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TWO SET-THEORETIC PROBLEMS IN TOPOLOGY 

I. Juhász 
Mathematical Institute of the 
Hungarian Academy of Sciences 

1053.Budapest, Hungary 

The aim of this lecture is to draw your attention to some parti­

cular problems, rather than giving a survey of an area. I believe that 

the eventual solutions of these problems will significantly contribute 

to the progress of set-theoretic topology. 

§.1. ON THE NUMBER OF OPEN SETS 

For any topological space x I denote by o(x) the number of all 

open subsets of x, i.e. the cardinality of the topology of x. J. de 

Groot raised the following problem in [ 3] : If x is an infinite 

Hausdorff space is o(x) necessarily of the form 271? He has observed 

that this is so for metric spaces. In [ 5] it has been shown that the 

answer to de Groot's question is affirmative if GCH and the non-exis­

tence of inaccessible cardinals are assumed. 

On the other hand it follows from results in [ 6] ,[ 7] and [ 8] that 

in some models of set theory there are very good topological spaces such 

that e.g. 2 W < o(x) < 2"1. In fact these spaces can be chosen as here­

ditarily separable topological groups or as regular and hereditarily 

Lindelof. These results leave open the following problem: 

1.1. PROBLEM. Let x be an infinite T space. Is o(X)w=o(X)? 

The naturalness of this question is accentuated by a known result 

of R.S. Pierce and B. Efimov (cf. [2] and [15]) saying that the cardi­

nality x of an infinite complete Boolean algebra (i.e. the number of 

all regular open sets in a space) always satisfies x£i)=K. 

In what follows we present several partial results concerning prob­

lem 1.1. We shall be frequently using the following results on cardinal 

exponentiation (see e.g. [11]) : 

1.2. PROPOSITION. Let x and X be infinite cardinals. Then 

A) (x ) =x -x ; 

B) X < cf(x) implies xX=y;{aX:a < x} / 
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C) if A = cf(x) and x=E{* :v^A}, where x < x for v^A, then 

x = n {x : v^A} ; 

D) if cf(-n) < A < x, then 

xX = (£{aX : a < *})cf(yi) 

The next result also concerns cardinal exponentiation, and as far 

as I know it is new. It will play a crucial role in the proof given 

below. 

Let x and A be cardinals, the power x is called a jump, if 
X X 8 X 

x,A > a), a < x implies a < x and 3 < A implies x < x . 
1.3. LEMMA. If xX is a jump, then A = cf (x ). 

Proof. First we show that a < x implies a < x. Indeed a > x 

would imply (a ) =a >x , a contradiction. In particular we obtain 

2 < x, hence A < x. 

Now assume that A < cf(n). Then by 1.2 B) and the above we have 

A _ T-i #• A - -. ^ _ •- ^ A 

x = /_,{a : a < x} < x = x < x 

again a contradiction. 

Finally, cf(n) < A would imply by 1.2 D) that 

A /v-r A . yCf(yi) ^ cf(ti) - A * = (E{a : a < x } < x < x , 

which is impossible. Thus, indeed, we must have X=cf(n). 
The following three simple statements will be often used without 

mention in what follows. Their proofs are left to the reader. 

1.4. LEMMA. Let R be an arbitrary topological space. 

1) If R-=u{j?.. i€j} , then o(R) < Jl{o(R.): iGj} . 

2) If {R.: iej} is a disjoint family of non-empty open subspaces 

of R, then 

o(R) > Tl{o(R .) : iej} . 

3) If there is a discrete subspace of cardinality x in .R, then 

o(R) > 2*. 

Let us denote by JC the class of all strongly Hausdorff spaces 
(cf. [13]). Our next result, as we shall see, makes it very probable 
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that the answer to problém 1.1 is affirmative at least for spaces in W. 

1.5. THEOREM. Let x be a cardinal such that o(x)=n for some 

infinite x€K and x < xw. Then there is a cardinal 3 with the follo-

wing properties (i) - (iv): 

(i) o) < cf(&) = y < 3; 

(ii) (V« < 3)(ay < 3); 

(iii) 3Y > 3(a)) (=the o)th successor of 3); 

(iv) x > 3 U ) . 

Proof. Let X be the smallest cardinal such that X > x. Since 

A < x, the power Aw is clearly a jump, hence by 1.3 we háve u) = cf(A). 

Moreover n = o(x) > 2^ implies X > w. 

For any p^x let us put 

Q(p,x) = min{o(U) : p^U, u open in x } 

and 

a = o(x) = sup{afp,*; : p^x} . 

Since A€7C there can ohly be finitely many points pGx such that 

o(p,x) > X, for otherwise x would contain a disjoint family {u mGw} 

of open sets with o(u ) > X for all n^u, and thus 

o(X) > X® > x = o(X) 

would follow. On the other nand, throwing away finitely many points from 
x will clearly not change o(xj , hence we can assume that o(p*x) < X 

for each p^x. 
Now we claim that in fact o < X must be valid. Assume, on the 

contrary, that o = X. Since X can be written as A=£{An-
 nGaJ) r where 

X < X for nGo), then we can piek for n̂ o) distinct óoints p ex such n - - *n 
that o(p ,x) > X , moreover using x€K we can also assume that each 

p has a neighbourhodd u so that the family [u : nGw} is disjoint. 

However this implies, by 1.2 c), 

o(X) > Tl{o(U ) : nGw} > n X « X^ > x , 
12 _ 12 ' 

72^0) 



a contradiction. 

Next we show that \x\ < o . Indeed, every ptx has an open 

neighbourhood u(p) such that \u(p)\ < o(u(p)) < o. Hence if 
\x\ > o were true then u(p) would be a set-mapping which satisfies 

the conditions of Hajnal's theorem ( cf [4] or [13]), hence a free set 

DCX with \D\=\X\ would exist for u(p). However this subspace D 
\X\ is clearly discrete, consequently n=o(X)=2 , which is of course 

impossible. 

Now consider the above defined open cover \J={u(p): p^x] of x, 
then IUI < a . Let T denote the smallest cardinal for which x 
does not contain a discrete subspace of cardinality T. AS is shown in 

[ 9] , then every closed subset FCX can be obtained in the following 
form 

F -- (Fn(\j[}F))\JsF , 

<T <T where U^t U] and s _e[ x] . An easy calculation shows then that 
F F 

X < o(x) < (a+)s>. 

Since x€X, then 3.3 of ["13] implies cf(i) > OJ . From this and 

cf(A) = o) it follows then that there is a cardinal p < T with (a+)p> 

> A. Let Y be the smallest cardinal with (a+)Y > A and then 3 be 

smallest such that 3Y > A. Then 3 -* a+ < A, hence Y > <*> by the 

choice of A. Moreover y < T, hence x contains a discrete subspace 
"Y Y Y iij 

of size y9 consequently o(x) > 21 = Y and thus 3' > A > o(x) 
implies 3 > Y« In particular 3 and Y are infinite, hence the po­

wer 3Y is a jump and therefore y=cf(&). Now it is obvious that 3 

satisfies conditions (i) - (iv). 
As an immediate corollary we obtain the main result of [ 9] saying 

that if xeK and o(x) < o) then o(x)ti)=o(x). Indeed, this is 
0)1 +0) 

obvious since o) is the smallest cardinal which satisfies (i). How-
0)1 

ever our result says much more than this. Indeed, the consistency of 

the existence of a cardinal satisfying (i) - (Hi) has only been estab­

lished by M. Magidor [ 14] with the help of some enormously large fso 

called strongly compact; cardinals. Moreover by some very recent results 

of R. Jensen [ 12] the existence of such a 3 implies that measurable 

cardinals exist in some inner models of set theory. This shows that 

constructing a "counterexample" to 1.1 would require some very sophisti­

cated new method in axiomatic set theory. 
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It is natural to ask now wether an affirmative answer to l.lcould 

obtained for speciál classes of Hausdorff spaces. Our next two results 

are of this form. Let P denote the class of all hereditarily para-

compact T spaces. 

1.6. THEOREM. If xe? and |xl > w, then o (X) =o (X)". 

Proof. Suppose, on the contrary, that TÍ~O(X) < xw. Similarly as 

in the proof of 1.5 we let X be the smallest cardinal whose w 

power exeeeds n. Then cf(\)=iú < X < n. We can of course assume that 

for all YCx with o(Y)=-n we háve o (Y)=o (X) . Since POC, and the 

class P is hereditary, the samé argument as in the proof of 1.5 

yields then that o-a(X) < X. Put p=min{a:a > X}. By the choice of 

X then p > o). The following claim is the crux of the proof. 

Claim. Let < * : £ < p > be a sequence of cardinals such that 

x < o for every £ < p. Then there is a disjoint family {G :£ < p} 

of sets open in x such that n < o(G ) for each £ < p. In parti-

cular n{> : £ < p} < o(X)=n. 

Proof of the claim. Clearly we háve a locally finite open cover 

U of x for which o(u) < o for every ř^U. Now we define by trans-
finite induction for £ < p open sets G^X and u eU such that 

G Cjy Suppose that n < p and G , u háve been defined for £ < n. 

Then 

o(U{d : Z < n} ; < a,nl < X < x, 

hence for Y=xW{u : £, < n} we háve O(Y)=K. Since U is locally 

finite Y is open, moreover o(Y)=o by our assumption. Thus there is 

p€y for which o (p,Y)=o (p,x) > x . Now piek u eU such that ptu , 

and put G =Y(*iu . Then p^G implies o(G ) > o(p,x) > x , and 

clearly Š < n implies G <^G =0 . The claim is thus proven. 

An immediate consequence of this claim is that T < o implies 

T P < x, and thus T P < X as well (indeed, T P > X would imply 

T P > Xw > x). Consequently the power ap is a jump, hence p=cf(o) 

ty 1.3. Now vrite a=E{x : Z < p} / wh.ere x < o for each £ < p. 

Applying the claim to the sequence ( M.: £ < p > we get a disjoint open 

family {G : š < p} such that °(Ge) > x
ř
 f o r £ < p. But then by 

1.2 c) 

ap = II{x : š < p} < J[{o(G^) : Z, < p} < o(X) - * < xW, 
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while clearly op > x implies ap > Xw, a contradiction, which 

completes our proof. 

Now let G be the class of all T topological groups. 

Proof. Let e denote the unit element of G, V be the neighbour­

hood filter of e in G, and put o-o(e,G)=o(G). We have to distinguish 

two cases: 

Case a. There is v^W such that o(V)=o and finitely many left 

tranlates of v cover G, i.e. there is a finite set ^cG for which 

G=u{aV: a^A} . Clearly then o(G) < II {o (a- v) : a£A}=o, while G contains 

an infinite disjoint family {H : nCw} of non-empty open sets, hence 

by o (H ) > o we have o(G) > o and consequently 0(0=0(0^. 

Case b. There is no KC-V as in case a. Let UcV be arbitrary 

with o(U)=o and pick a symmetric neighbourhood vc\ such that 
2 

v Cu. Consider ACG such that {aV: aCA} forms a maximal disjoint 

family of left translates of v. We claim that v{aU: a^A}= G. Indeed 

for any XCG there is a^A with (xv)^(aV)^0, hence there are 
-1 -1 

v , v &v such that xv =av . Then x=av v , and v v cr/ implies 

x C a U . 

Thus by our assumption |^|=a > to, and obviously 

o(G) < Jl{o(aU): a^A} = a" 

on the one hand and 

o(G) > Jl{o(aV): a£A} = o** 

on the other. But then o(G)=o =(0 ) w . 

I would like to mention at the end of this section the following 

problem. 

1.8. PROBLEM. If x is an infinite compact T space, is o(x)-

0(X)Ш? 



121 

§.2. OMITTING CARDINALS BY COMPACT SPACES 

The problems considered in this section are motivated by [ 10] , 

where the following question is investigated (under GCH).- does every 

Lindelof space of cardinality u)2 contain a Lindelof subspace of car­

dinality OH? There it is also shown that any uncountable compact T 

space contains a Lindelof subspace of cardinality OH. This leads na­

turally to the following definition. 

2.1. DEFINITION. The compact T space x is said to omit the 

infinite cardinal x if \x\ > x and x contains no closed (--compact) 

subspace of cardinality x. 

EXAMPLE 1. It is well-known that 3N omits every infinite x < 2 

The following example is due to E.van Dowen and it is included 

here with his kind permission. 

EXAMPLE 2. Let X be a strong limit cardinal with cf(\)=u9 and 

x be a compact T space such that \x\ > X and every countable 

discrete subset of x is c*-embedded (e.g. x is an F-space, cf [1]). 

Then x omits X. 

It is enough to show that YCx and |y|-=X implies l?l > X^OX). 

In fact we can restrict ourselves to discrete subspaces, because by 

3.2 of [13] any such Y contains a discrete subspace of size X. Now 

let A be a family of almost disjoint aj-element subsets of Y with 

lAI-̂ X03 (cf. [1] or [16]). It is easy to see that if A,BGA and A?B 

then no limit point of A is a limit point of B, hence clearly 

I'y.l > |A|=-xa). 

The above two examples tell all what is known about cardinals 

that can be omitted by a compact T space. 

In what follows we always assume GCH. Next we want to formulate 

a result showing that the omitting of cardinals by compact spaces is 

subject to some strict limitations. First however we prove a lemma 

which is interesting in itself. 

2.2. LEMMA. (GCH) Suppose x is compact T and omits x+; then 

there is a closed subspace FCx with a point p^F such that x(P'F)= 

Proof. We can of course assume that x has a dense subset of size 

X(PfX)?yi+ for each p^x. Then by 2.20 of [13] we have 

I [pex: x(PfX) < M} I < (x+)*--x+, hence {p^x : x(PfX) > x++} is a G +-

set in x (i.e. the intersection of x open sets), and therefore it 

contains a closed non-empty G +-set z. It is easy to see that 
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X(P'Z) >• * + + is valid for all pez, hence we can apply proposition 

2 of [10] to find a set ACZ with U I = 2 ^ = K such that |A| > x. 

Since x omits x+, we actually have Ul > x + as well. Now let 

F-=A. Then w(F) < 2,A,=x+, hence x(Pr^) < x + for every PGF. On the 
other hand by 2.20 of [13] again I {p£F: x(P*F) <•*}.<• X* = H + < IP I , 
hence we must have a point p&F with x(P/F)=x+. 

2.3. THEOREM. fGCH) A compact T space x cannot omit both 
+ J + + x and x 

Proof. Suppose that |x| > x + + and x omits x+. Then by lemma 

2.2 there is a closed subsapce FCx with a point p^F such that 

X(PfF)s=^ • One can easily construct then a strictly decreasing sequence 

{K : v < x+} of closed subsets of F such that n {K : v<x+} = {p}. For 

each v < x + pick a point p GK \ K . Clearly then 

{pv: v < T<+}= U + (Pv: v < a} U {p} . 
a<x 

If there is an a < x such that {py : v < a} has cardinality M + + , 

we are done. If not, i.e. if I{p : v < a}I < x for each a < x+
9 

then clearly I{p : v < x+}|=x+
9 which is impossible since x omits x+. 

Finally we mention the following simple result. 

2.4. THEOREM. CGCH) A compact T space cannot omit both w 

and a) 2 • 

Proof. This follows immediately from theorem 2 of [10] which says 

that if a compact T space x omits u> then \x\ > 2 W 1 . 

The following two simplest questions remain open: 

2.5. PROBLEM fGCH) Can a compact T space omit o,2, or OH and 
Ü ) 3 І 
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