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TWO SET-THEORETIC PROBLEMS IN TOPOLOGY 

I. Juhász 
Mathematical Institute of the 
Hungarian Academy of Sciences 

1053.Budapest, Hungary 

The aim of this lecture is to draw your attention to some parti

cular problems, rather than giving a survey of an area. I believe that 

the eventual solutions of these problems will significantly contribute 

to the progress of set-theoretic topology. 

§.1. ON THE NUMBER OF OPEN SETS 

For any topological space x I denote by o(x) the number of all 

open subsets of x, i.e. the cardinality of the topology of x. J. de 

Groot raised the following problem in [ 3] : If x is an infinite 

Hausdorff space is o(x) necessarily of the form 271? He has observed 

that this is so for metric spaces. In [ 5] it has been shown that the 

answer to de Groot's question is affirmative if GCH and the non-exis

tence of inaccessible cardinals are assumed. 

On the other hand it follows from results in [ 6] ,[ 7] and [ 8] that 

in some models of set theory there are very good topological spaces such 

that e.g. 2 W < o(x) < 2"1. In fact these spaces can be chosen as here

ditarily separable topological groups or as regular and hereditarily 

Lindelof. These results leave open the following problem: 

1.1. PROBLEM. Let x be an infinite T space. Is o(X)w=o(X)? 

The naturalness of this question is accentuated by a known result 

of R.S. Pierce and B. Efimov (cf. [2] and [15]) saying that the cardi

nality x of an infinite complete Boolean algebra (i.e. the number of 

all regular open sets in a space) always satisfies x£i)=K. 

In what follows we present several partial results concerning prob

lem 1.1. We shall be frequently using the following results on cardinal 

exponentiation (see e.g. [11]) : 

1.2. PROPOSITION. Let x and X be infinite cardinals. Then 

A) (x ) =x -x ; 

B) X < cf(x) implies xX=y;{aX:a < x} / 
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C) if A = cf(x) and x=E{* :v^A}, where x < x for v^A, then 

x = n {x : v^A} ; 

D) if cf(-n) < A < x, then 

xX = (£{aX : a < *})cf(yi) 

The next result also concerns cardinal exponentiation, and as far 

as I know it is new. It will play a crucial role in the proof given 

below. 

Let x and A be cardinals, the power x is called a jump, if 
X X 8 X 

x,A > a), a < x implies a < x and 3 < A implies x < x . 
1.3. LEMMA. If xX is a jump, then A = cf (x ). 

Proof. First we show that a < x implies a < x. Indeed a > x 

would imply (a ) =a >x , a contradiction. In particular we obtain 

2 < x, hence A < x. 

Now assume that A < cf(n). Then by 1.2 B) and the above we have 

A _ T-i #• A - -. ^ _ •- ^ A 

x = /_,{a : a < x} < x = x < x 

again a contradiction. 

Finally, cf(n) < A would imply by 1.2 D) that 

A /v-r A . yCf(yi) ^ cf(ti) - A * = (E{a : a < x } < x < x , 

which is impossible. Thus, indeed, we must have X=cf(n). 
The following three simple statements will be often used without 

mention in what follows. Their proofs are left to the reader. 

1.4. LEMMA. Let R be an arbitrary topological space. 

1) If R-=u{j?.. i€j} , then o(R) < Jl{o(R.): iGj} . 

2) If {R.: iej} is a disjoint family of non-empty open subspaces 

of R, then 

o(R) > Tl{o(R .) : iej} . 

3) If there is a discrete subspace of cardinality x in .R, then 

o(R) > 2*. 

Let us denote by JC the class of all strongly Hausdorff spaces 
(cf. [13]). Our next result, as we shall see, makes it very probable 
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that the answer to problém 1.1 is affirmative at least for spaces in W. 

1.5. THEOREM. Let x be a cardinal such that o(x)=n for some 

infinite x€K and x < xw. Then there is a cardinal 3 with the follo-

wing properties (i) - (iv): 

(i) o) < cf(&) = y < 3; 

(ii) (V« < 3)(ay < 3); 

(iii) 3Y > 3(a)) (=the o)th successor of 3); 

(iv) x > 3 U ) . 

Proof. Let X be the smallest cardinal such that X > x. Since 

A < x, the power Aw is clearly a jump, hence by 1.3 we háve u) = cf(A). 

Moreover n = o(x) > 2^ implies X > w. 

For any p^x let us put 

Q(p,x) = min{o(U) : p^U, u open in x } 

and 

a = o(x) = sup{afp,*; : p^x} . 

Since A€7C there can ohly be finitely many points pGx such that 

o(p,x) > X, for otherwise x would contain a disjoint family {u mGw} 

of open sets with o(u ) > X for all n^u, and thus 

o(X) > X® > x = o(X) 

would follow. On the other nand, throwing away finitely many points from 
x will clearly not change o(xj , hence we can assume that o(p*x) < X 

for each p^x. 
Now we claim that in fact o < X must be valid. Assume, on the 

contrary, that o = X. Since X can be written as A=£{An-
 nGaJ) r where 

X < X for nGo), then we can piek for n̂ o) distinct óoints p ex such n - - *n 
that o(p ,x) > X , moreover using x€K we can also assume that each 

p has a neighbourhodd u so that the family [u : nGw} is disjoint. 

However this implies, by 1.2 c), 

o(X) > Tl{o(U ) : nGw} > n X « X^ > x , 
12 _ 12 ' 

72^0) 



a contradiction. 

Next we show that \x\ < o . Indeed, every ptx has an open 

neighbourhood u(p) such that \u(p)\ < o(u(p)) < o. Hence if 
\x\ > o were true then u(p) would be a set-mapping which satisfies 

the conditions of Hajnal's theorem ( cf [4] or [13]), hence a free set 

DCX with \D\=\X\ would exist for u(p). However this subspace D 
\X\ is clearly discrete, consequently n=o(X)=2 , which is of course 

impossible. 

Now consider the above defined open cover \J={u(p): p^x] of x, 
then IUI < a . Let T denote the smallest cardinal for which x 
does not contain a discrete subspace of cardinality T. AS is shown in 

[ 9] , then every closed subset FCX can be obtained in the following 
form 

F -- (Fn(\j[}F))\JsF , 

<T <T where U^t U] and s _e[ x] . An easy calculation shows then that 
F F 

X < o(x) < (a+)s>. 

Since x€X, then 3.3 of ["13] implies cf(i) > OJ . From this and 

cf(A) = o) it follows then that there is a cardinal p < T with (a+)p> 

> A. Let Y be the smallest cardinal with (a+)Y > A and then 3 be 

smallest such that 3Y > A. Then 3 -* a+ < A, hence Y > <*> by the 

choice of A. Moreover y < T, hence x contains a discrete subspace 
"Y Y Y iij 

of size y9 consequently o(x) > 21 = Y and thus 3' > A > o(x) 
implies 3 > Y« In particular 3 and Y are infinite, hence the po

wer 3Y is a jump and therefore y=cf(&). Now it is obvious that 3 

satisfies conditions (i) - (iv). 
As an immediate corollary we obtain the main result of [ 9] saying 

that if xeK and o(x) < o) then o(x)ti)=o(x). Indeed, this is 
0)1 +0) 

obvious since o) is the smallest cardinal which satisfies (i). How-
0)1 

ever our result says much more than this. Indeed, the consistency of 

the existence of a cardinal satisfying (i) - (Hi) has only been estab

lished by M. Magidor [ 14] with the help of some enormously large fso 

called strongly compact; cardinals. Moreover by some very recent results 

of R. Jensen [ 12] the existence of such a 3 implies that measurable 

cardinals exist in some inner models of set theory. This shows that 

constructing a "counterexample" to 1.1 would require some very sophisti

cated new method in axiomatic set theory. 
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It is natural to ask now wether an affirmative answer to l.lcould 

obtained for speciál classes of Hausdorff spaces. Our next two results 

are of this form. Let P denote the class of all hereditarily para-

compact T spaces. 

1.6. THEOREM. If xe? and |xl > w, then o (X) =o (X)". 

Proof. Suppose, on the contrary, that TÍ~O(X) < xw. Similarly as 

in the proof of 1.5 we let X be the smallest cardinal whose w 

power exeeeds n. Then cf(\)=iú < X < n. We can of course assume that 

for all YCx with o(Y)=-n we háve o (Y)=o (X) . Since POC, and the 

class P is hereditary, the samé argument as in the proof of 1.5 

yields then that o-a(X) < X. Put p=min{a:a > X}. By the choice of 

X then p > o). The following claim is the crux of the proof. 

Claim. Let < * : £ < p > be a sequence of cardinals such that 

x < o for every £ < p. Then there is a disjoint family {G :£ < p} 

of sets open in x such that n < o(G ) for each £ < p. In parti-

cular n{> : £ < p} < o(X)=n. 

Proof of the claim. Clearly we háve a locally finite open cover 

U of x for which o(u) < o for every ř^U. Now we define by trans-
finite induction for £ < p open sets G^X and u eU such that 

G Cjy Suppose that n < p and G , u háve been defined for £ < n. 

Then 

o(U{d : Z < n} ; < a,nl < X < x, 

hence for Y=xW{u : £, < n} we háve O(Y)=K. Since U is locally 

finite Y is open, moreover o(Y)=o by our assumption. Thus there is 

p€y for which o (p,Y)=o (p,x) > x . Now piek u eU such that ptu , 

and put G =Y(*iu . Then p^G implies o(G ) > o(p,x) > x , and 

clearly Š < n implies G <^G =0 . The claim is thus proven. 

An immediate consequence of this claim is that T < o implies 

T P < x, and thus T P < X as well (indeed, T P > X would imply 

T P > Xw > x). Consequently the power ap is a jump, hence p=cf(o) 

ty 1.3. Now vrite a=E{x : Z < p} / wh.ere x < o for each £ < p. 

Applying the claim to the sequence ( M.: £ < p > we get a disjoint open 

family {G : š < p} such that °(Ge) > x
ř
 f o r £ < p. But then by 

1.2 c) 

ap = II{x : š < p} < J[{o(G^) : Z, < p} < o(X) - * < xW, 
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while clearly op > x implies ap > Xw, a contradiction, which 

completes our proof. 

Now let G be the class of all T topological groups. 

Proof. Let e denote the unit element of G, V be the neighbour

hood filter of e in G, and put o-o(e,G)=o(G). We have to distinguish 

two cases: 

Case a. There is v^W such that o(V)=o and finitely many left 

tranlates of v cover G, i.e. there is a finite set ^cG for which 

G=u{aV: a^A} . Clearly then o(G) < II {o (a- v) : a£A}=o, while G contains 

an infinite disjoint family {H : nCw} of non-empty open sets, hence 

by o (H ) > o we have o(G) > o and consequently 0(0=0(0^. 

Case b. There is no KC-V as in case a. Let UcV be arbitrary 

with o(U)=o and pick a symmetric neighbourhood vc\ such that 
2 

v Cu. Consider ACG such that {aV: aCA} forms a maximal disjoint 

family of left translates of v. We claim that v{aU: a^A}= G. Indeed 

for any XCG there is a^A with (xv)^(aV)^0, hence there are 
-1 -1 

v , v &v such that xv =av . Then x=av v , and v v cr/ implies 

x C a U . 

Thus by our assumption |^|=a > to, and obviously 

o(G) < Jl{o(aU): a^A} = a" 

on the one hand and 

o(G) > Jl{o(aV): a£A} = o** 

on the other. But then o(G)=o =(0 ) w . 

I would like to mention at the end of this section the following 

problem. 

1.8. PROBLEM. If x is an infinite compact T space, is o(x)-

0(X)Ш? 
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§.2. OMITTING CARDINALS BY COMPACT SPACES 

The problems considered in this section are motivated by [ 10] , 

where the following question is investigated (under GCH).- does every 

Lindelof space of cardinality u)2 contain a Lindelof subspace of car

dinality OH? There it is also shown that any uncountable compact T 

space contains a Lindelof subspace of cardinality OH. This leads na

turally to the following definition. 

2.1. DEFINITION. The compact T space x is said to omit the 

infinite cardinal x if \x\ > x and x contains no closed (--compact) 

subspace of cardinality x. 

EXAMPLE 1. It is well-known that 3N omits every infinite x < 2 

The following example is due to E.van Dowen and it is included 

here with his kind permission. 

EXAMPLE 2. Let X be a strong limit cardinal with cf(\)=u9 and 

x be a compact T space such that \x\ > X and every countable 

discrete subset of x is c*-embedded (e.g. x is an F-space, cf [1]). 

Then x omits X. 

It is enough to show that YCx and |y|-=X implies l?l > X^OX). 

In fact we can restrict ourselves to discrete subspaces, because by 

3.2 of [13] any such Y contains a discrete subspace of size X. Now 

let A be a family of almost disjoint aj-element subsets of Y with 

lAI-̂ X03 (cf. [1] or [16]). It is easy to see that if A,BGA and A?B 

then no limit point of A is a limit point of B, hence clearly 

I'y.l > |A|=-xa). 

The above two examples tell all what is known about cardinals 

that can be omitted by a compact T space. 

In what follows we always assume GCH. Next we want to formulate 

a result showing that the omitting of cardinals by compact spaces is 

subject to some strict limitations. First however we prove a lemma 

which is interesting in itself. 

2.2. LEMMA. (GCH) Suppose x is compact T and omits x+; then 

there is a closed subspace FCx with a point p^F such that x(P'F)= 

Proof. We can of course assume that x has a dense subset of size 

X(PfX)?yi+ for each p^x. Then by 2.20 of [13] we have 

I [pex: x(PfX) < M} I < (x+)*--x+, hence {p^x : x(PfX) > x++} is a G +-

set in x (i.e. the intersection of x open sets), and therefore it 

contains a closed non-empty G +-set z. It is easy to see that 
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X(P'Z) >• * + + is valid for all pez, hence we can apply proposition 

2 of [10] to find a set ACZ with U I = 2 ^ = K such that |A| > x. 

Since x omits x+, we actually have Ul > x + as well. Now let 

F-=A. Then w(F) < 2,A,=x+, hence x(Pr^) < x + for every PGF. On the 
other hand by 2.20 of [13] again I {p£F: x(P*F) <•*}.<• X* = H + < IP I , 
hence we must have a point p&F with x(P/F)=x+. 

2.3. THEOREM. fGCH) A compact T space x cannot omit both 
+ J + + x and x 

Proof. Suppose that |x| > x + + and x omits x+. Then by lemma 

2.2 there is a closed subsapce FCx with a point p^F such that 

X(PfF)s=^ • One can easily construct then a strictly decreasing sequence 

{K : v < x+} of closed subsets of F such that n {K : v<x+} = {p}. For 

each v < x + pick a point p GK \ K . Clearly then 

{pv: v < T<+}= U + (Pv: v < a} U {p} . 
a<x 

If there is an a < x such that {py : v < a} has cardinality M + + , 

we are done. If not, i.e. if I{p : v < a}I < x for each a < x+
9 

then clearly I{p : v < x+}|=x+
9 which is impossible since x omits x+. 

Finally we mention the following simple result. 

2.4. THEOREM. CGCH) A compact T space cannot omit both w 

and a) 2 • 

Proof. This follows immediately from theorem 2 of [10] which says 

that if a compact T space x omits u> then \x\ > 2 W 1 . 

The following two simplest questions remain open: 

2.5. PROBLEM fGCH) Can a compact T space omit o,2, or OH and 
Ü ) 3 І 
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