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FOURTH WINTER SCHOOL (1976) -

A SURVEY ON LIFTING IN. MEASURE THEORY

by
Siegfried GRAF

Def.: For a Boolean algebra (! and an ideal 4 c (! with

1 ¢4 aliftingis amap @i &b & ,s.t. (i) AVB =3
=g(A) = ¢(B), (i1) & ~ @ (A), (iii) g(AnB) = gA)n

n g(B), (iv) @ (AuB) = @(A) v @(B), (v) @(0) =0, ¢(1) =
= 1 for all A, B s (L . (A~B means AAB € 4 )

A density is amap ¢ : (L —> & which satisfies (i),(ii),
(1i1), end (v). '

A monotons 1ifting g only satisfies (i),(ii), and AcB =
=> ¢(a) c q(B)lfor all A,Bc (b »

For a set X, a field (L c P(X) and an ideal 4« c & with

X ¢ # let LO(X,0L) be the space of bounled, real-valued,
(% -meas. functions on X with sup-norm.

A lifting for $L%(X,0) w.r.t. 4 is amap L: LOX,08)>
—> €O (X,A) s.t. (i) £vg => L(L) = L(g), (ii) 2 (L)~ P,
(iii) £ linear, (iv) £ multiplicative, (v) Ve € R: £L(cc)=
= & ‘ . '

A linear lifting only satisfies (i), (ii), and (iii), whik a
monotone linear lifting is monotone and satisfies (v) in addi-
tion. | '

For a linear 1lifting .2 : 'xw(x,m -—*&”(x,;d) we define
DLE = sup {ll.L(L)1N ¢ Ufﬂ;‘,é 1% , where [L(£)l denotes
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the sup-norm of A£(f) and IflMl 1= inf fc €R: {)2I=
zxcicmd .

Prop. 1: (Ionescu-Tulcea 1965) (4 ©-field, 4 & -ideal,
If L is a lifting for (I w.r.t. 4 then there exists ex-
actly one lifting £ for '2“(2,0!), s.t. lL(A)‘* £(1,)
VAe U , and vice versa.

I. On the existence of densities and liftings

Let (I be a Boolean algebra and 44 < (L ean ideal,

Theorem 1: (v, Neumann-Stone 1935)

If » is ik-complete for all k<card ( )4 ), then there is

a lifting for (f w.r.t. 4 .

Theorem 2: (v. NeumannsStone 1935) v

If there is a density for (L w.r.t. 44 , and if 42 is con-
ditionally-k-complete for all k<card ( (L14), then there

is a 1lifting for A wer.t,e #4 -

Remark: (v. Weizsfcker 1975)

There exists a Boolean algebra (! end an ideal # c &b ,
s.t. there is a density g for (¢ w.r.t. # but no lifting
¥ with @@)c y(A) YAae & -

Problem: Is there a lifting for (b w.r.t. 44 , if there is
a.density for (L w.r.t. M4 T

Corollary 1: (Gapaillard 1972)

If e P (X) is a field amd 4 c & an ideal in P (X) with
X ¢ #4 , s.t. there exists a density for (¥ w.r.t. 4 ,then
there is a lifting for (4 w.r.t. 44 .

Corollary 2: (Graf 1972)
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If Xis & top. space, Ol the & -field of all sets with

Baire property in X and 4 the 6 -ideal of all sets of

first category, then there is a lifting for L w.r.t 4 -

Theorem 3: (v. Weizsfcker-Graf 1973)-

If (X,lb,m) is a 6 -Finite measure space and 4 =fA ¢ O :

: @(A) = 0%, then there exists a lower density for 1z

Welroet, M

Corollary: (von Neumann 1931, D, Meharam 1958)

If (X,0k, ) is complete in addition, then there is a lift-

ing for W w.r.t. #

Remarks: The question of existence of a lifting for the unit

interval with Lebesgue measure was raised by Haar and positi-

vely answered by von Neumann in 1931. In 1958 D. Maharam ge-

neralized‘the theorem to arbitrary & -finite measure spaces,

In 1974 Erdd%s showed that there is a finitely additive measu-

re on P(N), s.t. there is no lifting for R (N) w.r.t,

{4 e=03.

Problems:

Which pa:.ra <a.(u> edmit a lifting (dens;ty)‘t

To be more specific: Let (L be & Boolean &-algebre, # c &

a &-ideal, s.t, L|4 is weakly countably distributive and

satisfies the countable chain condition. Does a density (1lif-

ting) for X w.r.t. 4 exist?

Does every 6&-finite measure space édmit a 1ifting?

II., Conditions for a comple te measure space, which are egui_
valent to the existence of a lifting
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Iet (X,Ul, ) be a complete measure space, s.t. OL ={fAcX:
t YE6 W (E) < ® = EnAc (X end define 4L :=x{hel:
: VE& Uy w(E)comy w{ENnA)=0} -
(x,(t, @) has the 1lifting property (LP), monotone lifting
property (MIP) or the density property (DP), iff there is =
1lifting, monotone lifting, density for ¢ w.r.t, 4+ -

a) Decomposition of a measure space
Def.: 9¢ Ol is called a decomposition, iff (i) ¥z, z'€ 3 :
t 292 =>2n2%= ) |, (i1) V263 :10= wW2)<® , and
(1ii) YVAe D (wlh)<ow and V263 : wAnz) =0)=
=> () = 0, _
Remark: Every Radon-measure-space has a decomposition (of
compact sets).
Theorem: The following are equivalent (T.F.A.E.):
(8 (X,Q,m) has IP; (b) (X,0¢,m) has IP; (c) (X,0t, @)
“has MIP; (4) thére is a decomposition for (X, ,m);
(e) £L%(X,0L) has a linsar lifting £ with §£1 < 2
(£) ¥%(X,(t) has a monotone linear 1ifting.
Remark: )
(a) =) (b}<=> (d)¢=>(£) was proved by Ionescu-Tulcea and
K8lzow 1968,
(d)e= (o) was proved by Strauss 1974
(¢)e=> (d) was proved by Gapaillard in 1971,

b) Radon-Nikodym theorem
Def.: (X,U, ) has the Badon-Fikodym property (RNP), iff
for every measure » on U , s.t. ~»(N) =0 forall Ne(l
with @(N)=0 (i.e. » is m-continuous), there is an
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(¢ -measurable f: x-—»to,"wo] Bet. VAEW @ @, -

< o= fA fdpk<w¢=9$’(A)<w )ana »(A) 'fAfd(a .
£ is called a derivative of v w.r.t. @
Remark: (Segal 1951) '
(x, &, @) R!ll’vée) wtau éomphte lattice &= L% (X,(L, 1)
c.ond. ecomple te lattice,
Prop. 1: (KBlzow 1968)

(X, 00, @) IP => (X,00, @) BNP

Remark: (Fremlin 1973)
The converse of the above theorem does not hold.
Def,: (X,0L,) has the monotcne (linear) RNP, i£f for every
measure ¥ on UL with Y€ occ@ for some o« & R, there is
a derivative £, , s.t. for any two of those measures »,,V,
we have ¥, & V= f‘,-&fvz

““1""‘2”) =oe1f., +o¢2£v Ve, °‘2GR*.)‘

Theorem: (K3lzow 1968)
T.F.AEe: (i) (X,C, ) has IP, (ii) (X,0t, ) has the mono-
tone RNP; (iii) (X,(¥,@) has the linear RNP,
c) Riessz theorem : _

Def,: (X,Q,w) has the Riesz iaropertx (rP), ifr Vg &

e (tMX, 0, w))"2 2y € £° (X, U,@), 8.t VL€

c 31(1,6!,(1»): g(£) = ft:ts, ae -

The map g+ £, is called an R-differentiation.

x » 0%, () has the monotone (linear) RP, iff there is a mono-
tone (linear) R-dxrterentntion. -

Remark: (Segal 1951) ! :

(X, ,@) has RP ¢<=> (X,l, () has RNP
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Theorem: (KSlzow 1968)
T.F.A.E.: (i) (X,0f, @) has IP; (ii).(X, &, «) has the mono-
tone RP; (iii) (X, (X, w) has the linear RP.

- a) Dunford-Pettis theorem
Def.: (X,0f,@u) has the Dunford-Pettis property (DPP), iff
for all Banach spaces B and all bounded linear maps WU
: x,d, @) —> B’ there is a weak¥ -measurable ru : X —>
— B’ , s.t.

Vel (X,0, ) YbeB: [U(L)] (b) = A

= [ 2(x) [£,,(x)] (b)a @ (x).

The map U +> f,, is called & DP-differentiation.
(X,X, @) has the linear (isometric) DPP, iff there is sl-
ways a linear (isometric) DP-differentiation., Here U +> ty
is called isometric, iff

Bl = inf foc ¢ R :4xeXs Iy (N2 0Ien?
mepran.: (Dieudonné 1951, Ionescu-Tulcea 1962)
T.F.A.Es: (i) ix,a, @) has the IP; (ii) x, a, @) has the
limear DPFP; (iii) (X,()(.,(L) has the isometric DPP,

e) Vitali differertiation systems '
Def,: For xeX'let & (x) c4gicfAell: O< ul(Al<awli,
Bute: Vg.'c fAe;10<c t(A)<m} ,s.t.SgeE(x)s g'cqh
and Vae Q3 a'eQ’ :6°ca, then (e T (x). In this
case {U{(x) is called a differentiation system for X .
@ = (W(x ))zep is called a differentiation system for
(X,0,@),iff De kL , X\NDesu and O (X) is a aiff.
system for x for all x€D.
Por BcX, 4#c (! is an (‘)_f-cover_ for B, iff there is am
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e s  s.t. BANcD and VxeB\Njgeﬁ(x) with &5 s

4y ¢ O is a strong (weak) Vitali cover for B, iff Ve>
>0V CeB: 0 wu¥(C)=c0=> 3 (V, ), €4 , s.t.
Y0 Vm = § (ndm), @7C\L/ V,) =0emd

@*(y Vv, N C)< & (resp, ©¥(C YV, )=0and
(Z eV )) = p<uv )< € )
A different:.atmn system L= (Ut(x))xen for (x W, w) is
calk 4 strong (weak) Vitali system iff for every Bc X and for
every .02 ~-cover 4 for B, 49 is a strong (weak) V:ltai:l co-
ver, '
Theorem: (K8lzow 1968)
T.F.A.E.: (i) (X,0%, ) has the IP; (ii) 3 strong Vitali
system for (X;OL, @w); (iii) 3 weak Vitali system for
(X,, ). '
Remark:
Applications of Vitali systems to differentiation of semi-
group-valued measures and ixitegral representations c¢f opera-
tors can be found in Sion: A theory of semigroup valued mea-
sures, Lecture Notes 355(1974) .-

f) Lifting topologies and category measure

Prop.: (Gapaillard 1972)
Let ™ be a monotome lifting for ®% , (f;);.r & filter-
ing increasing family in %, s.t. f; £ m (£;)<g € &7 .
Then sup f; € $” . ’ :
Corollary: (Msharam 1958)
If D is a lower density for 00 w.r.t. 4 , then &'Z}x‘i‘ @
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for any family (A4)4 r in U with A;cD{A;) for all i€ I,
Defy: For a density D let w:H{Ae W) AacD(A)? .
Theorem: (A, Ionescu~ Tulcea 1967)

‘b‘D is & topology on X, a8.t.

(1) ®pn M = {93

(ii) VAae A 3 U6 Tp: AAU =2 4

(iii) Kc X is of first category <==> K closed and nowhere
dense{=y K € 4t _
Def.,: (X,d,) is called a category measure space iff the-
re exists a topology T on X, s.t, O} = {sets with Baire
property w.r.t. T} and 4 =4{sets of first categary w.r.t.J3.
Prop.: (Graf 1973)
T.F.A.E.: (i) (X,d, ) has the IP; (ii) (X,, m) is a ca-
tegory measure space; (iii) there exists a topology on X,
which satisfies (i) & (ii) of the above proposition.

III. Further applications of liftings
a) Disintegration of measures

Let S be a top. space, J3(S) the Borel field of S and
(X,t) a measurable space.

Theorem: (Valadier 1974, Maharam 1973, Saint-Pierre 1975 et
al,)

let A: @ H(S)—>[0,0] be a measure, s.t. @=

= pg(A) and V = Pg(A) have the following properties:

(i) (X,€%, w) hag the IP; (ii) ¥ is a Radon meas, Then the-
re is a family (y ) y of Radon measures on S, s.t.

x 'xe
X > Py (B) jg (L -measurable for all Be€ M (S) and more-
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over A(AxB) = 5A x (B)d @ (x) for al1 A € ¢ with
(u.(A)< co .
Corollary: .
Let v : $(S)—>[0,00] be a Radon measure end £: S —> X
a B(s)- (4 -measurable map, s.t. (X,, ) with = £(p)
has the P, . '
Then there is a family. (¥ ),y of Radon masures on S, s.t.
x > V,(B) is Ol;neaaurable for all Be B (S) and moreover
fav B @ (@) = vBRIHAY) for all A6 with @A)«
<o, _ .

b) Strassen’s theorem

Let B be a Banach smce, p: B — R - sublinear. Then
P is continuous if and only if fpll = sup-ilp(b)l t beB and.
Ivi¢13< @ . :
Let £ be a lifting for &o(x, 0k, w).
Theorem: (Strassen 1965, Ionescu~Tulcea 1968)
Let (py)r x be a family of continuous sublinear functionals
on B, s.t.
(d) ¥YbéB: x r—> px(b) is _('X.‘-neaaurabla _
() §Vp lawix)co and x+>fp .k in £<.
() IANew VbeB VxeX\N: £(t > p (b))(x)£p,(b)
Define 9:B—>R by q(ble= [ p (b)a (x). |
Then ¢ is a continuous sublinear functional and for @& B’
we have: o o
@£q <=> 3 family (Ag)y.y in B’, s.t. x> A (b) is Ch-
measurable, x > B A I 45 in £ and .ﬁoxépx for all
xe X. '
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¢) Endomorphisms of L® induced by point-mappings

Let X, Y be locally compact spaces, @ Radon-measure on
X end ¥ a Radon measure on Y, Define «': B(X)—>T0,20]
by @'(B) = sup ‘[(I—(K): KeB3% end ¥° in an analogous way:
Def.: Let T: L%(X,w)—> L®(Y,¥) be & Banach algebra ho-
momoi'phism. T is called normal iff T1 =1 and T(g:g fi) =

= gzg T(f;) for all families (fi)isi in L2(X, ).

>.Theorem: (Ionescu-Tulcea 1965, Vesterstrgm-Vils 1968) .
Let T: L% (%, p).-—rL"(I,«e) be a normal Banach algebra homo-
‘morphiem. Then there is & 4 : XY—> X, s.t,
(i) ¥f£: X—> R with compact support and continuous
f o &4 is ( -measurable
(i1) V,FcY »°-nullset: «71(N) is & (u’-nullset
(111) VFerox,@): ¥ =Foa .

Iv. Liftinés with additional properties
a) Strong liftings
Let (X,T) be a top. space, (I a & -field on X vith
TecOll and s c en ideal.
.Der.. A 1lifting (lower denaity) 9 for X w.r.t.s is . cal-
led strong, iff Ycgl)or all e T .
Lemm : (Ionescu-Tulcea)
Let (X,7") be completely regular, L a lifting for L w.r.t.4
apd A the corresponding 1ifting for #£%°(X,). Then:
L is strong if and only if VIe G@: 2(0) =2,
Theorem: (Graf 1974)
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Let @ be a 6 -finite measure on L , s.t. @ (%U)>0

VU e IN{F3 , and (X,T’) second countable. Then there

is a strong lower density for (X,0L,w).

Corollary: ) ’

If (X, ,4) is complete in addition, then there is a strong
lifting for (X, K, w).

Remark: In the case where (X,J’) is completely regular or
metrizable, the above corollxy was proved by sevgral_ people,
for instance by Ionescu-Tulcea, Sion, and Kellerer. |
Prop.: (Ionescu-Tulcea 1969) |

Let X be a locally comp;act space and » & Radon measure on X,
There exists a strong lifting.for (X,») if and only if there
is a.decomposition (K.i).i‘J' of (X,»), s.t. K; ‘is compact, Kj=
= supp vxj, and (Kj, vxj) has a strong lifting.

Corollary: (Ionescu-Tulcea) ! _ .

If X is a metrizable locally compact space and v Radon mea-
sure on X with supp v= X, then thére is a strong lifting for
(x,v).

Problem: Let X be a locally compact space, ¥ & Radon measu-
re on. X with supp » = X, Does kx, » ) have a strong lifting?
Due to the above pi*oposition it is enough to.solve the problem
for compact spaces. Bichteler and C.Ionescu~Tulcea even redu-
ced th;s problem to products of two-point-spaces and products
of unit intervals resp. <

Applicgtion: Strict disintegration of measures *

Theorem: (Ionescu-Tulcea) /

Let X, S be compact and f: S —>» X continuous, onto.
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Furthermore let % be a Radon measure on S, = 2£(v).

If there is a strong lifting for (X, B(X),u ), then there
is a fanily ( Y )rex Of Radon measures on S, s.t., x +—> ¥ (B)
is B (X)-measurable for all B € B (s), supp oxcr'l(x)

md Yie B(X): vBArlw) = [ » (B u(x).

Remark: The above result. generaiizee to the case where S snd
X are locally compact and £ is Luzin-measurable,
b) Borel liftings

Iet X be a top. space and w: 3 (X) —> [ 0,0 a mea-
sure, ’

4 lifting for (X, B (X), @) is called a Borel lifting.
Theorem: (v. Neumann-Stone 1935 using continuum hypotheais)
‘IfXis & second countable top. space, then there is a Borel
lifting for (X, B (X), ).
Probl\em:
Does every Radon measure on a compact space have a Borel lif-
ting? ' '
Maher proved that the problem can be reduced to the products
of unit intervals,
¢) Invariant liftings
Let (X,&, ) be a measure space and S a set of bijective, bi-
peasura’ble mappings g: X —> X with g 1(ma) = 4& -
Def.: A lifting (demsity) @: 0L —> (X is called S-inva-
riant iff Vi e O VgeS: g(ad)) = gl g,
Theorem: (A. Ionescu-Tulcea)
Let S be an amenable group. Then (X, !, ) has an S-invariant
density if and only if (X,(1, w) has an S-invariant lifting.
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. Corollary:

If S is a countable, amenable group, then (X, U, @) has &n
S~invariant lifting.

Theorem: (Ionescu=-Tulcea 1967)

Let X be a loc, comp.group, ¢ Haar measure on X, and S the
group of left (resp. right) translations on X (i.e. X&S).
Then there exists an S-invariant lifting for (X, ). Such a
lifting is always strong.

Remark: (v. Weizalicker 1975)

Let (X, @) be as in the theorenm, S§ S°. Then there is no S°’-
invariant lifting for (X, w).

V. Theorems on the non-éxistence of liftings
Theorem: (von Neumann 1931, Ionescu-Tulcea)
If (X,%t,@«) is a measure space, which is not atomic, then
there is no monotone linear lifting 2 : ¥ (X,&,w) —>
e&f,p(x,a,@).
Theorenm :
If (X,t,@) is as in the above theorem, then there is no
lifting L for 0L, s.t. V(A, ), n€ a® Py LA,) .

= I( f'\N L)

VI. Liftings for nappinga with values in a top. space
Let (X,0l, ) be a measure space and E a completely regular
space.
Def.: f£: X—» E measurable: ¢==> VYV g & ‘(b(E): g o £ measu-
rable &C‘”Ezs Wn(x,“,&)zt {26 EX) £ meas., £(X) relati-
vely comp.}



108

Theoren: (Iéneacu-‘l‘u]cea 1969)

Let £ be a lifting for X% (X,it, w). o

‘Then there is a uniquely determined map Lg: éf";—)x B’

s.t. '

(1) Ygee,(® V LefY: gotng o Lp(£)

(11) (¥ g€ €, (E)1 gotmgor’) = Lylf) = £4(r°)
V£l &Y '

(iii) Vfe &% Vg e ‘Cb(E): L(geof) = go IE(r).

Application:

Theorem: (Ionescu-Tulcea 1969)

Ir (xt)ts’.l' C-*f«".’E is an E-valued stochastic process on
(X, 0, @) (T ¢ R interval), £,4y as above. Then (Yt)“r
with Y, = £p(X, ) is & separatle modification of (X,)teT*

Problems:

let E be a Banach space (ordered Banach space)

€%z (X, ) = Vector space of Bochner-measurable E-valued
functions on X.

Is there a linear (monotone linear) lifting for
LR, 0, @)?

Can the Banach spaces be characterized, s.t. such a lifting
always exists?

What about the analogous questions for bounded weakly measur-

able E-valued maps?




		webmaster@dml.cz
	2012-10-08T12:06:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




