to a deep theorem of H. Konig (3) our results can also be 

carried across to embedding maps of Sobolev spaces and to weakly sin­

gular integral operators from Lu into Ly • 
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