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FIFTH WINTER SCHOOL (1977) 

ON GROTKMDIECK SPACES OF TYPE-C(K) 

By • • •,.' 

Jdrgen FLACESMEIES 

In his fundamental work on weakly compact operators Grothendieck 

presented the following theorem (see Canad. -J. Math. 5 (1953)): 

For a Banach space E the following properties are equivalent: 

(1) Every continuous linear map u:E —» X from E into some 

separable Banach space is weakly compact, i.e. u transmits t 

unit ball into some relative weakly compact set. 

(2) Weak—* -convergence and weak convergence for sequences coinc 

in the dual E'. 

Banach spaces with these properties (1) and (2) are called 

Grothendieck spaces (see for example J. Biestel: Grothendieck spac 

and vector measures. In: Yector and operator valued measures and 

applications. Ed. by D.H* Tucker, H.B. Maynard, Acad. Press. Inc. 

1973, 97-108.) 

The following problem (problem 3 in Diestel's paper is) unsolved: 

Characterize those compact Hausdorff spaces K for which the Banach 

space C(K) of all continuous real-valued functions on K is a 

Grothendieck space. 

What is known about this problem? 

Let be K a compact Hausdorff space. We will write K c G iff C(K) 

is Grothendieck. 

Grothendieck (1953): (i) K Stonian (=extremally disconnected) =» 

Ando (1961): (ii) K C-extremally disconnected «=-> KcG. 

Semadeni (1964): by another approach received (ii). 

Seever (1968): (iii) K an F-space -=» K<*G. 

H. Schaefer (1971) also proved (ii). Of course, (ixi)-=-=-Kii)~Ki). 

By the Riesz representation theorem the dual C'(K) can be identify 

with the space M(K) of bounded signed Badon measures on K. 
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Using this approach K eG gets equivalent to the following. 

For every sequence (/U./) of bounded Eadon measures holds: 

/^(f) -> o V f 6C(K) =-> A£(g) —> 0 V hounded Borel functions g. 

Thus, a necessary condition for KcG is that K must be sequentially 

discrete. 

The lecture now explains the following result: 

For every infinite compact F-space K the Alexandrov-double E3©K is 

never an F-space. 

For every KeG the Alexandrov-double ElgJK belongs to G. Thus a 

good deal of non-F-spaces are in G. 

(Remark: The extension of the class G in a suitable way to non-

compact spaces was treated in a thesis (Greifswald 1976) by 

Nguyen Boan Tien). 
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