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FOURTH WINTER SCHOOL (1976> 

A SURVEY Off LIFTING IN MEASURE THEOR3T 

by 

Siegfried GRAF 

Def.; For a Boolean algebra OL and an ideal <4l c 01 with 

1 £ ^ a l i f t ing i s a map 9 t 6fc —># ? s . t . ( i ) A^B —^ 

«=»9(A) « 9 ( B ) , ( i i ) A ~* 9 ( A ) , ( i i i ) y(AnB) « <y(Aj n 

n 9(B) , (iv) ^(AuB) * 9(A) u g>(B), (•) 9 ( 0 ) * 0, 9 (1> «" 

* 1 for a l l A, B e C& , (A^B means A A B C AU) 

A density i s a map 9 : VL—+GL which sat isf ies ( i ) , ( i i ) , 

( i i i ) , and ( • ) . 

A monotone l i f t ing 9 only sat is f ies ( i ) , ( i i ) , and AcE =*-.> 

=•> Cf(A) c 9(B) for a l l A,B tf Cfc » 

For a set X, a f ie ld Ct c ^ GO and an ideal /H. c OL with 

X e) 4^ l e t tf?*(X9'&) be the space of bounded, real-valued, 

01 -meas. functions on X with sup-norm* 

A l i f t ing for &°*(X,tt) w.r . t . M* i s a map Jt ^ a * > ( X , # ) ^ 

—* Sr°(XfCt) S.t . ( i ) f - V g ~ - » / ( f ) « / ( g ) , ( i i ) / ( f ) ~ r f , 

( i i i ) / linear, (iv) / multiplicative, (•) VcS £ R : / ( * : ) « 
« c C 

A linear lifting only satisfies (i), (ii), and (iii), while a 

monotone linear lifting is monotone and satisfies (•) in addi­

tion. 

For a linear lifting X ^ tf^X, Cfc) — > S^u/U) we define 

11/i = sup i II /(f) II : II f 11^6 1} , where jl/(f)| denotes 
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the sup-norm of U (f) and 1 f 1^ i« inf i<c € R : \) 11 a: 

£-cc3e.4fc3 • 

Prop, It (Ionescu-Tulcea 1965) & 6f-field f >^ 6* - ideal , 

If L i s a l i f t ing for Ol w.r . t . >*£ then there exists ex­

actly one l i f t ing X for 4fc~(XfCfc)f s . t . 1 L ( A ) * <*<1A) 

VAfi ft , and vice versa. 

I . On the existence of densities and l i f t ings 

Let Cl be a Boolean algebra and M, a OL an ideal . 

Theorem 1: (T. Neumann-Stone 1935) 

If AU i s k-complete for a l l k-*-card ( VL\AC)% then there is 

a l i f t ing for CC w.r . t . M? • 

Theorem 2: (v. Neumann-rStone 1935) 

If there i s a density for Ct w^r.t. AC , and i f Ai* i s con-

ditionally-k-complete for a l l k<card ( OL\AU) 9 then there 

i s a l i f t ing for OL w .r . t . A* * 

Remark: (•. Weizsficker 1975") 

There exists a Boolean algebra 01 and an ideal # c C t , 

s.t. there is a density eg for Ct w.r.t. ̂  bat no lifting 

Y with 9(A) c •y-U) V * 6 Ot -• 

Iroblem: Is there a lifting for OL w.r.t. AC , if there ie 

a density for OL w.r.t. AC T 

Corollary 1: (Gapail.3ard 1972) 

If (Xc p . (X) is a field and AC C OL an ideal in -J2 (X) with 

X £ AC 9 s.t. there exists a density for Cfc w.r.t. AC ; then 

there is a lifting for OL w.r.t. A4* • 

Corollary 2: (Graf 1972) 
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If X is a top. space, OL the & -field of all sets with 

Baire property in X and <M* the € -ideal of all sets of 

first category, then there is a lifting for 0t w.r.t -*<- * 

Theorem 3: (v. tfeizsacker-Graf 1973) 

If (X,Ct,̂ u/) is a £-finite measure space and M* • <A t OL \ 

% ̂ a(A) ~ 0} , then there exists a lower density for Ot 

w.r.t. At, 

Corollary: (von Neumann 1931, £• Maharam 1958) 

If (Xf0L9ft) is complete in addition, then there is a lift­

ing for i& w.r.t. At* » 

Remarks: The question of existence of a lifting for the unit 

interval with Lebesgue measure was raised by Haar and positi­

vely answered by von Neumann in 1931« In 1958 D. Maharam ge­

neralized the theorem to arbitrary $ -finite measure spaces. 

In 1974 ErdBs showed that there is a finitely additive measu­

re on J2(N), s.t. there is no lifting for J? (H ) w.r.t. 

4(<*« o J . 

Problems: 

Which pairs lCl9(c) admit a lifting (density)? 

To be more specific: Let OL be a Bool* an S"-algebra, At, c OL 

a 6*-ideal, sft. OL\AU is weakly countably distributive and 

satisfies the countable chain condition. Does a density (lif­

ting) for OL w.r.t. M> exist? 

Does every C'-finite measure space admit a lifting? 

H . Conditions for a complete measure space, which are equi­

valent to the existence of a lifting 
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Let (X96fc,(*) be a complete measure space , s . t . Cfc«{AcX: 

i V E 6 (X : (*{&)** <o - * EnAsCfc? and define ^ s « f l e a j 

: VEsCfct pCB)^oE>«^^(5nA)-0 .i -
(X,Cfcf(U/) has the l i f t i n g property (LP), monotone l i f t i n g 

property (HIP) or the density property (DP), i f f there i s a 

l i f t i n g , monotone l i f t i n g , density for Ct w . r . t . >**- * 

a) Decomposition of a measure space 

Def.: ^cOL i s ca l l ed a decomposition , i f f ( i ) V z , Z'c 3, : 

: Z + Z ' « > 2 A Z ' * 0 , ( i i ) V Z c ^ i Q - c (tt(Z)<co # and 

( i i i ) V A c a l(t*(A)-c a? and V Z f i ^ j (tcUnZ) * 0 ) - * 

=-» (C*(A) « 0 . 

Remark: Every Radon-measure-space has a decomposition (of 

compact s e t s ) . 

Theorem: The fol lowing are equivalent (T.F.A.E.) : 

(a) (X ,a , (U, ) has IP; (b) (XfGtf<u.) has DP; (c) ( X , « > ( o , ) 

has HIP; (d) there i s a decomposition for ( X , £ t , f * ) ; 

(e) £°*(X,a) has a l inear l i f t i n g X with \Z\ < 2 

( f ) £f°*(X,C() has a monotone l i n e a r l i f t i n g . 

Remark: 

(a)<W=r> (b)<.==f> (d)<===> ( f ) was proved by Ioneseu-Tulcea and 

Ktflzow 1968. 

(d)ej=-.> (• ) was proved by Strauss 1974 

(c)^-«» (d) was proved by Gapaillard in 1971* 

b) Radon-Hikodym theorem 

Def. : (X,C69(u>) has the Radon-Nikodym property (RNP), i f f 

for every measure 1? on Ot , s . t . -*(N) » 0 for a l l N « C/L 

with ( i t ( f f ) * 0 ( i . e . V i s ( it-continuous) , there i s an 
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Ol -measurable f: X-*»tOf+<o3 ,a.t. V A € C£ : (X{kt -

^ co «=-> ( JA fd(uu •< &<?*+ V(A)<<» ) and V (A) « f fdfu . 

f is called a derivative of V w.r.t. (IL . 

Remark: (Segal 1951) 

(X, a,ft) RHP<.-=* al>i^ complete lattice «---> L c 0(X ta,^) 

cond. compete lattice. 

Prop. 1: (KSlzow 1968) 

atUtp) IP *•--> (X,Cfcf(u,) RHP 

Remark: (Fremlin 1973) 

The converse of the above theorem does not hold. 

Def.: (XfCif(co) has the monotone (linear) RHP, iff for every 

measure V on 01 with V £ «(U, for some «c k ft+ there is 

a derivative f^ , s.t. for any two of those measures ^i» V 2 

we have v x ̂ - v> 2 ** f^ -fc f^ 

Theorem: (KOlzow 1968) 

T.F.A.B.: (i) (X,a,(u) has IP; (ii) (Xf6fcf(uJ has the mono­

tone RNP; fiii) (X,a,<a) has the linear RNP. 

c) Riesz theorem 

Def#: (X,af(u.) has the Riesz property (HP), iff V<y € 

^CL1(xfafP6))#a fy € * « utat(*)t s.t. Vf * 
€. » X ( X f a f (<*): ty(f) « / ff^ d<t£, • 

The map 9 i—> f<~ i s called an ^-di f ferent iat ion. 

(X, tfc, jic) ^aa the monotone (linear) RP, i f f there i s a mono­

tone (linear) R-differentiation. 

Remark: (Segal 1951) ' 
( x » C l f ^ ) has HP«=--> (X ftt f(a) has ERP 
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Theorem: (KOlzow 1968) 

T.F.A.E.: ( i ) (X fa f(t*) has LP; ( i t ) (Xf Cfcf <«,) has the mono­

tone HP; ( i i i ) (X,Ct, (oc) has the linear HP. 

d) Dunford-Pettis theorem 

Def.: (XfQtf(4,) has the Dunford-Pettis property (DPP), i f f 

for a l l Banach spaces B and a l l bounded linear maps %*: 

; If (XfCt94tt) —> B' there i s a weak*-measurable f^ : X—y 

—*B' , s . t . 

Vf e L ^ C t , ^ ) Vb*B: C^(f) l (b> « 

» X f ( x > r f u ( x ) 3 (b)d<o,(x). 
The map % »—• f^ i s called a DP-differentiation. 

(XfC|f(t*) has the linear (isometric) DPP, i f f there is a l ­

ways a linear (isometric) DP-diff erentiation. Here % *-> f̂ . 

i s called isometric, i f f 

fl^fl » inf -Cocc R :-Cx*X: II f ^ ( x ) If I> oo* 6 ^ 1 

Theorem: (Dieudonne* 1951, Ionescu-Tulcea 1962) 

T.F.A.B.: Ci) (X#a9<u.) has the IP; ( i i ) (X9 (l, (JU) has the 

linear DPP; ( i i i ) (X9££9£&) has the isometric DPP. 

e) Vitali differe rtiation systems 

Def.: For xcX l e t Oi (x ) c -^I^c-fA e Ot: 0* p(A}<coi}, 

s . t . : V ^ ' c C i i c a : o-c (*(A)*c <x> } f s . t . 3 £ € # < - 0 * #'c #L 

and V a € ty3 a 'e (£' : G'C G9 then ty'z C& (x) . In this 

case ( t ( x ) i s callsd a differentiation system for X • 

35 * (ZE(x >>x€2) i s called a differentiation system for 

(X f t t 9 (a,) f i f f S e a , X N D t i ^ and fJL (x> i s a di f f . 

system for x for a l l x£ D. 

For BcX, 4pc (A, i s an (JC-cover for B9 i f f there i s an 
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KG AU , s . t . B \ N c D and V x e B \ N 3 $ * QU* ) with C4
r : *> 

4Q C Qi, i s a s t r o n g (weak) V i t a l i cover f o r B, i f f V e > 

> 0 V C c B : 0 «< fi*{C) -s cOs=& 3 ( V ^ ) ^ c >*> , s . t . 

V n v»* * & ( n * m ) ; ^ ( C V U V ^ ) * Q and 

<**(U V^v C) -*- 6 (reap. ^*(C N U V^ ) « 0 and 

( Z fOV^)).- f A l U V ^ ) ^ )._ 

A differentiation system 06* (6£(x)) -jfor (X,C*,(U/) is 

called strong (weak) Vitali system i&for every BcX and for 

every OC -cover JQ for B, AQ is a strong (weak) Vitali co­

ver. 

Theorem: (KOlzow 1968) 

T.F.A.E.: (i) (Xfa>(to) has the IP; (ii) J strong Vitali 

system for (X,Cl,(U/); (iii) 3 weak Vitali system for 

(X,Cftt(ii/). 

Remark: 

Applications of Vitali systems to differentiatibn of semi­

group-valued measures and integral representations of opera­

tors can be found in Sion: A theory of semigroup valued mea­

sures, Lecture Notes 355(1974). 

f) Lifting topologies and category measure 

Prop.: (Gapaillard 1972) 

Let m be a monotone lifting for & ° * , {££±£1 a *ilter* 

ing increasing family in &* , s.t. fi £ vi (f^ 4 g € &*° . 

Then sup f^ € .$&** • ' ; • 

Corollary: (Maharam 1958) 

If D is a lower density for Oi w.r.t. AU 9 then ^T^±^ ^ 
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for any family (A^-ui in OL with A^cDtA.) for a l l i £ I . 

Def f t For a density D l e t x^i 4L€ Ob \ Ac D(A) i . 

'Hheoremt (A, Ionescu- Tulcea 1967) 

tr'j-j is a topology on X, s . t . 

( i ) ^ A ^ * < # $ 

(ii) VA€ a 3 <#, s tr^: &*% z ^ 
(iii) Kc X is ot first category <«-* K closed and nowhere 

dense<*==-> E e ^ 

Def•: (X,Ct,{u) is called a category measure space iff the­

re exists a topology f* on X, s.t. OL « i sets with Baire 

property w.r.t. V\ and >*£ =-fsets of first categcry w.r»t.CTJ. 

Prop.: (Graf 1973) 

T.F.A.E.: (i) (X,Ct,^) has the IP; (ii) (X,CC9^c) is a ca­

tegory measure space; (iii) there exists a topology on X, 

which satisfies (i) &. (ii) of the above proposition. 

III. Further applications of liftings 

a) Disintegration of measures 

Let S be a top. space, 43 (S) the Borel field of S and 

(X,6t) a measurable space. 

Theorem: (Valadier 1974, Maharam 1973, Saint-Pierre 1975 et 

al.) 

Let A : OL & 53 (S)—**[Ofcol be a measure, s.t. <u-» 

» Py(A) and V * pg(&) have the following properties: 

(i) (X,#,<u,) haa the IP; (ii) V is a Hadon meas. Then the­

re i8 a family (* ) ^ 0f Radon measures on S, s.t« 

X *—* ̂ x (B) Xs Oi-measurable for'all B € R (S) and more-
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over A(A*B) * SA
 v* <B>* <"- <*> * ° * all A € a with 

(U,(A) ** oo * 

Corollary: 

Let V ; .ft (S)—*»C0,eo1 be a Radon measure and f: S—^- X 

a 33 (S)- a -measurable map, s.t. (X, Gt,<tc) with ^e**f(V) 

has the IP. 

Then there is a family (^O^x °* ̂ a^oa aaaasuree on S, s.t» 

x v-^ ̂ x ^ )
 is ^-measurable for all B e J& (S) and moreover 

JA-v)xCB)d<^(x) * v(B'nf
-1(A)) for all A * a with <«(A)< 

< 00 , 

b) Strassen's theorem 

Let B be a Bauach space, p: B —* R sublinear. Then 

p is.continuous i f and only i f IpU * sup41p(b)i : be B and 

l b t £ 1 ? < co • 

Let X be a l i f t ing for &**(Xftt,<c*). 

Theorem: (S trass en 1965, lonescu-Tulcea 1968) 

Let (Px)Xt£x De a -family of continuous subline ar functionals 

on B, s.t* 

(a) V b f B : x »—> px(b) i s Ct-measurable 

0>> J l p x I d <£*(*)<--; a> and x'v->ftp xT in Jt"«» • 

(c) J3 H € - ^ Vb€B VxCXNH: ^ ( t 1-^ px(b))(x)^px(b) 

Define q.: B —* fc by cj>(b):* [ px(b)d <a (x)* 

Then <£ i s a continuous sublinear functional and for q € B* 

we have: 

c p £ 4 ' < _ » 3 family ( a x ) x € X i n B % s . t . x i -> A x (b) i s Cfc-

measurable, x «—>- » A X B is in St** and & x £ p x for a l l 

x e X . 
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c) Endomorphisms of L t t induced by point-mappings 

Let X9 Y be locally compact spaces., fc Badon-measure on 

X and V a Radon measure on Y« Define (U? : J3 (X) —> X Q,*> J 

by p ( B ) * sup -C^a(K): K:cB? and V* in an analogous way: 

Def.: Let T: Lot,(X9(U.)—^ La,(Y> V) be a Banach algebra ho-

momorphism. T i s called normal i f f Tl * 1 and T(sup f *) * 
i«I x 

« sup T(f4) for all families (f.t).i<T *» I^tt,**). 
i€l x x " 

>J33aaorem: (Ionescu-Tulcea 1965, Vesterstrdm-Vils 1968) • 

Let T: Lw(Xtfju) —^L^tY,** ) be a normal Banach algebra homo-

morphism. Then there is a M, \ X-T^ X, s.t. 

(i) V-Ps X — * R with compact support and continuous 

f o it is (a" -measurable 

( i i ) tf,NcI v --nullset: xt^UO is a (u'-nullset 

( i i i ) V?€L^(X9(it): Tf « f ^ L . 

IV* Liftings with additional properties 

a) Strong liftings 

Let (X9T) be a top* space, <X a 6f - f ie ld on X with 

T e a «nd ^ c C l an ideal. 

Def.: A l i f t ing (lower density) <f for OC w.r . t . AU i s .cal­

led strong, i f f %*><gCU>tGr a l l % fe T . 

Lemoa : (Ionescu-Tulcea) 

Let (X9T) be completely regular, L a l i f t ing for 6t w.r.t .-u. 

and .X the corresponding l i f t ing for St*°(X9Gt). Then: 

L i s strong i f and only i f V f c *^(X): Z (f) » f. 

Theorem: (Graf 1974) 
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Let (x, be a 6-finite measure on Ol> f a.t. {feC2O>0 

V*Z£ e J"̂  •()/} i and (X,CT) second countable, den there 

is a strong lower density for (X,C£f(Ct). 

Corollary •, 

If (XfCi«^) is complete in addition, then there is a strong 

lifting for (XfCfc, <a). 

Remark: In the case where (X,CT) is completely regular or 

metrizable, the above corollary was proved by several people, 

for instance by Ionescu-Tulcea, Sion, and Kellerer. 

Prop.: (Ionescu-Tulcea 1969) 

Let X be a locally compact space and ** a Radon measure on X. 

There exists a strong lifting .for (Xf *>) if and only if there 

is a.decomposition (Kj)j«* °* *xtv )f s»t» Kj *8 compact, K.« 

s supp V r , and (K*f V 7 ) has a strong lifting. 

Corollary: (Ionescu-Tulcea) \ 

If X is a metrizable locally compact space and V Radon mea­

sure on X with supp V » X, then there is a strong lifting for 

(Xf V ) . 

Problem: Let X be a locally compact space, V a Radon measu­

re on X with supp *» « X. Does (X, \> ) have a strong lifting? 

Due to the above proposition it is enough to .solve the problem 

for compact spaces. Bichteler and C.Ionescu-Tulcea even redu­

ced the problem to products of two-point-spaces and products 

of unit intervals resp. 

Application: Strict disintegration of measures ; 

theorem: (Ionescu-Tulcea) ' 

Let X, S be compact and f: S — ^ X continuous, onto* 
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Furthermore let V be a Radon measure on S, (U/» f(v). 

If there is a strong lifting for (X
9
 AdLX), (U), then there 

is a family ( V
x
)

x e X
 of Radon measures on S, s.t. x •—> V

X
(B) 

is ftp (X)-measurable for all B € ft (S), supp -P c f ^ X ) 

and VA e ft (X): V(BAf-1(A)) » Ĵ  Vx(B)d <ct (x). 

Remark: The above result generalizes to the case where S and 

X are locally compact and f is Luzin-measurable. 

b) Borel liftings 

Let X be a top. space and (u,: $i (X) — * I 0tco3 a mea­

sure. 

A lifting for (X, # (X),<u,) is called a Borel lifting. 

Theorem: (v. Neumann-Stone 1933 using continuum hypothesis) 

If X is a second countable top. space, then there is a Borel 

lifting for (X, & (X)9fO. 

Problem: 

Does eyexy Radon measure on a compact space hare a Borel lif­

ting? 

Maher proved that the problem can be reduced to the products 

of unit intervals. 

c) Invariant liftings 

Let (X9Ct9(tx) be a measure space and S a set of bijective, bi-

meaauraCble mappings g: X—*> X with g (^) • >#* • 

Def»: A lifting (density) Cft OL—i> OC is called S-inva-

riant i f f V A e Cfc V g c S : <y(g(A)) « g(g>(A)). 

Theorem: (A. Ionescu-Tulcea) 

Let S be an amenable group. Then (X, Cfc9 (U,) has an S-invariant 

density i f and only i f (X90l9(u,) has an S-invariant l i f t ing . 
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Corollary: 

If S is a countable, amenable group, then (XfGt.<u,) has an 

S-invariant lifting. 

Theorem: (lonescu-Tulcea 1967) 

Let X be a loc, comp.group, (JL fiaar measure on X, and S the 

group of left (resp. right) translations on X (i.e. X»S). 

Then there exists an S-invariant lifting for (Xfft). Such a 

lifting is always strong. 

Remark: (v. Weizs&cker 1975) 

Let (X, At) be as in the theorem, S ̂  S*. Then there is no S'-

invariant lifting for (Xf QJL) • 

V, Theorems on the non-existence of liftings 

Theorem: (von Neumann 1931, lonescu-Tulcea) 

If (X9tltf(-4) is a measure space, which is not atomic, then 

there is no monotone linear lifting Z : c£(X9Ct9£*) -—-• 

-*s£,p<xfaf(«.). 
Theorem: 

If (X,(X,fj.) is as in the above theorem, then there is no 

lifting L for a , s.t. V (A^l^ne ttW . ^ W % ) • 

VT. Liftings for mappings with values in a top. space 

Let (Xf Gfcf (tc) be a measure space and £ a completely regular 

space. 

Def.: f: X — r E measurable: <$-»> V g € ^^(E): g©f measur 

rable tf0^:* :2^(X, Cfc, <a):» «Cf 6^1 f meas.f f(X) relati­

vely comp. 1 
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Theorem: (Ionescu-Tulcea 1969) 

Let JL be a l i f t ing for %L°° (XfCt, ^ J . 

Then there i s a uniquely determined map X^} ^ B ^ " * ' 

s.t . 

(i) Vg6<eh(E) V f CSC4!: g o f ~ g • i j ( f ) 
( i i ) (V g€ < f b (E) i g o f A / g o f ' ) - > ^.g(f) = ^E ( f ' ) 

V f , f ' * £ * 
( i i i ) Vf«se~E V g 6 < b ( E ) : i ( g o f ) « g < > i E ( f ) . 

Application: 

Theorem: (Ionescu-Tulcea 1969) 

If (xt^t€T C*^°*E *8 a n -s~valueci stochastic process on 

(X,Cfc,(U/) (̂  c & interval), X , ^ g as above* Then (Yt>t*T 

with Y t » ^ E(X t ) is a separable modification of (Xt)t^T* 

Problems: 

Let E be a Banach space (ordered Banach space) 

Sf^°E(X,Ct,(Ur)
 a Vector space of Bochner-measurable E-valued 

functions on X. 

Is there a linear (monotone linear) lifting for 

Can the Banach spaces be characterized, s.t. such a lifting 

always exists? 

What about the analogous questions for bounded weakly measur­

able E-valued maps? 
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